aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/nav/nautischesdreieck.tex
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@ost.ch>2022-05-19 17:29:08 +0200
committerAndreas Müller <andreas.mueller@ost.ch>2022-05-19 17:29:08 +0200
commit786bba412cfab833ebb52fd64b738010a982c4c1 (patch)
tree857ce647e10a4156cd0e8ac58e1e37f29943e5d6 /buch/papers/nav/nautischesdreieck.tex
parentsome local changes (diff)
parentMerge pull request #13 from enezerdem/master (diff)
downloadSeminarSpezielleFunktionen-786bba412cfab833ebb52fd64b738010a982c4c1.tar.gz
SeminarSpezielleFunktionen-786bba412cfab833ebb52fd64b738010a982c4c1.zip
Merge branch 'master' of github.com:AndreasFMueller/SeminarSpezielleFunktionen
Diffstat (limited to 'buch/papers/nav/nautischesdreieck.tex')
-rw-r--r--buch/papers/nav/nautischesdreieck.tex198
1 files changed, 198 insertions, 0 deletions
diff --git a/buch/papers/nav/nautischesdreieck.tex b/buch/papers/nav/nautischesdreieck.tex
new file mode 100644
index 0000000..0a498f0
--- /dev/null
+++ b/buch/papers/nav/nautischesdreieck.tex
@@ -0,0 +1,198 @@
+\section{Das Nautische Dreieck}
+\subsection{Definition des Nautischen Dreiecks}
+Ursprünglich ist das nautische Dreieck ein Hilfsmittel der sphärischen Astronomie um die momentane Position eines Fixsterns oder Planeten an der Himmelskugel.
+Die Himmelskugel ist eine gedachte Kugel, welche die Erde und dessen Beobachter umgibt und als Rechenfläche für Koordinaten in der Astronomie und Geodäsie dient.
+Das nautische Dreieck definiert sich durch folgende Ecken: Zenit, Gestirn und Himmelspol.
+
+Der Zenit ist jener Punkt, der vom Erdmittelpunkt durch denn eigenen Standort an die Himmelskugel verlängert wird.
+Ein Gestirn ist ein Planet oder ein Fixstern, zu welchen es diverse Jahrbücher mit allen astronomischen Eigenschaften gibt.
+Der Himmelspol ist der Nordpol an die Himmelskugel projiziert.
+
+Zur Anwendung der Formeln der sphärischen Trigonometrie gelten folgende einfache Zusammenhänge:
+\begin{itemize}
+ \item Seitenlänge Zenit zu Himmelspol $= \frac{\pi}{2} - \phi $
+ \item Seitenlänge Himmelspol zu Gestirn $= \frac{\pi}{2} - \delta$
+ \item Seitenlänge Zenit zu Gestirn $= \frac{\pi}{2} - h$
+ \item Winkel von Zenit zu Himmelsnordpol zu Gestirn$=\pi - \alpha$
+ \item Winkel von Himmelsnordpol zu Zenit und Gestirn$= \tau$
+\end{itemize}
+Um mit diesen Zusammenhängen zu rechnen benötigt man folgende Legende:
+\begin{center}
+ \begin{tabular}{ c c c }
+ Winkel && Name / Beziehung \\
+ \hline
+ $\alpha$ && Rektaszension \\
+ $\delta$ && Deklination \\
+ $\theta$ && Sternzeit von Greenwich\\
+ $\phi$ && Geographische Breite\\
+ $\tau=\theta-\alpha$ && Stundenwinkel und Längengrad des Gestirns. \\
+ $a$ && Azimut\\
+ $h$ && Höhe
+ \end{tabular}
+\end{center}
+
+\subsection{Zusammenhang des nautischen Dreiecks und des Kugeldreiecks auf der Erdkugel}
+\begin{figure}
+ \begin{center}
+ \includegraphics[height=5cm,width=8cm]{papers/nav/bilder/kugel3.png}
+ \caption[Nautisches Dreieck]{Nautisches Dreieck}
+ \end{center}
+\end{figure}
+
+Wie man im oberen Bild sieht, liegt das nautische Dreieck auf der Himmelskugel mit den Ecken Zenit, Gestirn und Himmelsnordpol.
+Das selbe Dreieck kann man aber auch auf die Erdkugel projizieren und es hat dann die Ecken Standort, Bildpunkt und Nordpol.
+Als Bildpunkt wird in der astronomischen Navigation der Punkt bezeichnet, an dem eine gedachte Linie vom Mittelpunkt eines beobachteten Gestirns zum Mittelpunkt der Erde die Erdoberfläche schneidet.
+
+
+\section{Standortbestimmung ohne elektronische Hilfsmittel}
+Um den eigenen Standort herauszufinden, wird in diesem Kapitel die Projektion Nautische Dreieck auf der Erdkugel zur Hilfe genommen.
+Mithilfe einiger Hilfsmittel und der Sphärischen Trigonometrie kann man dann die Längen- und Breitengrade des eigenen Standortes bestimmen.
+
+\begin{figure}
+ \begin{center}
+ \includegraphics[width=10cm]{papers/nav/bilder/dreieck.pdf}
+ \caption[Dreieck für die Standortbestimmung]{Dreieck für die Standortbestimmung}
+ \end{center}
+\end{figure}
+
+
+
+
+\subsection{Ecke $P$ und $A$}
+Unser eigener Standort ist der gesuchte Ecke $P$ und die Ecke $A$ ist in unserem Fall der Nordpol.
+Der Vorteil ander Idee des Nautischen Dreiecks ist, dass eine Ecke immer der Nordpol ist.
+Somit ist diese Ecke immer bekannt und nur deswegen sind die Zusammenhänge von Rektaszension, Sternzeit und Deklination so simpel.
+
+\subsection{Ecke $B$ und $C$ - Bildpunkt X und Y}
+Für die Standortermittlung benötigt man als weiteren Punkt ein Gestirn bzw. seinen Bildpunkt auf der Erdkugel.
+Damit das trigonometrische Rechnen einfacher wird, werden hier zwei Gestirne zur Hilfe genommen.
+Es gibt diverse Gestirne, die man nutzen kann wie zum Beispiel die Sonne, der Mond oder die vier Navigationsplaneten Venus, Mars, Jupiter und Saturn.
+
+\subsection{Ephemeriden}
+Zu all diesen Gestirnen gibt es Ephemeriden, die man auch Jahrbücher nennt.
+In diesen findet man Begriffe wie Rektaszension, Deklination und Sternzeit.
+Da diese Angaben in Stundenabständen gegeben sind, muss man für die minutengenaue Bestimmung zwischen den Stunden interpolieren.
+Was diese Begriffe bedeuten, wird in den kommenden beiden Abschnitten erklärt.
+
+\begin{figure}
+ \begin{center}
+ \includegraphics[width=18cm]{papers/nav/bilder/ephe.png}
+ \caption[Astrodienst - Ephemeriden Januar 2022]{Astrodienst - Ephemeriden Januar 2022}
+ \end{center}
+\end{figure}
+
+\subsubsection{Deklination}
+Die Deklination $\delta$ beschreibt den Winkel zwischen dem Himmelsäquator und Gestirn und ergibt schlussendlich den Breitengrad.
+
+\subsubsection{Sternzeit und Rektaszension}
+Die Rektaszension $\alpha$ gibt an, in welchem Winkel das Gestirn zum Frühlingspunkt steht und geht vom Koordinatensystem der Himmelskugel aus.
+Der Frühlungspunkt ist der Nullpunkt auf dem Himmelsäquator.
+Die Tatsache, dass sich die Himmelskugel ca. vier Minuten schneller um die eigene Achse dreht als die Erdkugel, stellt hier ein kleines Problem dar.
+Die Lösung ist die Sternzeit.
+Mit dieser können wir die schnellere Drehung der Himmelskugel ausgleichen und können die
+Am Frühlingspunkt (21. März) 12:00 Uhr ist die Sternzeit
+$\theta = 0$.
+
+Die Sternzeit geht vom Frühlungspunkt aus, an welchem die Sonne den Himmelsäquator schneidet.
+Für die Standortermittlung auf der Erdkugel ist es am einfachsten, wenn man die Sternzeit von Greenwich berechnet.
+Für die Sternzeit von Greenwich $\theta $braucht man als erstes das Julianische Datum $T$ vom aktuellen Tag, welches sich leicht recherchieren lässt.
+Im Anschluss berechnet man die Sternzeit von Greenwich
+
+$\theta = 6^h 41^m 50^s,54841 + 8640184^s,812866 \cdot T + 0^s,093104 \cdot T^2 - 0^s,0000062 \cdot T^3$.
+
+Wenn mann die Sternzeit von Greenwich ausgerechnet hat, kann man den Längengrad des Gestirns $\lambda = \theta - \alpha$ mithilfe der Rektaszension und Sternzeit von Greenwich bestimmen.
+Dies gilt analog auch für das zweite Gestirn.
+
+\subsection{Bestimmung des eigenen Standortes P}
+Nun hat man die Koordinaten der beiden Gestirne und man weiss die Koordinaten des Nordpols.
+Damit wir unseren Standort bestimmen können, bilden wir zuerst das Dreieck $ABC$, dann das Dreieck $BPC$ und zum Schluss noch das Dreieck $ABP$.
+Mithilfe dieser Dreiecken können wir die einfachen Sätze der sphärischen Trigonometrie anwenden und benötigen lediglich ein Ephemeride zu den Gestirnen und einen Sextant.
+
+\begin{figure}
+ \begin{center}
+ \includegraphics[width=10cm]{papers/nav/bilder/dreieck.pdf}
+ \caption[Dreieck für die Standortbestimmung]{Dreieck für die Standortbestimmung}
+ \end{center}
+\end{figure}
+
+
+\subsubsection{Dreieck $ABC$}
+
+\begin{center}
+ \begin{tabular}{ c c c }
+ Ecke && Name \\
+ \hline
+ $A$ && Nordpol \\
+ $B$ && Bildpunkt des Gestirns $X$ \\
+ $C$&& Bildpunkt des Gestirns $Y$
+ \end{tabular}
+\end{center}
+
+Mithilfe des sphärischen Trigonometrie und den darausfolgenden Zusammenhängen des Nautischen Dreiecks können wir nun alle Seiten des Dreiecks $ABC$ berechnen.
+
+Die Seitenlänge der Seite "Nordpol zum Bildpunkt X" sei $c$.
+Dann ist $c = \frac{\pi}{2} - \delta_1$.
+
+Die Seitenlänge der Seite "Nordpol zum Bildpunkt Y" sei $b$.
+Dann ist $b = \frac{\pi}{2} - \delta_2$.
+
+Der Innenwinkel beim der Ecke "Nordpol" sei $\alpha$.
+Dann ist $ \alpha = |\lambda_1 - \lambda_2|$.
+
+mit
+\begin{center}
+ \begin{tabular}{ c c c }
+ Ecke && Name \\
+ \hline
+ $\delta_1$ && Deklination Bildpunkt $X$ \\
+ $\delta_2$ && Deklination Bildpunk $Y$ \\
+ $\lambda_1 $&& Längengrad Bildpunkt $X$\\
+ $\lambda_2$ && Längengrad Bildpunkt $Y$
+ \end{tabular}
+\end{center}
+
+Wichtig ist: Die Differenz der Längengrade ist gleich der Innenwinkel Alpha, deswegen der Betrag!
+
+Nun haben wir die beiden Seiten $c\ und\ b$ und den Winkel $\alpha$, der sich zwischen diesen Seiten befindet.
+Mithilfe des Seiten-Kosinussatzes
+$\cos(a) = \cos(b)\cdot \cos(c) + \sin(b) \cdot \sin(c)\cdot \cos(\alpha)$
+können wir nun die dritte Seitenlänge bestimmen.
+Es ist darauf zu achten, dass hier natürlich die Seitenlängen in Bogenmass sind und dementsprechend der Kosinus und Sinus verwendet wird.
+
+Jetzt fehlen noch die beiden anderen Innenwinkel $\beta \ und\ \gamma$.
+Diese bestimmen wir mithilfe des Sinussatzes $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)}$.
+Hier muss man aufpassen, dass man Seite von Winkel unterscheiden kann.
+Im Zähler sind die Seiten, im Nenner die Winkel.
+Somit ist $\beta =\sin^{-1} [\sin(b) \cdot \frac{\sin(\alpha)}{\sin(a)}] $.
+
+Schlussendlich haben wir die Seiten $a,b\ und \ c$, die Ecken A,B und C und die Winkel $\alpha, \beta \ und \ \gamma$ bestimmt und somit das ganze erste Kugeldreieck berechnet.
+
+\subsubsection{Dreieck $BPC$}
+Wir bilden nun ein zweites Dreieck, welches die Ecken B und C des ersten Dreiecks besitzt.
+Die dritte Ecke ist der eigene Standort P.
+Unser Standort definiere sich aus einer geographischen Breite $\delta$ und einer geographischen Länge $\lambda$.
+
+Die Seite von P zu B sei $pb$ und die Seite von P zu C sei $pc$.
+Die beiden Seitenlängen kann man mit dem Sextant messen und durch eine einfache Formel bestimmen, nämlich $pb=\frac{\pi}{2} - h_{B}$ und $pc=\frac{\pi}{2} - h_{C}$
+
+mit $h_B=$ Höhe von Gestirn in B und $h_C=$ Höhe von Gestirn in C mit Sextant gemessen.
+
+Zum Schluss müssen wir noch den Winkel $\beta1$ mithilfe des Seiten-Kosinussatzes mit den bekannten Seiten $pc$, $pb$ und $a$ bestimmen.
+\subsubsection{Dreieck $ABP$}
+Nun muss man eine Verbindungslinie ziehen zwischen P und A. Die Länge $l$ dieser Linie entspricht der gesuchten geographischen Breite $\delta$. Diese lässt sich mithilfe des Dreiecks $ABP$, den bekannten Seiten $c\ und \ pb$ und des Seiten-Kosinussatzes berechnen.
+
+Für den Seiten-Kosinussatz benötigt es noch $\kappa=\beta + \beta1$.
+
+Somit ist $\cos(l) = \cos(c)\cdot \cos(pb) + \sin(c) \cdot \sin(pb) \cdot \cos(\kappa)$
+
+und
+
+\[
+\delta =\cos^{-1} [\cos(c) \cdot \cos(pb) + \sin(c) \cdot \sin(pb) \cdot \cos(\kappa)].
+\]
+
+Für die Geographische Länge $\lambda$ des eigenen Standortes muss man den Winkel $\omega$, welcher sich im Dreieck $ACP$ in der Ecke bei $A$ befindet mithilfe des Sinussatzes $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)}$ bestimmen.
+
+Somit ist \[ \omega=\sin^{-1}[\sin(pc) \cdot \frac{\sin(\gamma)}{\sin(l)}] \]und unsere gesuchte geographische Länge schlussendlich
+\[\lambda=\lambda_1 - \omega\]
+mit $\lambda_1$=Längengrad Bildpunkt $X