aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/parzyl/teil3.tex
diff options
context:
space:
mode:
authorJODBaer <55744603+JODBaer@users.noreply.github.com>2022-08-19 09:27:07 +0200
committerGitHub <noreply@github.com>2022-08-19 09:27:07 +0200
commitcd4073b945c8b6528b0249e2369a374e2ab217a8 (patch)
tree287b03e81f26ff89b184a9e0c47bccd8da4ac6e9 /buch/papers/parzyl/teil3.tex
parentFM save (diff)
parenttypos (diff)
downloadSeminarSpezielleFunktionen-cd4073b945c8b6528b0249e2369a374e2ab217a8.tar.gz
SeminarSpezielleFunktionen-cd4073b945c8b6528b0249e2369a374e2ab217a8.zip
Merge branch 'AndreasFMueller:master' into master
Diffstat (limited to 'buch/papers/parzyl/teil3.tex')
-rw-r--r--buch/papers/parzyl/teil3.tex102
1 files changed, 99 insertions, 3 deletions
diff --git a/buch/papers/parzyl/teil3.tex b/buch/papers/parzyl/teil3.tex
index 4e44bd6..166eebf 100644
--- a/buch/papers/parzyl/teil3.tex
+++ b/buch/papers/parzyl/teil3.tex
@@ -3,6 +3,102 @@
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-\section{Teil 3
-\label{parzyl:section:teil3}}
-\rhead{Teil 3}
+\section{Eigenschaften
+\label{parzyl:section:Eigenschaften}}
+\rhead{Eigenschaften}
+
+\subsection{Potenzreihenentwicklung
+ \label{parzyl:potenz}}
+%Die parabolischen Zylinderfunktionen, welche in Gleichung \ref{parzyl:eq:solution_dgl} gegeben sind,
+%können auch als Potenzreihen geschrieben werden
+Die parabolischen Zylinderfunktionen können auch als Potenzreihen geschrieben werden.
+Im folgenden Abschnitt werden die Terme welche nur von $n$ oder $a$ abhängig sind vernachlässigt.
+Die parabolischen Zylinderfunktionen sind Linearkombinationen aus einem geraden Teil $w_1(\alpha, x)$
+und einem ungeraden Teil $w_2(\alpha, x)$, welche als Potenzreihe
+\begin{align}
+ w_1(\alpha,x)
+ &=
+ e^{-x^2/4} \,
+ {}_{1} F_{1}
+ (
+ \alpha, {\textstyle \frac{1}{2}} ; {\textstyle \frac{1}{2}}x^2)
+ =
+ e^{-\frac{x^2}{4}}
+ \sum^{\infty}_{n=0}
+ \frac{\left ( \alpha \right )_{n}}{\left ( \frac{1}{2}\right )_{n}}
+ \frac{\left ( \frac{1}{2} x^2\right )^n}{n!} \\
+ &=
+ e^{-\frac{x^2}{4}}
+ \left (
+ 1
+ +
+ \left ( 2\alpha \right )\frac{x^2}{2!}
+ +
+ \left ( 2\alpha \right )\left ( 2 + 2\alpha \right )\frac{x^4}{4!}
+ +
+ \dots
+ \right )
+\end{align}
+und
+\begin{align}
+ w_2(\alpha,x)
+ &=
+ xe^{-x^2/4} \,
+ {}_{1} F_{1}
+ (
+ {\textstyle \frac{1}{2}}
+ + \alpha, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}x^2)
+ =
+ xe^{-\frac{x^2}{4}}
+ \sum^{\infty}_{n=0}
+ \frac{\left ( \frac{3}{4} - k \right )_{n}}{\left ( \frac{3}{2}\right )_{n}}
+ \frac{\left ( \frac{1}{2} x^2\right )^n}{n!} \\
+ &=
+ e^{-\frac{x^2}{4}}
+ \left (
+ x
+ +
+ \left ( 1 + 2\alpha \right )\frac{x^3}{3!}
+ +
+ \left ( 1 + 2\alpha \right )\left ( 3 + 2\alpha \right )\frac{x^5}{5!}
+ +
+ \dots
+ \right )
+\end{align}
+sind.
+Die Potenzreihen sind in der regel unendliche Reihen.
+Es gibt allerdings die Möglichkeit für bestimmte $\alpha$ das die Terme in der Klammer gleich null werden
+und die Reihe somit eine endliche Anzahl $n$ Summanden hat.
+Dies geschieht bei $w_1(\alpha,x)$ falls
+\begin{equation}
+ \alpha = -n \qquad n \in \mathbb{N}_0
+\end{equation}
+und bei $w_2(\alpha,x)$ falls
+\begin{equation}
+ \alpha = -\frac{1}{2} - n \qquad n \in \mathbb{N}_0.
+\end{equation}
+Der Wert des von $\alpha$ ist abhängig, ob man $D_n(x)$ oder $U(a,x)$ / $V(a,x)$ verwendet.
+Bei $D_n(x)$ gilt $\alpha = -{\textstyle \frac{1}{2}} n$ und bei $U(a,z)$ oder $V(a,x)$ gilt
+$\alpha = {\textstyle \frac{1}{2}} a + {\textstyle \frac{1}{4}}$.
+\subsection{Ableitung}
+Die Ableitungen $\frac{\partial w_1(\alpha, x)}{\partial x}$ und $\frac{\partial w_2(\alpha, x)}{\partial x}$
+können mit den Eigenschaften der hypergeometrischen Funktionen in Abschnitt
+\ref{buch:rekursion:hypergeometrisch:stammableitung} berechnet werden.
+Zusammen mit der Produktregel ergeben sich die Ableitungen
+\begin{equation}
+ \frac{\partial w_1(\alpha,x)}{\partial x} = 2\alpha w_2(\alpha + \frac{1}{2}, x) - \frac{1}{2} x w_1(\alpha, x),
+\end{equation}
+und
+%\begin{equation}
+% \frac{\partial w_2(z,k)}{\partial z} = w_1(z, k -\frac{1}{2}) - \frac{1}{2} z w_2(z,k).
+%\end{equation}
+\begin{equation}
+ \frac{\partial w_2(\alpha,x)}{\partial x} = e^{-x^2/4} \left(
+ x^{-1} w_2(\alpha, x) - \frac{x}{2} w_2(\alpha, x) + 2 x^2 \left(\frac{\alpha + 1}{3}\right)
+ {}_{1} F_{1} (
+ {\textstyle \frac{3}{2}}
+ + \alpha, {\textstyle \frac{5}{2}} ; {\textstyle \frac{1}{2}}x^2)
+ \right)
+\end{equation}
+Nach dem selben Vorgehen können weitere Ableitungen berechnet werden.
+