aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/sturmliouville/einleitung.tex
diff options
context:
space:
mode:
authorErik Löffler <100943759+erik-loeffler@users.noreply.github.com>2022-08-23 15:46:42 +0200
committerErik Löffler <100943759+erik-loeffler@users.noreply.github.com>2022-08-23 15:46:42 +0200
commit905073fc0febc0af8aa43e58868b98f4f33b98fa (patch)
treefb470fe7342151ff4ea25bb25bf49b5bf13532e9 /buch/papers/sturmliouville/einleitung.tex
parentCorrected quotation marks. (diff)
downloadSeminarSpezielleFunktionen-905073fc0febc0af8aa43e58868b98f4f33b98fa.tar.gz
SeminarSpezielleFunktionen-905073fc0febc0af8aa43e58868b98f4f33b98fa.zip
Corrected all labels to comply with guidelines.
Diffstat (limited to 'buch/papers/sturmliouville/einleitung.tex')
-rw-r--r--buch/papers/sturmliouville/einleitung.tex45
1 files changed, 26 insertions, 19 deletions
diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex
index 4ed3752..2552574 100644
--- a/buch/papers/sturmliouville/einleitung.tex
+++ b/buch/papers/sturmliouville/einleitung.tex
@@ -32,12 +32,12 @@ partielle Differentialgleichung mit mehreren Variablen.
\begin{definition}
\index{Sturm-Liouville-Gleichung}%
Wenn die lineare homogene Differentialgleichung
-\begin{equation}
+\[
\frac{d^2y}{dx^2} + a(x)\frac{dy}{dx} + b(x)y = 0
-\end{equation}
+\]
als
\begin{equation}
- \label{eq:sturm-liouville-equation}
+ \label{sturmliouville:eq:sturm-liouville-equation}
\frac{d}{dx} (p(x) \frac{dy}{dx}) + (q(x) +
\lambda w(x)) y
=
@@ -47,18 +47,20 @@ geschrieben werden kann, dann wird diese Gleichung als Sturm-Liouville-Gleichung
bezeichnet.
\end{definition}
Alle homogenen linearen gewöhnlichen Differentialgleichungen 2. Ordnung können
-in die Form der Gleichung \eqref{eq:sturm-liouville-equation} umgewandelt
-werden.
+in die Form der Gleichung \eqref{sturmliouville:eq:sturm-liouville-equation}
+umgewandelt werden.
-Damit es sich um ein Sturm-Liouville-Problem handelt, benötigt es noch die Randbedingung, die im nächsten Unterkapitel behandelt wird.
+Damit es sich um ein Sturm-Liouville-Problem handelt, benötigt es noch die
+Randbedingung, die im nächsten Unterkapitel behandelt wird.
-\subsection{Randbedingungen\label{sub:was-ist-das-slp-randbedingungen}}
+\subsection{Randbedingungen
+\label{sturmliouville:sub:was-ist-das-slp-randbedingungen}}
Geeignete Randbedingungen sind erforderlich, um die Lösungen einer
Differentialgleichung genau zu bestimmen.
Die Sturm-Liouville-Gleichung mit homogenen Randbedingungen des dritten Typs
\begin{equation}
\begin{aligned}
- \label{eq:randbedingungen}
+ \label{sturmliouville:eq:randbedingungen}
k_a y(a) + h_a p(a) y'(a) &= 0 \\
k_b y(b) + h_b p(b) y'(b) &= 0.
\end{aligned}
@@ -66,26 +68,28 @@ Die Sturm-Liouville-Gleichung mit homogenen Randbedingungen des dritten Typs
ist das klassische Sturm-Liouville-Problem.
-\subsection{Koeffizientenfunktionen\label{sub:koeffizientenfunktionen}}
+\subsection{Koeffizientenfunktionen
+\label{sturmliouville:sub:koeffizientenfunktionen}}
Die Funktionen $p(x)$, $q(x)$ und $w(x)$ werden als Koeffizientenfunktionen mit
ihren freien Variablen $x$ bezeichnet.
-Diese Funktionen erhält man, indem man eine Differentialgleichung in die Sturm-Liouville-Form bringt.
+Diese Funktionen erhält man, indem man eine Differentialgleichung in die
+Sturm-Liouville-Form bringt.
Die Funktion $w(x)$ (manchmal auch $r(x)$ genannt) wird als Gewichtsfunktion
oder Dichtefunktion bezeichnet.
-Die Eigenschaften der Koeffizientenfunktionen sowie andere Bedingungen haben einen großen Einfluss auf die Lösbarkeit des Sturm-Liouville-Problems und werden im nächsten Kapitel diskutiert.
-
-
+Die Eigenschaften der Koeffizientenfunktionen sowie andere Bedingungen haben
+einen großen Einfluss auf die Lösbarkeit des Sturm-Liouville-Problems und werden
+im nächsten Kapitel diskutiert.
%
%Kapitel mit "Das reguläre Sturm-Liouville-Problem"
%
\subsection{Das reguläre oder singuläre Sturm-Liouville-Problem
-\label{sub:reguläre_sturm_liouville_problem}}
+\label{sturmliouville:sub:reguläre_sturm_liouville_problem}}
Damit es sich um ein reguläres Sturm-Liouville-Problem handelt, müssen einige
Bedingungen beachtet werden.
\begin{definition}
- \label{def:reguläres_sturm-liouville-problem}
+ \label{sturmliouville:def:reguläres_sturm-liouville-problem}
\index{regläres Sturm-Liouville-Problem}
Die Bedingungen für ein reguläres Sturm-Liouville-Problem sind:
\begin{itemize}
@@ -94,11 +98,13 @@ Bedingungen beachtet werden.
\item sowie müssen in einem endlichen Intervall $[a,b]$ integrierbar
sein.
\item $p(x)$ und $w(x)$ sind $>0$.
- \item Es gelten die Randbedingungen \eqref{eq:randbedingungen}, wobei
+ \item Es gelten die Randbedingungen
+ \eqref{sturmliouville:eq:randbedingungen}, wobei
$|k_i|^2 + |h_i|^2\ne 0$ mit $i=a,b$.
\end{itemize}
\end{definition}
-Werden diese Bedingungen nicht erfüllt, so handelt es sich um ein singuläres Sturm-Liouville-Problem.
+Werden diese Bedingungen nicht erfüllt, so handelt es sich um ein singuläres
+Sturm-Liouville-Problem.
\begin{beispiel}
Das Randwertproblem
@@ -112,8 +118,9 @@ Werden diese Bedingungen nicht erfüllt, so handelt es sich um ein singuläres S
Wenn man die Gleichung in die Sturm-Liouville Form umformen, dann ergeben
die Koeffizientenfunktionen $p(x) = w(x) = x$ und $q(x) = -m^2/x$.
Schaut man jetzt die Bedingungen im
- Kapitel~\ref{sub:reguläre_sturm_liouville_problem} an und vergleicht diese mit
- unseren Koeffizientenfunktionen, so erkennt man einige Probleme:
+ Kapitel~\ref{sturmliouville:sub:reguläre_sturm_liouville_problem} an und
+ vergleicht diese mit unseren Koeffizientenfunktionen, so erkennt man einige
+ Probleme:
\begin{itemize}
\item $p(x)$ und $w(x)$ sind nicht positiv, wenn $x = 0$ ist.
\item $q(x)$ ist nicht kontinuierlich, wenn $x = 0$ ist.