aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers
diff options
context:
space:
mode:
authorsamuel niederer <samuel.niederer@ost.ch>2022-07-24 12:16:02 +0200
committersamuel niederer <samuel.niederer@ost.ch>2022-07-24 12:16:02 +0200
commitc5a26d2d7bde694d08bff948c48b2615a7e2e973 (patch)
treee9dee7a30d2bc02c3758f64f9339e209765a048f /buch/papers
parentupdate packages (diff)
downloadSeminarSpezielleFunktionen-c5a26d2d7bde694d08bff948c48b2615a7e2e973.tar.gz
SeminarSpezielleFunktionen-c5a26d2d7bde694d08bff948c48b2615a7e2e973.zip
add current work
Diffstat (limited to '')
-rw-r--r--buch/papers/kra/hamilton.tex185
-rw-r--r--buch/papers/kra/main.tex32
-rw-r--r--buch/papers/kra/references.bib41
-rw-r--r--buch/papers/kra/riccati.tex93
-rw-r--r--buch/papers/kra/teil0.tex22
-rw-r--r--buch/papers/kra/teil1.tex55
-rw-r--r--buch/papers/kra/teil2.tex40
-rw-r--r--buch/papers/kra/teil3.tex40
-rw-r--r--buch/papers/kra/test.tex12
9 files changed, 313 insertions, 207 deletions
diff --git a/buch/papers/kra/hamilton.tex b/buch/papers/kra/hamilton.tex
new file mode 100644
index 0000000..14a5e8c
--- /dev/null
+++ b/buch/papers/kra/hamilton.tex
@@ -0,0 +1,185 @@
+\newcommand{\dt}[0]{\frac{d}{dt}}
+
+\section{Teil abc\label{kra:section:teilabc}}
+\rhead{Teil abc}
+
+\subsection{Hamilton-Funktion}
+Die Bewegung der Masse $m$ kann mit Hilfe der hamiltonschen Mechanik im Phasenraum untersucht werden.
+Die hamiltonschen Gleichungen verwenden dafür die veralgemeinerten Ortskoordinaten
+$q = (q_{1}, q_{2}, ..., q_{n})$ und die verallgemeinerten Impulskoordinaten $p = (p_{1}, p_{2}, ..., p_{n})$,
+wobei der Impuls definiert ist als $p_k = m_k \cdot v_k$.
+Liegen keine zeitabhängigen Zwangsbedingungen vor, so entspricht die Hamitlon-Funktion der Gesamtenergie des Systems \cite{kra:hamilton}.
+Im Falle des einfachen Federmassesystems, Abbildung \ref{kra:fig:simple_spring_mass},
+setzt sich die Hamilton-Funktion aus kinetischer und potentieller Energie zusammen.
+
+\begin{equation}
+ \label{hamilton}
+ \begin{split}
+ \mathcal{H}(q, p) &= T(p) + V(q) = E \\
+ &= \underbrace{\frac{p^2}{2m}}_{E_{kin}} + \underbrace{\frac{k q^2}{2}}_{E_{pot}}
+ \end{split}
+\end{equation}
+
+Die Hamiltonschen Bewegungsgleichungen liefern \cite{kra:kanonischegleichungen}
+\begin{equation}
+ \label{kra:hamilton:bewegungsgleichung}
+ \dot{q_{k}} = \frac{\partial \mathcal{H}}{\partial p_k}
+ \qquad
+ \dot{p_{k}} = -\frac{\partial \mathcal{H}}{\partial q_k}
+\end{equation}
+
+daraus folgt
+
+\[
+ \dot{q} = \frac{p}{m}
+ \qquad
+ \dot{p} = -kq
+\]
+
+in Matrixschreibweise erhalten wir also
+
+\[
+ \begin{pmatrix}
+ \dot{q} \\
+ \dot{p}
+ \end{pmatrix}
+ =
+ \begin{pmatrix}
+ 0 & \frac{1}{m} \\
+ -k & 0
+ \end{pmatrix}
+ \begin{pmatrix}
+ q \\
+ p
+ \end{pmatrix}
+\]
+
+Für das erweiterte Federmassesystem, Abbildung \ref{kra:fig:multi_spring_mass}, können wir analog vorgehen.
+Die kinetische Energie setzt sich nun aus den kinetischen Energien der einzelnen Massen $m_1$ und $m_2$ zusammen.
+Die Potentielle Energie erhalten wir aus der Summe der kinetischen Energien der einzelnen Federn mit den Federkonstanten $k_1$, $k_c$ und $k_2$.
+
+\begin{align*}
+ \begin{split}
+ T &= T_1 + T_2 \\
+ &= \frac{p_1^2}{2m_1} + \frac{p_2^2}{2m_2}
+ \end{split}
+ \\
+ \begin{split}
+ V &= V_1 + V_c + V_2 \\
+ &= \frac{k_1 q_1^2}{2} + \frac{k_c (q_2 - q_1)^2}{2} + \frac{k_2 q_2^2}{2}
+ \end{split}
+\end{align*}
+
+Die Hamilton-Funktion ist also
+
+\begin{align*}
+ \begin{split}
+ \mathcal{H} &= T + V \\
+ &= \frac{p_1^2}{2m_1} + \frac{p_2^2}{2m_2} + \frac{k_1 q_1^2}{2} + \frac{k_c (q_2 - q_1)^2}{2} + \frac{k_2 q_2^2}{2}
+ \end{split}
+\end{align*}
+
+Die Bewegungsgleichungen \ref{kra:hamilton:bewegungsgleichung} liefern
+\begin{align*}
+ \frac{\partial \mathcal{H}}{\partial p_k} & = \dot{q_k}
+ \Rightarrow
+ \left\{
+ \begin{alignedat}{2}
+ \dot{q_1} &= \frac{2p_1}{2m_1} &&= \frac{p_1}{m_1}\\
+ \dot{q_2} &= \frac{2p_2}{2m_2} &&= \frac{p_2}{m_2}
+ \end{alignedat}
+ \right.
+ \\
+ -\frac{\partial \mathcal{H}}{\partial q_k} & = \dot{p_k}
+ \Rightarrow
+ \left\{
+ \begin{alignedat}{2}
+ \dot{p_1} &= -(\frac{2k_1q_1}{2} - \frac{2k_c(q_2-q_1)}{2}) &&= -q_1(k_1+k_c) + q_2k_c \\
+ \dot{p_1} &= -(\frac{2k_c(q_2-q_1)}{2} - \frac{2k_2q_2}{2}) &&= q_1k_c - (k_c + k_2)
+ \end{alignedat}
+ \right.
+\end{align*}
+
+In Matrixschreibweise erhalten wir
+
+\begin{equation}
+ \label{kra:hamilton:multispringmass}
+ \begin{pmatrix}
+ \dot{q_1} \\
+ \dot{q_2} \\
+ \dot{p_1} \\
+ \dot{p_2} \\
+ \end{pmatrix}
+ =
+ \begin{pmatrix}
+ 0 & 0 & \frac{1}{2m_1} & 0 \\
+ 0 & 0 & 0 & \frac{1}{2m_2} \\
+ -(k_1 + k_c) & k_c & 0 & 0 \\
+ k_c & -(k_c + k_2) & 0 & 0 \\
+ \end{pmatrix}
+ \begin{pmatrix}
+ q_1 \\
+ q_2 \\
+ p_1 \\
+ p_2 \\
+ \end{pmatrix}
+ \Leftrightarrow
+ \dt
+ \begin{pmatrix}
+ Q \\
+ P \\
+ \end{pmatrix}
+ \underbrace{
+ \begin{pmatrix}
+ 0 & M \\
+ K & 0
+ \end{pmatrix}
+ }_{G}
+ \begin{pmatrix}
+ Q \\
+ P \\
+ \end{pmatrix}
+\end{equation}
+
+
+Wir intressieren uns nun dafür wie der Phasenwinkel $U = PQ^{-1}$ von der Zeit abhängt,
+wir suchen also die Grösse $\Theta = \dt U$.
+
+Ersetzten wir in der Gleichung \ref{kra:hamilton:multispringmass} die Matrix $G$ mit $\tilde{G}$ so erhalten wir
+\begin{equation}
+ \dt
+ \begin{pmatrix}
+ Q \\
+ P
+ \end{pmatrix}
+ =
+ \underbrace{
+ \begin{pmatrix}
+ A & B \\
+ C & D
+ \end{pmatrix}
+ }_{\tilde{G}}
+ \begin{pmatrix}
+ Q \\
+ P
+ \end{pmatrix}
+\end{equation}
+
+Mit einsetzten folgt
+
+\begin{align*}
+ \dot{Q} = AQ + BP \\
+ \dot{P} = CQ + DP
+\end{align*}
+\begin{equation}
+ \begin{split}
+ \dt U &= \dot{P} Q^{-1} + P \dt Q^{-1} \\
+ &= (CQ + DP) Q^{-1} - P (Q^{-1} \dot{Q} Q^{-1}) \\
+ &= C\underbrace{QQ^{-1}}_\text{I} + D\underbrace{PQ^{-1}}_\text{U} - P(Q^{-1} (AQ + BP) Q^{-1}) \\
+ &= C + DU - \underbrace{PQ^{-1}}_\text{U}(A\underbrace{QQ^{-1}}_\text{I} + B\underbrace{PQ^{-1}}_\text{U}) \\
+ &= C + DU - UA - UBU
+ \end{split}
+\end{equation}
+
+was uns auf die zeitkontinuierliche Matrix-Riccati-Gleichung führt.
+
diff --git a/buch/papers/kra/main.tex b/buch/papers/kra/main.tex
index fcee25b..456b6ee 100644
--- a/buch/papers/kra/main.tex
+++ b/buch/papers/kra/main.tex
@@ -6,31 +6,9 @@
\chapter{Kalman, Riccati und Abel\label{chapter:kra}}
\lhead{Kalman, Riccati und Abel}
\begin{refsection}
- \chapterauthor{Samuel Niederer}
-
- Ein paar Hinweise für die korrekte Formatierung des Textes
- \begin{itemize}
- \item
- Absätze werden gebildet, indem man eine Leerzeile einfügt.
- Die Verwendung von \verb+\\+ ist nur in Tabellen und Arrays gestattet.
- \item
- Die explizite Platzierung von Bildern ist nicht erlaubt, entsprechende
- Optionen werden gelöscht.
- Verwenden Sie Labels und Verweise, um auf Bilder hinzuweisen.
- \item
- Beginnen Sie jeden Satz auf einer neuen Zeile.
- Damit ermöglichen Sie dem Versionsverwaltungssysteme, Änderungen
- in verschiedenen Sätzen von verschiedenen Autoren ohne Konflikt
- anzuwenden.
- \item
- Bilden Sie auch für Formeln kurze Zeilen, einerseits der besseren
- Übersicht wegen, aber auch um GIT die Arbeit zu erleichtern.
- \end{itemize}
-
- \input{papers/kra/teil0.tex}
- \input{papers/kra/teil1.tex}
- \input{papers/kra/teil2.tex}
- \input{papers/kra/teil3.tex}
-
- \printbibliography[heading=subbibliography]
+ \chapterauthor{Samuel Niederer}
+ \input{papers/kra/hamilton.tex}
+ \newpage
+ \input{papers/kra/riccati.tex}
+ \printbibliography[heading=subbibliography]
\end{refsection}
diff --git a/buch/papers/kra/references.bib b/buch/papers/kra/references.bib
index f13c3d8..7f972ec 100644
--- a/buch/papers/kra/references.bib
+++ b/buch/papers/kra/references.bib
@@ -4,32 +4,27 @@
% (c) 2020 Autor, Hochschule Rapperswil
%
-@online{kra:bibtex,
- title = {BibTeX},
- url = {https://de.wikipedia.org/wiki/BibTeX},
- date = {2020-02-06},
- year = {2020},
- month = {2},
- day = {6}
+@online{kra:hamilton,
+ title = {Hamilton-Funktion},
+ url = {https://de.wikipedia.org/wiki/Hamilton-Funktion},
+ date = {2022-05-26}
}
-@book{kra:numerical-analysis,
- title = {Numerical Analysis},
- author = {David Kincaid and Ward Cheney},
- publisher = {American Mathematical Society},
- year = {2002},
- isbn = {978-8-8218-4788-6},
- inseries = {Pure and applied undegraduate texts},
- volume = {2}
+@misc{kra:kanonischegleichungen,
+ title = {Kanonische Gleichungen},
+ url = {https://de.wikipedia.org/wiki/Kanonische_Gleichungen},
+ date = {2022-05-26}
}
-@article{kra:mendezmueller,
- author = { Tabea Méndez and Andreas Müller },
- title = { Noncommutative harmonic analysis and image registration },
- journal = { Appl. Comput. Harmon. Anal.},
- year = 2019,
- volume = 47,
- pages = {607--627},
- url = {https://doi.org/10.1016/j.acha.2017.11.004}
+@misc{kra:newton,
+ title = {Newtonsche Gesetze},
+ url = {https://de.wikipedia.org/wiki/Newtonsche_Gesetze},
+ date = {2022-05-26}
}
+@misc{kra:kalmanisae,
+ author = {D.Alazard},
+ title = {Introduction to Kalman filtering},
+ url = {https://pagespro.isae-supaero.fr/IMG/pdf/introKalman_e_151211.pdf},
+ date = {2022-05-26}
+}
diff --git a/buch/papers/kra/riccati.tex b/buch/papers/kra/riccati.tex
new file mode 100644
index 0000000..df2921d
--- /dev/null
+++ b/buch/papers/kra/riccati.tex
@@ -0,0 +1,93 @@
+\section{Riccati
+ \label{kra:section:riccati}}
+\rhead{Riccati}
+
+\begin{equation}
+ y'(x) = f(x)y^2(x) + g(x)y(x) + h(x)
+\end{equation}
+% einfache (normale riccati gleichung und ihre loesung)
+% (kann man diese bei einfachem federmasse system benutzten?)
+% matrix riccati gleichung
+
+
+Die zeitkontinuierliche Riccati-Matrix-Gleichung hat die Form
+\begin{equation}
+ \label{kra:riccati:riccatiequation}
+ \dot{U(t)} = DU(t) - UA(t) - U(t)BU(t)
+\end{equation}
+
+Betrachten wir das Differentialgleichungssystem \ref{kra:riccati:derivation}
+
+\begin{equation}
+ \label{kra:riccati:derivation}
+ \dt
+ \begin{pmatrix}
+ X \\
+ Y
+ \end{pmatrix}
+ =
+ \underbrace{
+ \begin{pmatrix}
+ A & B \\
+ C & D
+ \end{pmatrix}
+ }_{H}
+ \begin{pmatrix}
+ X \\
+ Y
+ \end{pmatrix}
+\end{equation}
+
+interessieren wir uns für die zeitliche Änderung der Grösse $U = YX^{-1}$, so erhalten wir durch einsetzten
+
+\begin{align*}
+ \dt U & = \dot{Y} X^{-1} + Y \dt X^{-1} \\
+ & = (CX + DY) X^{-1} - Y (X^{-1} \dot{X} X^{-1}) \\
+ & = C\underbrace{XX^{-1}}_\text{I} + D\underbrace{YX^{-1}}_\text{U} - Y(X^{-1} (AX + BY) X^{-1}) \\
+ & = C + DU - \underbrace{YX^{-1}}_\text{U}(A\underbrace{XX^{-1}}_\text{I} + B\underbrace{YX^{-1}}_\text{U}) \\
+ & = C + DU - UA - UBU
+\end{align*}
+
+was uns auf die Riccati-Matrix-Gleichung \ref{kra:riccati:riccatiequation} führt.
+Die Lösung dieser Gleichung erhalten wir nach \cite{kra:kalmanisae} folgendermassen
+\begin{equation}
+ \begin{pmatrix}
+ X(t) \\
+ Y(t)
+ \end{pmatrix}
+ =
+ \Phi(t_0, t)
+ \begin{pmatrix}
+ I(t) \\
+ U_0(t)
+ \end{pmatrix}
+ =
+ \begin{pmatrix}
+ \Phi_{11}(t_0, t) & \Phi_{12}(t_0, t) \\
+ \Phi_{21}(t_0, t) & \Phi_{22}(t_0, t)
+ \end{pmatrix}
+ \begin{pmatrix}
+ I(t) \\
+ U_0(t)
+ \end{pmatrix}
+\end{equation}
+
+\begin{equation}
+ U(t) =
+ \begin{pmatrix}
+ \Phi_{21}(t_0, t) + \Phi_{22}(t_0, t)
+ \end{pmatrix}
+ \begin{pmatrix}
+ \Phi_{11}(t_0, t) + \Phi_{12}(t_0, t)
+ \end{pmatrix}
+ ^{-1}
+\end{equation}
+
+wobei $\Phi(t, t_0)$ die sogennante Zustandsübergangsmatrix ist.
+
+\begin{equation}
+ \Phi(t_0, t) = e^{H(t - t_0)}
+\end{equation}
+
+
+
diff --git a/buch/papers/kra/teil0.tex b/buch/papers/kra/teil0.tex
deleted file mode 100644
index d06a055..0000000
--- a/buch/papers/kra/teil0.tex
+++ /dev/null
@@ -1,22 +0,0 @@
-%
-% einleitung.tex -- Beispiel-File für die Einleitung
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 0\label{kra:section:teil0}}
-\rhead{Teil 0}
-Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
-nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam
-erat, sed diam voluptua \cite{kra:bibtex}.
-At vero eos et accusam et justo duo dolores et ea rebum.
-Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum
-dolor sit amet.
-
-Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
-nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam
-erat, sed diam voluptua.
-At vero eos et accusam et justo duo dolores et ea rebum. Stet clita
-kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit
-amet.
-
-
diff --git a/buch/papers/kra/teil1.tex b/buch/papers/kra/teil1.tex
deleted file mode 100644
index 0c0977d..0000000
--- a/buch/papers/kra/teil1.tex
+++ /dev/null
@@ -1,55 +0,0 @@
-%
-% teil1.tex -- Beispiel-File für das Paper
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 1
-\label{kra:section:teil1}}
-\rhead{Problemstellung}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo.
-Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit
-aut fugit, sed quia consequuntur magni dolores eos qui ratione
-voluptatem sequi nesciunt
-\begin{equation}
-\int_a^b x^2\, dx
-=
-\left[ \frac13 x^3 \right]_a^b
-=
-\frac{b^3-a^3}3.
-\label{kra:equation1}
-\end{equation}
-Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet,
-consectetur, adipisci velit, sed quia non numquam eius modi tempora
-incidunt ut labore et dolore magnam aliquam quaerat voluptatem.
-
-Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis
-suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur?
-Quis autem vel eum iure reprehenderit qui in ea voluptate velit
-esse quam nihil molestiae consequatur, vel illum qui dolorem eum
-fugiat quo voluptas nulla pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{kra:subsection:finibus}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}.
-
-Et harum quidem rerum facilis est et expedita distinctio
-\ref{kra:section:loesung}.
-Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil
-impedit quo minus id quod maxime placeat facere possimus, omnis
-voluptas assumenda est, omnis dolor repellendus
-\ref{kra:section:folgerung}.
-Temporibus autem quibusdam et aut officiis debitis aut rerum
-necessitatibus saepe eveniet ut et voluptates repudiandae sint et
-molestiae non recusandae.
-Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis
-voluptatibus maiores alias consequatur aut perferendis doloribus
-asperiores repellat.
-
-
diff --git a/buch/papers/kra/teil2.tex b/buch/papers/kra/teil2.tex
deleted file mode 100644
index 249f078..0000000
--- a/buch/papers/kra/teil2.tex
+++ /dev/null
@@ -1,40 +0,0 @@
-%
-% teil2.tex -- Beispiel-File für teil2
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 2
-\label{kra:section:teil2}}
-\rhead{Teil 2}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit
-aspernatur aut odit aut fugit, sed quia consequuntur magni dolores
-eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam
-est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci
-velit, sed quia non numquam eius modi tempora incidunt ut labore
-et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima
-veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam,
-nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
-reprehenderit qui in ea voluptate velit esse quam nihil molestiae
-consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla
-pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{kra:subsection:bonorum}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis
-est et expedita distinctio. Nam libero tempore, cum soluta nobis
-est eligendi optio cumque nihil impedit quo minus id quod maxime
-placeat facere possimus, omnis voluptas assumenda est, omnis dolor
-repellendus. Temporibus autem quibusdam et aut officiis debitis aut
-rerum necessitatibus saepe eveniet ut et voluptates repudiandae
-sint et molestiae non recusandae. Itaque earum rerum hic tenetur a
-sapiente delectus, ut aut reiciendis voluptatibus maiores alias
-consequatur aut perferendis doloribus asperiores repellat.
-
-
diff --git a/buch/papers/kra/teil3.tex b/buch/papers/kra/teil3.tex
deleted file mode 100644
index 2515c7d..0000000
--- a/buch/papers/kra/teil3.tex
+++ /dev/null
@@ -1,40 +0,0 @@
-%
-% teil3.tex -- Beispiel-File für Teil 3
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 3
-\label{kra:section:teil3}}
-\rhead{Teil 3}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit
-aspernatur aut odit aut fugit, sed quia consequuntur magni dolores
-eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam
-est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci
-velit, sed quia non numquam eius modi tempora incidunt ut labore
-et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima
-veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam,
-nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
-reprehenderit qui in ea voluptate velit esse quam nihil molestiae
-consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla
-pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{kra:subsection:malorum}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis
-est et expedita distinctio. Nam libero tempore, cum soluta nobis
-est eligendi optio cumque nihil impedit quo minus id quod maxime
-placeat facere possimus, omnis voluptas assumenda est, omnis dolor
-repellendus. Temporibus autem quibusdam et aut officiis debitis aut
-rerum necessitatibus saepe eveniet ut et voluptates repudiandae
-sint et molestiae non recusandae. Itaque earum rerum hic tenetur a
-sapiente delectus, ut aut reiciendis voluptatibus maiores alias
-consequatur aut perferendis doloribus asperiores repellat.
-
-
diff --git a/buch/papers/kra/test.tex b/buch/papers/kra/test.tex
new file mode 100644
index 0000000..ebe0aa0
--- /dev/null
+++ b/buch/papers/kra/test.tex
@@ -0,0 +1,12 @@
+\begin{figure}
+ \input{papers/kra/images/phase_space.tex}
+ % \begin{minipage}{.45\textwidth}
+ % \input{papers/kra/images/phase_space_small_omega.tex}
+ % \end{minipage}
+ % \begin{minipage}{.45\textwidth}
+ % \input{papers/kra/images/phase_space_large_omega.tex}
+ % \end{minipage}
+ % \begin{minipage}[.5\textwidth]
+ % \input{papers/kra/images/phase_space_large_omega.tex}
+ % \end{minipage}
+\end{figure} \ No newline at end of file