diff options
author | erik-loeffler <100943759+erik-loeffler@users.noreply.github.com> | 2022-08-11 15:41:17 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2022-08-11 15:41:17 +0200 |
commit | 063a1695529ff09fbf49533a19a5194f42b360c3 (patch) | |
tree | c8fdc07c7c1f7fad800ea605b3fc0eef116dffa4 /buch/papers | |
parent | Update einleitung.tex (diff) | |
parent | Added Tschebyscheff file. (diff) | |
download | SeminarSpezielleFunktionen-063a1695529ff09fbf49533a19a5194f42b360c3.tar.gz SeminarSpezielleFunktionen-063a1695529ff09fbf49533a19a5194f42b360c3.zip |
Merge pull request #2 from haddoucher/sturmliouville/erik-branch
Sturmliouville/erik branch
Diffstat (limited to 'buch/papers')
-rw-r--r-- | buch/papers/sturmliouville/.gitignore | 2 | ||||
-rw-r--r-- | buch/papers/sturmliouville/beispiele.tex | 7 | ||||
-rw-r--r-- | buch/papers/sturmliouville/eigenschaften.tex | 5 | ||||
-rw-r--r-- | buch/papers/sturmliouville/main.tex | 8 | ||||
-rw-r--r-- | buch/papers/sturmliouville/standalone.tex | 31 | ||||
-rw-r--r-- | buch/papers/sturmliouville/tschebyscheff_beispiel.tex | 7 | ||||
-rw-r--r-- | buch/papers/sturmliouville/waermeleitung_beispiel.tex | 411 |
7 files changed, 430 insertions, 41 deletions
diff --git a/buch/papers/sturmliouville/.gitignore b/buch/papers/sturmliouville/.gitignore index a136337..f08278d 100644 --- a/buch/papers/sturmliouville/.gitignore +++ b/buch/papers/sturmliouville/.gitignore @@ -1 +1 @@ -*.pdf +*.pdf
\ No newline at end of file diff --git a/buch/papers/sturmliouville/beispiele.tex b/buch/papers/sturmliouville/beispiele.tex index d5ec3f9..94082cf 100644 --- a/buch/papers/sturmliouville/beispiele.tex +++ b/buch/papers/sturmliouville/beispiele.tex @@ -4,6 +4,11 @@ % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % \section{Beispiele -\label{sturmliouville:section:teil2}} +\label{sturmliouville:section:examples}} \rhead{Beispiele} +% Fourier: Erik work +\input{papers/sturmliouville/waermeleitung_beispiel.tex} + +% Tschebyscheff +\input{papers/sturmliouville/tschebyscheff_beispiel.tex}
\ No newline at end of file diff --git a/buch/papers/sturmliouville/eigenschaften.tex b/buch/papers/sturmliouville/eigenschaften.tex index 6d37612..9f20070 100644 --- a/buch/papers/sturmliouville/eigenschaften.tex +++ b/buch/papers/sturmliouville/eigenschaften.tex @@ -4,7 +4,6 @@ % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % \section{Eigenschaften von Lösungen -\label{sturmliouville:section:teil1}} +\label{sturmliouville:section:solution-properties}} \rhead{Eigenschaften von Lösungen} - - +% Erik work diff --git a/buch/papers/sturmliouville/main.tex b/buch/papers/sturmliouville/main.tex index 4c25843..4b5b8af 100644 --- a/buch/papers/sturmliouville/main.tex +++ b/buch/papers/sturmliouville/main.tex @@ -1,19 +1,17 @@ +% !TeX root = ../../buch.tex % % main.tex -- Paper zum Thema <sturmliouville> % % (c) 2020 Hochschule Rapperswil % \chapter{Sturm-Liouville-Problem\label{chapter:sturmliouville}} -\lhead{Thema} +\lhead{Sturm-Liouville-Problem} \begin{refsection} \chapterauthor{Réda Haddouche und Erik Löffler} - - - \input{papers/sturmliouville/einleitung.tex} %einleitung "was ist das sturm-liouville-problem" -ng\input{papers/sturmliouville/eigenschaften.tex} +\input{papers/sturmliouville/eigenschaften.tex} %Eigenschaften von Lösungen eines solchen Problems \input{papers/sturmliouville/beispiele.tex} %Beispiele sind: Wärmeleitung in einem Stab, Tschebyscheff-Polynome diff --git a/buch/papers/sturmliouville/standalone.tex b/buch/papers/sturmliouville/standalone.tex deleted file mode 100644 index cd0e8dc..0000000 --- a/buch/papers/sturmliouville/standalone.tex +++ /dev/null @@ -1,31 +0,0 @@ -\documentclass{book} - -\def\IncludeBookCover{0} -\input{common/packages.tex} - -% additional packages used by the individual papers, add a line for -% each paper -\input{papers/common/addpackages.tex} - -% workaround for biblatex bug -\makeatletter -\def\blx@maxline{77} -\makeatother -\addbibresource{chapters/references.bib} - -% Bibresources for each article -\input{papers/common/addbibresources.tex} - -% make sure the last index starts on an odd page -\AtEndDocument{\clearpage\ifodd\value{page}\else\null\clearpage\fi} -\makeindex - -%\pgfplotsset{compat=1.12} -\setlength{\headheight}{15pt} % fix headheight warning -\DeclareGraphicsRule{*}{mps}{*}{} - -\begin{document} - \input{common/macros.tex} - \def\chapterauthor#1{{\large #1}\bigskip\bigskip} - \input{papers/sturmliouville/main.tex} -\end{document} diff --git a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex new file mode 100644 index 0000000..54f13d4 --- /dev/null +++ b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex @@ -0,0 +1,7 @@ +% +% tschebyscheff_beispiel.tex +% +% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil +% + +\subsection{Tschebyscheff}
\ No newline at end of file diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex new file mode 100644 index 0000000..14fca40 --- /dev/null +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -0,0 +1,411 @@ +% +% waermeleitung_beispiel.tex -- Beispiel Wärmeleitung in homogenem Stab. +% +% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil +% + +\subsection{Wärmeleitung in einem Homogenen Stab} + +In diesem Abschnitt betrachten wir das Problem der Wärmeleitung in einem +homogenen Stab und wie das Sturm-Liouville-Problem bei der Beschreibung dieses +physikalischen Phänomenes auftritt. + +Zunächst wird ein eindimensionaler homogener Stab der Länge $l$ und +Wärmeleitkoeffizient $\kappa$. +Somit ergibt sich für das Wärmeleitungsproblem +die partielle Differentialgleichung +\begin{equation} + \label{eq:slp-example-fourier-heat-equation} + \frac{\partial u}{\partial t} = + \kappa \frac{\partial^{2}u}{{\partial x}^{2}} +\end{equation} +wobei der Stab in diesem Fall auf der X-Achse im Intervall $[0,l]$ liegt. + +Da diese Differentialgleichung das Problem allgemein für einen homogenen +Stab beschreibt, werden zusätzliche Bedingungen benötigt, um beispielsweise +die Lösung für einen Stab zu finden, bei dem die Enden auf konstanter +Tempreatur gehalten werden. + +%%%%%%%%%%%%% Randbedingungen für Stab mit konstanten Endtemperaturen %%%%%%%%% + +\subsubsection{Stab mit Enden auf konstanter Temperatur} + +Die Enden des Stabes auf konstanter Temperatur zu halten bedeutet, dass die +Lösungsfunktion $u(t,x)$ bei $x = 0$ und $x = l$ nur die vorgegebene +Temperatur zurückgeben darf. +Es folgen nun +\begin{equation} + \label{eq:slp-example-fourier-boundary-condition-ends-constant} + u(t,0) + = + u(t,l) + = + 0 +\end{equation} +als Randbedingungen. + +%%%%%%%%%%%%% Randbedingungen für Stab mit isolierten Enden %%%%%%%%%%%%%%%%%%% + +\subsubsection{Stab mit isolierten Enden} + +Bei isolierten Enden des Stabes können belibige Temperaturen für $x = 0$ und +$x = l$ auftreten. In diesem Fall nicht erlaubt ist es, dass Wärme vom Stab +an die Umgebung oder von der Umgebung an den Stab abgegeben wird. + +Aus der Physik ist bekannt, dass Wärme immer von der höheren zur tieferen +Temperatur fliesst. Um Wärmefluss zu unterdrücken, muss also dafür gesorgt +werden, dass am Rand des Stabes keine Temperaturdifferenz existiert oder +dass die partiellen Ableitungen von $u(t,x)$ nach $x$ bei $x = 0$ und $x = l$ +verschwinden. +Somit folgen +\begin{equation} + \label{eq:slp-example-fourier-boundary-condition-ends-isolated} + \frac{\partial}{\partial x} u(t, 0) + = + \frac{\partial}{\partial x} u(t, l) + = + 0 +\end{equation} +als Randbedingungen. + +%%%%%%%%%%% Lösung der Differenzialgleichung %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +\subsubsection{Lösung der Differenzialgleichung} + +% TODO: Referenz Separationsmethode +% TODO: Formeln sauber in Text einbinden. + +Da die Lösungsfunktion von zwei Variablen abhängig ist, wird als Lösungsansatz +die Separationsmethode verwendet. +Dazu wird +\[ + u(t,x) + = + T(t)X(x) +\] +in die ursprüngliche Differenzialgleichung eingesetzt. +Daraus ergibt sich +\[ + T^{\prime}(t)X(x) + = + \kappa T(t)X^{\prime \prime}(x) +\] +als neue Form. + +Nun können alle von $t$ abhängigen Ausdrücke auf die linke Seite, sowie alle +von $x$ abhängigen Ausdrücke auf die rechte Seite gebracht werden und mittels +der neuen Variablen $\mu$ gekoppelt werden: +\begin{equation} + \frac{T^{\prime}(t)}{\kappa T(t)} + = + \frac{X^{\prime \prime}(x)}{X(x)} + = + \mu +\end{equation} +Durch die Einführung von $\mu$ kann das Problem nun in zwei separate +Differenzialgleichungen aufgeteilt werden: +\begin{equation} + \label{eq:slp-example-fourier-separated-x} + X^{\prime \prime}(x) - \mu X(x) + = + 0 +\end{equation} +\begin{equation} + \label{eq:slp-example-fourier-separated-t} + T^{\prime}(t) - \kappa \mu T(t) + = + 0 +\end{equation} + +Es ist an dieser Stelle zu bemerken, dass die Gleichung in $x$ in +Sturm-Liouville-Form ist. +Erfüllen die Randbedingungen des Stab-Problems auch die Randbedingungen des +Sturm-Liouville-Problems, kann bereits die Aussage getroffen werden, dass alle +Lösungen für die Gleichung in $x$ orthogonal sein werden. + +Damit die Lösungen von $X$ orthogonal sind, müssen also die Gleichungen +\begin{equation} +\begin{aligned} + \label{eq:slp-example-fourier-randbedingungen} + k_a y(a) + h_a p(a) y'(a) &= 0 \\ + k_b y(b) + h_b p(b) y'(b) &= 0 +\end{aligned} +\end{equation} +erfüllt sein und es muss ausserdem +\begin{equation} +\begin{aligned} + \label{eq:slp-example-fourier-coefficient-constraints} + |k_a|^2 + |h_a|^2 &\neq 0\\ + |k_b|^2 + |h_b|^2 &\neq 0\\ +\end{aligned} +\end{equation} +gelten. + +Um zu verifizieren, ob die Randbedingungen erfüllt sind, benötigen wir zunächst +$p(x)$. +Dazu wird die Gleichung \eqref{eq:slp-example-fourier-separated-x} mit der +Sturm-Liouville-Form \eqref{eq:sturm-liouville-equation} verglichen, was zu +$p(x) = 1$ führt. + +Werden nun $p(x)$ und die Randbedingungen +\eqref{eq:slp-example-fourier-boundary-condition-ends-constant} in +\eqref{eq:slp-example-fourier-randbedingungen} eigesetzt, erhält man +\[ +\begin{aligned} + k_a y(0) + h_a y'(0) &= h_a y'(0) = 0 \\ + k_b y(l) + h_b y'(l) &= h_b y'(l) = 0. +\end{aligned} +\] +Damit die Gleichungen erfüllt sind, müssen $h_a = 0$ und $h_b = 0$ sein. +Zusätzlich müssen aber die Bedingungen +\eqref{eq:slp-example-fourier-coefficient-constraints} erfüllt sein und +da $y(0) = 0$ und $y(l) = 0$ sind, können belibige $k_a \neq 0$ und $k_b \neq 0$ +gewählt werden. + +Somit ist gezeigt, dass die Randbedingungen des Stab-Problems für Enden auf +konstanter Temperatur auch die Sturm-Liouville-Randbedingungen erfüllen und +alle daraus reultierenden Lösungen orthogonal sind. +Analog dazu kann gezeit werden, dass die Randbedingungen für einen Stab mit +isolierten Enden ebenfalls die Sturm-Liouville-Randbedingungen erfüllen und +somit auch zu orthogonalen Lösungen führen. + +Widmen wir uns zunächst der ersten Gleichung. +Aufgrund der Struktur der Gleichung +\[ + X^{\prime \prime}(x) - \mu X(x) + = + 0 +\] +wird ein trigonometrischer Ansatz gewählt. +Die Lösungen für $X(x)$ sind also von der Form +\[ + X(x) + = + A \sin \left( \alpha x\right) + B \cos \left( \beta x\right). +\] + +Dieser Ansatz wird nun solange differenziert, bis alle in Gleichung +\eqref{eq:slp-example-fourier-separated-x} enthaltenen Ableitungen vorhanden +sind. +Man erhält also +\[ + X^{\prime}(x) + = + \alpha A \cos \left( \alpha x \right) - + \beta B \sin \left( \beta x \right) +\] +und +\[ + X^{\prime \prime}(x) + = + -\alpha^{2} A \sin \left( \alpha x \right) - + \beta^{2} B \cos \left( \beta x \right). +\] + +Eingesetzt in Gleichung \eqref{eq:slp-example-fourier-separated-x} ergibt dies +\[ + -\alpha^{2}A\sin(\alpha x) - \beta^{2}B\cos(\beta x) - + \mu\left(A\sin(\alpha x) + B\cos(\beta x)\right) + = + 0 +\] +und durch umformen somit +\[ + -\alpha^{2}A\sin(\alpha x) - \beta^{2}B\cos(\beta x) + = + \mu A\sin(\alpha x) + \mu B\cos(\beta x). +\] + +Mittels Koeffizientenvergleich von +\[ +\begin{aligned} + -\alpha^{2}A\sin(\alpha x) + &= + \mu A\sin(\alpha x) + \\ + -\beta^{2}B\cos(\beta x) + &= + \mu B\cos(\beta x) +\end{aligned} +\] +ist schnell ersichtlich, dass $ \mu = -\alpha^{2} = -\beta^{2} $ gelten muss für +$ A \neq 0 $ oder $ B \neq 0 $. +Zur Berechnung von $ \mu $ bleiben also noch $ \alpha $ und $ \beta $ zu +bestimmen. +Dazu werden nochmals die Randbedingungen +\eqref{eq:slp-example-fourier-boundary-condition-ends-constant} und +\eqref{eq:slp-example-fourier-boundary-condition-ends-isolated} benötigt. +Zu bemerken ist, dass die Randbedingungen nur Anforderungen in $x$ stellen und +somit direkt für $X(x)$ übernomen werden können. + +Da die Koeffizienten $A$ und $B$, sowie die Parameter $\alpha$ uns $\beta$ im +allgemeninen ungleich $0$ sind, müssen die Randbedingungen durch die +trigonometrischen Funktionen erfüllt werden. + +Es werden nun die Randbedingungen +\eqref{eq:slp-example-fourier-boundary-condition-ends-constant} für einen Stab +mit Enden auf konstanter Temperatur in die Gleichung +\eqref{eq:slp-example-fourier-separated-x} eingesetzt. +Betrachten wir zunächst die Bedingung für $x = 0$. +Dies fürht zu +\[ + X(0) + = + A \sin(0 \alpha) + B \cos(0 \beta) + = + 0. +\] +Da $\cos(0) \neq 0$ ist, muss in diesem Fall $B = 0$ gelten. +Für den ersten Summanden ist wegen $\sin(0) = 0$ die Randbedingung erfüllt. + +Wird nun die zweite Randbedingung für $x = l$ mit $B = 0$ eingesetzt, ergibt +sich +\[ + X(l) + = + A \sin(\alpha l) + 0 \cos(\beta l) + = + A \sin(\alpha l) + = 0. +\] + +$\alpha$ muss also so gewählt werden, dass $\sin(\alpha l) = 0$ gilt. +Es bleibt noch nach $\alpha$ aufzulösen: +\[ +\begin{aligned} + \sin(\alpha l) &= 0 \\ + \alpha l &= n \pi \qquad n \in \mathbb{N} \\ + \alpha &= \frac{n \pi}{l} \qquad n \in \mathbb{N} +\end{aligned} +\] + +Es folgt nun wegen $\mu = -\alpha^{2}$, dass +\begin{equation} + \mu_1 = -\alpha^{2} = -\frac{n^{2}\pi^{2}}{l^{2}} +\end{equation} +sein muss. +Ausserdem ist zu bemerken, dass dies auch gleich $-\beta^{2}$ ist. +Da aber $B = 0$ gilt und der Summand mit $\beta$ verschwindet, ist dies keine +Verletzung der Randbedingungen. + +Durch alanoges Vorgehen kann nun auch das Problem mit isolierten Enden gelöst +werden. +Setzen wir nun die Randbedingungen +\eqref{eq:slp-example-fourier-boundary-condition-ends-isolated} in $X^{\prime}$ +ein, beginnend für $x = 0$. Es ergibt sich +\[ + X^{\prime}(0) + = + \alpha A \cos(0 \alpha) - \beta B \sin(0 \beta) + = 0. +\] +In diesem Fall muss $A = 0$ gelten. +Zusammen mit der Bedignung für $x = l$ +folgt nun +\[ + X^{\prime}(l) + = + 0 \alpha \cos(\alpha l) - \beta B \sin(\beta l) + = + -\beta B \sin(\beta l) + = 0. +\] + +Wiedrum muss über die $ \sin $-Funktion sicher gestellt werden, dass der +Ausdruck den Randbedingungen entspricht. +Es folgt nun +\[ +\begin{aligned} + \sin(\beta l) &= 0 \\ + \beta l &= n \pi \qquad n \in \mathbb{N} \\ + \beta &= \frac{n \pi}{l} \qquad n \in \mathbb{N} +\end{aligned} +\] +und somit +\[ + \mu_2 = -\beta^{2} = -\frac{n^{2}\pi^{2}}{l^{2}}. +\] + +Es ergibt sich also sowohl für einen Stab mit Enden auf konstanter Temperatur +wie auch mit isolierten Enden +\begin{equation} + \label{eq:slp-example-fourier-mu-solution} + \mu + = + -\frac{n^{2}\pi^{2}}{l^{2}}. +\end{equation} + +%%%% Koeffizienten a_n und b_n mittels skalarprodukt. %%%%%%%%%%%%%%%%%%%%%%%%%% + +Bisher wurde über die Koeffizienten $A$ und $B$ noch nicht viel ausgesagt. +Zunächst ist wegen vorhergehender Rechnung ersichtlich, dass es sich bei +$A$ und $B$ nicht um einzelne Koeffizienten handelt. +Stattdessen können die Koeffizienten für jedes $n \in \mathbb{N}$ +unterschiedlich sein. +Schreiben wir also die Lösung $X(x)$ um zu +\[ + X(x) + = + a_n\sin\left(\frac{n\pi}{l}x\right) + + + b_n\cos\left(\frac{n\pi}{l}x\right) +\] +was für jedes $n$ wiederum eine Linearkombination aus orthogonalen Funktionen +ist. + +Betrachten wir zuletzt die zweite Gleichung der Separation +\eqref{eq:slp-example-fourier-separated-t}. +Diese Lösen wir über das charakteristische Polynom +\[ + \lambda - \kappa \mu + = + 0. +\] +Es ist direkt ersichtlich, dass $\lambda = \kappa \mu$ gelten muss, was zur +Lösung +\[ + T(t) + = + e^{-\kappa \mu t} +\] +führt. +Und mit dem Resultat \eqref{eq:slp-example-fourier-mu-solution} +\[ + T(t) + = + e^{-\frac{n^{2}\pi^{2}\kappa}{l^{2}}t} +\] +ergibt. + +% TODO: Rechenweg +TODO: Rechenweg... Enden auf konstanter Temperatur: +\[ +\begin{aligned} + u(t,x) + &= + \sum_{n=1}^{\infty}a_{n}e^{-\frac{n^{2}\pi^{2}\kappa}{l^{2}}t} + \sin\left(\frac{n\pi}{l}x\right) + \\ + a_{n} + &= + \frac{2}{l}\int_{0}^{l}u(0,x)sin\left(\frac{n\pi}{l}x\right) dx +\end{aligned} +\] + +TODO: Rechenweg... Enden isoliert: +\[ +\begin{aligned} + u(t,x) + &= + a_{0} + \sum_{n=1}^{\infty}a_{n}e^{-\frac{n^{2}\pi^{2}\kappa}{l^{2}}t} + \cos\left(\frac{n\pi}{l}x\right) + \\ + a_{0} + &= + \frac{1}{l}\int_{0}^{l}u(0,x) dx + \\ + a_{n} + &= + \frac{2}{l}\int_{0}^{l}u(0,x)sin\left(\frac{n\pi}{l}x\right) dx +\end{aligned} +\] |