aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers
diff options
context:
space:
mode:
authorPatrik Müller <patrik.mueller@ost.ch>2022-05-31 16:31:25 +0200
committerPatrik Müller <patrik.mueller@ost.ch>2022-05-31 16:31:25 +0200
commit6149839224755c21225d2decddeae12207c2cbab (patch)
tree3b7a2f02ad8e388c68eb6b5f3ea4144a50c5ad56 /buch/papers
parentMerge branch 'AndreasFMueller:master' into master (diff)
downloadSeminarSpezielleFunktionen-6149839224755c21225d2decddeae12207c2cbab.tar.gz
SeminarSpezielleFunktionen-6149839224755c21225d2decddeae12207c2cbab.zip
Add rule of thumb, analyse integrand, correct mistake in integration SLP<->LP
Diffstat (limited to 'buch/papers')
-rw-r--r--buch/papers/laguerre/definition.tex2
-rw-r--r--buch/papers/laguerre/eigenschaften.tex20
-rw-r--r--buch/papers/laguerre/gamma.tex294
-rw-r--r--buch/papers/laguerre/images/integrands.pgf1448
-rw-r--r--buch/papers/laguerre/images/integrands_exp.pgf1323
-rw-r--r--buch/papers/laguerre/images/rel_error_mirror.pgf3054
-rw-r--r--buch/papers/laguerre/images/rel_error_simple.pgf2940
-rw-r--r--buch/papers/laguerre/images/rel_error_simple.pngbin0 -> 61966 bytes
-rw-r--r--buch/papers/laguerre/images/schaetzung.pgf1160
-rw-r--r--buch/papers/laguerre/images/targets.pdfbin0 -> 12940 bytes
-rw-r--r--buch/papers/laguerre/quadratur.tex4
-rw-r--r--buch/papers/laguerre/references.bib9
-rw-r--r--buch/papers/laguerre/scripts/gamma_approx.ipynb178
-rw-r--r--buch/papers/laguerre/scripts/gamma_approx.py197
-rw-r--r--buch/papers/laguerre/scripts/integrand.py27
15 files changed, 9063 insertions, 1593 deletions
diff --git a/buch/papers/laguerre/definition.tex b/buch/papers/laguerre/definition.tex
index f1f0d00..3e5d423 100644
--- a/buch/papers/laguerre/definition.tex
+++ b/buch/papers/laguerre/definition.tex
@@ -22,7 +22,7 @@ Die klassische Laguerre-Diffentialgleichung erhält man, wenn $\nu = 0$.
Hier wird die verallgemeinerte Laguerre-Differentialgleichung verwendet,
weil die Lösung mit der selben Methode berechnet werden kann,
aber man zusätzlich die Lösung für den allgmeinen Fall erhält.
-Zur Lösung der Gleichung \eqref{laguerre:dgl} verwenden wir einen
+Zur Lösung von \eqref{laguerre:dgl} verwenden wir einen
Potenzreihenansatz.
Da wir bereits wissen, dass die Lösung orthogonale Polynome sind,
erscheint dieser Ansatz sinnvoll.
diff --git a/buch/papers/laguerre/eigenschaften.tex b/buch/papers/laguerre/eigenschaften.tex
index 77b2a2c..9b901ae 100644
--- a/buch/papers/laguerre/eigenschaften.tex
+++ b/buch/papers/laguerre/eigenschaften.tex
@@ -22,25 +22,25 @@
Im Abschnitt~\ref{laguerre:section:definition} haben wir behauptet,
dass die Laguerre-Polynome orthogonale Polynome sind.
Zu dieser Behauptung möchten wir nun einen Beweis liefern.
-Wenn wir die Laguerre\--Differentialgleichung in ein
-Sturm\--Liouville\--Problem umwandeln können, haben wir bewiesen, dass es sich
-bei
-den Laguerre\--Polynomen um orthogonale Polynome handelt (siehe
+Wenn wir \eqref{laguerre:dgl} in ein
+Sturm-Liouville-Problem umwandeln können, haben wir bewiesen, dass es sich
+bei den Laguerre-Polynomen um orthogonale Polynome handelt (siehe
Abschnitt~\ref{buch:integrale:subsection:sturm-liouville-problem}).
-Der Sturm-Liouville-Operator
+Der Beweis kann äquivalent auch über den Sturm-Liouville-Operator
\begin{align}
S
=
\frac{1}{w(x)} \left(-\frac{d}{dx}p(x) \frac{d}{dx} + q(x) \right).
\label{laguerre:slop}
\end{align}
-und der Laguerre-Operator
+und den Laguerre-Operator
\begin{align}
\Lambda
=
x \frac{d}{dx^2} + (\nu + 1 -x) \frac{d}{dx}
\end{align}
-sind einander gleichzusetzen.
+erhalten werden,
+in dem wir diese Operatoren einander gleichsetzen.
Aus der Beziehung
\begin{align}
S
@@ -66,16 +66,18 @@ Durch Separation erhalten wir dann
\int \frac{dp}{p}
& =
-\int \frac{\nu + 1 - x}{x} \, dx
+=
+-\int \frac{\nu + 1}{x} \, dx - \int 1\, dx
\\
\log p
& =
--\log \nu + 1 - x + C
+-(\nu + 1)\log x - x + c
\\
p(x)
& =
-C x^{\nu + 1} e^{-x}
\end{align*}
-Eingefügt in Gleichung~\eqref{laguerre:sl-lag} erhalten wir
+Eingefügt in Gleichung~\eqref{laguerre:sl-lag} ergibt sich
\begin{align*}
\frac{C}{w(x)}
\left(
diff --git a/buch/papers/laguerre/gamma.tex b/buch/papers/laguerre/gamma.tex
index 59c0b81..da2fa93 100644
--- a/buch/papers/laguerre/gamma.tex
+++ b/buch/papers/laguerre/gamma.tex
@@ -19,7 +19,7 @@ Integral der Form
\begin{align}
\Gamma(z)
& =
-\int_0^\infty t^{z-1} e^{-t} dt
+\int_0^\infty x^{z-1} e^{-x} \, dx
,
\quad
\text{wobei Realteil von $z$ grösser als $0$}
@@ -32,54 +32,290 @@ Zu erwähnen ist auch, dass für die verallgemeinerte Laguerre-Integration die
Gewichtsfunktion $t^\nu e^{-t}$ genau dem Integranden für $\nu=z-1$ entspricht.
\subsubsection{Funktionalgleichung}
-Die Funktionalgleichung der Gamma-Funktion besagt
+Die Gamma-Funktion besitzt die gleiche Rekursionsbeziehung wie die Fakultät,
+nämlich
\begin{align}
-z \Gamma(z) = \Gamma(z+1).
+z \Gamma(z)
+=
+\Gamma(z+1)
+.
\label{laguerre:gamma_funktional}
\end{align}
-Mittels dieser Gleichung kann der Wert von $\Gamma(z)$ an einer bestimmten,
-geeigneten Stelle evaluiert werden und dann zurückverschoben werden,
-um das gewünschte Resultat zu erhalten.
-In Abbildung~\ref{laguerre:fig:integrand} ist der Integrand $t^z$ für
-unterschiedliche Werte von $z$ dargestellt.
-Man erkennt, dass für kleine $z$ sich ein singulärer Integrand ergibt,
-was dazu führt, dass die Genauigkeit sich verschlechtert.
-Die Genauigkeit verschlechtert sich aber auch zunehmends für grosse $z$,
-da in diesem Fall der Integrand sehr schnell anwächst.
+\subsubsection{Reflektionsformel}
+Die Reflektionsformel
+\begin{align}
+\Gamma(z) \Gamma(1 - z)
+=
+\frac{\pi}{\sin \pi z}
+,\quad
+\text{für }
+z \notin \mathbb{Z}
+\label{laguerre:gamma_refform}
+\end{align}
+stellt eine Beziehung zwischen den zwei Punkten,
+die aus der Spiegelung an der Geraden $\operatorname{Re} z = 1/2$ hervorgehen,
+her.
+Dadurch lassen Werte der Gamma-Funktion sich für $z$ in der rechten Halbebene
+leicht in die linke Halbebene übersetzen und umgekehrt.
+
+\subsection{Berechnung mittels Gauss-Laguerre-Quadratur}
+In den vorherigen Abschnitten haben wir gesehen,
+dass sich die Gamma-Funktion bestens für die Gauss-Laguerre-Quadratur eignet.
+Nun bieten sich uns zwei Optionen diese zu berechnen:
+\begin{enumerate}
+\item Wir verwenden die verallgemeinerten Laguerre-Polynome, dann $f(x)=1$.
+\item Wir verwenden die Laguerre-Polynome, dann $f(x)=x^{z-1}$.
+\end{enumerate}
+Die erste Variante wäre optimal auf das Problem angepasst,
+allerdings müssten die Gewichte und Nullstellen für jedes $z$
+neu berechnet werden,
+da sie per Definition von $z$ abhängen.
+Dazu kommt,
+dass die Berechnung der Gewichte $A_i$ nach \cite{Cassity1965AbcissasCA}
+\begin{align*}
+A_i
+=
+\frac{
+\Gamma(n) \Gamma(n+\nu)
+}
+{
+(n+\nu)
+\left[L_{n-1}^{\nu}(x_i)\right]^2
+}
+\end{align*}
+Evaluationen der Gamma-Funktion benötigen.
+Somit scheint diese Methode nicht geeignet für unser Vorhaben.
+
+Bei der zweiten Variante benötigen wir keine Neuberechung der Gewichte
+und Nullstellen für unterschiedliche $z$.
+In \eqref{laguerre:quadratur_gewichte} ist ersichtlich,
+dass die Gewichte einfach zu berechnen sind.
+Auch die Nullstellen können vorgängig,
+mittels eines geeigneten Verfahrens aus den Polynomen bestimmt werden.
+Als problematisch könnte sich höchstens
+die zu integrierende Funktion $f(x)=x^{z-1}$ für $|z| \gg 0$ erweisen.
+Somit entscheiden wir uns auf Grund der vorherigen Punkte,
+die zweite Variante weiterzuverfolgen.
+
+\subsubsection{Naiver Ansatz}
+
\begin{figure}
\centering
-\scalebox{0.8}{\input{papers/laguerre/images/integrands.pgf}}
-\caption{Integrand $t^z$ mit unterschiedlichen Werten für $z$}
-\label{laguerre:fig:integrand}
+\input{papers/laguerre/images/rel_error_simple.pgf}
+\caption{Relativer Fehler des naiven Ansatzes
+für verschiedene reele Werte von $z$ und Grade $n$ der Laguerre-Polynome}
+\label{laguerre:fig:rel_error_simple}
\end{figure}
-\subsection{Berechnung mittels Gauss-Laguerre-Quadratur}
-
-Fehlerterm:
+Bevor wir die Gauss-Laguerre-Quadratur anwenden,
+möchten wir als erstes eine Fehlerabschätzung durchführen.
+Für den Fehlerterm \eqref{laguerre:lag_error} wird die $2n$-te Ableitung
+der zu integrierenden Funktion $f(\xi)$ benötigt.
+Für das Integral der Gamma-Funktion ergibt sich also
+\begin{align*}
+\frac{d^{2n}}{d\xi^{2n}} f(\xi)
+ & =
+\frac{d^{2n}}{d\xi^{2n}} \xi^{z-1}
+\\
+ & =
+(z - 2n)_{2n} \xi^{z - 2n - 1}
+\end{align*}
+Eingesetzt im Fehlerterm \eqref{laguerre:lag_error} resultiert
\begin{align*}
R_n
=
(z - 2n)_{2n} \frac{(n!)^2}{(2n)!} \xi^{z-2n-1}
+,
+\label{laguerre:gamma_err_simple}
\end{align*}
+wobei $\xi$ ein geeigneter Wert im Interval $(0, \infty)$ ist
+und $n$ der Grad des verwendeten Laguerre-Polynoms.
+Eine Fehlerabschätzung mit dem Fehlerterm stellt sich als unnütz heraus,
+da $R_n$ für $z < 2n - 1$ bei $\xi \rightarrow 0$ eine Singularität aufweist
+und für $z > 2n - 1$ bei $\xi \rightarrow \infty$ divergiert.
+Nur für den unwahrscheinlichen Fall $ z = 2n - 1$
+wäre eine Fehlerabschätzung plausibel.
+
+Wenden wir nun also naiv die Gauss-Laguerre-Quadratur auf die Gammafunktion an.
+Dazu benötigen wir die Gewichte nach
+\eqref{laguerre:quadratur_gewichte}
+und als Stützstellen die Nullstellen des Laguerre-Polynomes $L_n$.
+Evaluieren wir den relativen Fehler unserer Approximation zeigt sich ein
+Bild wie in Abbildung~\ref{laguerre:fig:rel_error_simple}.
+Man kann sehen,
+wie der relative Fehler Nullstellen aufweist für ganzzahlige $z < 2n$,
+was laut der Theorie der Gauss-Quadratur auch zu erwarten ist,
+denn die Approximation via Gauss-Quadratur
+ist exakt für zu integrierende Polynome mit Grad $< 2n-1$.
+Es ist ersichtlich,
+dass sich für den Polynomgrad $n$ ein Interval gibt,
+in dem der relative Fehler minimal ist.
+Links steigt der relative Fehler besonders stark an,
+während er auf der rechten Seite zu konvergieren scheint.
+Um die linke Hälfte in den Griff zu bekommen,
+könnten wir die Reflektionsformel der Gamma-Funktion ausnutzen.
+
+\begin{figure}
+\centering
+\input{papers/laguerre/images/rel_error_mirror.pgf}
+\caption{Relativer Fehler des naiven Ansatz mit Spiegelung negativer Realwerte
+für verschiedene reele Werte von $z$ und Grade $n$ der Laguerre-Polynome}
+\label{laguerre:fig:rel_error_mirror}
+\end{figure}
+
+Spiegelt man nun $z$ mit negativem Realteil mittels der Reflektionsformel,
+ergibt sich ein stabilerer Fehler in der linken Hälfte,
+wie in Abbildung~\ref{laguerre:fig:rel_error_mirror}.
+Die Spiegelung bringt nur für wenige Werte einen,
+für praktische Anwendungen geeigneten,
+relativen Fehler.
+Wie wir aber in Abbildung~\ref{laguerre:fig:rel_error_simple} sehen konnten,
+gibt es für jeden Polynomgrad $n$ ein Intervall $[a, a+1]$, $a \in \mathbb{Z}$,
+in welchem der relative Fehler minimal ist.
+Die Funktionalgleichung der Gamma-Funktion \eqref{laguerre:gamma_funktional}
+könnte uns hier helfen,
+das Problem in den Griff zu bekommen.
+
+\subsubsection{Analyse des Integranden}
+Wie wir im vorherigen Abschnitt gesehen haben,
+scheint der Integrand problematisch.
+Darum möchten wir jetzt den Integranden analysieren,
+um ihn besser verstehen zu können
+und dadurch geeignete Gegenmassnahmen zu entwickeln.
+
+% Dieser Abschnitt soll eine grafisches Verständnis dafür schaffen,
+% wieso der Integrand so problematisch ist.
+% Was das heisst sollte in Abbildung~\ref{laguerre:fig:integrand}
+% und Abbildung~\ref{laguerre:fig:integrand_exp} grafisch dargestellt werden.
+
+\begin{figure}
+\centering
+\input{papers/laguerre/images/integrands.pgf}
+\caption{Integrand $x^z$ mit unterschiedlichen Werten für $z$}
+\label{laguerre:fig:integrand}
+\end{figure}
+
+In Abbildung~\ref{laguerre:fig:integrand} ist der Integrand $x^z$ für
+unterschiedliche Werte von $z$ dargestellt.
+Dies entspricht der zu integrierenden Funktion $f(x)$
+der Gauss-Laguerre-Quadratur für die Gamma-Funktion-
+Man erkennt,
+dass für kleine $z$ sich ein singulärer Integrand ergibt
+und auch für grosse $z$ wächst der Integrand sehr schnell an.
+Das heisst,
+die Ableitungen im Fehlerterm divergieren noch schneller
+und das wirkt sich negativ auf die Genauigkeit der Approximation aus.
+Somit lässt sich hier sagen,
+dass kleine Exponenten um $0$ genauere Resultate liefern sollten.
+
+\begin{figure}
+\centering
+\input{papers/laguerre/images/integrands_exp.pgf}
+\caption{Integrand $x^z e^{-x}$ mit unterschiedlichen Werten für $z$}
+\label{laguerre:fig:integrand_exp}
+\end{figure}
+
+In Abbildung~\ref{laguerre:fig:integrand_exp} fügen wir
+die Dämpfung der Gewichtsfunktion $w(x)$
+der Gauss-Laguerre-Quadratur wieder hinzu
+und erhalten so wieder den kompletten Integranden $x^{z-1} e^{-x}$
+der Gamma-Funktion.
+Für negative $z$ ergeben sich immer noch Singularitäten,
+wenn $x \rightarrow 0$.
+Um $1$ wächst der Term $x^z$ schneller als die Dämpfung $e^{-x}$,
+aber für $x \rightarrow \infty$ geht der Integrand gegen $0$.
+Das führt zu Glockenförmigen Kurven,
+die für grosse Exponenten $z$ nach der Stelle $x=1$ schnell anwachsen.
+Zu grosse Exponenten $z$ sind also immer noch problematisch.
+Kleine positive $z$ scheinen nun also auch zulässig zu sein.
+Damit formulieren wir die Vermutung,
+dass $a$,
+welches das Intervall $[a,a+1]$ definiert,
+in dem der relative Fehler minimal ist,
+grösser als $0$ und abhängig von $n$ ist.
\subsubsection{Finden der optimalen Berechnungsstelle}
+% Mittels der Funktionalgleichung \eqref{laguerre:gamma_funktional}
+% kann der Wert von $\Gamma(z)$ im Interval $z \in [a,a+1]$,
+% in dem der relative Fehler minimal ist,
+% evaluiert werden und dann mit der Funktionalgleichung zurückverschoben werden.
Nun stellt sich die Frage,
ob die Approximation mittels Gauss-Laguerre-Quadratur verbessert werden kann,
-wenn man das Problem an einer geeigneten Stelle evaluiert und
-dann mit der Funktionalgleichung zurückverschiebt.
-Dazu wollen wir den Fehlerterm in
-Gleichung~\eqref{laguerre:lagurre:lag_error} anpassen und dann minimieren.
-Zunächst wollen wir dies nur für $z\in \mathbb{R}$ und $0<z<1$ definieren.
-Zudem nehmen wir an, dass die optimale Stelle $x^* \in \mathbb{R}$, $z < x^*$
-ist.
-Dann fügen wir einen Verschiebungsterm um $m$ Stellen ein, daraus folgt
+wenn man das Problem in einem geeigneten Intervall $[a, a+1]$,
+$a \in \mathbb{Z}$,
+evaluiert und dann mit der
+Funktionalgleichung \eqref{laguerre:gamma_funktional} zurückverschiebt.
+Aus Gründen der Übersichtlichkeit möchten wir das Problem nur für reele Zahlen
+formulieren.
+
+Die optimale Stelle $a \leq z^* \leq a+1$,
+mit $z^* \in \mathbb{R}$ wollen wir finden,
+in dem wir den Fehlerterm \eqref{laguerre:lag_error} anpassen
+und in einem nächsten Schritt minimieren.
+Zudem nehmen wir an,
+dass $z < z^*$ ist.
+Wir fügen einen Verschiebungsterm um $m \in \mathbb{N}$ Stellen ein,
+daraus folgt
\begin{align*}
-R_n
+R_{n,m}(\xi)
=
\frac{(z - 2n)_{2n}}{(z - m)_m} \frac{(n!)^2}{(2n)!} \xi^{z + m - 2n - 1}
-.
+,\quad
+\text{für }
+\xi \in (0, \infty)
+,
+\end{align*}
+wobei $z^* = z + m - 1$ ist.
+Das Optimierungsproblem daraus lässt sich als
+\begin{align*}
+\operatorname*{argmin}_m \max_\xi R_{n,m}(\xi)
\end{align*}
+formulieren.
+Allerdings ist die Funktion $R_{n,m}(\xi)$ unbeschränkt.
+Dazu müssten wir $\xi$ versuchen unter Kontroller zu bringen,
+was ein äussersts schwieriges Unterfangen zu sein scheint.
+Da die Gauss-Quadratur aber sowieso nur wirklich Sinn macht für kleine $n$,
+können die Intervalle $[a(n), a(n)+1]$ empirisch gesucht werden.
+
+
+\begin{align*}
+m^*
+=
+\lceil \alpha n + \beta + \lfloor z \rfloor - z \rceil - \lfloor z \rfloor
+\end{align*}
+
+\begin{figure}
+\centering
+\includegraphics{papers/laguerre/images/targets.pdf}
+\caption{$a$ in Abhängigkeit von $z$ und $n$}
+\label{laguerre:fig:targets}
+\end{figure}
+
+
+\begin{figure}
+\centering
+\input{papers/laguerre/images/schaetzung.pgf}
+\caption{Schätzung Mittelwert von $m$ und Fehler}
+\label{laguerre:fig:schaetzung}
+\end{figure}
+% 2. Die Fehlerabschätzung ist problematisch,
+% weil die Funktion R_n(\xi) unbeschränkt ist.
+% Daher kann man nicht einfach nach dem Maximum von R_n(\xi) suchen.
+% Man muss zunächst irgendwie das \xi unter Kontrolle bringen.
+% Das scheint mir äusserst schwierig zu sein.
+
+% Ich möchte daher folgendes anregen:
+% Im Sinne der Formulierung des Problems,
+% wie im Punkt 1 oben könnten Sie für verschiedene n
+% nach den optimalen Intervallen [a(n),a(n)+1] suchen,
+% und versuchen, einen empirischen Zusammenhang (Faustregel)
+% zwischen n und a(n) zu formulieren.
+% Das ist etwa gleich gut,
+% da ja der Witz der Gauss-Integration ist,
+% dass man eben nur sehr kleine n überhaupt in Betracht zieht,
+% d.h. man braucht keine exakte Gesetzmässigkeit für a(n).
+
{
\large \color{red}
@@ -87,5 +323,3 @@ TODO:
Geeignete Minimierung für Fehler finden, so dass sie mit den emprisich
bestimmen optimalen Punkten übereinstimmen.
}
-
-\subsection{Resultate}
diff --git a/buch/papers/laguerre/images/integrands.pgf b/buch/papers/laguerre/images/integrands.pgf
index 20b668e..c48ff96 100644
--- a/buch/papers/laguerre/images/integrands.pgf
+++ b/buch/papers/laguerre/images/integrands.pgf
@@ -27,7 +27,7 @@
\begingroup%
\makeatletter%
\begin{pgfpicture}%
-\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{4.000000in}}%
+\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{5.000000in}{3.000000in}}%
\pgfusepath{use as bounding box, clip}%
\begin{pgfscope}%
\pgfsetbuttcap%
@@ -39,9 +39,9 @@
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
-\pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}%
-\pgfpathlineto{\pgfqpoint{6.000000in}{4.000000in}}%
-\pgfpathlineto{\pgfqpoint{0.000000in}{4.000000in}}%
+\pgfpathlineto{\pgfqpoint{5.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{5.000000in}{3.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{3.000000in}}%
\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}%
\pgfpathclose%
\pgfusepath{fill}%
@@ -57,15 +57,15 @@
\pgfsetstrokeopacity{0.000000}%
\pgfsetdash{}{0pt}%
\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{5.857732in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{5.857732in}{3.905568in}}%
-\pgfpathlineto{\pgfqpoint{0.505591in}{3.905568in}}%
+\pgfpathlineto{\pgfqpoint{4.857732in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.857732in}{2.905568in}}%
+\pgfpathlineto{\pgfqpoint{0.505591in}{2.905568in}}%
\pgfpathlineto{\pgfqpoint{0.505591in}{0.463273in}}%
\pgfpathclose%
\pgfusepath{fill}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -74,7 +74,7 @@
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{0.505591in}{3.905568in}}%
+\pgfpathlineto{\pgfqpoint{0.505591in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -103,7 +103,7 @@
\pgftext[x=0.505591in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-3}}\)}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -111,8 +111,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{1.397615in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{1.397615in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{1.230948in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.230948in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -130,7 +130,7 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{1.397615in}{0.463273in}%
+\pgfsys@transformshift{1.230948in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
@@ -138,10 +138,10 @@
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=1.397615in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-2}}\)}%
+\pgftext[x=1.230948in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-2}}\)}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -149,8 +149,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{2.289638in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{2.289638in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{1.956305in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.956305in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -168,7 +168,7 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{2.289638in}{0.463273in}%
+\pgfsys@transformshift{1.956305in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
@@ -176,10 +176,10 @@
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=2.289638in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-1}}\)}%
+\pgftext[x=1.956305in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-1}}\)}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -187,8 +187,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{3.181661in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{3.181661in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{2.681661in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{2.681661in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -206,7 +206,7 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{3.181661in}{0.463273in}%
+\pgfsys@transformshift{2.681661in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
@@ -214,10 +214,10 @@
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=3.181661in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{0}}\)}%
+\pgftext[x=2.681661in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{0}}\)}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -225,8 +225,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{4.073685in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{4.073685in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{3.407018in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{3.407018in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -244,7 +244,7 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{4.073685in}{0.463273in}%
+\pgfsys@transformshift{3.407018in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
@@ -252,10 +252,10 @@
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=4.073685in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{1}}\)}%
+\pgftext[x=3.407018in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{1}}\)}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -263,8 +263,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{4.965708in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{4.965708in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{4.132375in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.132375in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -282,7 +282,7 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{4.965708in}{0.463273in}%
+\pgfsys@transformshift{4.132375in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
@@ -290,10 +290,10 @@
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=4.965708in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{2}}\)}%
+\pgftext[x=4.132375in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{2}}\)}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -301,8 +301,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{5.857732in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{5.857732in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{4.857732in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.857732in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -320,7 +320,7 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{5.857732in}{0.463273in}%
+\pgfsys@transformshift{4.857732in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
@@ -328,10 +328,10 @@
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=5.857732in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{3}}\)}%
+\pgftext[x=4.857732in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{3}}\)}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -339,8 +339,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.774117in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{0.774117in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{0.723945in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{0.723945in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -358,12 +358,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{0.774117in}{0.463273in}%
+\pgfsys@transformshift{0.723945in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -371,8 +371,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.931195in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{0.931195in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{0.851674in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{0.851674in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -390,12 +390,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{0.931195in}{0.463273in}%
+\pgfsys@transformshift{0.851674in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -403,8 +403,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{1.042643in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{1.042643in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{0.942300in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{0.942300in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -422,12 +422,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{1.042643in}{0.463273in}%
+\pgfsys@transformshift{0.942300in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -435,8 +435,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{1.129089in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{1.129089in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{1.012594in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.012594in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -454,12 +454,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{1.129089in}{0.463273in}%
+\pgfsys@transformshift{1.012594in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -467,8 +467,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{1.199720in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{1.199720in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{1.070029in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.070029in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -486,12 +486,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{1.199720in}{0.463273in}%
+\pgfsys@transformshift{1.070029in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -499,8 +499,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{1.259438in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{1.259438in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{1.118589in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.118589in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -518,12 +518,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{1.259438in}{0.463273in}%
+\pgfsys@transformshift{1.118589in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -531,8 +531,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{1.311169in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{1.311169in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{1.160654in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.160654in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -550,12 +550,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{1.311169in}{0.463273in}%
+\pgfsys@transformshift{1.160654in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -563,8 +563,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{1.356798in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{1.356798in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{1.197757in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.197757in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -582,12 +582,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{1.356798in}{0.463273in}%
+\pgfsys@transformshift{1.197757in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -595,8 +595,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{1.666140in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{1.666140in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{1.449302in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.449302in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -614,12 +614,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{1.666140in}{0.463273in}%
+\pgfsys@transformshift{1.449302in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -627,8 +627,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{1.823218in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{1.823218in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{1.577031in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.577031in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -646,12 +646,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{1.823218in}{0.463273in}%
+\pgfsys@transformshift{1.577031in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -659,8 +659,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{1.934666in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{1.934666in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{1.667656in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.667656in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -678,12 +678,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{1.934666in}{0.463273in}%
+\pgfsys@transformshift{1.667656in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -691,8 +691,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{2.021112in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{2.021112in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{1.737951in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.737951in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -710,12 +710,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{2.021112in}{0.463273in}%
+\pgfsys@transformshift{1.737951in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -723,8 +723,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{2.091744in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{2.091744in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{1.795385in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.795385in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -742,12 +742,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{2.091744in}{0.463273in}%
+\pgfsys@transformshift{1.795385in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -755,8 +755,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{2.151462in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{2.151462in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{1.843946in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.843946in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -774,12 +774,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{2.151462in}{0.463273in}%
+\pgfsys@transformshift{1.843946in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -787,8 +787,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{2.203192in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{2.203192in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{1.886010in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.886010in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -806,12 +806,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{2.203192in}{0.463273in}%
+\pgfsys@transformshift{1.886010in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -819,8 +819,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{2.248821in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{2.248821in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{1.923114in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.923114in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -838,12 +838,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{2.248821in}{0.463273in}%
+\pgfsys@transformshift{1.923114in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -851,8 +851,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{2.558164in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{2.558164in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{2.174659in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{2.174659in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -870,12 +870,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{2.558164in}{0.463273in}%
+\pgfsys@transformshift{2.174659in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -883,8 +883,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{2.715241in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{2.715241in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{2.302388in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{2.302388in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -902,12 +902,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{2.715241in}{0.463273in}%
+\pgfsys@transformshift{2.302388in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -915,8 +915,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{2.826690in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{2.826690in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{2.393013in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{2.393013in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -934,12 +934,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{2.826690in}{0.463273in}%
+\pgfsys@transformshift{2.393013in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -947,8 +947,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{2.913136in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{2.913136in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{2.463307in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{2.463307in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -966,12 +966,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{2.913136in}{0.463273in}%
+\pgfsys@transformshift{2.463307in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -979,8 +979,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{2.983767in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{2.983767in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{2.520742in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{2.520742in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -998,12 +998,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{2.983767in}{0.463273in}%
+\pgfsys@transformshift{2.520742in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1011,8 +1011,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{3.043485in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{3.043485in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{2.569302in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{2.569302in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1030,12 +1030,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{3.043485in}{0.463273in}%
+\pgfsys@transformshift{2.569302in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1043,8 +1043,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{3.095215in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{3.095215in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{2.611367in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{2.611367in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1062,12 +1062,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{3.095215in}{0.463273in}%
+\pgfsys@transformshift{2.611367in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1075,8 +1075,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{3.140845in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{3.140845in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{2.648471in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{2.648471in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1094,12 +1094,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{3.140845in}{0.463273in}%
+\pgfsys@transformshift{2.648471in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1107,8 +1107,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{3.450187in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{3.450187in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{2.900016in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{2.900016in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1126,12 +1126,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{3.450187in}{0.463273in}%
+\pgfsys@transformshift{2.900016in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1139,8 +1139,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{3.607265in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{3.607265in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{3.027745in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{3.027745in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1158,12 +1158,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{3.607265in}{0.463273in}%
+\pgfsys@transformshift{3.027745in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1171,8 +1171,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{3.718713in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{3.718713in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{3.118370in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{3.118370in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1190,12 +1190,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{3.718713in}{0.463273in}%
+\pgfsys@transformshift{3.118370in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1203,8 +1203,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{3.805159in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{3.805159in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{3.188664in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{3.188664in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1222,12 +1222,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{3.805159in}{0.463273in}%
+\pgfsys@transformshift{3.188664in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1235,8 +1235,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{3.875791in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{3.875791in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{3.246099in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{3.246099in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1254,12 +1254,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{3.875791in}{0.463273in}%
+\pgfsys@transformshift{3.246099in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1267,8 +1267,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{3.935509in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{3.935509in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{3.294659in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{3.294659in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1286,12 +1286,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{3.935509in}{0.463273in}%
+\pgfsys@transformshift{3.294659in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1299,8 +1299,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{3.987239in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{3.987239in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{3.336724in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{3.336724in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1318,12 +1318,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{3.987239in}{0.463273in}%
+\pgfsys@transformshift{3.336724in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1331,8 +1331,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{4.032868in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{4.032868in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{3.373828in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{3.373828in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1350,12 +1350,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{4.032868in}{0.463273in}%
+\pgfsys@transformshift{3.373828in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1363,8 +1363,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{4.342211in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{4.342211in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{3.625372in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{3.625372in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1382,12 +1382,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{4.342211in}{0.463273in}%
+\pgfsys@transformshift{3.625372in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1395,8 +1395,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{4.499288in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{4.499288in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{3.753101in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{3.753101in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1414,12 +1414,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{4.499288in}{0.463273in}%
+\pgfsys@transformshift{3.753101in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1427,8 +1427,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{4.610736in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{4.610736in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{3.843726in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{3.843726in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1446,12 +1446,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{4.610736in}{0.463273in}%
+\pgfsys@transformshift{3.843726in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1459,8 +1459,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{4.697182in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{4.697182in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{3.914021in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{3.914021in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1478,12 +1478,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{4.697182in}{0.463273in}%
+\pgfsys@transformshift{3.914021in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1491,8 +1491,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{4.767814in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{4.767814in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{3.971455in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{3.971455in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1510,12 +1510,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{4.767814in}{0.463273in}%
+\pgfsys@transformshift{3.971455in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1523,8 +1523,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{4.827532in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{4.827532in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{4.020016in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.020016in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1542,12 +1542,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{4.827532in}{0.463273in}%
+\pgfsys@transformshift{4.020016in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1555,8 +1555,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{4.879262in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{4.879262in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{4.062081in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.062081in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1574,12 +1574,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{4.879262in}{0.463273in}%
+\pgfsys@transformshift{4.062081in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1587,8 +1587,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{4.924892in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{4.924892in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{4.099184in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.099184in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1606,12 +1606,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{4.924892in}{0.463273in}%
+\pgfsys@transformshift{4.099184in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1619,8 +1619,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{5.234234in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{5.234234in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{4.350729in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.350729in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1638,12 +1638,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{5.234234in}{0.463273in}%
+\pgfsys@transformshift{4.350729in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1651,8 +1651,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{5.391312in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{5.391312in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{4.478458in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.478458in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1670,12 +1670,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{5.391312in}{0.463273in}%
+\pgfsys@transformshift{4.478458in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1683,8 +1683,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{5.502760in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{5.502760in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{4.569083in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.569083in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1702,12 +1702,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{5.502760in}{0.463273in}%
+\pgfsys@transformshift{4.569083in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1715,8 +1715,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{5.589206in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{5.589206in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{4.639378in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.639378in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1734,12 +1734,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{5.589206in}{0.463273in}%
+\pgfsys@transformshift{4.639378in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1747,8 +1747,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{5.659837in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{5.659837in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{4.696812in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.696812in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1766,12 +1766,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{5.659837in}{0.463273in}%
+\pgfsys@transformshift{4.696812in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1779,8 +1779,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{5.719555in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{5.719555in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{4.745372in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.745372in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1798,12 +1798,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{5.719555in}{0.463273in}%
+\pgfsys@transformshift{4.745372in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1811,8 +1811,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{5.771286in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{5.771286in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{4.787437in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.787437in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1830,12 +1830,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{5.771286in}{0.463273in}%
+\pgfsys@transformshift{4.787437in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1843,8 +1843,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{5.816915in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{5.816915in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{4.824541in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.824541in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1862,7 +1862,7 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{5.816915in}{0.463273in}%
+\pgfsys@transformshift{4.824541in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
@@ -1870,10 +1870,10 @@
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=3.181661in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle t\)}%
+\pgftext[x=2.681661in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle x\)}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1881,8 +1881,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.505591in}{0.893485in}}%
-\pgfpathlineto{\pgfqpoint{5.857732in}{0.893485in}}%
+\pgfpathmoveto{\pgfqpoint{0.505591in}{0.768507in}}%
+\pgfpathlineto{\pgfqpoint{4.857732in}{0.768507in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1900,7 +1900,7 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{0.505591in}{0.893485in}%
+\pgfsys@transformshift{0.505591in}{0.768507in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
@@ -1908,10 +1908,10 @@
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=0.320004in, y=0.840723in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5}%
+\pgftext[x=0.320004in, y=0.715745in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1919,8 +1919,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.505591in}{1.323783in}}%
-\pgfpathlineto{\pgfqpoint{5.857732in}{1.323783in}}%
+\pgfpathmoveto{\pgfqpoint{0.505591in}{1.073801in}}%
+\pgfpathlineto{\pgfqpoint{4.857732in}{1.073801in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1938,7 +1938,7 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{0.505591in}{1.323783in}%
+\pgfsys@transformshift{0.505591in}{1.073801in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
@@ -1946,10 +1946,10 @@
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=0.231638in, y=1.271021in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}%
+\pgftext[x=0.231638in, y=1.021040in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1957,8 +1957,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.505591in}{1.754080in}}%
-\pgfpathlineto{\pgfqpoint{5.857732in}{1.754080in}}%
+\pgfpathmoveto{\pgfqpoint{0.505591in}{1.379096in}}%
+\pgfpathlineto{\pgfqpoint{4.857732in}{1.379096in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1976,7 +1976,7 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{0.505591in}{1.754080in}%
+\pgfsys@transformshift{0.505591in}{1.379096in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
@@ -1984,10 +1984,10 @@
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=0.231638in, y=1.701319in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 15}%
+\pgftext[x=0.231638in, y=1.326334in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 15}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1995,8 +1995,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.505591in}{2.184378in}}%
-\pgfpathlineto{\pgfqpoint{5.857732in}{2.184378in}}%
+\pgfpathmoveto{\pgfqpoint{0.505591in}{1.684390in}}%
+\pgfpathlineto{\pgfqpoint{4.857732in}{1.684390in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -2014,7 +2014,7 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{0.505591in}{2.184378in}%
+\pgfsys@transformshift{0.505591in}{1.684390in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
@@ -2022,10 +2022,10 @@
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=0.231638in, y=2.131616in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 20}%
+\pgftext[x=0.231638in, y=1.631629in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 20}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -2033,8 +2033,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.505591in}{2.614676in}}%
-\pgfpathlineto{\pgfqpoint{5.857732in}{2.614676in}}%
+\pgfpathmoveto{\pgfqpoint{0.505591in}{1.989685in}}%
+\pgfpathlineto{\pgfqpoint{4.857732in}{1.989685in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -2052,7 +2052,7 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{0.505591in}{2.614676in}%
+\pgfsys@transformshift{0.505591in}{1.989685in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
@@ -2060,10 +2060,10 @@
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=0.231638in, y=2.561914in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 25}%
+\pgftext[x=0.231638in, y=1.936923in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 25}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -2071,8 +2071,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.505591in}{3.044973in}}%
-\pgfpathlineto{\pgfqpoint{5.857732in}{3.044973in}}%
+\pgfpathmoveto{\pgfqpoint{0.505591in}{2.294979in}}%
+\pgfpathlineto{\pgfqpoint{4.857732in}{2.294979in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -2090,7 +2090,7 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{0.505591in}{3.044973in}%
+\pgfsys@transformshift{0.505591in}{2.294979in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
@@ -2098,10 +2098,10 @@
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=0.231638in, y=2.992212in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 30}%
+\pgftext[x=0.231638in, y=2.242218in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 30}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -2109,8 +2109,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.505591in}{3.475271in}}%
-\pgfpathlineto{\pgfqpoint{5.857732in}{3.475271in}}%
+\pgfpathmoveto{\pgfqpoint{0.505591in}{2.600274in}}%
+\pgfpathlineto{\pgfqpoint{4.857732in}{2.600274in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -2128,7 +2128,7 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{0.505591in}{3.475271in}%
+\pgfsys@transformshift{0.505591in}{2.600274in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
@@ -2136,10 +2136,10 @@
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=0.231638in, y=3.422509in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 35}%
+\pgftext[x=0.231638in, y=2.547512in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 35}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -2147,8 +2147,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.505591in}{3.905568in}}%
-\pgfpathlineto{\pgfqpoint{5.857732in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{0.505591in}{2.905568in}}%
+\pgfpathlineto{\pgfqpoint{4.857732in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -2166,7 +2166,7 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{0.505591in}{3.905568in}%
+\pgfsys@transformshift{0.505591in}{2.905568in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
@@ -2174,16 +2174,16 @@
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=0.231638in, y=3.852807in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 40}%
+\pgftext[x=0.231638in, y=2.852807in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 40}%
\end{pgfscope}%
\begin{pgfscope}%
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=0.176083in,y=2.184421in,,bottom,rotate=90.000000]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle t^z\)}%
+\pgftext[x=0.176083in,y=1.684421in,,bottom,rotate=90.000000]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle x^z\)}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -2191,46 +2191,43 @@
\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{2.863879in}{3.915568in}}%
-\pgfpathlineto{\pgfqpoint{2.876589in}{3.440325in}}%
-\pgfpathlineto{\pgfqpoint{2.892646in}{2.933768in}}%
-\pgfpathlineto{\pgfqpoint{2.908702in}{2.513400in}}%
-\pgfpathlineto{\pgfqpoint{2.924759in}{2.164558in}}%
-\pgfpathlineto{\pgfqpoint{2.940815in}{1.875071in}}%
-\pgfpathlineto{\pgfqpoint{2.956872in}{1.634840in}}%
-\pgfpathlineto{\pgfqpoint{2.972928in}{1.435484in}}%
-\pgfpathlineto{\pgfqpoint{2.988984in}{1.270049in}}%
-\pgfpathlineto{\pgfqpoint{3.005041in}{1.132762in}}%
-\pgfpathlineto{\pgfqpoint{3.021097in}{1.018834in}}%
-\pgfpathlineto{\pgfqpoint{3.037154in}{0.924291in}}%
-\pgfpathlineto{\pgfqpoint{3.053210in}{0.845835in}}%
-\pgfpathlineto{\pgfqpoint{3.069267in}{0.780728in}}%
-\pgfpathlineto{\pgfqpoint{3.085323in}{0.726698in}}%
-\pgfpathlineto{\pgfqpoint{3.101379in}{0.681862in}}%
-\pgfpathlineto{\pgfqpoint{3.117436in}{0.644655in}}%
-\pgfpathlineto{\pgfqpoint{3.133492in}{0.613778in}}%
-\pgfpathlineto{\pgfqpoint{3.149549in}{0.588155in}}%
-\pgfpathlineto{\pgfqpoint{3.165605in}{0.566892in}}%
-\pgfpathlineto{\pgfqpoint{3.181661in}{0.549247in}}%
-\pgfpathlineto{\pgfqpoint{3.197718in}{0.534604in}}%
-\pgfpathlineto{\pgfqpoint{3.213774in}{0.522452in}}%
-\pgfpathlineto{\pgfqpoint{3.235183in}{0.509404in}}%
-\pgfpathlineto{\pgfqpoint{3.256591in}{0.499228in}}%
-\pgfpathlineto{\pgfqpoint{3.278000in}{0.491293in}}%
-\pgfpathlineto{\pgfqpoint{3.304761in}{0.483784in}}%
-\pgfpathlineto{\pgfqpoint{3.336874in}{0.477371in}}%
-\pgfpathlineto{\pgfqpoint{3.374339in}{0.472366in}}%
-\pgfpathlineto{\pgfqpoint{3.422508in}{0.468433in}}%
-\pgfpathlineto{\pgfqpoint{3.486733in}{0.465675in}}%
-\pgfpathlineto{\pgfqpoint{3.583072in}{0.464000in}}%
-\pgfpathlineto{\pgfqpoint{3.781101in}{0.463269in}}%
-\pgfpathlineto{\pgfqpoint{5.076319in}{0.463187in}}%
-\pgfpathlineto{\pgfqpoint{5.857732in}{0.463187in}}%
-\pgfpathlineto{\pgfqpoint{5.857732in}{0.463187in}}%
-\pgfusepath{stroke}%
-\end{pgfscope}%
-\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathmoveto{\pgfqpoint{2.423171in}{2.915568in}}%
+\pgfpathlineto{\pgfqpoint{2.433589in}{2.575480in}}%
+\pgfpathlineto{\pgfqpoint{2.446646in}{2.216079in}}%
+\pgfpathlineto{\pgfqpoint{2.459702in}{1.917830in}}%
+\pgfpathlineto{\pgfqpoint{2.472759in}{1.670328in}}%
+\pgfpathlineto{\pgfqpoint{2.485815in}{1.464938in}}%
+\pgfpathlineto{\pgfqpoint{2.498872in}{1.294495in}}%
+\pgfpathlineto{\pgfqpoint{2.511928in}{1.153053in}}%
+\pgfpathlineto{\pgfqpoint{2.524984in}{1.035677in}}%
+\pgfpathlineto{\pgfqpoint{2.538041in}{0.938273in}}%
+\pgfpathlineto{\pgfqpoint{2.551097in}{0.857442in}}%
+\pgfpathlineto{\pgfqpoint{2.564154in}{0.790364in}}%
+\pgfpathlineto{\pgfqpoint{2.577210in}{0.734699in}}%
+\pgfpathlineto{\pgfqpoint{2.590267in}{0.688506in}}%
+\pgfpathlineto{\pgfqpoint{2.603323in}{0.650172in}}%
+\pgfpathlineto{\pgfqpoint{2.616379in}{0.618361in}}%
+\pgfpathlineto{\pgfqpoint{2.629436in}{0.591963in}}%
+\pgfpathlineto{\pgfqpoint{2.642492in}{0.570056in}}%
+\pgfpathlineto{\pgfqpoint{2.655549in}{0.551877in}}%
+\pgfpathlineto{\pgfqpoint{2.668605in}{0.536790in}}%
+\pgfpathlineto{\pgfqpoint{2.686014in}{0.520591in}}%
+\pgfpathlineto{\pgfqpoint{2.703422in}{0.507958in}}%
+\pgfpathlineto{\pgfqpoint{2.720831in}{0.498106in}}%
+\pgfpathlineto{\pgfqpoint{2.742591in}{0.488783in}}%
+\pgfpathlineto{\pgfqpoint{2.764352in}{0.481951in}}%
+\pgfpathlineto{\pgfqpoint{2.790465in}{0.476117in}}%
+\pgfpathlineto{\pgfqpoint{2.820930in}{0.471563in}}%
+\pgfpathlineto{\pgfqpoint{2.860099in}{0.467985in}}%
+\pgfpathlineto{\pgfqpoint{2.916677in}{0.465339in}}%
+\pgfpathlineto{\pgfqpoint{3.003720in}{0.463826in}}%
+\pgfpathlineto{\pgfqpoint{3.199566in}{0.463250in}}%
+\pgfpathlineto{\pgfqpoint{4.857732in}{0.463212in}}%
+\pgfpathlineto{\pgfqpoint{4.857732in}{0.463212in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -2238,57 +2235,52 @@
\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{2.466580in}{3.915568in}}%
-\pgfpathlineto{\pgfqpoint{2.485883in}{3.587820in}}%
-\pgfpathlineto{\pgfqpoint{2.507292in}{3.260873in}}%
-\pgfpathlineto{\pgfqpoint{2.528700in}{2.968137in}}%
-\pgfpathlineto{\pgfqpoint{2.550109in}{2.706031in}}%
-\pgfpathlineto{\pgfqpoint{2.571517in}{2.471350in}}%
-\pgfpathlineto{\pgfqpoint{2.592926in}{2.261226in}}%
-\pgfpathlineto{\pgfqpoint{2.614335in}{2.073088in}}%
-\pgfpathlineto{\pgfqpoint{2.635743in}{1.904635in}}%
-\pgfpathlineto{\pgfqpoint{2.657152in}{1.753809in}}%
-\pgfpathlineto{\pgfqpoint{2.678560in}{1.618764in}}%
-\pgfpathlineto{\pgfqpoint{2.699969in}{1.497850in}}%
-\pgfpathlineto{\pgfqpoint{2.721377in}{1.389588in}}%
-\pgfpathlineto{\pgfqpoint{2.742786in}{1.292654in}}%
-\pgfpathlineto{\pgfqpoint{2.764195in}{1.205863in}}%
-\pgfpathlineto{\pgfqpoint{2.785603in}{1.128153in}}%
-\pgfpathlineto{\pgfqpoint{2.807012in}{1.058574in}}%
-\pgfpathlineto{\pgfqpoint{2.828420in}{0.996275in}}%
-\pgfpathlineto{\pgfqpoint{2.849829in}{0.940496in}}%
-\pgfpathlineto{\pgfqpoint{2.871237in}{0.890552in}}%
-\pgfpathlineto{\pgfqpoint{2.892646in}{0.845835in}}%
-\pgfpathlineto{\pgfqpoint{2.914054in}{0.805796in}}%
-\pgfpathlineto{\pgfqpoint{2.935463in}{0.769947in}}%
-\pgfpathlineto{\pgfqpoint{2.956872in}{0.737850in}}%
-\pgfpathlineto{\pgfqpoint{2.978280in}{0.709110in}}%
-\pgfpathlineto{\pgfqpoint{3.005041in}{0.677377in}}%
-\pgfpathlineto{\pgfqpoint{3.031802in}{0.649739in}}%
-\pgfpathlineto{\pgfqpoint{3.058562in}{0.625667in}}%
-\pgfpathlineto{\pgfqpoint{3.085323in}{0.604701in}}%
-\pgfpathlineto{\pgfqpoint{3.112084in}{0.586441in}}%
-\pgfpathlineto{\pgfqpoint{3.138844in}{0.570537in}}%
-\pgfpathlineto{\pgfqpoint{3.170957in}{0.554136in}}%
-\pgfpathlineto{\pgfqpoint{3.203070in}{0.540242in}}%
-\pgfpathlineto{\pgfqpoint{3.240535in}{0.526691in}}%
-\pgfpathlineto{\pgfqpoint{3.278000in}{0.515523in}}%
-\pgfpathlineto{\pgfqpoint{3.320817in}{0.505144in}}%
-\pgfpathlineto{\pgfqpoint{3.368986in}{0.495906in}}%
-\pgfpathlineto{\pgfqpoint{3.422508in}{0.488007in}}%
-\pgfpathlineto{\pgfqpoint{3.486733in}{0.481003in}}%
-\pgfpathlineto{\pgfqpoint{3.561663in}{0.475288in}}%
-\pgfpathlineto{\pgfqpoint{3.652650in}{0.470752in}}%
-\pgfpathlineto{\pgfqpoint{3.770397in}{0.467306in}}%
-\pgfpathlineto{\pgfqpoint{3.936313in}{0.464936in}}%
-\pgfpathlineto{\pgfqpoint{4.209272in}{0.463615in}}%
-\pgfpathlineto{\pgfqpoint{4.910403in}{0.463199in}}%
-\pgfpathlineto{\pgfqpoint{5.857732in}{0.463187in}}%
-\pgfpathlineto{\pgfqpoint{5.857732in}{0.463187in}}%
-\pgfusepath{stroke}%
-\end{pgfscope}%
-\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathmoveto{\pgfqpoint{2.099999in}{2.915568in}}%
+\pgfpathlineto{\pgfqpoint{2.115883in}{2.680127in}}%
+\pgfpathlineto{\pgfqpoint{2.133292in}{2.448160in}}%
+\pgfpathlineto{\pgfqpoint{2.150700in}{2.240464in}}%
+\pgfpathlineto{\pgfqpoint{2.168109in}{2.054501in}}%
+\pgfpathlineto{\pgfqpoint{2.185517in}{1.887996in}}%
+\pgfpathlineto{\pgfqpoint{2.202926in}{1.738914in}}%
+\pgfpathlineto{\pgfqpoint{2.220335in}{1.605430in}}%
+\pgfpathlineto{\pgfqpoint{2.237743in}{1.485914in}}%
+\pgfpathlineto{\pgfqpoint{2.255152in}{1.378903in}}%
+\pgfpathlineto{\pgfqpoint{2.272560in}{1.283090in}}%
+\pgfpathlineto{\pgfqpoint{2.289969in}{1.197302in}}%
+\pgfpathlineto{\pgfqpoint{2.307377in}{1.120490in}}%
+\pgfpathlineto{\pgfqpoint{2.324786in}{1.051716in}}%
+\pgfpathlineto{\pgfqpoint{2.342195in}{0.990138in}}%
+\pgfpathlineto{\pgfqpoint{2.363955in}{0.922145in}}%
+\pgfpathlineto{\pgfqpoint{2.385716in}{0.862926in}}%
+\pgfpathlineto{\pgfqpoint{2.407477in}{0.811348in}}%
+\pgfpathlineto{\pgfqpoint{2.429237in}{0.766426in}}%
+\pgfpathlineto{\pgfqpoint{2.450998in}{0.727300in}}%
+\pgfpathlineto{\pgfqpoint{2.472759in}{0.693223in}}%
+\pgfpathlineto{\pgfqpoint{2.494519in}{0.663544in}}%
+\pgfpathlineto{\pgfqpoint{2.516280in}{0.637694in}}%
+\pgfpathlineto{\pgfqpoint{2.538041in}{0.615179in}}%
+\pgfpathlineto{\pgfqpoint{2.559802in}{0.595570in}}%
+\pgfpathlineto{\pgfqpoint{2.585914in}{0.575349in}}%
+\pgfpathlineto{\pgfqpoint{2.612027in}{0.558218in}}%
+\pgfpathlineto{\pgfqpoint{2.638140in}{0.543704in}}%
+\pgfpathlineto{\pgfqpoint{2.668605in}{0.529548in}}%
+\pgfpathlineto{\pgfqpoint{2.699070in}{0.517882in}}%
+\pgfpathlineto{\pgfqpoint{2.733887in}{0.507040in}}%
+\pgfpathlineto{\pgfqpoint{2.773056in}{0.497390in}}%
+\pgfpathlineto{\pgfqpoint{2.816578in}{0.489139in}}%
+\pgfpathlineto{\pgfqpoint{2.864451in}{0.482344in}}%
+\pgfpathlineto{\pgfqpoint{2.921029in}{0.476571in}}%
+\pgfpathlineto{\pgfqpoint{2.990663in}{0.471797in}}%
+\pgfpathlineto{\pgfqpoint{3.077706in}{0.468153in}}%
+\pgfpathlineto{\pgfqpoint{3.199566in}{0.465491in}}%
+\pgfpathlineto{\pgfqpoint{3.386708in}{0.463907in}}%
+\pgfpathlineto{\pgfqpoint{3.787105in}{0.463267in}}%
+\pgfpathlineto{\pgfqpoint{4.857732in}{0.463212in}}%
+\pgfpathlineto{\pgfqpoint{4.857732in}{0.463212in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -2296,64 +2288,59 @@
\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{1.751469in}{3.915568in}}%
-\pgfpathlineto{\pgfqpoint{1.779401in}{3.675361in}}%
-\pgfpathlineto{\pgfqpoint{1.811514in}{3.419831in}}%
-\pgfpathlineto{\pgfqpoint{1.843626in}{3.184629in}}%
-\pgfpathlineto{\pgfqpoint{1.875739in}{2.968137in}}%
-\pgfpathlineto{\pgfqpoint{1.907852in}{2.768867in}}%
-\pgfpathlineto{\pgfqpoint{1.939965in}{2.585449in}}%
-\pgfpathlineto{\pgfqpoint{1.972078in}{2.416622in}}%
-\pgfpathlineto{\pgfqpoint{2.004191in}{2.261226in}}%
-\pgfpathlineto{\pgfqpoint{2.036303in}{2.118191in}}%
-\pgfpathlineto{\pgfqpoint{2.068416in}{1.986535in}}%
-\pgfpathlineto{\pgfqpoint{2.100529in}{1.865352in}}%
-\pgfpathlineto{\pgfqpoint{2.132642in}{1.753809in}}%
-\pgfpathlineto{\pgfqpoint{2.164755in}{1.651139in}}%
-\pgfpathlineto{\pgfqpoint{2.196868in}{1.556637in}}%
-\pgfpathlineto{\pgfqpoint{2.228980in}{1.469653in}}%
-\pgfpathlineto{\pgfqpoint{2.261093in}{1.389588in}}%
-\pgfpathlineto{\pgfqpoint{2.293206in}{1.315893in}}%
-\pgfpathlineto{\pgfqpoint{2.325319in}{1.248060in}}%
-\pgfpathlineto{\pgfqpoint{2.357432in}{1.185623in}}%
-\pgfpathlineto{\pgfqpoint{2.389545in}{1.128153in}}%
-\pgfpathlineto{\pgfqpoint{2.421658in}{1.075254in}}%
-\pgfpathlineto{\pgfqpoint{2.453770in}{1.026564in}}%
-\pgfpathlineto{\pgfqpoint{2.485883in}{0.981747in}}%
-\pgfpathlineto{\pgfqpoint{2.517996in}{0.940496in}}%
-\pgfpathlineto{\pgfqpoint{2.550109in}{0.902525in}}%
-\pgfpathlineto{\pgfqpoint{2.582222in}{0.867576in}}%
-\pgfpathlineto{\pgfqpoint{2.619687in}{0.830300in}}%
-\pgfpathlineto{\pgfqpoint{2.657152in}{0.796459in}}%
-\pgfpathlineto{\pgfqpoint{2.694617in}{0.765739in}}%
-\pgfpathlineto{\pgfqpoint{2.732082in}{0.737850in}}%
-\pgfpathlineto{\pgfqpoint{2.769547in}{0.712531in}}%
-\pgfpathlineto{\pgfqpoint{2.812364in}{0.686441in}}%
-\pgfpathlineto{\pgfqpoint{2.855181in}{0.663081in}}%
-\pgfpathlineto{\pgfqpoint{2.897998in}{0.642165in}}%
-\pgfpathlineto{\pgfqpoint{2.946167in}{0.621239in}}%
-\pgfpathlineto{\pgfqpoint{2.994337in}{0.602759in}}%
-\pgfpathlineto{\pgfqpoint{3.047858in}{0.584750in}}%
-\pgfpathlineto{\pgfqpoint{3.101379in}{0.569064in}}%
-\pgfpathlineto{\pgfqpoint{3.160253in}{0.554136in}}%
-\pgfpathlineto{\pgfqpoint{3.224479in}{0.540242in}}%
-\pgfpathlineto{\pgfqpoint{3.294056in}{0.527574in}}%
-\pgfpathlineto{\pgfqpoint{3.368986in}{0.516251in}}%
-\pgfpathlineto{\pgfqpoint{3.449268in}{0.506319in}}%
-\pgfpathlineto{\pgfqpoint{3.540255in}{0.497291in}}%
-\pgfpathlineto{\pgfqpoint{3.641946in}{0.489417in}}%
-\pgfpathlineto{\pgfqpoint{3.759693in}{0.482543in}}%
-\pgfpathlineto{\pgfqpoint{3.898848in}{0.476702in}}%
-\pgfpathlineto{\pgfqpoint{4.070117in}{0.471873in}}%
-\pgfpathlineto{\pgfqpoint{4.284202in}{0.468185in}}%
-\pgfpathlineto{\pgfqpoint{4.573218in}{0.465558in}}%
-\pgfpathlineto{\pgfqpoint{5.022798in}{0.463930in}}%
-\pgfpathlineto{\pgfqpoint{5.857732in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{5.857732in}{0.463273in}}%
-\pgfusepath{stroke}%
-\end{pgfscope}%
-\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathmoveto{\pgfqpoint{1.518316in}{2.915568in}}%
+\pgfpathlineto{\pgfqpoint{1.541401in}{2.742237in}}%
+\pgfpathlineto{\pgfqpoint{1.567514in}{2.560939in}}%
+\pgfpathlineto{\pgfqpoint{1.593626in}{2.394064in}}%
+\pgfpathlineto{\pgfqpoint{1.619739in}{2.240464in}}%
+\pgfpathlineto{\pgfqpoint{1.645852in}{2.099083in}}%
+\pgfpathlineto{\pgfqpoint{1.671965in}{1.968949in}}%
+\pgfpathlineto{\pgfqpoint{1.698078in}{1.849167in}}%
+\pgfpathlineto{\pgfqpoint{1.724191in}{1.738914in}}%
+\pgfpathlineto{\pgfqpoint{1.750303in}{1.637431in}}%
+\pgfpathlineto{\pgfqpoint{1.776416in}{1.544021in}}%
+\pgfpathlineto{\pgfqpoint{1.802529in}{1.458043in}}%
+\pgfpathlineto{\pgfqpoint{1.828642in}{1.378903in}}%
+\pgfpathlineto{\pgfqpoint{1.854755in}{1.306060in}}%
+\pgfpathlineto{\pgfqpoint{1.880868in}{1.239011in}}%
+\pgfpathlineto{\pgfqpoint{1.906980in}{1.177296in}}%
+\pgfpathlineto{\pgfqpoint{1.933093in}{1.120490in}}%
+\pgfpathlineto{\pgfqpoint{1.963558in}{1.059903in}}%
+\pgfpathlineto{\pgfqpoint{1.994023in}{1.004900in}}%
+\pgfpathlineto{\pgfqpoint{2.024488in}{0.954968in}}%
+\pgfpathlineto{\pgfqpoint{2.054953in}{0.909638in}}%
+\pgfpathlineto{\pgfqpoint{2.085418in}{0.868487in}}%
+\pgfpathlineto{\pgfqpoint{2.115883in}{0.831129in}}%
+\pgfpathlineto{\pgfqpoint{2.146348in}{0.797214in}}%
+\pgfpathlineto{\pgfqpoint{2.176813in}{0.766426in}}%
+\pgfpathlineto{\pgfqpoint{2.207278in}{0.738476in}}%
+\pgfpathlineto{\pgfqpoint{2.242095in}{0.709674in}}%
+\pgfpathlineto{\pgfqpoint{2.276912in}{0.683885in}}%
+\pgfpathlineto{\pgfqpoint{2.311730in}{0.660795in}}%
+\pgfpathlineto{\pgfqpoint{2.350899in}{0.637694in}}%
+\pgfpathlineto{\pgfqpoint{2.390068in}{0.617293in}}%
+\pgfpathlineto{\pgfqpoint{2.429237in}{0.599278in}}%
+\pgfpathlineto{\pgfqpoint{2.472759in}{0.581721in}}%
+\pgfpathlineto{\pgfqpoint{2.520632in}{0.565013in}}%
+\pgfpathlineto{\pgfqpoint{2.568506in}{0.550660in}}%
+\pgfpathlineto{\pgfqpoint{2.620731in}{0.537300in}}%
+\pgfpathlineto{\pgfqpoint{2.677309in}{0.525121in}}%
+\pgfpathlineto{\pgfqpoint{2.738239in}{0.514233in}}%
+\pgfpathlineto{\pgfqpoint{2.807874in}{0.504115in}}%
+\pgfpathlineto{\pgfqpoint{2.886212in}{0.495109in}}%
+\pgfpathlineto{\pgfqpoint{2.973255in}{0.487409in}}%
+\pgfpathlineto{\pgfqpoint{3.073354in}{0.480822in}}%
+\pgfpathlineto{\pgfqpoint{3.190862in}{0.475339in}}%
+\pgfpathlineto{\pgfqpoint{3.338835in}{0.470794in}}%
+\pgfpathlineto{\pgfqpoint{3.525977in}{0.467398in}}%
+\pgfpathlineto{\pgfqpoint{3.787105in}{0.465039in}}%
+\pgfpathlineto{\pgfqpoint{4.213615in}{0.463684in}}%
+\pgfpathlineto{\pgfqpoint{4.857732in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.857732in}{0.463273in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -2361,68 +2348,61 @@
\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.505591in}{3.184629in}}%
-\pgfpathlineto{\pgfqpoint{0.548408in}{3.038316in}}%
-\pgfpathlineto{\pgfqpoint{0.591225in}{2.899870in}}%
-\pgfpathlineto{\pgfqpoint{0.634043in}{2.768867in}}%
-\pgfpathlineto{\pgfqpoint{0.676860in}{2.644907in}}%
-\pgfpathlineto{\pgfqpoint{0.719677in}{2.527612in}}%
-\pgfpathlineto{\pgfqpoint{0.762494in}{2.416622in}}%
-\pgfpathlineto{\pgfqpoint{0.805311in}{2.311600in}}%
-\pgfpathlineto{\pgfqpoint{0.848128in}{2.212224in}}%
-\pgfpathlineto{\pgfqpoint{0.890945in}{2.118191in}}%
-\pgfpathlineto{\pgfqpoint{0.933762in}{2.029213in}}%
-\pgfpathlineto{\pgfqpoint{0.976580in}{1.945019in}}%
-\pgfpathlineto{\pgfqpoint{1.019397in}{1.865352in}}%
-\pgfpathlineto{\pgfqpoint{1.062214in}{1.789967in}}%
-\pgfpathlineto{\pgfqpoint{1.105031in}{1.718636in}}%
-\pgfpathlineto{\pgfqpoint{1.153200in}{1.642962in}}%
-\pgfpathlineto{\pgfqpoint{1.201370in}{1.571849in}}%
-\pgfpathlineto{\pgfqpoint{1.249539in}{1.505022in}}%
-\pgfpathlineto{\pgfqpoint{1.297708in}{1.442224in}}%
-\pgfpathlineto{\pgfqpoint{1.345877in}{1.383211in}}%
-\pgfpathlineto{\pgfqpoint{1.394047in}{1.327755in}}%
-\pgfpathlineto{\pgfqpoint{1.442216in}{1.275642in}}%
-\pgfpathlineto{\pgfqpoint{1.490385in}{1.226670in}}%
-\pgfpathlineto{\pgfqpoint{1.538554in}{1.180649in}}%
-\pgfpathlineto{\pgfqpoint{1.592076in}{1.132762in}}%
-\pgfpathlineto{\pgfqpoint{1.645597in}{1.088071in}}%
-\pgfpathlineto{\pgfqpoint{1.699119in}{1.046362in}}%
-\pgfpathlineto{\pgfqpoint{1.752640in}{1.007438in}}%
-\pgfpathlineto{\pgfqpoint{1.806161in}{0.971112in}}%
-\pgfpathlineto{\pgfqpoint{1.865035in}{0.933947in}}%
-\pgfpathlineto{\pgfqpoint{1.923908in}{0.899501in}}%
-\pgfpathlineto{\pgfqpoint{1.982782in}{0.867576in}}%
-\pgfpathlineto{\pgfqpoint{2.047008in}{0.835407in}}%
-\pgfpathlineto{\pgfqpoint{2.111233in}{0.805796in}}%
-\pgfpathlineto{\pgfqpoint{2.175459in}{0.778542in}}%
-\pgfpathlineto{\pgfqpoint{2.245037in}{0.751457in}}%
-\pgfpathlineto{\pgfqpoint{2.314615in}{0.726698in}}%
-\pgfpathlineto{\pgfqpoint{2.389545in}{0.702408in}}%
-\pgfpathlineto{\pgfqpoint{2.469827in}{0.678862in}}%
-\pgfpathlineto{\pgfqpoint{2.550109in}{0.657633in}}%
-\pgfpathlineto{\pgfqpoint{2.635743in}{0.637287in}}%
-\pgfpathlineto{\pgfqpoint{2.726730in}{0.617997in}}%
-\pgfpathlineto{\pgfqpoint{2.823068in}{0.599897in}}%
-\pgfpathlineto{\pgfqpoint{2.924759in}{0.583082in}}%
-\pgfpathlineto{\pgfqpoint{3.031802in}{0.567611in}}%
-\pgfpathlineto{\pgfqpoint{3.149549in}{0.552889in}}%
-\pgfpathlineto{\pgfqpoint{3.278000in}{0.539185in}}%
-\pgfpathlineto{\pgfqpoint{3.417156in}{0.526691in}}%
-\pgfpathlineto{\pgfqpoint{3.567016in}{0.515523in}}%
-\pgfpathlineto{\pgfqpoint{3.732932in}{0.505435in}}%
-\pgfpathlineto{\pgfqpoint{3.920257in}{0.496361in}}%
-\pgfpathlineto{\pgfqpoint{4.128990in}{0.488527in}}%
-\pgfpathlineto{\pgfqpoint{4.369837in}{0.481757in}}%
-\pgfpathlineto{\pgfqpoint{4.653500in}{0.476064in}}%
-\pgfpathlineto{\pgfqpoint{5.001389in}{0.471406in}}%
-\pgfpathlineto{\pgfqpoint{5.445617in}{0.467820in}}%
-\pgfpathlineto{\pgfqpoint{5.857732in}{0.465909in}}%
-\pgfpathlineto{\pgfqpoint{5.857732in}{0.465909in}}%
-\pgfusepath{stroke}%
-\end{pgfscope}%
-\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathmoveto{\pgfqpoint{0.505591in}{2.394064in}}%
+\pgfpathlineto{\pgfqpoint{0.544761in}{2.277679in}}%
+\pgfpathlineto{\pgfqpoint{0.583930in}{2.168309in}}%
+\pgfpathlineto{\pgfqpoint{0.623099in}{2.065531in}}%
+\pgfpathlineto{\pgfqpoint{0.662268in}{1.968949in}}%
+\pgfpathlineto{\pgfqpoint{0.701438in}{1.878188in}}%
+\pgfpathlineto{\pgfqpoint{0.740607in}{1.792898in}}%
+\pgfpathlineto{\pgfqpoint{0.779776in}{1.712749in}}%
+\pgfpathlineto{\pgfqpoint{0.818945in}{1.637431in}}%
+\pgfpathlineto{\pgfqpoint{0.858115in}{1.566653in}}%
+\pgfpathlineto{\pgfqpoint{0.897284in}{1.500141in}}%
+\pgfpathlineto{\pgfqpoint{0.936453in}{1.437639in}}%
+\pgfpathlineto{\pgfqpoint{0.979975in}{1.372600in}}%
+\pgfpathlineto{\pgfqpoint{1.023496in}{1.311902in}}%
+\pgfpathlineto{\pgfqpoint{1.067017in}{1.255256in}}%
+\pgfpathlineto{\pgfqpoint{1.110539in}{1.202390in}}%
+\pgfpathlineto{\pgfqpoint{1.154060in}{1.153053in}}%
+\pgfpathlineto{\pgfqpoint{1.197582in}{1.107009in}}%
+\pgfpathlineto{\pgfqpoint{1.241103in}{1.064039in}}%
+\pgfpathlineto{\pgfqpoint{1.284624in}{1.023936in}}%
+\pgfpathlineto{\pgfqpoint{1.332498in}{0.982908in}}%
+\pgfpathlineto{\pgfqpoint{1.380371in}{0.944882in}}%
+\pgfpathlineto{\pgfqpoint{1.428245in}{0.909638in}}%
+\pgfpathlineto{\pgfqpoint{1.476119in}{0.876973in}}%
+\pgfpathlineto{\pgfqpoint{1.528344in}{0.844058in}}%
+\pgfpathlineto{\pgfqpoint{1.580570in}{0.813761in}}%
+\pgfpathlineto{\pgfqpoint{1.637148in}{0.783654in}}%
+\pgfpathlineto{\pgfqpoint{1.693726in}{0.756132in}}%
+\pgfpathlineto{\pgfqpoint{1.750303in}{0.730974in}}%
+\pgfpathlineto{\pgfqpoint{1.811233in}{0.706292in}}%
+\pgfpathlineto{\pgfqpoint{1.876515in}{0.682366in}}%
+\pgfpathlineto{\pgfqpoint{1.941798in}{0.660795in}}%
+\pgfpathlineto{\pgfqpoint{2.011432in}{0.640121in}}%
+\pgfpathlineto{\pgfqpoint{2.085418in}{0.620520in}}%
+\pgfpathlineto{\pgfqpoint{2.163757in}{0.602127in}}%
+\pgfpathlineto{\pgfqpoint{2.246447in}{0.585041in}}%
+\pgfpathlineto{\pgfqpoint{2.333490in}{0.569320in}}%
+\pgfpathlineto{\pgfqpoint{2.429237in}{0.554361in}}%
+\pgfpathlineto{\pgfqpoint{2.529337in}{0.540971in}}%
+\pgfpathlineto{\pgfqpoint{2.638140in}{0.528638in}}%
+\pgfpathlineto{\pgfqpoint{2.760000in}{0.517132in}}%
+\pgfpathlineto{\pgfqpoint{2.894916in}{0.506738in}}%
+\pgfpathlineto{\pgfqpoint{3.042889in}{0.497627in}}%
+\pgfpathlineto{\pgfqpoint{3.212623in}{0.489500in}}%
+\pgfpathlineto{\pgfqpoint{3.404117in}{0.482610in}}%
+\pgfpathlineto{\pgfqpoint{3.630428in}{0.476756in}}%
+\pgfpathlineto{\pgfqpoint{3.904613in}{0.471977in}}%
+\pgfpathlineto{\pgfqpoint{4.252784in}{0.468256in}}%
+\pgfpathlineto{\pgfqpoint{4.722815in}{0.465604in}}%
+\pgfpathlineto{\pgfqpoint{4.857732in}{0.465143in}}%
+\pgfpathlineto{\pgfqpoint{4.857732in}{0.465143in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -2430,13 +2410,13 @@
\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.505591in}{0.549247in}}%
-\pgfpathlineto{\pgfqpoint{5.857732in}{0.549247in}}%
-\pgfpathlineto{\pgfqpoint{5.857732in}{0.549247in}}%
+\pgfpathmoveto{\pgfqpoint{0.505591in}{0.524271in}}%
+\pgfpathlineto{\pgfqpoint{4.857732in}{0.524271in}}%
+\pgfpathlineto{\pgfqpoint{4.857732in}{0.524271in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -2444,68 +2424,60 @@
\definecolor{currentstroke}{rgb}{0.549020,0.337255,0.294118}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.505591in}{0.465909in}}%
-\pgfpathlineto{\pgfqpoint{1.115735in}{0.469169in}}%
-\pgfpathlineto{\pgfqpoint{1.543906in}{0.473582in}}%
-\pgfpathlineto{\pgfqpoint{1.875739in}{0.479139in}}%
-\pgfpathlineto{\pgfqpoint{2.148698in}{0.485875in}}%
-\pgfpathlineto{\pgfqpoint{2.378840in}{0.493722in}}%
-\pgfpathlineto{\pgfqpoint{2.576870in}{0.502615in}}%
-\pgfpathlineto{\pgfqpoint{2.753490in}{0.512709in}}%
-\pgfpathlineto{\pgfqpoint{2.914054in}{0.524113in}}%
-\pgfpathlineto{\pgfqpoint{3.058562in}{0.536605in}}%
-\pgfpathlineto{\pgfqpoint{3.187014in}{0.549843in}}%
-\pgfpathlineto{\pgfqpoint{3.310113in}{0.564765in}}%
-\pgfpathlineto{\pgfqpoint{3.422508in}{0.580623in}}%
-\pgfpathlineto{\pgfqpoint{3.529551in}{0.598021in}}%
-\pgfpathlineto{\pgfqpoint{3.625889in}{0.615873in}}%
-\pgfpathlineto{\pgfqpoint{3.716875in}{0.634899in}}%
-\pgfpathlineto{\pgfqpoint{3.802510in}{0.654965in}}%
-\pgfpathlineto{\pgfqpoint{3.888144in}{0.677377in}}%
-\pgfpathlineto{\pgfqpoint{3.968426in}{0.700761in}}%
-\pgfpathlineto{\pgfqpoint{4.043356in}{0.724884in}}%
-\pgfpathlineto{\pgfqpoint{4.112934in}{0.749473in}}%
-\pgfpathlineto{\pgfqpoint{4.182512in}{0.776371in}}%
-\pgfpathlineto{\pgfqpoint{4.246737in}{0.803438in}}%
-\pgfpathlineto{\pgfqpoint{4.310963in}{0.832844in}}%
-\pgfpathlineto{\pgfqpoint{4.375189in}{0.864792in}}%
-\pgfpathlineto{\pgfqpoint{4.434062in}{0.896498in}}%
-\pgfpathlineto{\pgfqpoint{4.492936in}{0.930706in}}%
-\pgfpathlineto{\pgfqpoint{4.551809in}{0.967615in}}%
-\pgfpathlineto{\pgfqpoint{4.605331in}{1.003691in}}%
-\pgfpathlineto{\pgfqpoint{4.658852in}{1.042348in}}%
-\pgfpathlineto{\pgfqpoint{4.712374in}{1.083769in}}%
-\pgfpathlineto{\pgfqpoint{4.765895in}{1.128153in}}%
-\pgfpathlineto{\pgfqpoint{4.819416in}{1.175710in}}%
-\pgfpathlineto{\pgfqpoint{4.867586in}{1.221414in}}%
-\pgfpathlineto{\pgfqpoint{4.915755in}{1.270049in}}%
-\pgfpathlineto{\pgfqpoint{4.963924in}{1.321803in}}%
-\pgfpathlineto{\pgfqpoint{5.012093in}{1.376877in}}%
-\pgfpathlineto{\pgfqpoint{5.060263in}{1.435484in}}%
-\pgfpathlineto{\pgfqpoint{5.108432in}{1.497850in}}%
-\pgfpathlineto{\pgfqpoint{5.156601in}{1.564217in}}%
-\pgfpathlineto{\pgfqpoint{5.199418in}{1.626775in}}%
-\pgfpathlineto{\pgfqpoint{5.242236in}{1.692887in}}%
-\pgfpathlineto{\pgfqpoint{5.285053in}{1.762755in}}%
-\pgfpathlineto{\pgfqpoint{5.327870in}{1.836593in}}%
-\pgfpathlineto{\pgfqpoint{5.370687in}{1.914627in}}%
-\pgfpathlineto{\pgfqpoint{5.413504in}{1.997094in}}%
-\pgfpathlineto{\pgfqpoint{5.456321in}{2.084247in}}%
-\pgfpathlineto{\pgfqpoint{5.499138in}{2.176351in}}%
-\pgfpathlineto{\pgfqpoint{5.541955in}{2.273689in}}%
-\pgfpathlineto{\pgfqpoint{5.584773in}{2.376557in}}%
-\pgfpathlineto{\pgfqpoint{5.627590in}{2.485270in}}%
-\pgfpathlineto{\pgfqpoint{5.670407in}{2.600160in}}%
-\pgfpathlineto{\pgfqpoint{5.713224in}{2.721577in}}%
-\pgfpathlineto{\pgfqpoint{5.756041in}{2.849894in}}%
-\pgfpathlineto{\pgfqpoint{5.798858in}{2.985500in}}%
-\pgfpathlineto{\pgfqpoint{5.841675in}{3.128812in}}%
-\pgfpathlineto{\pgfqpoint{5.857732in}{3.184629in}}%
-\pgfpathlineto{\pgfqpoint{5.857732in}{3.184629in}}%
-\pgfusepath{stroke}%
-\end{pgfscope}%
-\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathmoveto{\pgfqpoint{0.505591in}{0.465143in}}%
+\pgfpathlineto{\pgfqpoint{1.080074in}{0.468018in}}%
+\pgfpathlineto{\pgfqpoint{1.463062in}{0.472038in}}%
+\pgfpathlineto{\pgfqpoint{1.754656in}{0.477232in}}%
+\pgfpathlineto{\pgfqpoint{1.989671in}{0.483571in}}%
+\pgfpathlineto{\pgfqpoint{2.185517in}{0.490993in}}%
+\pgfpathlineto{\pgfqpoint{2.355251in}{0.499583in}}%
+\pgfpathlineto{\pgfqpoint{2.503224in}{0.509211in}}%
+\pgfpathlineto{\pgfqpoint{2.638140in}{0.520196in}}%
+\pgfpathlineto{\pgfqpoint{2.760000in}{0.532355in}}%
+\pgfpathlineto{\pgfqpoint{2.868803in}{0.545389in}}%
+\pgfpathlineto{\pgfqpoint{2.968903in}{0.559539in}}%
+\pgfpathlineto{\pgfqpoint{3.064650in}{0.575349in}}%
+\pgfpathlineto{\pgfqpoint{3.151693in}{0.591963in}}%
+\pgfpathlineto{\pgfqpoint{3.234383in}{0.610020in}}%
+\pgfpathlineto{\pgfqpoint{3.312722in}{0.629457in}}%
+\pgfpathlineto{\pgfqpoint{3.386708in}{0.650172in}}%
+\pgfpathlineto{\pgfqpoint{3.456342in}{0.672021in}}%
+\pgfpathlineto{\pgfqpoint{3.521625in}{0.694818in}}%
+\pgfpathlineto{\pgfqpoint{3.582555in}{0.718335in}}%
+\pgfpathlineto{\pgfqpoint{3.643484in}{0.744240in}}%
+\pgfpathlineto{\pgfqpoint{3.700062in}{0.770644in}}%
+\pgfpathlineto{\pgfqpoint{3.756640in}{0.799529in}}%
+\pgfpathlineto{\pgfqpoint{3.808866in}{0.828596in}}%
+\pgfpathlineto{\pgfqpoint{3.861092in}{0.860174in}}%
+\pgfpathlineto{\pgfqpoint{3.913317in}{0.894482in}}%
+\pgfpathlineto{\pgfqpoint{3.961191in}{0.928529in}}%
+\pgfpathlineto{\pgfqpoint{4.009064in}{0.965265in}}%
+\pgfpathlineto{\pgfqpoint{4.056938in}{1.004900in}}%
+\pgfpathlineto{\pgfqpoint{4.104811in}{1.047664in}}%
+\pgfpathlineto{\pgfqpoint{4.148333in}{1.089464in}}%
+\pgfpathlineto{\pgfqpoint{4.191854in}{1.134253in}}%
+\pgfpathlineto{\pgfqpoint{4.235376in}{1.182246in}}%
+\pgfpathlineto{\pgfqpoint{4.278897in}{1.233670in}}%
+\pgfpathlineto{\pgfqpoint{4.322418in}{1.288773in}}%
+\pgfpathlineto{\pgfqpoint{4.365940in}{1.347817in}}%
+\pgfpathlineto{\pgfqpoint{4.405109in}{1.404558in}}%
+\pgfpathlineto{\pgfqpoint{4.444278in}{1.464938in}}%
+\pgfpathlineto{\pgfqpoint{4.483448in}{1.529192in}}%
+\pgfpathlineto{\pgfqpoint{4.522617in}{1.597567in}}%
+\pgfpathlineto{\pgfqpoint{4.561786in}{1.670328in}}%
+\pgfpathlineto{\pgfqpoint{4.600955in}{1.747756in}}%
+\pgfpathlineto{\pgfqpoint{4.640125in}{1.830151in}}%
+\pgfpathlineto{\pgfqpoint{4.679294in}{1.917830in}}%
+\pgfpathlineto{\pgfqpoint{4.718463in}{2.011134in}}%
+\pgfpathlineto{\pgfqpoint{4.757632in}{2.110422in}}%
+\pgfpathlineto{\pgfqpoint{4.796802in}{2.216079in}}%
+\pgfpathlineto{\pgfqpoint{4.835971in}{2.328514in}}%
+\pgfpathlineto{\pgfqpoint{4.857732in}{2.394064in}}%
+\pgfpathlineto{\pgfqpoint{4.857732in}{2.394064in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -2514,64 +2486,57 @@
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{1.592076in}{0.464609in}}%
-\pgfpathlineto{\pgfqpoint{1.993486in}{0.467194in}}%
-\pgfpathlineto{\pgfqpoint{2.250389in}{0.470964in}}%
-\pgfpathlineto{\pgfqpoint{2.437714in}{0.475800in}}%
-\pgfpathlineto{\pgfqpoint{2.587574in}{0.481757in}}%
-\pgfpathlineto{\pgfqpoint{2.716025in}{0.489057in}}%
-\pgfpathlineto{\pgfqpoint{2.823068in}{0.497291in}}%
-\pgfpathlineto{\pgfqpoint{2.919407in}{0.506919in}}%
-\pgfpathlineto{\pgfqpoint{3.005041in}{0.517738in}}%
-\pgfpathlineto{\pgfqpoint{3.079971in}{0.529378in}}%
-\pgfpathlineto{\pgfqpoint{3.149549in}{0.542401in}}%
-\pgfpathlineto{\pgfqpoint{3.213774in}{0.556685in}}%
-\pgfpathlineto{\pgfqpoint{3.272648in}{0.572030in}}%
-\pgfpathlineto{\pgfqpoint{3.326169in}{0.588155in}}%
-\pgfpathlineto{\pgfqpoint{3.379691in}{0.606670in}}%
-\pgfpathlineto{\pgfqpoint{3.427860in}{0.625667in}}%
-\pgfpathlineto{\pgfqpoint{3.476029in}{0.647179in}}%
-\pgfpathlineto{\pgfqpoint{3.518846in}{0.668681in}}%
-\pgfpathlineto{\pgfqpoint{3.561663in}{0.692696in}}%
-\pgfpathlineto{\pgfqpoint{3.604481in}{0.719517in}}%
-\pgfpathlineto{\pgfqpoint{3.641946in}{0.745545in}}%
-\pgfpathlineto{\pgfqpoint{3.679411in}{0.774215in}}%
-\pgfpathlineto{\pgfqpoint{3.716875in}{0.805796in}}%
-\pgfpathlineto{\pgfqpoint{3.754340in}{0.840585in}}%
-\pgfpathlineto{\pgfqpoint{3.786453in}{0.873202in}}%
-\pgfpathlineto{\pgfqpoint{3.818566in}{0.908637in}}%
-\pgfpathlineto{\pgfqpoint{3.850679in}{0.947136in}}%
-\pgfpathlineto{\pgfqpoint{3.882792in}{0.988961in}}%
-\pgfpathlineto{\pgfqpoint{3.914905in}{1.034401in}}%
-\pgfpathlineto{\pgfqpoint{3.947018in}{1.083769in}}%
-\pgfpathlineto{\pgfqpoint{3.979130in}{1.137403in}}%
-\pgfpathlineto{\pgfqpoint{4.011243in}{1.195673in}}%
-\pgfpathlineto{\pgfqpoint{4.043356in}{1.258978in}}%
-\pgfpathlineto{\pgfqpoint{4.075469in}{1.327755in}}%
-\pgfpathlineto{\pgfqpoint{4.107582in}{1.402476in}}%
-\pgfpathlineto{\pgfqpoint{4.139695in}{1.483654in}}%
-\pgfpathlineto{\pgfqpoint{4.171807in}{1.571849in}}%
-\pgfpathlineto{\pgfqpoint{4.203920in}{1.667666in}}%
-\pgfpathlineto{\pgfqpoint{4.236033in}{1.771763in}}%
-\pgfpathlineto{\pgfqpoint{4.268146in}{1.884858in}}%
-\pgfpathlineto{\pgfqpoint{4.300259in}{2.007727in}}%
-\pgfpathlineto{\pgfqpoint{4.332372in}{2.141214in}}%
-\pgfpathlineto{\pgfqpoint{4.364484in}{2.286239in}}%
-\pgfpathlineto{\pgfqpoint{4.391245in}{2.416622in}}%
-\pgfpathlineto{\pgfqpoint{4.418006in}{2.556331in}}%
-\pgfpathlineto{\pgfqpoint{4.444767in}{2.706031in}}%
-\pgfpathlineto{\pgfqpoint{4.471527in}{2.866437in}}%
-\pgfpathlineto{\pgfqpoint{4.498288in}{3.038316in}}%
-\pgfpathlineto{\pgfqpoint{4.525049in}{3.222488in}}%
-\pgfpathlineto{\pgfqpoint{4.551809in}{3.419831in}}%
-\pgfpathlineto{\pgfqpoint{4.578570in}{3.631288in}}%
-\pgfpathlineto{\pgfqpoint{4.605331in}{3.857868in}}%
-\pgfpathlineto{\pgfqpoint{4.611854in}{3.915568in}}%
-\pgfpathlineto{\pgfqpoint{4.611854in}{3.915568in}}%
-\pgfusepath{stroke}%
-\end{pgfscope}%
-\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathlineto{\pgfqpoint{1.480471in}{0.464560in}}%
+\pgfpathlineto{\pgfqpoint{1.811233in}{0.467065in}}%
+\pgfpathlineto{\pgfqpoint{2.024488in}{0.470794in}}%
+\pgfpathlineto{\pgfqpoint{2.181165in}{0.475679in}}%
+\pgfpathlineto{\pgfqpoint{2.303025in}{0.481567in}}%
+\pgfpathlineto{\pgfqpoint{2.407477in}{0.488783in}}%
+\pgfpathlineto{\pgfqpoint{2.494519in}{0.496922in}}%
+\pgfpathlineto{\pgfqpoint{2.572858in}{0.506439in}}%
+\pgfpathlineto{\pgfqpoint{2.642492in}{0.517132in}}%
+\pgfpathlineto{\pgfqpoint{2.703422in}{0.528638in}}%
+\pgfpathlineto{\pgfqpoint{2.760000in}{0.541510in}}%
+\pgfpathlineto{\pgfqpoint{2.812226in}{0.555629in}}%
+\pgfpathlineto{\pgfqpoint{2.860099in}{0.570797in}}%
+\pgfpathlineto{\pgfqpoint{2.903621in}{0.586736in}}%
+\pgfpathlineto{\pgfqpoint{2.947142in}{0.605036in}}%
+\pgfpathlineto{\pgfqpoint{2.986311in}{0.623814in}}%
+\pgfpathlineto{\pgfqpoint{3.025481in}{0.645077in}}%
+\pgfpathlineto{\pgfqpoint{3.060298in}{0.666331in}}%
+\pgfpathlineto{\pgfqpoint{3.095115in}{0.690068in}}%
+\pgfpathlineto{\pgfqpoint{3.129932in}{0.716579in}}%
+\pgfpathlineto{\pgfqpoint{3.164749in}{0.746188in}}%
+\pgfpathlineto{\pgfqpoint{3.195214in}{0.774921in}}%
+\pgfpathlineto{\pgfqpoint{3.225679in}{0.806572in}}%
+\pgfpathlineto{\pgfqpoint{3.256144in}{0.841436in}}%
+\pgfpathlineto{\pgfqpoint{3.286609in}{0.879841in}}%
+\pgfpathlineto{\pgfqpoint{3.317074in}{0.922145in}}%
+\pgfpathlineto{\pgfqpoint{3.347539in}{0.968745in}}%
+\pgfpathlineto{\pgfqpoint{3.378004in}{1.020076in}}%
+\pgfpathlineto{\pgfqpoint{3.404117in}{1.068203in}}%
+\pgfpathlineto{\pgfqpoint{3.430230in}{1.120490in}}%
+\pgfpathlineto{\pgfqpoint{3.456342in}{1.177296in}}%
+\pgfpathlineto{\pgfqpoint{3.482455in}{1.239011in}}%
+\pgfpathlineto{\pgfqpoint{3.508568in}{1.306060in}}%
+\pgfpathlineto{\pgfqpoint{3.534681in}{1.378903in}}%
+\pgfpathlineto{\pgfqpoint{3.560794in}{1.458043in}}%
+\pgfpathlineto{\pgfqpoint{3.586907in}{1.544021in}}%
+\pgfpathlineto{\pgfqpoint{3.613020in}{1.637431in}}%
+\pgfpathlineto{\pgfqpoint{3.639132in}{1.738914in}}%
+\pgfpathlineto{\pgfqpoint{3.665245in}{1.849167in}}%
+\pgfpathlineto{\pgfqpoint{3.691358in}{1.968949in}}%
+\pgfpathlineto{\pgfqpoint{3.717471in}{2.099083in}}%
+\pgfpathlineto{\pgfqpoint{3.743584in}{2.240464in}}%
+\pgfpathlineto{\pgfqpoint{3.769697in}{2.394064in}}%
+\pgfpathlineto{\pgfqpoint{3.795809in}{2.560939in}}%
+\pgfpathlineto{\pgfqpoint{3.821922in}{2.742237in}}%
+\pgfpathlineto{\pgfqpoint{3.845007in}{2.915568in}}%
+\pgfpathlineto{\pgfqpoint{3.845007in}{2.915568in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -2579,56 +2544,51 @@
\definecolor{currentstroke}{rgb}{0.498039,0.498039,0.498039}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463187in}}%
-\pgfpathlineto{\pgfqpoint{2.336023in}{0.464281in}}%
-\pgfpathlineto{\pgfqpoint{2.560813in}{0.466677in}}%
-\pgfpathlineto{\pgfqpoint{2.694617in}{0.470150in}}%
-\pgfpathlineto{\pgfqpoint{2.796307in}{0.474958in}}%
-\pgfpathlineto{\pgfqpoint{2.876589in}{0.481003in}}%
-\pgfpathlineto{\pgfqpoint{2.940815in}{0.488007in}}%
-\pgfpathlineto{\pgfqpoint{2.994337in}{0.495906in}}%
-\pgfpathlineto{\pgfqpoint{3.042506in}{0.505144in}}%
-\pgfpathlineto{\pgfqpoint{3.085323in}{0.515523in}}%
-\pgfpathlineto{\pgfqpoint{3.122788in}{0.526691in}}%
-\pgfpathlineto{\pgfqpoint{3.160253in}{0.540242in}}%
-\pgfpathlineto{\pgfqpoint{3.192366in}{0.554136in}}%
-\pgfpathlineto{\pgfqpoint{3.224479in}{0.570537in}}%
-\pgfpathlineto{\pgfqpoint{3.251239in}{0.586441in}}%
-\pgfpathlineto{\pgfqpoint{3.278000in}{0.604701in}}%
-\pgfpathlineto{\pgfqpoint{3.304761in}{0.625667in}}%
-\pgfpathlineto{\pgfqpoint{3.331521in}{0.649739in}}%
-\pgfpathlineto{\pgfqpoint{3.358282in}{0.677377in}}%
-\pgfpathlineto{\pgfqpoint{3.379691in}{0.702408in}}%
-\pgfpathlineto{\pgfqpoint{3.401099in}{0.730364in}}%
-\pgfpathlineto{\pgfqpoint{3.422508in}{0.761587in}}%
-\pgfpathlineto{\pgfqpoint{3.443916in}{0.796459in}}%
-\pgfpathlineto{\pgfqpoint{3.465325in}{0.835407in}}%
-\pgfpathlineto{\pgfqpoint{3.486733in}{0.878905in}}%
-\pgfpathlineto{\pgfqpoint{3.508142in}{0.927488in}}%
-\pgfpathlineto{\pgfqpoint{3.529551in}{0.981747in}}%
-\pgfpathlineto{\pgfqpoint{3.550959in}{1.042348in}}%
-\pgfpathlineto{\pgfqpoint{3.572368in}{1.110030in}}%
-\pgfpathlineto{\pgfqpoint{3.593776in}{1.185623in}}%
-\pgfpathlineto{\pgfqpoint{3.615185in}{1.270049in}}%
-\pgfpathlineto{\pgfqpoint{3.636593in}{1.364341in}}%
-\pgfpathlineto{\pgfqpoint{3.658002in}{1.469653in}}%
-\pgfpathlineto{\pgfqpoint{3.679411in}{1.587272in}}%
-\pgfpathlineto{\pgfqpoint{3.700819in}{1.718636in}}%
-\pgfpathlineto{\pgfqpoint{3.722228in}{1.865352in}}%
-\pgfpathlineto{\pgfqpoint{3.743636in}{2.029213in}}%
-\pgfpathlineto{\pgfqpoint{3.765045in}{2.212224in}}%
-\pgfpathlineto{\pgfqpoint{3.786453in}{2.416622in}}%
-\pgfpathlineto{\pgfqpoint{3.807862in}{2.644907in}}%
-\pgfpathlineto{\pgfqpoint{3.829270in}{2.899870in}}%
-\pgfpathlineto{\pgfqpoint{3.850679in}{3.184629in}}%
-\pgfpathlineto{\pgfqpoint{3.872088in}{3.502665in}}%
-\pgfpathlineto{\pgfqpoint{3.893496in}{3.857868in}}%
-\pgfpathlineto{\pgfqpoint{3.896743in}{3.915568in}}%
-\pgfpathlineto{\pgfqpoint{3.896743in}{3.915568in}}%
-\pgfusepath{stroke}%
-\end{pgfscope}%
-\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}%
+\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463212in}}%
+\pgfpathlineto{\pgfqpoint{2.050601in}{0.464323in}}%
+\pgfpathlineto{\pgfqpoint{2.229039in}{0.466662in}}%
+\pgfpathlineto{\pgfqpoint{2.337842in}{0.470095in}}%
+\pgfpathlineto{\pgfqpoint{2.420533in}{0.474847in}}%
+\pgfpathlineto{\pgfqpoint{2.485815in}{0.480822in}}%
+\pgfpathlineto{\pgfqpoint{2.538041in}{0.487745in}}%
+\pgfpathlineto{\pgfqpoint{2.581562in}{0.495553in}}%
+\pgfpathlineto{\pgfqpoint{2.620731in}{0.504684in}}%
+\pgfpathlineto{\pgfqpoint{2.655549in}{0.514943in}}%
+\pgfpathlineto{\pgfqpoint{2.686014in}{0.525982in}}%
+\pgfpathlineto{\pgfqpoint{2.716479in}{0.539376in}}%
+\pgfpathlineto{\pgfqpoint{2.742591in}{0.553110in}}%
+\pgfpathlineto{\pgfqpoint{2.768704in}{0.569320in}}%
+\pgfpathlineto{\pgfqpoint{2.794817in}{0.588454in}}%
+\pgfpathlineto{\pgfqpoint{2.816578in}{0.607009in}}%
+\pgfpathlineto{\pgfqpoint{2.838339in}{0.628313in}}%
+\pgfpathlineto{\pgfqpoint{2.860099in}{0.652773in}}%
+\pgfpathlineto{\pgfqpoint{2.881860in}{0.680857in}}%
+\pgfpathlineto{\pgfqpoint{2.903621in}{0.713102in}}%
+\pgfpathlineto{\pgfqpoint{2.925381in}{0.750124in}}%
+\pgfpathlineto{\pgfqpoint{2.947142in}{0.792632in}}%
+\pgfpathlineto{\pgfqpoint{2.964551in}{0.831129in}}%
+\pgfpathlineto{\pgfqpoint{2.981959in}{0.874124in}}%
+\pgfpathlineto{\pgfqpoint{2.999368in}{0.922145in}}%
+\pgfpathlineto{\pgfqpoint{3.016776in}{0.975777in}}%
+\pgfpathlineto{\pgfqpoint{3.034185in}{1.035677in}}%
+\pgfpathlineto{\pgfqpoint{3.051593in}{1.102577in}}%
+\pgfpathlineto{\pgfqpoint{3.069002in}{1.177296in}}%
+\pgfpathlineto{\pgfqpoint{3.086411in}{1.260746in}}%
+\pgfpathlineto{\pgfqpoint{3.103819in}{1.353948in}}%
+\pgfpathlineto{\pgfqpoint{3.121228in}{1.458043in}}%
+\pgfpathlineto{\pgfqpoint{3.138636in}{1.574302in}}%
+\pgfpathlineto{\pgfqpoint{3.156045in}{1.704147in}}%
+\pgfpathlineto{\pgfqpoint{3.173453in}{1.849167in}}%
+\pgfpathlineto{\pgfqpoint{3.190862in}{2.011134in}}%
+\pgfpathlineto{\pgfqpoint{3.208270in}{2.192029in}}%
+\pgfpathlineto{\pgfqpoint{3.225679in}{2.394064in}}%
+\pgfpathlineto{\pgfqpoint{3.243088in}{2.619710in}}%
+\pgfpathlineto{\pgfqpoint{3.263324in}{2.915568in}}%
+\pgfpathlineto{\pgfqpoint{3.263324in}{2.915568in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -2636,40 +2596,38 @@
\definecolor{currentstroke}{rgb}{0.737255,0.741176,0.133333}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463187in}}%
-\pgfpathlineto{\pgfqpoint{2.807012in}{0.464296in}}%
-\pgfpathlineto{\pgfqpoint{2.903350in}{0.466582in}}%
-\pgfpathlineto{\pgfqpoint{2.962224in}{0.469914in}}%
-\pgfpathlineto{\pgfqpoint{3.005041in}{0.474248in}}%
-\pgfpathlineto{\pgfqpoint{3.042506in}{0.480280in}}%
-\pgfpathlineto{\pgfqpoint{3.069267in}{0.486511in}}%
-\pgfpathlineto{\pgfqpoint{3.096027in}{0.495015in}}%
-\pgfpathlineto{\pgfqpoint{3.117436in}{0.504000in}}%
-\pgfpathlineto{\pgfqpoint{3.138844in}{0.515523in}}%
-\pgfpathlineto{\pgfqpoint{3.154901in}{0.526254in}}%
-\pgfpathlineto{\pgfqpoint{3.170957in}{0.539185in}}%
-\pgfpathlineto{\pgfqpoint{3.187014in}{0.554767in}}%
-\pgfpathlineto{\pgfqpoint{3.203070in}{0.573544in}}%
-\pgfpathlineto{\pgfqpoint{3.219126in}{0.596171in}}%
-\pgfpathlineto{\pgfqpoint{3.235183in}{0.623438in}}%
-\pgfpathlineto{\pgfqpoint{3.251239in}{0.656295in}}%
-\pgfpathlineto{\pgfqpoint{3.267296in}{0.695889in}}%
-\pgfpathlineto{\pgfqpoint{3.283352in}{0.743601in}}%
-\pgfpathlineto{\pgfqpoint{3.299409in}{0.801096in}}%
-\pgfpathlineto{\pgfqpoint{3.315465in}{0.870379in}}%
-\pgfpathlineto{\pgfqpoint{3.331521in}{0.953868in}}%
-\pgfpathlineto{\pgfqpoint{3.347578in}{1.054475in}}%
-\pgfpathlineto{\pgfqpoint{3.363634in}{1.175710in}}%
-\pgfpathlineto{\pgfqpoint{3.379691in}{1.321803in}}%
-\pgfpathlineto{\pgfqpoint{3.395747in}{1.497850in}}%
-\pgfpathlineto{\pgfqpoint{3.411803in}{1.709994in}}%
-\pgfpathlineto{\pgfqpoint{3.427860in}{1.965634in}}%
-\pgfpathlineto{\pgfqpoint{3.443916in}{2.273689in}}%
-\pgfpathlineto{\pgfqpoint{3.459973in}{2.644907in}}%
-\pgfpathlineto{\pgfqpoint{3.476029in}{3.092238in}}%
-\pgfpathlineto{\pgfqpoint{3.492086in}{3.631288in}}%
-\pgfpathlineto{\pgfqpoint{3.499444in}{3.915568in}}%
-\pgfpathlineto{\pgfqpoint{3.499444in}{3.915568in}}%
+\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463212in}}%
+\pgfpathlineto{\pgfqpoint{2.398772in}{0.464286in}}%
+\pgfpathlineto{\pgfqpoint{2.477111in}{0.466499in}}%
+\pgfpathlineto{\pgfqpoint{2.524984in}{0.469725in}}%
+\pgfpathlineto{\pgfqpoint{2.559802in}{0.473921in}}%
+\pgfpathlineto{\pgfqpoint{2.590267in}{0.479760in}}%
+\pgfpathlineto{\pgfqpoint{2.616379in}{0.487242in}}%
+\pgfpathlineto{\pgfqpoint{2.638140in}{0.496003in}}%
+\pgfpathlineto{\pgfqpoint{2.655549in}{0.505261in}}%
+\pgfpathlineto{\pgfqpoint{2.672957in}{0.517132in}}%
+\pgfpathlineto{\pgfqpoint{2.690366in}{0.532355in}}%
+\pgfpathlineto{\pgfqpoint{2.703422in}{0.546532in}}%
+\pgfpathlineto{\pgfqpoint{2.716479in}{0.563616in}}%
+\pgfpathlineto{\pgfqpoint{2.729535in}{0.584202in}}%
+\pgfpathlineto{\pgfqpoint{2.742591in}{0.609009in}}%
+\pgfpathlineto{\pgfqpoint{2.755648in}{0.638903in}}%
+\pgfpathlineto{\pgfqpoint{2.768704in}{0.674926in}}%
+\pgfpathlineto{\pgfqpoint{2.781761in}{0.718335in}}%
+\pgfpathlineto{\pgfqpoint{2.794817in}{0.770644in}}%
+\pgfpathlineto{\pgfqpoint{2.807874in}{0.833679in}}%
+\pgfpathlineto{\pgfqpoint{2.820930in}{0.909638in}}%
+\pgfpathlineto{\pgfqpoint{2.833986in}{1.001171in}}%
+\pgfpathlineto{\pgfqpoint{2.847043in}{1.111472in}}%
+\pgfpathlineto{\pgfqpoint{2.860099in}{1.244388in}}%
+\pgfpathlineto{\pgfqpoint{2.873156in}{1.404558in}}%
+\pgfpathlineto{\pgfqpoint{2.886212in}{1.597567in}}%
+\pgfpathlineto{\pgfqpoint{2.899268in}{1.830151in}}%
+\pgfpathlineto{\pgfqpoint{2.912325in}{2.110422in}}%
+\pgfpathlineto{\pgfqpoint{2.925381in}{2.448160in}}%
+\pgfpathlineto{\pgfqpoint{2.938438in}{2.855145in}}%
+\pgfpathlineto{\pgfqpoint{2.940152in}{2.915568in}}%
+\pgfpathlineto{\pgfqpoint{2.940152in}{2.915568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -2680,7 +2638,7 @@
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{0.505591in}{3.905568in}}%
+\pgfpathlineto{\pgfqpoint{0.505591in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -2690,8 +2648,8 @@
\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{5.857732in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{5.857732in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{4.857732in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.857732in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -2702,7 +2660,7 @@
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{5.857732in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.857732in}{0.463273in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -2712,8 +2670,8 @@
\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.505591in}{3.905568in}}%
-\pgfpathlineto{\pgfqpoint{5.857732in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{0.505591in}{2.905568in}}%
+\pgfpathlineto{\pgfqpoint{4.857732in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -2727,16 +2685,16 @@
\pgfsetstrokecolor{currentstroke}%
\pgfsetstrokeopacity{0.800000}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.602813in}{2.775171in}}%
-\pgfpathlineto{\pgfqpoint{2.688653in}{2.775171in}}%
-\pgfpathquadraticcurveto{\pgfqpoint{2.716431in}{2.775171in}}{\pgfqpoint{2.716431in}{2.802949in}}%
-\pgfpathlineto{\pgfqpoint{2.716431in}{3.808346in}}%
-\pgfpathquadraticcurveto{\pgfqpoint{2.716431in}{3.836124in}}{\pgfqpoint{2.688653in}{3.836124in}}%
-\pgfpathlineto{\pgfqpoint{0.602813in}{3.836124in}}%
-\pgfpathquadraticcurveto{\pgfqpoint{0.575036in}{3.836124in}}{\pgfqpoint{0.575036in}{3.808346in}}%
-\pgfpathlineto{\pgfqpoint{0.575036in}{2.802949in}}%
-\pgfpathquadraticcurveto{\pgfqpoint{0.575036in}{2.775171in}}{\pgfqpoint{0.602813in}{2.775171in}}%
-\pgfpathlineto{\pgfqpoint{0.602813in}{2.775171in}}%
+\pgfpathmoveto{\pgfqpoint{0.586577in}{1.963948in}}%
+\pgfpathlineto{\pgfqpoint{2.339691in}{1.963948in}}%
+\pgfpathquadraticcurveto{\pgfqpoint{2.362830in}{1.963948in}}{\pgfqpoint{2.362830in}{1.987087in}}%
+\pgfpathlineto{\pgfqpoint{2.362830in}{2.824582in}}%
+\pgfpathquadraticcurveto{\pgfqpoint{2.362830in}{2.847721in}}{\pgfqpoint{2.339691in}{2.847721in}}%
+\pgfpathlineto{\pgfqpoint{0.586577in}{2.847721in}}%
+\pgfpathquadraticcurveto{\pgfqpoint{0.563438in}{2.847721in}}{\pgfqpoint{0.563438in}{2.824582in}}%
+\pgfpathlineto{\pgfqpoint{0.563438in}{1.987087in}}%
+\pgfpathquadraticcurveto{\pgfqpoint{0.563438in}{1.963948in}}{\pgfqpoint{0.586577in}{1.963948in}}%
+\pgfpathlineto{\pgfqpoint{0.586577in}{1.963948in}}%
\pgfpathclose%
\pgfusepath{stroke,fill}%
\end{pgfscope}%
@@ -2747,16 +2705,16 @@
\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.630591in}{3.723657in}}%
-\pgfpathlineto{\pgfqpoint{0.769480in}{3.723657in}}%
-\pgfpathlineto{\pgfqpoint{0.908369in}{3.723657in}}%
+\pgfpathmoveto{\pgfqpoint{0.609716in}{2.754036in}}%
+\pgfpathlineto{\pgfqpoint{0.725411in}{2.754036in}}%
+\pgfpathlineto{\pgfqpoint{0.841105in}{2.754036in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=1.019480in,y=3.675045in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z=-4.5\)}%
+\pgftext[x=0.933661in,y=2.713543in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z=-4.5\)}%
\end{pgfscope}%
\begin{pgfscope}%
\pgfsetrectcap%
@@ -2765,16 +2723,16 @@
\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.630591in}{3.519799in}}%
-\pgfpathlineto{\pgfqpoint{0.769480in}{3.519799in}}%
-\pgfpathlineto{\pgfqpoint{0.908369in}{3.519799in}}%
+\pgfpathmoveto{\pgfqpoint{0.609716in}{2.584223in}}%
+\pgfpathlineto{\pgfqpoint{0.725411in}{2.584223in}}%
+\pgfpathlineto{\pgfqpoint{0.841105in}{2.584223in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=1.019480in,y=3.471188in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z=-2.0\)}%
+\pgftext[x=0.933661in,y=2.543730in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z=-2.0\)}%
\end{pgfscope}%
\begin{pgfscope}%
\pgfsetrectcap%
@@ -2783,16 +2741,16 @@
\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.630591in}{3.315942in}}%
-\pgfpathlineto{\pgfqpoint{0.769480in}{3.315942in}}%
-\pgfpathlineto{\pgfqpoint{0.908369in}{3.315942in}}%
+\pgfpathmoveto{\pgfqpoint{0.609716in}{2.414410in}}%
+\pgfpathlineto{\pgfqpoint{0.725411in}{2.414410in}}%
+\pgfpathlineto{\pgfqpoint{0.841105in}{2.414410in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=1.019480in,y=3.267331in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z=-1.0\)}%
+\pgftext[x=0.933661in,y=2.373917in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z=-1.0\)}%
\end{pgfscope}%
\begin{pgfscope}%
\pgfsetrectcap%
@@ -2801,16 +2759,16 @@
\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.630591in}{3.112085in}}%
-\pgfpathlineto{\pgfqpoint{0.769480in}{3.112085in}}%
-\pgfpathlineto{\pgfqpoint{0.908369in}{3.112085in}}%
+\pgfpathmoveto{\pgfqpoint{0.609716in}{2.244597in}}%
+\pgfpathlineto{\pgfqpoint{0.725411in}{2.244597in}}%
+\pgfpathlineto{\pgfqpoint{0.841105in}{2.244597in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=1.019480in,y=3.063474in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z=-0.5\)}%
+\pgftext[x=0.933661in,y=2.204104in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z=-0.5\)}%
\end{pgfscope}%
\begin{pgfscope}%
\pgfsetrectcap%
@@ -2819,16 +2777,16 @@
\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.630591in}{2.908228in}}%
-\pgfpathlineto{\pgfqpoint{0.769480in}{2.908228in}}%
-\pgfpathlineto{\pgfqpoint{0.908369in}{2.908228in}}%
+\pgfpathmoveto{\pgfqpoint{0.609716in}{2.074784in}}%
+\pgfpathlineto{\pgfqpoint{0.725411in}{2.074784in}}%
+\pgfpathlineto{\pgfqpoint{0.841105in}{2.074784in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=1.019480in,y=2.859617in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z=0.0\)}%
+\pgftext[x=0.933661in,y=2.034291in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 0.0\)}%
\end{pgfscope}%
\begin{pgfscope}%
\pgfsetrectcap%
@@ -2837,16 +2795,16 @@
\definecolor{currentstroke}{rgb}{0.549020,0.337255,0.294118}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{1.838635in}{3.723657in}}%
-\pgfpathlineto{\pgfqpoint{1.977524in}{3.723657in}}%
-\pgfpathlineto{\pgfqpoint{2.116413in}{3.723657in}}%
+\pgfpathmoveto{\pgfqpoint{1.624740in}{2.754036in}}%
+\pgfpathlineto{\pgfqpoint{1.740434in}{2.754036in}}%
+\pgfpathlineto{\pgfqpoint{1.856129in}{2.754036in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=2.227524in,y=3.675045in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z=0.5\)}%
+\pgftext[x=1.948684in,y=2.713543in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 0.5\)}%
\end{pgfscope}%
\begin{pgfscope}%
\pgfsetrectcap%
@@ -2855,16 +2813,16 @@
\definecolor{currentstroke}{rgb}{0.890196,0.466667,0.760784}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{1.838635in}{3.519799in}}%
-\pgfpathlineto{\pgfqpoint{1.977524in}{3.519799in}}%
-\pgfpathlineto{\pgfqpoint{2.116413in}{3.519799in}}%
+\pgfpathmoveto{\pgfqpoint{1.624740in}{2.584223in}}%
+\pgfpathlineto{\pgfqpoint{1.740434in}{2.584223in}}%
+\pgfpathlineto{\pgfqpoint{1.856129in}{2.584223in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=2.227524in,y=3.471188in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z=1.0\)}%
+\pgftext[x=1.948684in,y=2.543730in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 1.0\)}%
\end{pgfscope}%
\begin{pgfscope}%
\pgfsetrectcap%
@@ -2873,16 +2831,16 @@
\definecolor{currentstroke}{rgb}{0.498039,0.498039,0.498039}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{1.838635in}{3.315942in}}%
-\pgfpathlineto{\pgfqpoint{1.977524in}{3.315942in}}%
-\pgfpathlineto{\pgfqpoint{2.116413in}{3.315942in}}%
+\pgfpathmoveto{\pgfqpoint{1.624740in}{2.414410in}}%
+\pgfpathlineto{\pgfqpoint{1.740434in}{2.414410in}}%
+\pgfpathlineto{\pgfqpoint{1.856129in}{2.414410in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=2.227524in,y=3.267331in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z=2.0\)}%
+\pgftext[x=1.948684in,y=2.373917in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 2.0\)}%
\end{pgfscope}%
\begin{pgfscope}%
\pgfsetrectcap%
@@ -2891,16 +2849,16 @@
\definecolor{currentstroke}{rgb}{0.737255,0.741176,0.133333}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{1.838635in}{3.112085in}}%
-\pgfpathlineto{\pgfqpoint{1.977524in}{3.112085in}}%
-\pgfpathlineto{\pgfqpoint{2.116413in}{3.112085in}}%
+\pgfpathmoveto{\pgfqpoint{1.624740in}{2.244597in}}%
+\pgfpathlineto{\pgfqpoint{1.740434in}{2.244597in}}%
+\pgfpathlineto{\pgfqpoint{1.856129in}{2.244597in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=2.227524in,y=3.063474in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z=4.5\)}%
+\pgftext[x=1.948684in,y=2.204104in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 4.5\)}%
\end{pgfscope}%
\end{pgfpicture}%
\makeatother%
diff --git a/buch/papers/laguerre/images/integrands_exp.pgf b/buch/papers/laguerre/images/integrands_exp.pgf
index 897fc4a..de5078f 100644
--- a/buch/papers/laguerre/images/integrands_exp.pgf
+++ b/buch/papers/laguerre/images/integrands_exp.pgf
@@ -27,7 +27,7 @@
\begingroup%
\makeatletter%
\begin{pgfpicture}%
-\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{4.000000in}}%
+\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{5.000000in}{3.000000in}}%
\pgfusepath{use as bounding box, clip}%
\begin{pgfscope}%
\pgfsetbuttcap%
@@ -39,9 +39,9 @@
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
-\pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}%
-\pgfpathlineto{\pgfqpoint{6.000000in}{4.000000in}}%
-\pgfpathlineto{\pgfqpoint{0.000000in}{4.000000in}}%
+\pgfpathlineto{\pgfqpoint{5.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{5.000000in}{3.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{3.000000in}}%
\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}%
\pgfpathclose%
\pgfusepath{fill}%
@@ -57,15 +57,15 @@
\pgfsetstrokeopacity{0.000000}%
\pgfsetdash{}{0pt}%
\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{5.958330in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{5.958330in}{3.905568in}}%
-\pgfpathlineto{\pgfqpoint{0.505591in}{3.905568in}}%
+\pgfpathlineto{\pgfqpoint{4.958330in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.958330in}{2.905568in}}%
+\pgfpathlineto{\pgfqpoint{0.505591in}{2.905568in}}%
\pgfpathlineto{\pgfqpoint{0.505591in}{0.463273in}}%
\pgfpathclose%
\pgfusepath{fill}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -74,7 +74,7 @@
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{0.505591in}{3.905568in}}%
+\pgfpathlineto{\pgfqpoint{0.505591in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -103,7 +103,7 @@
\pgftext[x=0.505591in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-2}}\)}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -111,8 +111,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{2.157421in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{2.157421in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{1.854485in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.854485in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -130,7 +130,7 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{2.157421in}{0.463273in}%
+\pgfsys@transformshift{1.854485in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
@@ -138,10 +138,10 @@
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=2.157421in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-1}}\)}%
+\pgftext[x=1.854485in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-1}}\)}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -149,8 +149,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{3.809250in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{3.809250in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{3.203379in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{3.203379in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -168,7 +168,7 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{3.809250in}{0.463273in}%
+\pgfsys@transformshift{3.203379in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
@@ -176,10 +176,10 @@
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=3.809250in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{0}}\)}%
+\pgftext[x=3.203379in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{0}}\)}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -187,8 +187,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{5.461080in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{5.461080in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{4.552273in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.552273in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -206,7 +206,7 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{5.461080in}{0.463273in}%
+\pgfsys@transformshift{4.552273in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
@@ -214,10 +214,10 @@
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=5.461080in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{1}}\)}%
+\pgftext[x=4.552273in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{1}}\)}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -225,8 +225,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{1.002841in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{1.002841in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{0.911649in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{0.911649in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -244,12 +244,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{1.002841in}{0.463273in}%
+\pgfsys@transformshift{0.911649in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -257,8 +257,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{1.293714in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{1.293714in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{1.149177in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.149177in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -276,12 +276,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{1.293714in}{0.463273in}%
+\pgfsys@transformshift{1.149177in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -289,8 +289,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{1.500092in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{1.500092in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{1.317706in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.317706in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -308,12 +308,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{1.500092in}{0.463273in}%
+\pgfsys@transformshift{1.317706in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -321,8 +321,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{1.660171in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{1.660171in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{1.448428in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.448428in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -340,12 +340,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{1.660171in}{0.463273in}%
+\pgfsys@transformshift{1.448428in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -353,8 +353,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{1.790964in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{1.790964in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{1.555235in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.555235in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -372,12 +372,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{1.790964in}{0.463273in}%
+\pgfsys@transformshift{1.555235in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -385,8 +385,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{1.901549in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{1.901549in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{1.645539in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.645539in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -404,12 +404,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{1.901549in}{0.463273in}%
+\pgfsys@transformshift{1.645539in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -417,8 +417,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{1.997342in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{1.997342in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{1.723764in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.723764in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -436,12 +436,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{1.997342in}{0.463273in}%
+\pgfsys@transformshift{1.723764in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -449,8 +449,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{2.081837in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{2.081837in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{1.792763in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.792763in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -468,12 +468,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{2.081837in}{0.463273in}%
+\pgfsys@transformshift{1.792763in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -481,8 +481,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{2.654671in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{2.654671in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{2.260542in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{2.260542in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -500,12 +500,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{2.654671in}{0.463273in}%
+\pgfsys@transformshift{2.260542in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -513,8 +513,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{2.945544in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{2.945544in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{2.498071in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{2.498071in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -532,12 +532,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{2.945544in}{0.463273in}%
+\pgfsys@transformshift{2.498071in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -545,8 +545,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{3.151921in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{3.151921in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{2.666600in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{2.666600in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -564,12 +564,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{3.151921in}{0.463273in}%
+\pgfsys@transformshift{2.666600in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -577,8 +577,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{3.312000in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{3.312000in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{2.797321in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{2.797321in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -596,12 +596,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{3.312000in}{0.463273in}%
+\pgfsys@transformshift{2.797321in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -609,8 +609,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{3.442794in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{3.442794in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{2.904128in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{2.904128in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -628,12 +628,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{3.442794in}{0.463273in}%
+\pgfsys@transformshift{2.904128in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -641,8 +641,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{3.553379in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{3.553379in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{2.994432in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{2.994432in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -660,12 +660,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{3.553379in}{0.463273in}%
+\pgfsys@transformshift{2.994432in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -673,8 +673,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{3.649171in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{3.649171in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{3.072657in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{3.072657in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -692,12 +692,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{3.649171in}{0.463273in}%
+\pgfsys@transformshift{3.072657in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -705,8 +705,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{3.733667in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{3.733667in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{3.141657in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{3.141657in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -724,12 +724,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{3.733667in}{0.463273in}%
+\pgfsys@transformshift{3.141657in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -737,8 +737,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{4.306500in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{4.306500in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{3.609436in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{3.609436in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -756,12 +756,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{4.306500in}{0.463273in}%
+\pgfsys@transformshift{3.609436in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -769,8 +769,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{4.597373in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{4.597373in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{3.846965in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{3.846965in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -788,12 +788,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{4.597373in}{0.463273in}%
+\pgfsys@transformshift{3.846965in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -801,8 +801,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{4.803751in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{4.803751in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{4.015494in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.015494in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -820,12 +820,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{4.803751in}{0.463273in}%
+\pgfsys@transformshift{4.015494in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -833,8 +833,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{4.963830in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{4.963830in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{4.146215in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.146215in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -852,12 +852,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{4.963830in}{0.463273in}%
+\pgfsys@transformshift{4.146215in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -865,8 +865,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{5.094623in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{5.094623in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{4.253022in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.253022in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -884,12 +884,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{5.094623in}{0.463273in}%
+\pgfsys@transformshift{4.253022in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -897,8 +897,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{5.205208in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{5.205208in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{4.343326in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.343326in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -916,12 +916,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{5.205208in}{0.463273in}%
+\pgfsys@transformshift{4.343326in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -929,8 +929,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{5.301001in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{5.301001in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{4.421551in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.421551in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -948,12 +948,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{5.301001in}{0.463273in}%
+\pgfsys@transformshift{4.421551in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -961,8 +961,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{5.385496in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{5.385496in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{4.490551in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.490551in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -980,12 +980,12 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{5.385496in}{0.463273in}%
+\pgfsys@transformshift{4.490551in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -993,8 +993,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{5.958330in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{5.958330in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{4.958330in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.958330in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1012,7 +1012,7 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{5.958330in}{0.463273in}%
+\pgfsys@transformshift{4.958330in}{0.463273in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
@@ -1020,10 +1020,10 @@
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=3.231961in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle t\)}%
+\pgftext[x=2.731961in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle x\)}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1031,8 +1031,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.505591in}{1.151457in}}%
-\pgfpathlineto{\pgfqpoint{5.958330in}{1.151457in}}%
+\pgfpathmoveto{\pgfqpoint{0.505591in}{0.951537in}}%
+\pgfpathlineto{\pgfqpoint{4.958330in}{0.951537in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1050,7 +1050,7 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{0.505591in}{1.151457in}%
+\pgfsys@transformshift{0.505591in}{0.951537in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
@@ -1058,10 +1058,10 @@
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=0.320004in, y=1.098695in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 2}%
+\pgftext[x=0.320004in, y=0.898775in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 2}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1069,8 +1069,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.505591in}{1.839985in}}%
-\pgfpathlineto{\pgfqpoint{5.958330in}{1.839985in}}%
+\pgfpathmoveto{\pgfqpoint{0.505591in}{1.440045in}}%
+\pgfpathlineto{\pgfqpoint{4.958330in}{1.440045in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1088,7 +1088,7 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{0.505591in}{1.839985in}%
+\pgfsys@transformshift{0.505591in}{1.440045in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
@@ -1096,10 +1096,10 @@
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=0.320004in, y=1.787223in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 4}%
+\pgftext[x=0.320004in, y=1.387283in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 4}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1107,8 +1107,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.505591in}{2.528513in}}%
-\pgfpathlineto{\pgfqpoint{5.958330in}{2.528513in}}%
+\pgfpathmoveto{\pgfqpoint{0.505591in}{1.928553in}}%
+\pgfpathlineto{\pgfqpoint{4.958330in}{1.928553in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1126,7 +1126,7 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{0.505591in}{2.528513in}%
+\pgfsys@transformshift{0.505591in}{1.928553in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
@@ -1134,10 +1134,10 @@
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=0.320004in, y=2.475751in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 6}%
+\pgftext[x=0.320004in, y=1.875791in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 6}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1145,8 +1145,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.505591in}{3.217041in}}%
-\pgfpathlineto{\pgfqpoint{5.958330in}{3.217041in}}%
+\pgfpathmoveto{\pgfqpoint{0.505591in}{2.417061in}}%
+\pgfpathlineto{\pgfqpoint{4.958330in}{2.417061in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1164,7 +1164,7 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{0.505591in}{3.217041in}%
+\pgfsys@transformshift{0.505591in}{2.417061in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
@@ -1172,10 +1172,10 @@
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=0.320004in, y=3.164279in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 8}%
+\pgftext[x=0.320004in, y=2.364299in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 8}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1183,8 +1183,8 @@
\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.505591in}{3.905568in}}%
-\pgfpathlineto{\pgfqpoint{5.958330in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{0.505591in}{2.905568in}}%
+\pgfpathlineto{\pgfqpoint{4.958330in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1202,7 +1202,7 @@
\pgfusepath{stroke,fill}%
}%
\begin{pgfscope}%
-\pgfsys@transformshift{0.505591in}{3.905568in}%
+\pgfsys@transformshift{0.505591in}{2.905568in}%
\pgfsys@useobject{currentmarker}{}%
\end{pgfscope}%
\end{pgfscope}%
@@ -1210,16 +1210,16 @@
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=0.231638in, y=3.852807in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}%
+\pgftext[x=0.231638in, y=2.852807in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}%
\end{pgfscope}%
\begin{pgfscope}%
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=0.176083in,y=2.184421in,,bottom,rotate=90.000000]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle t^z e^{-t}\)}%
+\pgftext[x=0.176083in,y=1.684421in,,bottom,rotate=90.000000]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle x^z e^{-x}\)}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1227,67 +1227,58 @@
\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{2.090051in}{3.915568in}}%
-\pgfpathlineto{\pgfqpoint{2.124384in}{3.739479in}}%
-\pgfpathlineto{\pgfqpoint{2.164028in}{3.546545in}}%
-\pgfpathlineto{\pgfqpoint{2.203672in}{3.364077in}}%
-\pgfpathlineto{\pgfqpoint{2.243316in}{3.191517in}}%
-\pgfpathlineto{\pgfqpoint{2.282960in}{3.028338in}}%
-\pgfpathlineto{\pgfqpoint{2.322604in}{2.874039in}}%
-\pgfpathlineto{\pgfqpoint{2.362248in}{2.728150in}}%
-\pgfpathlineto{\pgfqpoint{2.401892in}{2.590224in}}%
-\pgfpathlineto{\pgfqpoint{2.441535in}{2.459838in}}%
-\pgfpathlineto{\pgfqpoint{2.481179in}{2.336592in}}%
-\pgfpathlineto{\pgfqpoint{2.520823in}{2.220110in}}%
-\pgfpathlineto{\pgfqpoint{2.560467in}{2.110035in}}%
-\pgfpathlineto{\pgfqpoint{2.600111in}{2.006028in}}%
-\pgfpathlineto{\pgfqpoint{2.639755in}{1.907770in}}%
-\pgfpathlineto{\pgfqpoint{2.679399in}{1.814959in}}%
-\pgfpathlineto{\pgfqpoint{2.719043in}{1.727311in}}%
-\pgfpathlineto{\pgfqpoint{2.758687in}{1.644555in}}%
-\pgfpathlineto{\pgfqpoint{2.798331in}{1.566435in}}%
-\pgfpathlineto{\pgfqpoint{2.837975in}{1.492711in}}%
-\pgfpathlineto{\pgfqpoint{2.877618in}{1.423155in}}%
-\pgfpathlineto{\pgfqpoint{2.917262in}{1.357551in}}%
-\pgfpathlineto{\pgfqpoint{2.956906in}{1.295695in}}%
-\pgfpathlineto{\pgfqpoint{2.996550in}{1.237395in}}%
-\pgfpathlineto{\pgfqpoint{3.036194in}{1.182468in}}%
-\pgfpathlineto{\pgfqpoint{3.075838in}{1.130741in}}%
-\pgfpathlineto{\pgfqpoint{3.115482in}{1.082053in}}%
-\pgfpathlineto{\pgfqpoint{3.155126in}{1.036248in}}%
-\pgfpathlineto{\pgfqpoint{3.194770in}{0.993180in}}%
-\pgfpathlineto{\pgfqpoint{3.244325in}{0.942986in}}%
-\pgfpathlineto{\pgfqpoint{3.293879in}{0.896600in}}%
-\pgfpathlineto{\pgfqpoint{3.343434in}{0.853786in}}%
-\pgfpathlineto{\pgfqpoint{3.392989in}{0.814321in}}%
-\pgfpathlineto{\pgfqpoint{3.442544in}{0.777998in}}%
-\pgfpathlineto{\pgfqpoint{3.492099in}{0.744622in}}%
-\pgfpathlineto{\pgfqpoint{3.541654in}{0.714010in}}%
-\pgfpathlineto{\pgfqpoint{3.591209in}{0.685990in}}%
-\pgfpathlineto{\pgfqpoint{3.640764in}{0.660400in}}%
-\pgfpathlineto{\pgfqpoint{3.690319in}{0.637088in}}%
-\pgfpathlineto{\pgfqpoint{3.739873in}{0.615907in}}%
-\pgfpathlineto{\pgfqpoint{3.799339in}{0.593113in}}%
-\pgfpathlineto{\pgfqpoint{3.858805in}{0.572966in}}%
-\pgfpathlineto{\pgfqpoint{3.918271in}{0.555254in}}%
-\pgfpathlineto{\pgfqpoint{3.977737in}{0.539775in}}%
-\pgfpathlineto{\pgfqpoint{4.047114in}{0.524284in}}%
-\pgfpathlineto{\pgfqpoint{4.116491in}{0.511281in}}%
-\pgfpathlineto{\pgfqpoint{4.185867in}{0.500491in}}%
-\pgfpathlineto{\pgfqpoint{4.265155in}{0.490531in}}%
-\pgfpathlineto{\pgfqpoint{4.344443in}{0.482750in}}%
-\pgfpathlineto{\pgfqpoint{4.433642in}{0.476169in}}%
-\pgfpathlineto{\pgfqpoint{4.532752in}{0.471025in}}%
-\pgfpathlineto{\pgfqpoint{4.651683in}{0.467113in}}%
-\pgfpathlineto{\pgfqpoint{4.800348in}{0.464543in}}%
-\pgfpathlineto{\pgfqpoint{5.018389in}{0.463219in}}%
-\pgfpathlineto{\pgfqpoint{5.573404in}{0.462929in}}%
-\pgfpathlineto{\pgfqpoint{5.968330in}{0.462929in}}%
-\pgfpathlineto{\pgfqpoint{5.968330in}{0.462929in}}%
+\pgfpathmoveto{\pgfqpoint{1.798834in}{2.915568in}}%
+\pgfpathlineto{\pgfqpoint{1.835600in}{2.752788in}}%
+\pgfpathlineto{\pgfqpoint{1.876067in}{2.585209in}}%
+\pgfpathlineto{\pgfqpoint{1.916534in}{2.428921in}}%
+\pgfpathlineto{\pgfqpoint{1.957001in}{2.283177in}}%
+\pgfpathlineto{\pgfqpoint{1.997468in}{2.147279in}}%
+\pgfpathlineto{\pgfqpoint{2.037935in}{2.020579in}}%
+\pgfpathlineto{\pgfqpoint{2.078401in}{1.902469in}}%
+\pgfpathlineto{\pgfqpoint{2.118868in}{1.792386in}}%
+\pgfpathlineto{\pgfqpoint{2.159335in}{1.689801in}}%
+\pgfpathlineto{\pgfqpoint{2.199802in}{1.594224in}}%
+\pgfpathlineto{\pgfqpoint{2.240269in}{1.505196in}}%
+\pgfpathlineto{\pgfqpoint{2.280735in}{1.422289in}}%
+\pgfpathlineto{\pgfqpoint{2.321202in}{1.345106in}}%
+\pgfpathlineto{\pgfqpoint{2.361669in}{1.273275in}}%
+\pgfpathlineto{\pgfqpoint{2.402136in}{1.206449in}}%
+\pgfpathlineto{\pgfqpoint{2.442603in}{1.144306in}}%
+\pgfpathlineto{\pgfqpoint{2.483069in}{1.086545in}}%
+\pgfpathlineto{\pgfqpoint{2.523536in}{1.032885in}}%
+\pgfpathlineto{\pgfqpoint{2.564003in}{0.983064in}}%
+\pgfpathlineto{\pgfqpoint{2.604470in}{0.936839in}}%
+\pgfpathlineto{\pgfqpoint{2.644937in}{0.893983in}}%
+\pgfpathlineto{\pgfqpoint{2.685404in}{0.854282in}}%
+\pgfpathlineto{\pgfqpoint{2.725870in}{0.817539in}}%
+\pgfpathlineto{\pgfqpoint{2.766337in}{0.783568in}}%
+\pgfpathlineto{\pgfqpoint{2.806804in}{0.752197in}}%
+\pgfpathlineto{\pgfqpoint{2.847271in}{0.723265in}}%
+\pgfpathlineto{\pgfqpoint{2.895831in}{0.691552in}}%
+\pgfpathlineto{\pgfqpoint{2.944391in}{0.662889in}}%
+\pgfpathlineto{\pgfqpoint{2.992951in}{0.637051in}}%
+\pgfpathlineto{\pgfqpoint{3.041512in}{0.613827in}}%
+\pgfpathlineto{\pgfqpoint{3.090072in}{0.593023in}}%
+\pgfpathlineto{\pgfqpoint{3.138632in}{0.574456in}}%
+\pgfpathlineto{\pgfqpoint{3.195285in}{0.555394in}}%
+\pgfpathlineto{\pgfqpoint{3.251939in}{0.538889in}}%
+\pgfpathlineto{\pgfqpoint{3.308592in}{0.524703in}}%
+\pgfpathlineto{\pgfqpoint{3.365246in}{0.512612in}}%
+\pgfpathlineto{\pgfqpoint{3.429993in}{0.501085in}}%
+\pgfpathlineto{\pgfqpoint{3.494740in}{0.491717in}}%
+\pgfpathlineto{\pgfqpoint{3.567580in}{0.483406in}}%
+\pgfpathlineto{\pgfqpoint{3.648514in}{0.476498in}}%
+\pgfpathlineto{\pgfqpoint{3.737541in}{0.471175in}}%
+\pgfpathlineto{\pgfqpoint{3.842754in}{0.467201in}}%
+\pgfpathlineto{\pgfqpoint{3.972248in}{0.464630in}}%
+\pgfpathlineto{\pgfqpoint{4.166489in}{0.463296in}}%
+\pgfpathlineto{\pgfqpoint{4.668277in}{0.463029in}}%
+\pgfpathlineto{\pgfqpoint{4.968330in}{0.463029in}}%
+\pgfpathlineto{\pgfqpoint{4.968330in}{0.463029in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1295,70 +1286,62 @@
\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.495591in}{3.895646in}}%
-\pgfpathlineto{\pgfqpoint{0.548539in}{3.768760in}}%
-\pgfpathlineto{\pgfqpoint{0.608005in}{3.631637in}}%
-\pgfpathlineto{\pgfqpoint{0.667471in}{3.499960in}}%
-\pgfpathlineto{\pgfqpoint{0.726936in}{3.373504in}}%
-\pgfpathlineto{\pgfqpoint{0.786402in}{3.252053in}}%
-\pgfpathlineto{\pgfqpoint{0.845868in}{3.135398in}}%
-\pgfpathlineto{\pgfqpoint{0.905334in}{3.023339in}}%
-\pgfpathlineto{\pgfqpoint{0.964800in}{2.915685in}}%
-\pgfpathlineto{\pgfqpoint{1.024266in}{2.812250in}}%
-\pgfpathlineto{\pgfqpoint{1.083732in}{2.712858in}}%
-\pgfpathlineto{\pgfqpoint{1.143197in}{2.617340in}}%
-\pgfpathlineto{\pgfqpoint{1.202663in}{2.525532in}}%
-\pgfpathlineto{\pgfqpoint{1.262129in}{2.437278in}}%
-\pgfpathlineto{\pgfqpoint{1.331506in}{2.338606in}}%
-\pgfpathlineto{\pgfqpoint{1.400883in}{2.244337in}}%
-\pgfpathlineto{\pgfqpoint{1.470260in}{2.154255in}}%
-\pgfpathlineto{\pgfqpoint{1.539637in}{2.068152in}}%
-\pgfpathlineto{\pgfqpoint{1.609013in}{1.985829in}}%
-\pgfpathlineto{\pgfqpoint{1.678390in}{1.907099in}}%
-\pgfpathlineto{\pgfqpoint{1.747767in}{1.831782in}}%
-\pgfpathlineto{\pgfqpoint{1.817144in}{1.759706in}}%
-\pgfpathlineto{\pgfqpoint{1.886521in}{1.690711in}}%
-\pgfpathlineto{\pgfqpoint{1.955898in}{1.624641in}}%
-\pgfpathlineto{\pgfqpoint{2.025274in}{1.561349in}}%
-\pgfpathlineto{\pgfqpoint{2.104562in}{1.492241in}}%
-\pgfpathlineto{\pgfqpoint{2.183850in}{1.426386in}}%
-\pgfpathlineto{\pgfqpoint{2.263138in}{1.363601in}}%
-\pgfpathlineto{\pgfqpoint{2.342426in}{1.303715in}}%
-\pgfpathlineto{\pgfqpoint{2.421713in}{1.246570in}}%
-\pgfpathlineto{\pgfqpoint{2.501001in}{1.192019in}}%
-\pgfpathlineto{\pgfqpoint{2.580289in}{1.139927in}}%
-\pgfpathlineto{\pgfqpoint{2.669488in}{1.084113in}}%
-\pgfpathlineto{\pgfqpoint{2.758687in}{1.031101in}}%
-\pgfpathlineto{\pgfqpoint{2.847885in}{0.980757in}}%
-\pgfpathlineto{\pgfqpoint{2.937084in}{0.932964in}}%
-\pgfpathlineto{\pgfqpoint{3.026283in}{0.887629in}}%
-\pgfpathlineto{\pgfqpoint{3.115482in}{0.844678in}}%
-\pgfpathlineto{\pgfqpoint{3.204681in}{0.804056in}}%
-\pgfpathlineto{\pgfqpoint{3.293879in}{0.765732in}}%
-\pgfpathlineto{\pgfqpoint{3.383078in}{0.729693in}}%
-\pgfpathlineto{\pgfqpoint{3.472277in}{0.695943in}}%
-\pgfpathlineto{\pgfqpoint{3.561476in}{0.664503in}}%
-\pgfpathlineto{\pgfqpoint{3.650675in}{0.635404in}}%
-\pgfpathlineto{\pgfqpoint{3.739873in}{0.608686in}}%
-\pgfpathlineto{\pgfqpoint{3.829072in}{0.584388in}}%
-\pgfpathlineto{\pgfqpoint{3.918271in}{0.562543in}}%
-\pgfpathlineto{\pgfqpoint{4.007470in}{0.543167in}}%
-\pgfpathlineto{\pgfqpoint{4.096669in}{0.526255in}}%
-\pgfpathlineto{\pgfqpoint{4.185867in}{0.511765in}}%
-\pgfpathlineto{\pgfqpoint{4.275066in}{0.499618in}}%
-\pgfpathlineto{\pgfqpoint{4.364265in}{0.489688in}}%
-\pgfpathlineto{\pgfqpoint{4.463375in}{0.481042in}}%
-\pgfpathlineto{\pgfqpoint{4.562485in}{0.474620in}}%
-\pgfpathlineto{\pgfqpoint{4.671505in}{0.469708in}}%
-\pgfpathlineto{\pgfqpoint{4.800348in}{0.466150in}}%
-\pgfpathlineto{\pgfqpoint{4.968835in}{0.463927in}}%
-\pgfpathlineto{\pgfqpoint{5.236431in}{0.463014in}}%
-\pgfpathlineto{\pgfqpoint{5.968330in}{0.462929in}}%
-\pgfpathlineto{\pgfqpoint{5.968330in}{0.462929in}}%
+\pgfpathmoveto{\pgfqpoint{0.495591in}{2.902420in}}%
+\pgfpathlineto{\pgfqpoint{0.548756in}{2.792013in}}%
+\pgfpathlineto{\pgfqpoint{0.605409in}{2.679652in}}%
+\pgfpathlineto{\pgfqpoint{0.662063in}{2.572478in}}%
+\pgfpathlineto{\pgfqpoint{0.718716in}{2.470240in}}%
+\pgfpathlineto{\pgfqpoint{0.775370in}{2.372700in}}%
+\pgfpathlineto{\pgfqpoint{0.832024in}{2.279630in}}%
+\pgfpathlineto{\pgfqpoint{0.888677in}{2.190814in}}%
+\pgfpathlineto{\pgfqpoint{0.945331in}{2.106045in}}%
+\pgfpathlineto{\pgfqpoint{1.001984in}{2.025124in}}%
+\pgfpathlineto{\pgfqpoint{1.058638in}{1.947865in}}%
+\pgfpathlineto{\pgfqpoint{1.115291in}{1.874088in}}%
+\pgfpathlineto{\pgfqpoint{1.171945in}{1.803620in}}%
+\pgfpathlineto{\pgfqpoint{1.228598in}{1.736301in}}%
+\pgfpathlineto{\pgfqpoint{1.293345in}{1.663018in}}%
+\pgfpathlineto{\pgfqpoint{1.358092in}{1.593423in}}%
+\pgfpathlineto{\pgfqpoint{1.422839in}{1.527307in}}%
+\pgfpathlineto{\pgfqpoint{1.487586in}{1.464471in}}%
+\pgfpathlineto{\pgfqpoint{1.552333in}{1.404729in}}%
+\pgfpathlineto{\pgfqpoint{1.617080in}{1.347905in}}%
+\pgfpathlineto{\pgfqpoint{1.681827in}{1.293833in}}%
+\pgfpathlineto{\pgfqpoint{1.754667in}{1.236094in}}%
+\pgfpathlineto{\pgfqpoint{1.827507in}{1.181430in}}%
+\pgfpathlineto{\pgfqpoint{1.900347in}{1.129645in}}%
+\pgfpathlineto{\pgfqpoint{1.973188in}{1.080558in}}%
+\pgfpathlineto{\pgfqpoint{2.046028in}{1.034002in}}%
+\pgfpathlineto{\pgfqpoint{2.126962in}{0.985056in}}%
+\pgfpathlineto{\pgfqpoint{2.207895in}{0.938855in}}%
+\pgfpathlineto{\pgfqpoint{2.288829in}{0.895230in}}%
+\pgfpathlineto{\pgfqpoint{2.369762in}{0.854033in}}%
+\pgfpathlineto{\pgfqpoint{2.450696in}{0.815136in}}%
+\pgfpathlineto{\pgfqpoint{2.539723in}{0.774884in}}%
+\pgfpathlineto{\pgfqpoint{2.628750in}{0.737182in}}%
+\pgfpathlineto{\pgfqpoint{2.717777in}{0.701956in}}%
+\pgfpathlineto{\pgfqpoint{2.806804in}{0.669164in}}%
+\pgfpathlineto{\pgfqpoint{2.895831in}{0.638793in}}%
+\pgfpathlineto{\pgfqpoint{2.984858in}{0.610859in}}%
+\pgfpathlineto{\pgfqpoint{3.073885in}{0.585400in}}%
+\pgfpathlineto{\pgfqpoint{3.154819in}{0.564442in}}%
+\pgfpathlineto{\pgfqpoint{3.235752in}{0.545608in}}%
+\pgfpathlineto{\pgfqpoint{3.316686in}{0.528927in}}%
+\pgfpathlineto{\pgfqpoint{3.397619in}{0.514410in}}%
+\pgfpathlineto{\pgfqpoint{3.478553in}{0.502038in}}%
+\pgfpathlineto{\pgfqpoint{3.559487in}{0.491753in}}%
+\pgfpathlineto{\pgfqpoint{3.648514in}{0.482723in}}%
+\pgfpathlineto{\pgfqpoint{3.737541in}{0.475880in}}%
+\pgfpathlineto{\pgfqpoint{3.834661in}{0.470581in}}%
+\pgfpathlineto{\pgfqpoint{3.947968in}{0.466692in}}%
+\pgfpathlineto{\pgfqpoint{4.085555in}{0.464297in}}%
+\pgfpathlineto{\pgfqpoint{4.295983in}{0.463180in}}%
+\pgfpathlineto{\pgfqpoint{4.968330in}{0.463029in}}%
+\pgfpathlineto{\pgfqpoint{4.968330in}{0.463029in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1366,38 +1349,33 @@
\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.495591in}{0.803815in}}%
-\pgfpathlineto{\pgfqpoint{1.004444in}{0.800361in}}%
-\pgfpathlineto{\pgfqpoint{1.381061in}{0.795723in}}%
-\pgfpathlineto{\pgfqpoint{1.678390in}{0.789982in}}%
-\pgfpathlineto{\pgfqpoint{1.936076in}{0.782813in}}%
-\pgfpathlineto{\pgfqpoint{2.154117in}{0.774575in}}%
-\pgfpathlineto{\pgfqpoint{2.352337in}{0.764857in}}%
-\pgfpathlineto{\pgfqpoint{2.530734in}{0.753876in}}%
-\pgfpathlineto{\pgfqpoint{2.699221in}{0.741200in}}%
-\pgfpathlineto{\pgfqpoint{2.857796in}{0.726929in}}%
-\pgfpathlineto{\pgfqpoint{3.006461in}{0.711275in}}%
-\pgfpathlineto{\pgfqpoint{3.155126in}{0.693283in}}%
-\pgfpathlineto{\pgfqpoint{3.303790in}{0.672927in}}%
-\pgfpathlineto{\pgfqpoint{3.452455in}{0.650334in}}%
-\pgfpathlineto{\pgfqpoint{3.620942in}{0.622466in}}%
-\pgfpathlineto{\pgfqpoint{3.918271in}{0.570407in}}%
-\pgfpathlineto{\pgfqpoint{4.106580in}{0.538710in}}%
-\pgfpathlineto{\pgfqpoint{4.235422in}{0.519194in}}%
-\pgfpathlineto{\pgfqpoint{4.344443in}{0.504724in}}%
-\pgfpathlineto{\pgfqpoint{4.453464in}{0.492497in}}%
-\pgfpathlineto{\pgfqpoint{4.562485in}{0.482692in}}%
-\pgfpathlineto{\pgfqpoint{4.671505in}{0.475293in}}%
-\pgfpathlineto{\pgfqpoint{4.780526in}{0.470091in}}%
-\pgfpathlineto{\pgfqpoint{4.909369in}{0.466272in}}%
-\pgfpathlineto{\pgfqpoint{5.067944in}{0.463991in}}%
-\pgfpathlineto{\pgfqpoint{5.315719in}{0.463027in}}%
-\pgfpathlineto{\pgfqpoint{5.968330in}{0.462929in}}%
-\pgfpathlineto{\pgfqpoint{5.968330in}{0.462929in}}%
+\pgfpathmoveto{\pgfqpoint{0.495591in}{0.704894in}}%
+\pgfpathlineto{\pgfqpoint{0.985797in}{0.701801in}}%
+\pgfpathlineto{\pgfqpoint{1.325719in}{0.697576in}}%
+\pgfpathlineto{\pgfqpoint{1.592800in}{0.692147in}}%
+\pgfpathlineto{\pgfqpoint{1.811320in}{0.685615in}}%
+\pgfpathlineto{\pgfqpoint{2.005561in}{0.677632in}}%
+\pgfpathlineto{\pgfqpoint{2.175522in}{0.668484in}}%
+\pgfpathlineto{\pgfqpoint{2.329296in}{0.658088in}}%
+\pgfpathlineto{\pgfqpoint{2.474976in}{0.646087in}}%
+\pgfpathlineto{\pgfqpoint{2.612563in}{0.632631in}}%
+\pgfpathlineto{\pgfqpoint{2.750150in}{0.617020in}}%
+\pgfpathlineto{\pgfqpoint{2.895831in}{0.598214in}}%
+\pgfpathlineto{\pgfqpoint{3.057698in}{0.575016in}}%
+\pgfpathlineto{\pgfqpoint{3.527113in}{0.505995in}}%
+\pgfpathlineto{\pgfqpoint{3.640420in}{0.492683in}}%
+\pgfpathlineto{\pgfqpoint{3.745634in}{0.482613in}}%
+\pgfpathlineto{\pgfqpoint{3.842754in}{0.475454in}}%
+\pgfpathlineto{\pgfqpoint{3.947968in}{0.469944in}}%
+\pgfpathlineto{\pgfqpoint{4.061275in}{0.466261in}}%
+\pgfpathlineto{\pgfqpoint{4.198862in}{0.464058in}}%
+\pgfpathlineto{\pgfqpoint{4.417383in}{0.463116in}}%
+\pgfpathlineto{\pgfqpoint{4.968330in}{0.463029in}}%
+\pgfpathlineto{\pgfqpoint{4.968330in}{0.463029in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1405,37 +1383,33 @@
\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.495591in}{0.496781in}}%
-\pgfpathlineto{\pgfqpoint{0.855779in}{0.506162in}}%
-\pgfpathlineto{\pgfqpoint{1.192752in}{0.517076in}}%
-\pgfpathlineto{\pgfqpoint{1.509904in}{0.529499in}}%
-\pgfpathlineto{\pgfqpoint{1.827055in}{0.544117in}}%
-\pgfpathlineto{\pgfqpoint{2.183850in}{0.562890in}}%
-\pgfpathlineto{\pgfqpoint{2.847885in}{0.598506in}}%
-\pgfpathlineto{\pgfqpoint{3.036194in}{0.605836in}}%
-\pgfpathlineto{\pgfqpoint{3.184859in}{0.609488in}}%
-\pgfpathlineto{\pgfqpoint{3.313701in}{0.610577in}}%
-\pgfpathlineto{\pgfqpoint{3.432633in}{0.609477in}}%
-\pgfpathlineto{\pgfqpoint{3.541654in}{0.606416in}}%
-\pgfpathlineto{\pgfqpoint{3.650675in}{0.601199in}}%
-\pgfpathlineto{\pgfqpoint{3.759695in}{0.593722in}}%
-\pgfpathlineto{\pgfqpoint{3.868716in}{0.584006in}}%
-\pgfpathlineto{\pgfqpoint{3.987648in}{0.571068in}}%
-\pgfpathlineto{\pgfqpoint{4.126402in}{0.553532in}}%
-\pgfpathlineto{\pgfqpoint{4.552574in}{0.497434in}}%
-\pgfpathlineto{\pgfqpoint{4.661594in}{0.486371in}}%
-\pgfpathlineto{\pgfqpoint{4.760704in}{0.478378in}}%
-\pgfpathlineto{\pgfqpoint{4.869725in}{0.471911in}}%
-\pgfpathlineto{\pgfqpoint{4.978746in}{0.467647in}}%
-\pgfpathlineto{\pgfqpoint{5.107588in}{0.464820in}}%
-\pgfpathlineto{\pgfqpoint{5.285986in}{0.463311in}}%
-\pgfpathlineto{\pgfqpoint{5.682425in}{0.462931in}}%
-\pgfpathlineto{\pgfqpoint{5.968330in}{0.462929in}}%
-\pgfpathlineto{\pgfqpoint{5.968330in}{0.462929in}}%
+\pgfpathmoveto{\pgfqpoint{0.495591in}{0.487010in}}%
+\pgfpathlineto{\pgfqpoint{0.848210in}{0.495169in}}%
+\pgfpathlineto{\pgfqpoint{1.171945in}{0.504841in}}%
+\pgfpathlineto{\pgfqpoint{1.479493in}{0.516233in}}%
+\pgfpathlineto{\pgfqpoint{1.803227in}{0.530490in}}%
+\pgfpathlineto{\pgfqpoint{2.499256in}{0.562178in}}%
+\pgfpathlineto{\pgfqpoint{2.661123in}{0.566481in}}%
+\pgfpathlineto{\pgfqpoint{2.790617in}{0.567782in}}%
+\pgfpathlineto{\pgfqpoint{2.903924in}{0.566867in}}%
+\pgfpathlineto{\pgfqpoint{3.009138in}{0.563979in}}%
+\pgfpathlineto{\pgfqpoint{3.114352in}{0.558920in}}%
+\pgfpathlineto{\pgfqpoint{3.219565in}{0.551618in}}%
+\pgfpathlineto{\pgfqpoint{3.332873in}{0.541392in}}%
+\pgfpathlineto{\pgfqpoint{3.462366in}{0.527312in}}%
+\pgfpathlineto{\pgfqpoint{3.826568in}{0.485966in}}%
+\pgfpathlineto{\pgfqpoint{3.931781in}{0.477219in}}%
+\pgfpathlineto{\pgfqpoint{4.028902in}{0.471279in}}%
+\pgfpathlineto{\pgfqpoint{4.134115in}{0.467063in}}%
+\pgfpathlineto{\pgfqpoint{4.255516in}{0.464478in}}%
+\pgfpathlineto{\pgfqpoint{4.433570in}{0.463227in}}%
+\pgfpathlineto{\pgfqpoint{4.959638in}{0.463029in}}%
+\pgfpathlineto{\pgfqpoint{4.968330in}{0.463029in}}%
+\pgfpathlineto{\pgfqpoint{4.968330in}{0.463029in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1443,41 +1417,36 @@
\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.495591in}{0.466291in}}%
-\pgfpathlineto{\pgfqpoint{1.014355in}{0.469785in}}%
-\pgfpathlineto{\pgfqpoint{1.400883in}{0.474511in}}%
-\pgfpathlineto{\pgfqpoint{1.708123in}{0.480374in}}%
-\pgfpathlineto{\pgfqpoint{1.975720in}{0.487657in}}%
-\pgfpathlineto{\pgfqpoint{2.213583in}{0.496343in}}%
-\pgfpathlineto{\pgfqpoint{2.431624in}{0.506505in}}%
-\pgfpathlineto{\pgfqpoint{2.639755in}{0.518369in}}%
-\pgfpathlineto{\pgfqpoint{2.857796in}{0.533011in}}%
-\pgfpathlineto{\pgfqpoint{3.155126in}{0.555483in}}%
-\pgfpathlineto{\pgfqpoint{3.412811in}{0.574354in}}%
-\pgfpathlineto{\pgfqpoint{3.561476in}{0.582999in}}%
-\pgfpathlineto{\pgfqpoint{3.680408in}{0.587666in}}%
-\pgfpathlineto{\pgfqpoint{3.779517in}{0.589469in}}%
-\pgfpathlineto{\pgfqpoint{3.878627in}{0.588966in}}%
-\pgfpathlineto{\pgfqpoint{3.967826in}{0.586285in}}%
-\pgfpathlineto{\pgfqpoint{4.057025in}{0.581352in}}%
-\pgfpathlineto{\pgfqpoint{4.146223in}{0.574157in}}%
-\pgfpathlineto{\pgfqpoint{4.235422in}{0.564844in}}%
-\pgfpathlineto{\pgfqpoint{4.344443in}{0.551060in}}%
-\pgfpathlineto{\pgfqpoint{4.493108in}{0.529649in}}%
-\pgfpathlineto{\pgfqpoint{4.681416in}{0.502746in}}%
-\pgfpathlineto{\pgfqpoint{4.790437in}{0.489577in}}%
-\pgfpathlineto{\pgfqpoint{4.889547in}{0.480030in}}%
-\pgfpathlineto{\pgfqpoint{4.978746in}{0.473590in}}%
-\pgfpathlineto{\pgfqpoint{5.077855in}{0.468675in}}%
-\pgfpathlineto{\pgfqpoint{5.186876in}{0.465485in}}%
-\pgfpathlineto{\pgfqpoint{5.335541in}{0.463582in}}%
-\pgfpathlineto{\pgfqpoint{5.603137in}{0.462950in}}%
-\pgfpathlineto{\pgfqpoint{5.968330in}{0.462929in}}%
-\pgfpathlineto{\pgfqpoint{5.968330in}{0.462929in}}%
+\pgfpathmoveto{\pgfqpoint{0.495591in}{0.465407in}}%
+\pgfpathlineto{\pgfqpoint{0.985797in}{0.468449in}}%
+\pgfpathlineto{\pgfqpoint{1.341905in}{0.472796in}}%
+\pgfpathlineto{\pgfqpoint{1.617080in}{0.478265in}}%
+\pgfpathlineto{\pgfqpoint{1.851787in}{0.485039in}}%
+\pgfpathlineto{\pgfqpoint{2.070308in}{0.493583in}}%
+\pgfpathlineto{\pgfqpoint{2.272642in}{0.503689in}}%
+\pgfpathlineto{\pgfqpoint{2.491163in}{0.516866in}}%
+\pgfpathlineto{\pgfqpoint{2.968671in}{0.546765in}}%
+\pgfpathlineto{\pgfqpoint{3.090072in}{0.551321in}}%
+\pgfpathlineto{\pgfqpoint{3.187192in}{0.552851in}}%
+\pgfpathlineto{\pgfqpoint{3.276219in}{0.552164in}}%
+\pgfpathlineto{\pgfqpoint{3.365246in}{0.549194in}}%
+\pgfpathlineto{\pgfqpoint{3.454273in}{0.543821in}}%
+\pgfpathlineto{\pgfqpoint{3.543300in}{0.536140in}}%
+\pgfpathlineto{\pgfqpoint{3.648514in}{0.524594in}}%
+\pgfpathlineto{\pgfqpoint{3.818474in}{0.503098in}}%
+\pgfpathlineto{\pgfqpoint{3.947968in}{0.487678in}}%
+\pgfpathlineto{\pgfqpoint{4.045088in}{0.478328in}}%
+\pgfpathlineto{\pgfqpoint{4.134115in}{0.471957in}}%
+\pgfpathlineto{\pgfqpoint{4.231236in}{0.467386in}}%
+\pgfpathlineto{\pgfqpoint{4.336450in}{0.464701in}}%
+\pgfpathlineto{\pgfqpoint{4.482130in}{0.463333in}}%
+\pgfpathlineto{\pgfqpoint{4.838238in}{0.463029in}}%
+\pgfpathlineto{\pgfqpoint{4.968330in}{0.463029in}}%
+\pgfpathlineto{\pgfqpoint{4.968330in}{0.463029in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1485,48 +1454,41 @@
\definecolor{currentstroke}{rgb}{0.549020,0.337255,0.294118}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.495591in}{0.462962in}}%
-\pgfpathlineto{\pgfqpoint{1.817144in}{0.464182in}}%
-\pgfpathlineto{\pgfqpoint{2.223494in}{0.466638in}}%
-\pgfpathlineto{\pgfqpoint{2.491090in}{0.470372in}}%
-\pgfpathlineto{\pgfqpoint{2.689310in}{0.475224in}}%
-\pgfpathlineto{\pgfqpoint{2.857796in}{0.481533in}}%
-\pgfpathlineto{\pgfqpoint{2.996550in}{0.488811in}}%
-\pgfpathlineto{\pgfqpoint{3.125393in}{0.497721in}}%
-\pgfpathlineto{\pgfqpoint{3.244325in}{0.508145in}}%
-\pgfpathlineto{\pgfqpoint{3.353345in}{0.519796in}}%
-\pgfpathlineto{\pgfqpoint{3.462366in}{0.533578in}}%
-\pgfpathlineto{\pgfqpoint{3.581298in}{0.550998in}}%
-\pgfpathlineto{\pgfqpoint{3.710140in}{0.572233in}}%
-\pgfpathlineto{\pgfqpoint{4.027292in}{0.625986in}}%
-\pgfpathlineto{\pgfqpoint{4.106580in}{0.636533in}}%
-\pgfpathlineto{\pgfqpoint{4.175956in}{0.643570in}}%
-\pgfpathlineto{\pgfqpoint{4.235422in}{0.647531in}}%
-\pgfpathlineto{\pgfqpoint{4.294888in}{0.649245in}}%
-\pgfpathlineto{\pgfqpoint{4.354354in}{0.648447in}}%
-\pgfpathlineto{\pgfqpoint{4.403909in}{0.645731in}}%
-\pgfpathlineto{\pgfqpoint{4.453464in}{0.641095in}}%
-\pgfpathlineto{\pgfqpoint{4.503019in}{0.634554in}}%
-\pgfpathlineto{\pgfqpoint{4.562485in}{0.624311in}}%
-\pgfpathlineto{\pgfqpoint{4.621950in}{0.611728in}}%
-\pgfpathlineto{\pgfqpoint{4.691327in}{0.594662in}}%
-\pgfpathlineto{\pgfqpoint{4.790437in}{0.567559in}}%
-\pgfpathlineto{\pgfqpoint{4.929191in}{0.529576in}}%
-\pgfpathlineto{\pgfqpoint{4.998568in}{0.512781in}}%
-\pgfpathlineto{\pgfqpoint{5.067944in}{0.498431in}}%
-\pgfpathlineto{\pgfqpoint{5.127410in}{0.488355in}}%
-\pgfpathlineto{\pgfqpoint{5.186876in}{0.480368in}}%
-\pgfpathlineto{\pgfqpoint{5.256253in}{0.473513in}}%
-\pgfpathlineto{\pgfqpoint{5.325630in}{0.468916in}}%
-\pgfpathlineto{\pgfqpoint{5.414829in}{0.465494in}}%
-\pgfpathlineto{\pgfqpoint{5.533760in}{0.463588in}}%
-\pgfpathlineto{\pgfqpoint{5.751802in}{0.462953in}}%
-\pgfpathlineto{\pgfqpoint{5.968330in}{0.462929in}}%
-\pgfpathlineto{\pgfqpoint{5.968330in}{0.462929in}}%
+\pgfpathmoveto{\pgfqpoint{0.495591in}{0.463052in}}%
+\pgfpathlineto{\pgfqpoint{1.673733in}{0.464254in}}%
+\pgfpathlineto{\pgfqpoint{2.013654in}{0.466718in}}%
+\pgfpathlineto{\pgfqpoint{2.232175in}{0.470359in}}%
+\pgfpathlineto{\pgfqpoint{2.402136in}{0.475310in}}%
+\pgfpathlineto{\pgfqpoint{2.539723in}{0.481392in}}%
+\pgfpathlineto{\pgfqpoint{2.661123in}{0.488836in}}%
+\pgfpathlineto{\pgfqpoint{2.774431in}{0.497944in}}%
+\pgfpathlineto{\pgfqpoint{2.879644in}{0.508521in}}%
+\pgfpathlineto{\pgfqpoint{2.984858in}{0.521208in}}%
+\pgfpathlineto{\pgfqpoint{3.106258in}{0.538173in}}%
+\pgfpathlineto{\pgfqpoint{3.413806in}{0.582662in}}%
+\pgfpathlineto{\pgfqpoint{3.486646in}{0.589940in}}%
+\pgfpathlineto{\pgfqpoint{3.551393in}{0.594004in}}%
+\pgfpathlineto{\pgfqpoint{3.608047in}{0.595253in}}%
+\pgfpathlineto{\pgfqpoint{3.664700in}{0.594045in}}%
+\pgfpathlineto{\pgfqpoint{3.713261in}{0.590917in}}%
+\pgfpathlineto{\pgfqpoint{3.761821in}{0.585831in}}%
+\pgfpathlineto{\pgfqpoint{3.818474in}{0.577529in}}%
+\pgfpathlineto{\pgfqpoint{3.875128in}{0.566971in}}%
+\pgfpathlineto{\pgfqpoint{3.947968in}{0.550890in}}%
+\pgfpathlineto{\pgfqpoint{4.174582in}{0.498399in}}%
+\pgfpathlineto{\pgfqpoint{4.239329in}{0.486922in}}%
+\pgfpathlineto{\pgfqpoint{4.295983in}{0.479017in}}%
+\pgfpathlineto{\pgfqpoint{4.360730in}{0.472407in}}%
+\pgfpathlineto{\pgfqpoint{4.425477in}{0.468066in}}%
+\pgfpathlineto{\pgfqpoint{4.506410in}{0.465042in}}%
+\pgfpathlineto{\pgfqpoint{4.619717in}{0.463441in}}%
+\pgfpathlineto{\pgfqpoint{4.862518in}{0.463032in}}%
+\pgfpathlineto{\pgfqpoint{4.968330in}{0.463029in}}%
+\pgfpathlineto{\pgfqpoint{4.968330in}{0.463029in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1534,67 +1496,59 @@
\definecolor{currentstroke}{rgb}{0.890196,0.466667,0.760784}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.495591in}{0.462929in}}%
-\pgfpathlineto{\pgfqpoint{2.471268in}{0.464025in}}%
-\pgfpathlineto{\pgfqpoint{2.768598in}{0.466437in}}%
-\pgfpathlineto{\pgfqpoint{2.956906in}{0.470116in}}%
-\pgfpathlineto{\pgfqpoint{3.095660in}{0.474959in}}%
-\pgfpathlineto{\pgfqpoint{3.204681in}{0.480790in}}%
-\pgfpathlineto{\pgfqpoint{3.303790in}{0.488293in}}%
-\pgfpathlineto{\pgfqpoint{3.392989in}{0.497427in}}%
-\pgfpathlineto{\pgfqpoint{3.472277in}{0.507947in}}%
-\pgfpathlineto{\pgfqpoint{3.541654in}{0.519399in}}%
-\pgfpathlineto{\pgfqpoint{3.611031in}{0.533308in}}%
-\pgfpathlineto{\pgfqpoint{3.670497in}{0.547452in}}%
-\pgfpathlineto{\pgfqpoint{3.729962in}{0.563864in}}%
-\pgfpathlineto{\pgfqpoint{3.789428in}{0.582722in}}%
-\pgfpathlineto{\pgfqpoint{3.848894in}{0.604157in}}%
-\pgfpathlineto{\pgfqpoint{3.908360in}{0.628222in}}%
-\pgfpathlineto{\pgfqpoint{3.967826in}{0.654867in}}%
-\pgfpathlineto{\pgfqpoint{4.027292in}{0.683903in}}%
-\pgfpathlineto{\pgfqpoint{4.096669in}{0.720312in}}%
-\pgfpathlineto{\pgfqpoint{4.195778in}{0.775198in}}%
-\pgfpathlineto{\pgfqpoint{4.294888in}{0.829577in}}%
-\pgfpathlineto{\pgfqpoint{4.354354in}{0.859560in}}%
-\pgfpathlineto{\pgfqpoint{4.403909in}{0.881704in}}%
-\pgfpathlineto{\pgfqpoint{4.443553in}{0.896891in}}%
-\pgfpathlineto{\pgfqpoint{4.483197in}{0.909316in}}%
-\pgfpathlineto{\pgfqpoint{4.512930in}{0.916546in}}%
-\pgfpathlineto{\pgfqpoint{4.542663in}{0.921786in}}%
-\pgfpathlineto{\pgfqpoint{4.572395in}{0.924875in}}%
-\pgfpathlineto{\pgfqpoint{4.602128in}{0.925676in}}%
-\pgfpathlineto{\pgfqpoint{4.631861in}{0.924079in}}%
-\pgfpathlineto{\pgfqpoint{4.661594in}{0.920009in}}%
-\pgfpathlineto{\pgfqpoint{4.691327in}{0.913428in}}%
-\pgfpathlineto{\pgfqpoint{4.721060in}{0.904341in}}%
-\pgfpathlineto{\pgfqpoint{4.750793in}{0.892796in}}%
-\pgfpathlineto{\pgfqpoint{4.780526in}{0.878890in}}%
-\pgfpathlineto{\pgfqpoint{4.810259in}{0.862765in}}%
-\pgfpathlineto{\pgfqpoint{4.849903in}{0.838144in}}%
-\pgfpathlineto{\pgfqpoint{4.889547in}{0.810481in}}%
-\pgfpathlineto{\pgfqpoint{4.939102in}{0.772667in}}%
-\pgfpathlineto{\pgfqpoint{5.018389in}{0.708302in}}%
-\pgfpathlineto{\pgfqpoint{5.087766in}{0.652562in}}%
-\pgfpathlineto{\pgfqpoint{5.137321in}{0.615448in}}%
-\pgfpathlineto{\pgfqpoint{5.176965in}{0.588298in}}%
-\pgfpathlineto{\pgfqpoint{5.216609in}{0.563885in}}%
-\pgfpathlineto{\pgfqpoint{5.256253in}{0.542478in}}%
-\pgfpathlineto{\pgfqpoint{5.295897in}{0.524188in}}%
-\pgfpathlineto{\pgfqpoint{5.335541in}{0.508972in}}%
-\pgfpathlineto{\pgfqpoint{5.375185in}{0.496660in}}%
-\pgfpathlineto{\pgfqpoint{5.414829in}{0.486979in}}%
-\pgfpathlineto{\pgfqpoint{5.454472in}{0.479592in}}%
-\pgfpathlineto{\pgfqpoint{5.504027in}{0.473022in}}%
-\pgfpathlineto{\pgfqpoint{5.553582in}{0.468740in}}%
-\pgfpathlineto{\pgfqpoint{5.613048in}{0.465717in}}%
-\pgfpathlineto{\pgfqpoint{5.702247in}{0.463717in}}%
-\pgfpathlineto{\pgfqpoint{5.860823in}{0.462977in}}%
-\pgfpathlineto{\pgfqpoint{5.968330in}{0.462934in}}%
-\pgfpathlineto{\pgfqpoint{5.968330in}{0.462934in}}%
+\pgfpathmoveto{\pgfqpoint{0.495591in}{0.463029in}}%
+\pgfpathlineto{\pgfqpoint{2.183615in}{0.464135in}}%
+\pgfpathlineto{\pgfqpoint{2.426416in}{0.466533in}}%
+\pgfpathlineto{\pgfqpoint{2.580190in}{0.470140in}}%
+\pgfpathlineto{\pgfqpoint{2.693497in}{0.474831in}}%
+\pgfpathlineto{\pgfqpoint{2.790617in}{0.481025in}}%
+\pgfpathlineto{\pgfqpoint{2.871551in}{0.488343in}}%
+\pgfpathlineto{\pgfqpoint{2.944391in}{0.497127in}}%
+\pgfpathlineto{\pgfqpoint{3.009138in}{0.507095in}}%
+\pgfpathlineto{\pgfqpoint{3.073885in}{0.519481in}}%
+\pgfpathlineto{\pgfqpoint{3.130538in}{0.532584in}}%
+\pgfpathlineto{\pgfqpoint{3.187192in}{0.548022in}}%
+\pgfpathlineto{\pgfqpoint{3.243846in}{0.565946in}}%
+\pgfpathlineto{\pgfqpoint{3.300499in}{0.586406in}}%
+\pgfpathlineto{\pgfqpoint{3.357153in}{0.609309in}}%
+\pgfpathlineto{\pgfqpoint{3.421900in}{0.638093in}}%
+\pgfpathlineto{\pgfqpoint{3.510927in}{0.680646in}}%
+\pgfpathlineto{\pgfqpoint{3.608047in}{0.726851in}}%
+\pgfpathlineto{\pgfqpoint{3.656607in}{0.747750in}}%
+\pgfpathlineto{\pgfqpoint{3.697074in}{0.763007in}}%
+\pgfpathlineto{\pgfqpoint{3.737541in}{0.775597in}}%
+\pgfpathlineto{\pgfqpoint{3.769914in}{0.783310in}}%
+\pgfpathlineto{\pgfqpoint{3.802288in}{0.788586in}}%
+\pgfpathlineto{\pgfqpoint{3.834661in}{0.791152in}}%
+\pgfpathlineto{\pgfqpoint{3.858941in}{0.791160in}}%
+\pgfpathlineto{\pgfqpoint{3.883221in}{0.789447in}}%
+\pgfpathlineto{\pgfqpoint{3.907501in}{0.785967in}}%
+\pgfpathlineto{\pgfqpoint{3.931781in}{0.780704in}}%
+\pgfpathlineto{\pgfqpoint{3.956061in}{0.773670in}}%
+\pgfpathlineto{\pgfqpoint{3.988435in}{0.761621in}}%
+\pgfpathlineto{\pgfqpoint{4.020808in}{0.746711in}}%
+\pgfpathlineto{\pgfqpoint{4.053182in}{0.729243in}}%
+\pgfpathlineto{\pgfqpoint{4.093649in}{0.704427in}}%
+\pgfpathlineto{\pgfqpoint{4.142209in}{0.671559in}}%
+\pgfpathlineto{\pgfqpoint{4.271703in}{0.581509in}}%
+\pgfpathlineto{\pgfqpoint{4.312169in}{0.556622in}}%
+\pgfpathlineto{\pgfqpoint{4.352636in}{0.534657in}}%
+\pgfpathlineto{\pgfqpoint{4.385010in}{0.519469in}}%
+\pgfpathlineto{\pgfqpoint{4.417383in}{0.506492in}}%
+\pgfpathlineto{\pgfqpoint{4.449757in}{0.495696in}}%
+\pgfpathlineto{\pgfqpoint{4.482130in}{0.486961in}}%
+\pgfpathlineto{\pgfqpoint{4.522597in}{0.478640in}}%
+\pgfpathlineto{\pgfqpoint{4.563064in}{0.472760in}}%
+\pgfpathlineto{\pgfqpoint{4.611624in}{0.468203in}}%
+\pgfpathlineto{\pgfqpoint{4.668277in}{0.465277in}}%
+\pgfpathlineto{\pgfqpoint{4.749211in}{0.463588in}}%
+\pgfpathlineto{\pgfqpoint{4.911078in}{0.463044in}}%
+\pgfpathlineto{\pgfqpoint{4.968330in}{0.463032in}}%
+\pgfpathlineto{\pgfqpoint{4.968330in}{0.463032in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1602,98 +1556,83 @@
\definecolor{currentstroke}{rgb}{0.498039,0.498039,0.498039}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.495591in}{0.462929in}}%
-\pgfpathlineto{\pgfqpoint{2.818153in}{0.463995in}}%
-\pgfpathlineto{\pgfqpoint{3.046105in}{0.466388in}}%
-\pgfpathlineto{\pgfqpoint{3.184859in}{0.469896in}}%
-\pgfpathlineto{\pgfqpoint{3.293879in}{0.474873in}}%
-\pgfpathlineto{\pgfqpoint{3.373167in}{0.480485in}}%
-\pgfpathlineto{\pgfqpoint{3.442544in}{0.487386in}}%
-\pgfpathlineto{\pgfqpoint{3.502010in}{0.495280in}}%
-\pgfpathlineto{\pgfqpoint{3.561476in}{0.505532in}}%
-\pgfpathlineto{\pgfqpoint{3.611031in}{0.516317in}}%
-\pgfpathlineto{\pgfqpoint{3.660586in}{0.529592in}}%
-\pgfpathlineto{\pgfqpoint{3.700230in}{0.542330in}}%
-\pgfpathlineto{\pgfqpoint{3.739873in}{0.557255in}}%
-\pgfpathlineto{\pgfqpoint{3.779517in}{0.574674in}}%
-\pgfpathlineto{\pgfqpoint{3.819161in}{0.594923in}}%
-\pgfpathlineto{\pgfqpoint{3.858805in}{0.618360in}}%
-\pgfpathlineto{\pgfqpoint{3.888538in}{0.638254in}}%
-\pgfpathlineto{\pgfqpoint{3.918271in}{0.660316in}}%
-\pgfpathlineto{\pgfqpoint{3.948004in}{0.684710in}}%
-\pgfpathlineto{\pgfqpoint{3.977737in}{0.711599in}}%
-\pgfpathlineto{\pgfqpoint{4.007470in}{0.741144in}}%
-\pgfpathlineto{\pgfqpoint{4.037203in}{0.773494in}}%
-\pgfpathlineto{\pgfqpoint{4.066936in}{0.808789in}}%
-\pgfpathlineto{\pgfqpoint{4.096669in}{0.847148in}}%
-\pgfpathlineto{\pgfqpoint{4.126402in}{0.888669in}}%
-\pgfpathlineto{\pgfqpoint{4.156134in}{0.933417in}}%
-\pgfpathlineto{\pgfqpoint{4.185867in}{0.981421in}}%
-\pgfpathlineto{\pgfqpoint{4.225511in}{1.050459in}}%
-\pgfpathlineto{\pgfqpoint{4.265155in}{1.125065in}}%
-\pgfpathlineto{\pgfqpoint{4.304799in}{1.204854in}}%
-\pgfpathlineto{\pgfqpoint{4.344443in}{1.289207in}}%
-\pgfpathlineto{\pgfqpoint{4.393998in}{1.399695in}}%
-\pgfpathlineto{\pgfqpoint{4.552574in}{1.759760in}}%
-\pgfpathlineto{\pgfqpoint{4.592217in}{1.841212in}}%
-\pgfpathlineto{\pgfqpoint{4.621950in}{1.897092in}}%
-\pgfpathlineto{\pgfqpoint{4.651683in}{1.947299in}}%
-\pgfpathlineto{\pgfqpoint{4.671505in}{1.977081in}}%
-\pgfpathlineto{\pgfqpoint{4.691327in}{2.003543in}}%
-\pgfpathlineto{\pgfqpoint{4.711149in}{2.026379in}}%
-\pgfpathlineto{\pgfqpoint{4.730971in}{2.045301in}}%
-\pgfpathlineto{\pgfqpoint{4.750793in}{2.060038in}}%
-\pgfpathlineto{\pgfqpoint{4.770615in}{2.070346in}}%
-\pgfpathlineto{\pgfqpoint{4.780526in}{2.073771in}}%
-\pgfpathlineto{\pgfqpoint{4.790437in}{2.076010in}}%
-\pgfpathlineto{\pgfqpoint{4.800348in}{2.077043in}}%
-\pgfpathlineto{\pgfqpoint{4.810259in}{2.076849in}}%
-\pgfpathlineto{\pgfqpoint{4.820170in}{2.075412in}}%
-\pgfpathlineto{\pgfqpoint{4.830081in}{2.072718in}}%
-\pgfpathlineto{\pgfqpoint{4.839992in}{2.068757in}}%
-\pgfpathlineto{\pgfqpoint{4.849903in}{2.063520in}}%
-\pgfpathlineto{\pgfqpoint{4.869725in}{2.049198in}}%
-\pgfpathlineto{\pgfqpoint{4.889547in}{2.029750in}}%
-\pgfpathlineto{\pgfqpoint{4.909369in}{2.005223in}}%
-\pgfpathlineto{\pgfqpoint{4.929191in}{1.975717in}}%
-\pgfpathlineto{\pgfqpoint{4.949013in}{1.941388in}}%
-\pgfpathlineto{\pgfqpoint{4.968835in}{1.902444in}}%
-\pgfpathlineto{\pgfqpoint{4.988657in}{1.859148in}}%
-\pgfpathlineto{\pgfqpoint{5.008478in}{1.811813in}}%
-\pgfpathlineto{\pgfqpoint{5.038211in}{1.734038in}}%
-\pgfpathlineto{\pgfqpoint{5.067944in}{1.649387in}}%
-\pgfpathlineto{\pgfqpoint{5.107588in}{1.528553in}}%
-\pgfpathlineto{\pgfqpoint{5.176965in}{1.306635in}}%
-\pgfpathlineto{\pgfqpoint{5.226520in}{1.150253in}}%
-\pgfpathlineto{\pgfqpoint{5.266164in}{1.032076in}}%
-\pgfpathlineto{\pgfqpoint{5.295897in}{0.949524in}}%
-\pgfpathlineto{\pgfqpoint{5.325630in}{0.873307in}}%
-\pgfpathlineto{\pgfqpoint{5.355363in}{0.804140in}}%
-\pgfpathlineto{\pgfqpoint{5.385096in}{0.742456in}}%
-\pgfpathlineto{\pgfqpoint{5.404918in}{0.705578in}}%
-\pgfpathlineto{\pgfqpoint{5.424740in}{0.672084in}}%
-\pgfpathlineto{\pgfqpoint{5.444561in}{0.641909in}}%
-\pgfpathlineto{\pgfqpoint{5.464383in}{0.614949in}}%
-\pgfpathlineto{\pgfqpoint{5.484205in}{0.591063in}}%
-\pgfpathlineto{\pgfqpoint{5.504027in}{0.570083in}}%
-\pgfpathlineto{\pgfqpoint{5.523849in}{0.551814in}}%
-\pgfpathlineto{\pgfqpoint{5.543671in}{0.536048in}}%
-\pgfpathlineto{\pgfqpoint{5.563493in}{0.522565in}}%
-\pgfpathlineto{\pgfqpoint{5.583315in}{0.511142in}}%
-\pgfpathlineto{\pgfqpoint{5.603137in}{0.501556in}}%
-\pgfpathlineto{\pgfqpoint{5.632870in}{0.490147in}}%
-\pgfpathlineto{\pgfqpoint{5.662603in}{0.481694in}}%
-\pgfpathlineto{\pgfqpoint{5.692336in}{0.475575in}}%
-\pgfpathlineto{\pgfqpoint{5.731980in}{0.470129in}}%
-\pgfpathlineto{\pgfqpoint{5.781535in}{0.466273in}}%
-\pgfpathlineto{\pgfqpoint{5.841001in}{0.464136in}}%
-\pgfpathlineto{\pgfqpoint{5.940110in}{0.463098in}}%
-\pgfpathlineto{\pgfqpoint{5.968330in}{0.463020in}}%
-\pgfpathlineto{\pgfqpoint{5.968330in}{0.463020in}}%
+\pgfpathmoveto{\pgfqpoint{0.495591in}{0.463029in}}%
+\pgfpathlineto{\pgfqpoint{2.450696in}{0.464115in}}%
+\pgfpathlineto{\pgfqpoint{2.636843in}{0.466518in}}%
+\pgfpathlineto{\pgfqpoint{2.750150in}{0.470003in}}%
+\pgfpathlineto{\pgfqpoint{2.839177in}{0.474903in}}%
+\pgfpathlineto{\pgfqpoint{2.912018in}{0.481215in}}%
+\pgfpathlineto{\pgfqpoint{2.968671in}{0.488201in}}%
+\pgfpathlineto{\pgfqpoint{3.017231in}{0.496125in}}%
+\pgfpathlineto{\pgfqpoint{3.065792in}{0.506326in}}%
+\pgfpathlineto{\pgfqpoint{3.106258in}{0.516967in}}%
+\pgfpathlineto{\pgfqpoint{3.146725in}{0.529953in}}%
+\pgfpathlineto{\pgfqpoint{3.187192in}{0.545706in}}%
+\pgfpathlineto{\pgfqpoint{3.219565in}{0.560613in}}%
+\pgfpathlineto{\pgfqpoint{3.251939in}{0.577848in}}%
+\pgfpathlineto{\pgfqpoint{3.284312in}{0.597679in}}%
+\pgfpathlineto{\pgfqpoint{3.316686in}{0.620382in}}%
+\pgfpathlineto{\pgfqpoint{3.349059in}{0.646232in}}%
+\pgfpathlineto{\pgfqpoint{3.381433in}{0.675495in}}%
+\pgfpathlineto{\pgfqpoint{3.413806in}{0.708415in}}%
+\pgfpathlineto{\pgfqpoint{3.446180in}{0.745199in}}%
+\pgfpathlineto{\pgfqpoint{3.478553in}{0.785999in}}%
+\pgfpathlineto{\pgfqpoint{3.510927in}{0.830897in}}%
+\pgfpathlineto{\pgfqpoint{3.543300in}{0.879879in}}%
+\pgfpathlineto{\pgfqpoint{3.575673in}{0.932812in}}%
+\pgfpathlineto{\pgfqpoint{3.616140in}{1.004102in}}%
+\pgfpathlineto{\pgfqpoint{3.656607in}{1.080220in}}%
+\pgfpathlineto{\pgfqpoint{3.713261in}{1.192198in}}%
+\pgfpathlineto{\pgfqpoint{3.794194in}{1.352621in}}%
+\pgfpathlineto{\pgfqpoint{3.826568in}{1.412630in}}%
+\pgfpathlineto{\pgfqpoint{3.858941in}{1.467755in}}%
+\pgfpathlineto{\pgfqpoint{3.883221in}{1.504805in}}%
+\pgfpathlineto{\pgfqpoint{3.907501in}{1.537314in}}%
+\pgfpathlineto{\pgfqpoint{3.923688in}{1.556088in}}%
+\pgfpathlineto{\pgfqpoint{3.939875in}{1.572291in}}%
+\pgfpathlineto{\pgfqpoint{3.956061in}{1.585716in}}%
+\pgfpathlineto{\pgfqpoint{3.972248in}{1.596172in}}%
+\pgfpathlineto{\pgfqpoint{3.988435in}{1.603485in}}%
+\pgfpathlineto{\pgfqpoint{4.004622in}{1.607504in}}%
+\pgfpathlineto{\pgfqpoint{4.020808in}{1.608099in}}%
+\pgfpathlineto{\pgfqpoint{4.036995in}{1.605168in}}%
+\pgfpathlineto{\pgfqpoint{4.053182in}{1.598642in}}%
+\pgfpathlineto{\pgfqpoint{4.069369in}{1.588481in}}%
+\pgfpathlineto{\pgfqpoint{4.085555in}{1.574683in}}%
+\pgfpathlineto{\pgfqpoint{4.101742in}{1.557281in}}%
+\pgfpathlineto{\pgfqpoint{4.117929in}{1.536346in}}%
+\pgfpathlineto{\pgfqpoint{4.134115in}{1.511990in}}%
+\pgfpathlineto{\pgfqpoint{4.150302in}{1.484359in}}%
+\pgfpathlineto{\pgfqpoint{4.174582in}{1.437192in}}%
+\pgfpathlineto{\pgfqpoint{4.198862in}{1.383863in}}%
+\pgfpathlineto{\pgfqpoint{4.223142in}{1.325312in}}%
+\pgfpathlineto{\pgfqpoint{4.255516in}{1.240991in}}%
+\pgfpathlineto{\pgfqpoint{4.304076in}{1.106891in}}%
+\pgfpathlineto{\pgfqpoint{4.360730in}{0.950683in}}%
+\pgfpathlineto{\pgfqpoint{4.393103in}{0.866837in}}%
+\pgfpathlineto{\pgfqpoint{4.425477in}{0.789713in}}%
+\pgfpathlineto{\pgfqpoint{4.449757in}{0.737258in}}%
+\pgfpathlineto{\pgfqpoint{4.474037in}{0.689930in}}%
+\pgfpathlineto{\pgfqpoint{4.498317in}{0.647968in}}%
+\pgfpathlineto{\pgfqpoint{4.522597in}{0.611423in}}%
+\pgfpathlineto{\pgfqpoint{4.546877in}{0.580171in}}%
+\pgfpathlineto{\pgfqpoint{4.571157in}{0.553940in}}%
+\pgfpathlineto{\pgfqpoint{4.595437in}{0.532342in}}%
+\pgfpathlineto{\pgfqpoint{4.619717in}{0.514906in}}%
+\pgfpathlineto{\pgfqpoint{4.643997in}{0.501116in}}%
+\pgfpathlineto{\pgfqpoint{4.668277in}{0.490435in}}%
+\pgfpathlineto{\pgfqpoint{4.692557in}{0.482340in}}%
+\pgfpathlineto{\pgfqpoint{4.716838in}{0.476343in}}%
+\pgfpathlineto{\pgfqpoint{4.749211in}{0.470855in}}%
+\pgfpathlineto{\pgfqpoint{4.789678in}{0.466820in}}%
+\pgfpathlineto{\pgfqpoint{4.838238in}{0.464474in}}%
+\pgfpathlineto{\pgfqpoint{4.919172in}{0.463254in}}%
+\pgfpathlineto{\pgfqpoint{4.968330in}{0.463090in}}%
+\pgfpathlineto{\pgfqpoint{4.968330in}{0.463090in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
-\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}%
+\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}%
\pgfusepath{clip}%
\pgfsetrectcap%
\pgfsetroundjoin%
@@ -1701,103 +1640,97 @@
\definecolor{currentstroke}{rgb}{0.737255,0.741176,0.133333}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.495591in}{0.462929in}}%
-\pgfpathlineto{\pgfqpoint{2.937084in}{0.464006in}}%
-\pgfpathlineto{\pgfqpoint{3.135304in}{0.466327in}}%
-\pgfpathlineto{\pgfqpoint{3.264147in}{0.469988in}}%
-\pgfpathlineto{\pgfqpoint{3.353345in}{0.474540in}}%
-\pgfpathlineto{\pgfqpoint{3.432633in}{0.480876in}}%
-\pgfpathlineto{\pgfqpoint{3.492099in}{0.487691in}}%
-\pgfpathlineto{\pgfqpoint{3.541654in}{0.495200in}}%
-\pgfpathlineto{\pgfqpoint{3.591209in}{0.504849in}}%
-\pgfpathlineto{\pgfqpoint{3.630853in}{0.514478in}}%
-\pgfpathlineto{\pgfqpoint{3.670497in}{0.526166in}}%
-\pgfpathlineto{\pgfqpoint{3.710140in}{0.540311in}}%
-\pgfpathlineto{\pgfqpoint{3.749784in}{0.557367in}}%
-\pgfpathlineto{\pgfqpoint{3.779517in}{0.572382in}}%
-\pgfpathlineto{\pgfqpoint{3.809250in}{0.589577in}}%
-\pgfpathlineto{\pgfqpoint{3.838983in}{0.609220in}}%
-\pgfpathlineto{\pgfqpoint{3.868716in}{0.631609in}}%
-\pgfpathlineto{\pgfqpoint{3.898449in}{0.657061in}}%
-\pgfpathlineto{\pgfqpoint{3.928182in}{0.685919in}}%
-\pgfpathlineto{\pgfqpoint{3.957915in}{0.718548in}}%
-\pgfpathlineto{\pgfqpoint{3.987648in}{0.755332in}}%
-\pgfpathlineto{\pgfqpoint{4.017381in}{0.796675in}}%
-\pgfpathlineto{\pgfqpoint{4.047114in}{0.842988in}}%
-\pgfpathlineto{\pgfqpoint{4.076847in}{0.894694in}}%
-\pgfpathlineto{\pgfqpoint{4.106580in}{0.952212in}}%
-\pgfpathlineto{\pgfqpoint{4.136313in}{1.015953in}}%
-\pgfpathlineto{\pgfqpoint{4.166045in}{1.086305in}}%
-\pgfpathlineto{\pgfqpoint{4.195778in}{1.163625in}}%
-\pgfpathlineto{\pgfqpoint{4.225511in}{1.248219in}}%
-\pgfpathlineto{\pgfqpoint{4.255244in}{1.340329in}}%
-\pgfpathlineto{\pgfqpoint{4.284977in}{1.440111in}}%
-\pgfpathlineto{\pgfqpoint{4.314710in}{1.547619in}}%
-\pgfpathlineto{\pgfqpoint{4.344443in}{1.662776in}}%
-\pgfpathlineto{\pgfqpoint{4.374176in}{1.785360in}}%
-\pgfpathlineto{\pgfqpoint{4.413820in}{1.959646in}}%
-\pgfpathlineto{\pgfqpoint{4.453464in}{2.144925in}}%
-\pgfpathlineto{\pgfqpoint{4.503019in}{2.388594in}}%
-\pgfpathlineto{\pgfqpoint{4.651683in}{3.133119in}}%
-\pgfpathlineto{\pgfqpoint{4.681416in}{3.268824in}}%
-\pgfpathlineto{\pgfqpoint{4.711149in}{3.394389in}}%
-\pgfpathlineto{\pgfqpoint{4.730971in}{3.471141in}}%
-\pgfpathlineto{\pgfqpoint{4.750793in}{3.541396in}}%
-\pgfpathlineto{\pgfqpoint{4.770615in}{3.604368in}}%
-\pgfpathlineto{\pgfqpoint{4.790437in}{3.659293in}}%
-\pgfpathlineto{\pgfqpoint{4.810259in}{3.705443in}}%
-\pgfpathlineto{\pgfqpoint{4.830081in}{3.742138in}}%
-\pgfpathlineto{\pgfqpoint{4.839992in}{3.756743in}}%
-\pgfpathlineto{\pgfqpoint{4.849903in}{3.768757in}}%
-\pgfpathlineto{\pgfqpoint{4.859814in}{3.778115in}}%
-\pgfpathlineto{\pgfqpoint{4.869725in}{3.784755in}}%
-\pgfpathlineto{\pgfqpoint{4.879636in}{3.788625in}}%
-\pgfpathlineto{\pgfqpoint{4.889547in}{3.789674in}}%
-\pgfpathlineto{\pgfqpoint{4.899458in}{3.787861in}}%
-\pgfpathlineto{\pgfqpoint{4.909369in}{3.783151in}}%
-\pgfpathlineto{\pgfqpoint{4.919280in}{3.775517in}}%
-\pgfpathlineto{\pgfqpoint{4.929191in}{3.764937in}}%
-\pgfpathlineto{\pgfqpoint{4.939102in}{3.751399in}}%
-\pgfpathlineto{\pgfqpoint{4.949013in}{3.734898in}}%
-\pgfpathlineto{\pgfqpoint{4.958924in}{3.715438in}}%
-\pgfpathlineto{\pgfqpoint{4.968835in}{3.693031in}}%
-\pgfpathlineto{\pgfqpoint{4.988657in}{3.639464in}}%
-\pgfpathlineto{\pgfqpoint{5.008478in}{3.574464in}}%
-\pgfpathlineto{\pgfqpoint{5.028300in}{3.498437in}}%
-\pgfpathlineto{\pgfqpoint{5.048122in}{3.411925in}}%
-\pgfpathlineto{\pgfqpoint{5.067944in}{3.315604in}}%
-\pgfpathlineto{\pgfqpoint{5.087766in}{3.210276in}}%
-\pgfpathlineto{\pgfqpoint{5.117499in}{3.037430in}}%
-\pgfpathlineto{\pgfqpoint{5.147232in}{2.849920in}}%
-\pgfpathlineto{\pgfqpoint{5.186876in}{2.583888in}}%
-\pgfpathlineto{\pgfqpoint{5.305808in}{1.769634in}}%
-\pgfpathlineto{\pgfqpoint{5.335541in}{1.582788in}}%
-\pgfpathlineto{\pgfqpoint{5.365274in}{1.408916in}}%
-\pgfpathlineto{\pgfqpoint{5.395007in}{1.250118in}}%
-\pgfpathlineto{\pgfqpoint{5.424740in}{1.107792in}}%
-\pgfpathlineto{\pgfqpoint{5.444561in}{1.022434in}}%
-\pgfpathlineto{\pgfqpoint{5.464383in}{0.944767in}}%
-\pgfpathlineto{\pgfqpoint{5.484205in}{0.874710in}}%
-\pgfpathlineto{\pgfqpoint{5.504027in}{0.812074in}}%
-\pgfpathlineto{\pgfqpoint{5.523849in}{0.756577in}}%
-\pgfpathlineto{\pgfqpoint{5.543671in}{0.707851in}}%
-\pgfpathlineto{\pgfqpoint{5.563493in}{0.665468in}}%
-\pgfpathlineto{\pgfqpoint{5.583315in}{0.628950in}}%
-\pgfpathlineto{\pgfqpoint{5.603137in}{0.597790in}}%
-\pgfpathlineto{\pgfqpoint{5.622959in}{0.571464in}}%
-\pgfpathlineto{\pgfqpoint{5.642781in}{0.549445in}}%
-\pgfpathlineto{\pgfqpoint{5.662603in}{0.531218in}}%
-\pgfpathlineto{\pgfqpoint{5.682425in}{0.516289in}}%
-\pgfpathlineto{\pgfqpoint{5.702247in}{0.504192in}}%
-\pgfpathlineto{\pgfqpoint{5.722069in}{0.494499in}}%
-\pgfpathlineto{\pgfqpoint{5.741891in}{0.486818in}}%
-\pgfpathlineto{\pgfqpoint{5.771624in}{0.478324in}}%
-\pgfpathlineto{\pgfqpoint{5.801357in}{0.472590in}}%
-\pgfpathlineto{\pgfqpoint{5.841001in}{0.467901in}}%
-\pgfpathlineto{\pgfqpoint{5.890555in}{0.464943in}}%
-\pgfpathlineto{\pgfqpoint{5.959932in}{0.463420in}}%
-\pgfpathlineto{\pgfqpoint{5.968330in}{0.463339in}}%
-\pgfpathlineto{\pgfqpoint{5.968330in}{0.463339in}}%
+\pgfpathmoveto{\pgfqpoint{0.495591in}{0.463029in}}%
+\pgfpathlineto{\pgfqpoint{2.539723in}{0.464110in}}%
+\pgfpathlineto{\pgfqpoint{2.701590in}{0.466413in}}%
+\pgfpathlineto{\pgfqpoint{2.806804in}{0.470014in}}%
+\pgfpathlineto{\pgfqpoint{2.879644in}{0.474456in}}%
+\pgfpathlineto{\pgfqpoint{2.944391in}{0.480597in}}%
+\pgfpathlineto{\pgfqpoint{2.992951in}{0.487162in}}%
+\pgfpathlineto{\pgfqpoint{3.041512in}{0.496020in}}%
+\pgfpathlineto{\pgfqpoint{3.081978in}{0.505671in}}%
+\pgfpathlineto{\pgfqpoint{3.122445in}{0.517931in}}%
+\pgfpathlineto{\pgfqpoint{3.154819in}{0.530032in}}%
+\pgfpathlineto{\pgfqpoint{3.187192in}{0.544571in}}%
+\pgfpathlineto{\pgfqpoint{3.219565in}{0.561971in}}%
+\pgfpathlineto{\pgfqpoint{3.243846in}{0.577182in}}%
+\pgfpathlineto{\pgfqpoint{3.268126in}{0.594489in}}%
+\pgfpathlineto{\pgfqpoint{3.292406in}{0.614130in}}%
+\pgfpathlineto{\pgfqpoint{3.316686in}{0.636359in}}%
+\pgfpathlineto{\pgfqpoint{3.340966in}{0.661444in}}%
+\pgfpathlineto{\pgfqpoint{3.365246in}{0.689666in}}%
+\pgfpathlineto{\pgfqpoint{3.389526in}{0.721316in}}%
+\pgfpathlineto{\pgfqpoint{3.413806in}{0.756693in}}%
+\pgfpathlineto{\pgfqpoint{3.438086in}{0.796094in}}%
+\pgfpathlineto{\pgfqpoint{3.462366in}{0.839815in}}%
+\pgfpathlineto{\pgfqpoint{3.486646in}{0.888136in}}%
+\pgfpathlineto{\pgfqpoint{3.510927in}{0.941320in}}%
+\pgfpathlineto{\pgfqpoint{3.535207in}{0.999597in}}%
+\pgfpathlineto{\pgfqpoint{3.559487in}{1.063156in}}%
+\pgfpathlineto{\pgfqpoint{3.583767in}{1.132129in}}%
+\pgfpathlineto{\pgfqpoint{3.608047in}{1.206579in}}%
+\pgfpathlineto{\pgfqpoint{3.640420in}{1.314316in}}%
+\pgfpathlineto{\pgfqpoint{3.672794in}{1.431406in}}%
+\pgfpathlineto{\pgfqpoint{3.705167in}{1.557128in}}%
+\pgfpathlineto{\pgfqpoint{3.745634in}{1.724589in}}%
+\pgfpathlineto{\pgfqpoint{3.794194in}{1.935989in}}%
+\pgfpathlineto{\pgfqpoint{3.875128in}{2.290253in}}%
+\pgfpathlineto{\pgfqpoint{3.907501in}{2.422413in}}%
+\pgfpathlineto{\pgfqpoint{3.931781in}{2.514109in}}%
+\pgfpathlineto{\pgfqpoint{3.956061in}{2.597344in}}%
+\pgfpathlineto{\pgfqpoint{3.972248in}{2.647190in}}%
+\pgfpathlineto{\pgfqpoint{3.988435in}{2.691868in}}%
+\pgfpathlineto{\pgfqpoint{4.004622in}{2.730837in}}%
+\pgfpathlineto{\pgfqpoint{4.020808in}{2.763580in}}%
+\pgfpathlineto{\pgfqpoint{4.036995in}{2.789615in}}%
+\pgfpathlineto{\pgfqpoint{4.045088in}{2.799977in}}%
+\pgfpathlineto{\pgfqpoint{4.053182in}{2.808501in}}%
+\pgfpathlineto{\pgfqpoint{4.061275in}{2.815140in}}%
+\pgfpathlineto{\pgfqpoint{4.069369in}{2.819852in}}%
+\pgfpathlineto{\pgfqpoint{4.077462in}{2.822597in}}%
+\pgfpathlineto{\pgfqpoint{4.085555in}{2.823342in}}%
+\pgfpathlineto{\pgfqpoint{4.093649in}{2.822055in}}%
+\pgfpathlineto{\pgfqpoint{4.101742in}{2.818714in}}%
+\pgfpathlineto{\pgfqpoint{4.109835in}{2.813297in}}%
+\pgfpathlineto{\pgfqpoint{4.117929in}{2.805791in}}%
+\pgfpathlineto{\pgfqpoint{4.126022in}{2.796185in}}%
+\pgfpathlineto{\pgfqpoint{4.134115in}{2.784478in}}%
+\pgfpathlineto{\pgfqpoint{4.150302in}{2.754774in}}%
+\pgfpathlineto{\pgfqpoint{4.166489in}{2.716768in}}%
+\pgfpathlineto{\pgfqpoint{4.182676in}{2.670651in}}%
+\pgfpathlineto{\pgfqpoint{4.198862in}{2.616710in}}%
+\pgfpathlineto{\pgfqpoint{4.215049in}{2.555330in}}%
+\pgfpathlineto{\pgfqpoint{4.231236in}{2.486991in}}%
+\pgfpathlineto{\pgfqpoint{4.255516in}{2.372700in}}%
+\pgfpathlineto{\pgfqpoint{4.279796in}{2.246306in}}%
+\pgfpathlineto{\pgfqpoint{4.312169in}{2.063479in}}%
+\pgfpathlineto{\pgfqpoint{4.360730in}{1.772547in}}%
+\pgfpathlineto{\pgfqpoint{4.417383in}{1.436040in}}%
+\pgfpathlineto{\pgfqpoint{4.449757in}{1.257564in}}%
+\pgfpathlineto{\pgfqpoint{4.474037in}{1.134203in}}%
+\pgfpathlineto{\pgfqpoint{4.498317in}{1.021536in}}%
+\pgfpathlineto{\pgfqpoint{4.522597in}{0.920557in}}%
+\pgfpathlineto{\pgfqpoint{4.546877in}{0.831763in}}%
+\pgfpathlineto{\pgfqpoint{4.563064in}{0.779370in}}%
+\pgfpathlineto{\pgfqpoint{4.579250in}{0.732319in}}%
+\pgfpathlineto{\pgfqpoint{4.595437in}{0.690441in}}%
+\pgfpathlineto{\pgfqpoint{4.611624in}{0.653503in}}%
+\pgfpathlineto{\pgfqpoint{4.627811in}{0.621223in}}%
+\pgfpathlineto{\pgfqpoint{4.643997in}{0.593277in}}%
+\pgfpathlineto{\pgfqpoint{4.660184in}{0.569314in}}%
+\pgfpathlineto{\pgfqpoint{4.676371in}{0.548968in}}%
+\pgfpathlineto{\pgfqpoint{4.692557in}{0.531864in}}%
+\pgfpathlineto{\pgfqpoint{4.708744in}{0.517632in}}%
+\pgfpathlineto{\pgfqpoint{4.724931in}{0.505912in}}%
+\pgfpathlineto{\pgfqpoint{4.741118in}{0.496365in}}%
+\pgfpathlineto{\pgfqpoint{4.765398in}{0.485428in}}%
+\pgfpathlineto{\pgfqpoint{4.789678in}{0.477711in}}%
+\pgfpathlineto{\pgfqpoint{4.813958in}{0.472409in}}%
+\pgfpathlineto{\pgfqpoint{4.846331in}{0.467977in}}%
+\pgfpathlineto{\pgfqpoint{4.886798in}{0.465101in}}%
+\pgfpathlineto{\pgfqpoint{4.943452in}{0.463560in}}%
+\pgfpathlineto{\pgfqpoint{4.968330in}{0.463305in}}%
+\pgfpathlineto{\pgfqpoint{4.968330in}{0.463305in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1808,7 +1741,7 @@
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{0.505591in}{3.905568in}}%
+\pgfpathlineto{\pgfqpoint{0.505591in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1818,8 +1751,8 @@
\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{5.958330in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{5.958330in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{4.958330in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.958330in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1830,7 +1763,7 @@
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463273in}}%
-\pgfpathlineto{\pgfqpoint{5.958330in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.958330in}{0.463273in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1840,8 +1773,8 @@
\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.505591in}{3.905568in}}%
-\pgfpathlineto{\pgfqpoint{5.958330in}{3.905568in}}%
+\pgfpathmoveto{\pgfqpoint{0.505591in}{2.905568in}}%
+\pgfpathlineto{\pgfqpoint{4.958330in}{2.905568in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
@@ -1855,16 +1788,16 @@
\pgfsetstrokecolor{currentstroke}%
\pgfsetstrokeopacity{0.800000}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.602813in}{2.775171in}}%
-\pgfpathlineto{\pgfqpoint{2.688653in}{2.775171in}}%
-\pgfpathquadraticcurveto{\pgfqpoint{2.716431in}{2.775171in}}{\pgfqpoint{2.716431in}{2.802949in}}%
-\pgfpathlineto{\pgfqpoint{2.716431in}{3.808346in}}%
-\pgfpathquadraticcurveto{\pgfqpoint{2.716431in}{3.836124in}}{\pgfqpoint{2.688653in}{3.836124in}}%
-\pgfpathlineto{\pgfqpoint{0.602813in}{3.836124in}}%
-\pgfpathquadraticcurveto{\pgfqpoint{0.575036in}{3.836124in}}{\pgfqpoint{0.575036in}{3.808346in}}%
-\pgfpathlineto{\pgfqpoint{0.575036in}{2.802949in}}%
-\pgfpathquadraticcurveto{\pgfqpoint{0.575036in}{2.775171in}}{\pgfqpoint{0.602813in}{2.775171in}}%
-\pgfpathlineto{\pgfqpoint{0.602813in}{2.775171in}}%
+\pgfpathmoveto{\pgfqpoint{0.586577in}{1.963948in}}%
+\pgfpathlineto{\pgfqpoint{2.339691in}{1.963948in}}%
+\pgfpathquadraticcurveto{\pgfqpoint{2.362830in}{1.963948in}}{\pgfqpoint{2.362830in}{1.987087in}}%
+\pgfpathlineto{\pgfqpoint{2.362830in}{2.824582in}}%
+\pgfpathquadraticcurveto{\pgfqpoint{2.362830in}{2.847721in}}{\pgfqpoint{2.339691in}{2.847721in}}%
+\pgfpathlineto{\pgfqpoint{0.586577in}{2.847721in}}%
+\pgfpathquadraticcurveto{\pgfqpoint{0.563438in}{2.847721in}}{\pgfqpoint{0.563438in}{2.824582in}}%
+\pgfpathlineto{\pgfqpoint{0.563438in}{1.987087in}}%
+\pgfpathquadraticcurveto{\pgfqpoint{0.563438in}{1.963948in}}{\pgfqpoint{0.586577in}{1.963948in}}%
+\pgfpathlineto{\pgfqpoint{0.586577in}{1.963948in}}%
\pgfpathclose%
\pgfusepath{stroke,fill}%
\end{pgfscope}%
@@ -1875,16 +1808,16 @@
\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.630591in}{3.723657in}}%
-\pgfpathlineto{\pgfqpoint{0.769480in}{3.723657in}}%
-\pgfpathlineto{\pgfqpoint{0.908369in}{3.723657in}}%
+\pgfpathmoveto{\pgfqpoint{0.609716in}{2.754036in}}%
+\pgfpathlineto{\pgfqpoint{0.725411in}{2.754036in}}%
+\pgfpathlineto{\pgfqpoint{0.841105in}{2.754036in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=1.019480in,y=3.675045in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z=-1.0\)}%
+\pgftext[x=0.933661in,y=2.713543in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z=-1.0\)}%
\end{pgfscope}%
\begin{pgfscope}%
\pgfsetrectcap%
@@ -1893,16 +1826,16 @@
\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.630591in}{3.519799in}}%
-\pgfpathlineto{\pgfqpoint{0.769480in}{3.519799in}}%
-\pgfpathlineto{\pgfqpoint{0.908369in}{3.519799in}}%
+\pgfpathmoveto{\pgfqpoint{0.609716in}{2.584223in}}%
+\pgfpathlineto{\pgfqpoint{0.725411in}{2.584223in}}%
+\pgfpathlineto{\pgfqpoint{0.841105in}{2.584223in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=1.019480in,y=3.471188in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z=-0.5\)}%
+\pgftext[x=0.933661in,y=2.543730in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z=-0.5\)}%
\end{pgfscope}%
\begin{pgfscope}%
\pgfsetrectcap%
@@ -1911,16 +1844,16 @@
\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.630591in}{3.315942in}}%
-\pgfpathlineto{\pgfqpoint{0.769480in}{3.315942in}}%
-\pgfpathlineto{\pgfqpoint{0.908369in}{3.315942in}}%
+\pgfpathmoveto{\pgfqpoint{0.609716in}{2.414410in}}%
+\pgfpathlineto{\pgfqpoint{0.725411in}{2.414410in}}%
+\pgfpathlineto{\pgfqpoint{0.841105in}{2.414410in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=1.019480in,y=3.267331in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z=0.0\)}%
+\pgftext[x=0.933661in,y=2.373917in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 0.0\)}%
\end{pgfscope}%
\begin{pgfscope}%
\pgfsetrectcap%
@@ -1929,16 +1862,16 @@
\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.630591in}{3.112085in}}%
-\pgfpathlineto{\pgfqpoint{0.769480in}{3.112085in}}%
-\pgfpathlineto{\pgfqpoint{0.908369in}{3.112085in}}%
+\pgfpathmoveto{\pgfqpoint{0.609716in}{2.244597in}}%
+\pgfpathlineto{\pgfqpoint{0.725411in}{2.244597in}}%
+\pgfpathlineto{\pgfqpoint{0.841105in}{2.244597in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=1.019480in,y=3.063474in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z=0.5\)}%
+\pgftext[x=0.933661in,y=2.204104in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 0.5\)}%
\end{pgfscope}%
\begin{pgfscope}%
\pgfsetrectcap%
@@ -1947,16 +1880,16 @@
\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{0.630591in}{2.908228in}}%
-\pgfpathlineto{\pgfqpoint{0.769480in}{2.908228in}}%
-\pgfpathlineto{\pgfqpoint{0.908369in}{2.908228in}}%
+\pgfpathmoveto{\pgfqpoint{0.609716in}{2.074784in}}%
+\pgfpathlineto{\pgfqpoint{0.725411in}{2.074784in}}%
+\pgfpathlineto{\pgfqpoint{0.841105in}{2.074784in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=1.019480in,y=2.859617in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z=1.0\)}%
+\pgftext[x=0.933661in,y=2.034291in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 1.0\)}%
\end{pgfscope}%
\begin{pgfscope}%
\pgfsetrectcap%
@@ -1965,16 +1898,16 @@
\definecolor{currentstroke}{rgb}{0.549020,0.337255,0.294118}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{1.838635in}{3.723657in}}%
-\pgfpathlineto{\pgfqpoint{1.977524in}{3.723657in}}%
-\pgfpathlineto{\pgfqpoint{2.116413in}{3.723657in}}%
+\pgfpathmoveto{\pgfqpoint{1.624740in}{2.754036in}}%
+\pgfpathlineto{\pgfqpoint{1.740434in}{2.754036in}}%
+\pgfpathlineto{\pgfqpoint{1.856129in}{2.754036in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=2.227524in,y=3.675045in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z=2.0\)}%
+\pgftext[x=1.948684in,y=2.713543in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 2.0\)}%
\end{pgfscope}%
\begin{pgfscope}%
\pgfsetrectcap%
@@ -1983,16 +1916,16 @@
\definecolor{currentstroke}{rgb}{0.890196,0.466667,0.760784}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{1.838635in}{3.519799in}}%
-\pgfpathlineto{\pgfqpoint{1.977524in}{3.519799in}}%
-\pgfpathlineto{\pgfqpoint{2.116413in}{3.519799in}}%
+\pgfpathmoveto{\pgfqpoint{1.624740in}{2.584223in}}%
+\pgfpathlineto{\pgfqpoint{1.740434in}{2.584223in}}%
+\pgfpathlineto{\pgfqpoint{1.856129in}{2.584223in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=2.227524in,y=3.471188in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z=3.0\)}%
+\pgftext[x=1.948684in,y=2.543730in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 3.0\)}%
\end{pgfscope}%
\begin{pgfscope}%
\pgfsetrectcap%
@@ -2001,16 +1934,16 @@
\definecolor{currentstroke}{rgb}{0.498039,0.498039,0.498039}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{1.838635in}{3.315942in}}%
-\pgfpathlineto{\pgfqpoint{1.977524in}{3.315942in}}%
-\pgfpathlineto{\pgfqpoint{2.116413in}{3.315942in}}%
+\pgfpathmoveto{\pgfqpoint{1.624740in}{2.414410in}}%
+\pgfpathlineto{\pgfqpoint{1.740434in}{2.414410in}}%
+\pgfpathlineto{\pgfqpoint{1.856129in}{2.414410in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=2.227524in,y=3.267331in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z=4.0\)}%
+\pgftext[x=1.948684in,y=2.373917in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 4.0\)}%
\end{pgfscope}%
\begin{pgfscope}%
\pgfsetrectcap%
@@ -2019,16 +1952,16 @@
\definecolor{currentstroke}{rgb}{0.737255,0.741176,0.133333}%
\pgfsetstrokecolor{currentstroke}%
\pgfsetdash{}{0pt}%
-\pgfpathmoveto{\pgfqpoint{1.838635in}{3.112085in}}%
-\pgfpathlineto{\pgfqpoint{1.977524in}{3.112085in}}%
-\pgfpathlineto{\pgfqpoint{2.116413in}{3.112085in}}%
+\pgfpathmoveto{\pgfqpoint{1.624740in}{2.244597in}}%
+\pgfpathlineto{\pgfqpoint{1.740434in}{2.244597in}}%
+\pgfpathlineto{\pgfqpoint{1.856129in}{2.244597in}}%
\pgfusepath{stroke}%
\end{pgfscope}%
\begin{pgfscope}%
\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
\pgfsetstrokecolor{textcolor}%
\pgfsetfillcolor{textcolor}%
-\pgftext[x=2.227524in,y=3.063474in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z=4.5\)}%
+\pgftext[x=1.948684in,y=2.204104in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 4.5\)}%
\end{pgfscope}%
\end{pgfpicture}%
\makeatother%
diff --git a/buch/papers/laguerre/images/rel_error_mirror.pgf b/buch/papers/laguerre/images/rel_error_mirror.pgf
new file mode 100644
index 0000000..de1cd53
--- /dev/null
+++ b/buch/papers/laguerre/images/rel_error_mirror.pgf
@@ -0,0 +1,3054 @@
+%% Creator: Matplotlib, PGF backend
+%%
+%% To include the figure in your LaTeX document, write
+%% \input{<filename>.pgf}
+%%
+%% Make sure the required packages are loaded in your preamble
+%% \usepackage{pgf}
+%%
+%% Also ensure that all the required font packages are loaded; for instance,
+%% the lmodern package is sometimes necessary when using math font.
+%% \usepackage{lmodern}
+%%
+%% Figures using additional raster images can only be included by \input if
+%% they are in the same directory as the main LaTeX file. For loading figures
+%% from other directories you can use the `import` package
+%% \usepackage{import}
+%%
+%% and then include the figures with
+%% \import{<path to file>}{<filename>.pgf}
+%%
+%% Matplotlib used the following preamble
+%% \usepackage{fontspec}
+%% \setmainfont{DejaVuSerif.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}]
+%% \setsansfont{DejaVuSans.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}]
+%% \setmonofont{DejaVuSansMono.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}]
+%%
+\begingroup%
+\makeatletter%
+\begin{pgfpicture}%
+\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{5.000000in}{2.500000in}}%
+\pgfusepath{use as bounding box, clip}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetmiterjoin%
+\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.000000pt}%
+\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{5.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{5.000000in}{2.500000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{2.500000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathclose%
+\pgfusepath{fill}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetmiterjoin%
+\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.000000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetstrokeopacity{0.000000}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.672226in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{2.458330in}}%
+\pgfpathlineto{\pgfqpoint{0.672226in}{2.458330in}}%
+\pgfpathlineto{\pgfqpoint{0.672226in}{0.463273in}}%
+\pgfpathclose%
+\pgfusepath{fill}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.672226in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{0.672226in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.672226in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.672226in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}15}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{1.371849in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.371849in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{1.371849in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=1.371849in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}10}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{2.071472in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{2.071472in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{2.071472in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=2.071472in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}5}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{2.771095in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{2.771095in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{2.771095in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=2.771095in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{3.470718in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{3.470718in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{3.470718in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=3.470718in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{4.170342in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.170342in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{4.170342in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=4.170342in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{4.869965in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{4.869965in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=4.869965in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 15}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.812150in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{0.812150in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.812150in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.952075in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{0.952075in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.952075in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{1.092000in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.092000in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{1.092000in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{1.231924in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.231924in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{1.231924in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{1.511774in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.511774in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{1.511774in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{1.651698in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.651698in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{1.651698in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{1.791623in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.791623in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{1.791623in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{1.931547in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.931547in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{1.931547in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{2.211397in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{2.211397in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{2.211397in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{2.351321in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{2.351321in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{2.351321in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{2.491246in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{2.491246in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{2.491246in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{2.631171in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{2.631171in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{2.631171in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{2.911020in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{2.911020in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{2.911020in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{3.050944in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{3.050944in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{3.050944in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{3.190869in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{3.190869in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{3.190869in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{3.330794in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{3.330794in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{3.330794in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{3.610643in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{3.610643in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{3.610643in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{3.750568in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{3.750568in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{3.750568in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{3.890492in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{3.890492in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{3.890492in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{4.030417in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.030417in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{4.030417in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{4.310266in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.310266in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{4.310266in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{4.450191in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.450191in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{4.450191in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{4.590115in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.590115in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{4.590115in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{4.730040in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.730040in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{4.730040in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=2.771095in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z\)}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.672226in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{0.463273in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.672226in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.231638in, y=0.410512in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-11}}\)}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.672226in}{0.795783in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{0.795783in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.672226in}{0.795783in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.287001in, y=0.743021in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-9}}\)}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.672226in}{1.128292in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{1.128292in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.672226in}{1.128292in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.287001in, y=1.075531in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-7}}\)}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.672226in}{1.460802in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{1.460802in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.672226in}{1.460802in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.287001in, y=1.408040in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-5}}\)}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.672226in}{1.793311in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{1.793311in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.672226in}{1.793311in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.287001in, y=1.740550in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-3}}\)}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.672226in}{2.125821in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{2.125821in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.672226in}{2.125821in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.287001in, y=2.073059in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-1}}\)}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.176083in,y=1.460802in,,bottom,rotate=90.000000]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont Relativer Fehler}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{1.505625pt}%
+\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{1.679275in}{2.468330in}}%
+\pgfpathlineto{\pgfqpoint{1.797935in}{2.410308in}}%
+\pgfpathlineto{\pgfqpoint{1.987307in}{2.317895in}}%
+\pgfpathlineto{\pgfqpoint{2.050431in}{2.284509in}}%
+\pgfpathlineto{\pgfqpoint{2.103034in}{2.254104in}}%
+\pgfpathlineto{\pgfqpoint{2.145117in}{2.227040in}}%
+\pgfpathlineto{\pgfqpoint{2.176679in}{2.204343in}}%
+\pgfpathlineto{\pgfqpoint{2.208241in}{2.178651in}}%
+\pgfpathlineto{\pgfqpoint{2.229282in}{2.159180in}}%
+\pgfpathlineto{\pgfqpoint{2.250323in}{2.137059in}}%
+\pgfpathlineto{\pgfqpoint{2.271364in}{2.111145in}}%
+\pgfpathlineto{\pgfqpoint{2.292406in}{2.079305in}}%
+\pgfpathlineto{\pgfqpoint{2.302926in}{2.059868in}}%
+\pgfpathlineto{\pgfqpoint{2.313447in}{2.036671in}}%
+\pgfpathlineto{\pgfqpoint{2.323968in}{2.007374in}}%
+\pgfpathlineto{\pgfqpoint{2.334488in}{1.966175in}}%
+\pgfpathlineto{\pgfqpoint{2.345009in}{1.888819in}}%
+\pgfpathlineto{\pgfqpoint{2.355530in}{1.852553in}}%
+\pgfpathlineto{\pgfqpoint{2.366050in}{1.935490in}}%
+\pgfpathlineto{\pgfqpoint{2.376571in}{1.966273in}}%
+\pgfpathlineto{\pgfqpoint{2.387092in}{1.982554in}}%
+\pgfpathlineto{\pgfqpoint{2.397612in}{1.991421in}}%
+\pgfpathlineto{\pgfqpoint{2.408133in}{1.995381in}}%
+\pgfpathlineto{\pgfqpoint{2.418654in}{1.995469in}}%
+\pgfpathlineto{\pgfqpoint{2.429174in}{1.992029in}}%
+\pgfpathlineto{\pgfqpoint{2.439695in}{1.984911in}}%
+\pgfpathlineto{\pgfqpoint{2.450215in}{1.973415in}}%
+\pgfpathlineto{\pgfqpoint{2.460736in}{1.955869in}}%
+\pgfpathlineto{\pgfqpoint{2.471257in}{1.928150in}}%
+\pgfpathlineto{\pgfqpoint{2.481777in}{1.876035in}}%
+\pgfpathlineto{\pgfqpoint{2.492298in}{1.718273in}}%
+\pgfpathlineto{\pgfqpoint{2.502819in}{1.891334in}}%
+\pgfpathlineto{\pgfqpoint{2.513339in}{1.936950in}}%
+\pgfpathlineto{\pgfqpoint{2.523860in}{1.962930in}}%
+\pgfpathlineto{\pgfqpoint{2.534381in}{1.979802in}}%
+\pgfpathlineto{\pgfqpoint{2.544901in}{1.990917in}}%
+\pgfpathlineto{\pgfqpoint{2.555422in}{1.997647in}}%
+\pgfpathlineto{\pgfqpoint{2.565943in}{2.000526in}}%
+\pgfpathlineto{\pgfqpoint{2.576463in}{1.999568in}}%
+\pgfpathlineto{\pgfqpoint{2.586984in}{1.994278in}}%
+\pgfpathlineto{\pgfqpoint{2.597505in}{1.983378in}}%
+\pgfpathlineto{\pgfqpoint{2.608025in}{1.963807in}}%
+\pgfpathlineto{\pgfqpoint{2.618546in}{1.926370in}}%
+\pgfpathlineto{\pgfqpoint{2.629066in}{1.802233in}}%
+\pgfpathlineto{\pgfqpoint{2.639587in}{1.906504in}}%
+\pgfpathlineto{\pgfqpoint{2.650108in}{1.968180in}}%
+\pgfpathlineto{\pgfqpoint{2.660628in}{2.002136in}}%
+\pgfpathlineto{\pgfqpoint{2.671149in}{2.025121in}}%
+\pgfpathlineto{\pgfqpoint{2.681670in}{2.041717in}}%
+\pgfpathlineto{\pgfqpoint{2.692190in}{2.053754in}}%
+\pgfpathlineto{\pgfqpoint{2.702711in}{2.062026in}}%
+\pgfpathlineto{\pgfqpoint{2.713232in}{2.066751in}}%
+\pgfpathlineto{\pgfqpoint{2.723752in}{2.067672in}}%
+\pgfpathlineto{\pgfqpoint{2.734273in}{2.063874in}}%
+\pgfpathlineto{\pgfqpoint{2.744794in}{2.053110in}}%
+\pgfpathlineto{\pgfqpoint{2.755314in}{2.029136in}}%
+\pgfpathlineto{\pgfqpoint{2.765835in}{1.962275in}}%
+\pgfpathlineto{\pgfqpoint{2.776356in}{2.287874in}}%
+\pgfpathlineto{\pgfqpoint{2.797397in}{2.268373in}}%
+\pgfpathlineto{\pgfqpoint{2.818438in}{2.244071in}}%
+\pgfpathlineto{\pgfqpoint{2.839479in}{2.213742in}}%
+\pgfpathlineto{\pgfqpoint{2.850000in}{2.195581in}}%
+\pgfpathlineto{\pgfqpoint{2.860521in}{2.174687in}}%
+\pgfpathlineto{\pgfqpoint{2.871041in}{2.150023in}}%
+\pgfpathlineto{\pgfqpoint{2.881562in}{2.119594in}}%
+\pgfpathlineto{\pgfqpoint{2.892083in}{2.078703in}}%
+\pgfpathlineto{\pgfqpoint{2.902603in}{2.010520in}}%
+\pgfpathlineto{\pgfqpoint{2.913124in}{1.900106in}}%
+\pgfpathlineto{\pgfqpoint{2.923645in}{2.018416in}}%
+\pgfpathlineto{\pgfqpoint{2.934165in}{2.050303in}}%
+\pgfpathlineto{\pgfqpoint{2.944686in}{2.064566in}}%
+\pgfpathlineto{\pgfqpoint{2.955207in}{2.070369in}}%
+\pgfpathlineto{\pgfqpoint{2.965727in}{2.070744in}}%
+\pgfpathlineto{\pgfqpoint{2.976248in}{2.066944in}}%
+\pgfpathlineto{\pgfqpoint{2.986769in}{2.059435in}}%
+\pgfpathlineto{\pgfqpoint{2.997289in}{2.048179in}}%
+\pgfpathlineto{\pgfqpoint{3.007810in}{2.032617in}}%
+\pgfpathlineto{\pgfqpoint{3.018330in}{2.011350in}}%
+\pgfpathlineto{\pgfqpoint{3.028851in}{1.981005in}}%
+\pgfpathlineto{\pgfqpoint{3.039372in}{1.931030in}}%
+\pgfpathlineto{\pgfqpoint{3.049892in}{1.753590in}}%
+\pgfpathlineto{\pgfqpoint{3.060413in}{1.906932in}}%
+\pgfpathlineto{\pgfqpoint{3.070934in}{1.954561in}}%
+\pgfpathlineto{\pgfqpoint{3.081454in}{1.977707in}}%
+\pgfpathlineto{\pgfqpoint{3.091975in}{1.990569in}}%
+\pgfpathlineto{\pgfqpoint{3.102496in}{1.997247in}}%
+\pgfpathlineto{\pgfqpoint{3.113016in}{1.999389in}}%
+\pgfpathlineto{\pgfqpoint{3.123537in}{1.997671in}}%
+\pgfpathlineto{\pgfqpoint{3.134058in}{1.992216in}}%
+\pgfpathlineto{\pgfqpoint{3.144578in}{1.982655in}}%
+\pgfpathlineto{\pgfqpoint{3.155099in}{1.967919in}}%
+\pgfpathlineto{\pgfqpoint{3.165620in}{1.945469in}}%
+\pgfpathlineto{\pgfqpoint{3.176140in}{1.908177in}}%
+\pgfpathlineto{\pgfqpoint{3.186661in}{1.818345in}}%
+\pgfpathlineto{\pgfqpoint{3.197182in}{1.847277in}}%
+\pgfpathlineto{\pgfqpoint{3.207702in}{1.916791in}}%
+\pgfpathlineto{\pgfqpoint{3.218223in}{1.949559in}}%
+\pgfpathlineto{\pgfqpoint{3.228743in}{1.969729in}}%
+\pgfpathlineto{\pgfqpoint{3.239264in}{1.982965in}}%
+\pgfpathlineto{\pgfqpoint{3.249785in}{1.991413in}}%
+\pgfpathlineto{\pgfqpoint{3.260305in}{1.995991in}}%
+\pgfpathlineto{\pgfqpoint{3.270826in}{1.996990in}}%
+\pgfpathlineto{\pgfqpoint{3.281347in}{1.994217in}}%
+\pgfpathlineto{\pgfqpoint{3.291867in}{1.986881in}}%
+\pgfpathlineto{\pgfqpoint{3.302388in}{1.973065in}}%
+\pgfpathlineto{\pgfqpoint{3.312909in}{1.947748in}}%
+\pgfpathlineto{\pgfqpoint{3.333950in}{1.836594in}}%
+\pgfpathlineto{\pgfqpoint{3.344471in}{1.948642in}}%
+\pgfpathlineto{\pgfqpoint{3.354991in}{1.995519in}}%
+\pgfpathlineto{\pgfqpoint{3.365512in}{2.026825in}}%
+\pgfpathlineto{\pgfqpoint{3.376033in}{2.050779in}}%
+\pgfpathlineto{\pgfqpoint{3.386553in}{2.070356in}}%
+\pgfpathlineto{\pgfqpoint{3.397074in}{2.086987in}}%
+\pgfpathlineto{\pgfqpoint{3.418115in}{2.114313in}}%
+\pgfpathlineto{\pgfqpoint{3.439156in}{2.136291in}}%
+\pgfpathlineto{\pgfqpoint{3.460198in}{2.154606in}}%
+\pgfpathlineto{\pgfqpoint{3.481239in}{2.170212in}}%
+\pgfpathlineto{\pgfqpoint{3.502280in}{2.183713in}}%
+\pgfpathlineto{\pgfqpoint{3.533842in}{2.200878in}}%
+\pgfpathlineto{\pgfqpoint{3.565404in}{2.215135in}}%
+\pgfpathlineto{\pgfqpoint{3.596966in}{2.227105in}}%
+\pgfpathlineto{\pgfqpoint{3.639049in}{2.240242in}}%
+\pgfpathlineto{\pgfqpoint{3.681131in}{2.250814in}}%
+\pgfpathlineto{\pgfqpoint{3.723214in}{2.259348in}}%
+\pgfpathlineto{\pgfqpoint{3.775817in}{2.267741in}}%
+\pgfpathlineto{\pgfqpoint{3.838941in}{2.275225in}}%
+\pgfpathlineto{\pgfqpoint{3.912586in}{2.281308in}}%
+\pgfpathlineto{\pgfqpoint{3.996751in}{2.285800in}}%
+\pgfpathlineto{\pgfqpoint{4.101957in}{2.289020in}}%
+\pgfpathlineto{\pgfqpoint{4.249246in}{2.291054in}}%
+\pgfpathlineto{\pgfqpoint{4.512263in}{2.291963in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{2.292072in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{2.292072in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{1.505625pt}%
+\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.672226in}{2.410760in}}%
+\pgfpathlineto{\pgfqpoint{1.124614in}{2.270043in}}%
+\pgfpathlineto{\pgfqpoint{1.208779in}{2.240649in}}%
+\pgfpathlineto{\pgfqpoint{1.282423in}{2.212677in}}%
+\pgfpathlineto{\pgfqpoint{1.345547in}{2.186340in}}%
+\pgfpathlineto{\pgfqpoint{1.398151in}{2.162155in}}%
+\pgfpathlineto{\pgfqpoint{1.450754in}{2.135297in}}%
+\pgfpathlineto{\pgfqpoint{1.492836in}{2.111331in}}%
+\pgfpathlineto{\pgfqpoint{1.534919in}{2.084526in}}%
+\pgfpathlineto{\pgfqpoint{1.566481in}{2.062062in}}%
+\pgfpathlineto{\pgfqpoint{1.598043in}{2.037030in}}%
+\pgfpathlineto{\pgfqpoint{1.629605in}{2.008709in}}%
+\pgfpathlineto{\pgfqpoint{1.650646in}{1.987478in}}%
+\pgfpathlineto{\pgfqpoint{1.671687in}{1.963816in}}%
+\pgfpathlineto{\pgfqpoint{1.692729in}{1.936980in}}%
+\pgfpathlineto{\pgfqpoint{1.713770in}{1.905744in}}%
+\pgfpathlineto{\pgfqpoint{1.734811in}{1.867808in}}%
+\pgfpathlineto{\pgfqpoint{1.745332in}{1.844903in}}%
+\pgfpathlineto{\pgfqpoint{1.755853in}{1.817778in}}%
+\pgfpathlineto{\pgfqpoint{1.766373in}{1.783691in}}%
+\pgfpathlineto{\pgfqpoint{1.776894in}{1.735362in}}%
+\pgfpathlineto{\pgfqpoint{1.787415in}{1.634970in}}%
+\pgfpathlineto{\pgfqpoint{1.797935in}{1.653720in}}%
+\pgfpathlineto{\pgfqpoint{1.808456in}{1.713348in}}%
+\pgfpathlineto{\pgfqpoint{1.818977in}{1.736454in}}%
+\pgfpathlineto{\pgfqpoint{1.829497in}{1.747122in}}%
+\pgfpathlineto{\pgfqpoint{1.840018in}{1.750959in}}%
+\pgfpathlineto{\pgfqpoint{1.850538in}{1.750060in}}%
+\pgfpathlineto{\pgfqpoint{1.861059in}{1.745290in}}%
+\pgfpathlineto{\pgfqpoint{1.871580in}{1.736891in}}%
+\pgfpathlineto{\pgfqpoint{1.882100in}{1.724621in}}%
+\pgfpathlineto{\pgfqpoint{1.892621in}{1.707639in}}%
+\pgfpathlineto{\pgfqpoint{1.903142in}{1.683974in}}%
+\pgfpathlineto{\pgfqpoint{1.913662in}{1.648549in}}%
+\pgfpathlineto{\pgfqpoint{1.934704in}{1.516139in}}%
+\pgfpathlineto{\pgfqpoint{1.945224in}{1.616888in}}%
+\pgfpathlineto{\pgfqpoint{1.955745in}{1.651892in}}%
+\pgfpathlineto{\pgfqpoint{1.966266in}{1.670631in}}%
+\pgfpathlineto{\pgfqpoint{1.976786in}{1.681175in}}%
+\pgfpathlineto{\pgfqpoint{1.987307in}{1.686301in}}%
+\pgfpathlineto{\pgfqpoint{1.997828in}{1.687174in}}%
+\pgfpathlineto{\pgfqpoint{2.008348in}{1.684214in}}%
+\pgfpathlineto{\pgfqpoint{2.018869in}{1.677342in}}%
+\pgfpathlineto{\pgfqpoint{2.029390in}{1.665946in}}%
+\pgfpathlineto{\pgfqpoint{2.039910in}{1.648507in}}%
+\pgfpathlineto{\pgfqpoint{2.050431in}{1.621311in}}%
+\pgfpathlineto{\pgfqpoint{2.060951in}{1.572170in}}%
+\pgfpathlineto{\pgfqpoint{2.071472in}{0.922914in}}%
+\pgfpathlineto{\pgfqpoint{2.081993in}{1.570606in}}%
+\pgfpathlineto{\pgfqpoint{2.092513in}{1.618175in}}%
+\pgfpathlineto{\pgfqpoint{2.103034in}{1.643784in}}%
+\pgfpathlineto{\pgfqpoint{2.113555in}{1.659613in}}%
+\pgfpathlineto{\pgfqpoint{2.124075in}{1.669369in}}%
+\pgfpathlineto{\pgfqpoint{2.134596in}{1.674560in}}%
+\pgfpathlineto{\pgfqpoint{2.145117in}{1.675792in}}%
+\pgfpathlineto{\pgfqpoint{2.155637in}{1.673136in}}%
+\pgfpathlineto{\pgfqpoint{2.166158in}{1.666159in}}%
+\pgfpathlineto{\pgfqpoint{2.176679in}{1.653690in}}%
+\pgfpathlineto{\pgfqpoint{2.187199in}{1.632939in}}%
+\pgfpathlineto{\pgfqpoint{2.197720in}{1.595827in}}%
+\pgfpathlineto{\pgfqpoint{2.208241in}{1.492861in}}%
+\pgfpathlineto{\pgfqpoint{2.229282in}{1.620458in}}%
+\pgfpathlineto{\pgfqpoint{2.239802in}{1.653259in}}%
+\pgfpathlineto{\pgfqpoint{2.250323in}{1.674134in}}%
+\pgfpathlineto{\pgfqpoint{2.260844in}{1.688140in}}%
+\pgfpathlineto{\pgfqpoint{2.271364in}{1.697231in}}%
+\pgfpathlineto{\pgfqpoint{2.281885in}{1.702223in}}%
+\pgfpathlineto{\pgfqpoint{2.292406in}{1.703335in}}%
+\pgfpathlineto{\pgfqpoint{2.302926in}{1.700296in}}%
+\pgfpathlineto{\pgfqpoint{2.313447in}{1.692210in}}%
+\pgfpathlineto{\pgfqpoint{2.323968in}{1.676943in}}%
+\pgfpathlineto{\pgfqpoint{2.334488in}{1.648848in}}%
+\pgfpathlineto{\pgfqpoint{2.345009in}{1.583789in}}%
+\pgfpathlineto{\pgfqpoint{2.355530in}{1.559107in}}%
+\pgfpathlineto{\pgfqpoint{2.366050in}{1.652992in}}%
+\pgfpathlineto{\pgfqpoint{2.376571in}{1.694151in}}%
+\pgfpathlineto{\pgfqpoint{2.387092in}{1.720290in}}%
+\pgfpathlineto{\pgfqpoint{2.397612in}{1.738543in}}%
+\pgfpathlineto{\pgfqpoint{2.408133in}{1.751458in}}%
+\pgfpathlineto{\pgfqpoint{2.418654in}{1.760107in}}%
+\pgfpathlineto{\pgfqpoint{2.429174in}{1.764865in}}%
+\pgfpathlineto{\pgfqpoint{2.439695in}{1.765614in}}%
+\pgfpathlineto{\pgfqpoint{2.450215in}{1.761681in}}%
+\pgfpathlineto{\pgfqpoint{2.460736in}{1.751422in}}%
+\pgfpathlineto{\pgfqpoint{2.471257in}{1.730736in}}%
+\pgfpathlineto{\pgfqpoint{2.481777in}{1.685427in}}%
+\pgfpathlineto{\pgfqpoint{2.492298in}{1.534265in}}%
+\pgfpathlineto{\pgfqpoint{2.502819in}{1.713742in}}%
+\pgfpathlineto{\pgfqpoint{2.513339in}{1.765610in}}%
+\pgfpathlineto{\pgfqpoint{2.523860in}{1.797700in}}%
+\pgfpathlineto{\pgfqpoint{2.534381in}{1.820556in}}%
+\pgfpathlineto{\pgfqpoint{2.544901in}{1.837547in}}%
+\pgfpathlineto{\pgfqpoint{2.555422in}{1.850061in}}%
+\pgfpathlineto{\pgfqpoint{2.565943in}{1.858644in}}%
+\pgfpathlineto{\pgfqpoint{2.576463in}{1.863322in}}%
+\pgfpathlineto{\pgfqpoint{2.586984in}{1.863608in}}%
+\pgfpathlineto{\pgfqpoint{2.597505in}{1.858230in}}%
+\pgfpathlineto{\pgfqpoint{2.608025in}{1.844128in}}%
+\pgfpathlineto{\pgfqpoint{2.618546in}{1.812109in}}%
+\pgfpathlineto{\pgfqpoint{2.629066in}{1.693333in}}%
+\pgfpathlineto{\pgfqpoint{2.639587in}{1.802901in}}%
+\pgfpathlineto{\pgfqpoint{2.650108in}{1.869801in}}%
+\pgfpathlineto{\pgfqpoint{2.660628in}{1.908895in}}%
+\pgfpathlineto{\pgfqpoint{2.671149in}{1.936918in}}%
+\pgfpathlineto{\pgfqpoint{2.681670in}{1.958434in}}%
+\pgfpathlineto{\pgfqpoint{2.692190in}{1.975261in}}%
+\pgfpathlineto{\pgfqpoint{2.702711in}{1.988170in}}%
+\pgfpathlineto{\pgfqpoint{2.713232in}{1.997368in}}%
+\pgfpathlineto{\pgfqpoint{2.723752in}{2.002580in}}%
+\pgfpathlineto{\pgfqpoint{2.734273in}{2.002879in}}%
+\pgfpathlineto{\pgfqpoint{2.744794in}{1.996005in}}%
+\pgfpathlineto{\pgfqpoint{2.755314in}{1.975709in}}%
+\pgfpathlineto{\pgfqpoint{2.765835in}{1.912304in}}%
+\pgfpathlineto{\pgfqpoint{2.776356in}{2.286279in}}%
+\pgfpathlineto{\pgfqpoint{2.797397in}{2.260179in}}%
+\pgfpathlineto{\pgfqpoint{2.818438in}{2.228979in}}%
+\pgfpathlineto{\pgfqpoint{2.839479in}{2.191492in}}%
+\pgfpathlineto{\pgfqpoint{2.850000in}{2.169661in}}%
+\pgfpathlineto{\pgfqpoint{2.860521in}{2.145041in}}%
+\pgfpathlineto{\pgfqpoint{2.871041in}{2.116593in}}%
+\pgfpathlineto{\pgfqpoint{2.881562in}{2.082324in}}%
+\pgfpathlineto{\pgfqpoint{2.892083in}{2.037536in}}%
+\pgfpathlineto{\pgfqpoint{2.902603in}{1.965398in}}%
+\pgfpathlineto{\pgfqpoint{2.913124in}{1.850973in}}%
+\pgfpathlineto{\pgfqpoint{2.923645in}{1.965212in}}%
+\pgfpathlineto{\pgfqpoint{2.934165in}{1.992969in}}%
+\pgfpathlineto{\pgfqpoint{2.944686in}{2.003040in}}%
+\pgfpathlineto{\pgfqpoint{2.955207in}{2.004587in}}%
+\pgfpathlineto{\pgfqpoint{2.965727in}{2.000641in}}%
+\pgfpathlineto{\pgfqpoint{2.976248in}{1.992452in}}%
+\pgfpathlineto{\pgfqpoint{2.986769in}{1.980484in}}%
+\pgfpathlineto{\pgfqpoint{2.997289in}{1.964697in}}%
+\pgfpathlineto{\pgfqpoint{3.007810in}{1.944528in}}%
+\pgfpathlineto{\pgfqpoint{3.018330in}{1.918576in}}%
+\pgfpathlineto{\pgfqpoint{3.028851in}{1.883463in}}%
+\pgfpathlineto{\pgfqpoint{3.039372in}{1.828635in}}%
+\pgfpathlineto{\pgfqpoint{3.049892in}{1.646254in}}%
+\pgfpathlineto{\pgfqpoint{3.060413in}{1.794561in}}%
+\pgfpathlineto{\pgfqpoint{3.070934in}{1.837058in}}%
+\pgfpathlineto{\pgfqpoint{3.081454in}{1.854970in}}%
+\pgfpathlineto{\pgfqpoint{3.091975in}{1.862490in}}%
+\pgfpathlineto{\pgfqpoint{3.102496in}{1.863715in}}%
+\pgfpathlineto{\pgfqpoint{3.113016in}{1.860286in}}%
+\pgfpathlineto{\pgfqpoint{3.123537in}{1.852874in}}%
+\pgfpathlineto{\pgfqpoint{3.134058in}{1.841594in}}%
+\pgfpathlineto{\pgfqpoint{3.144578in}{1.826070in}}%
+\pgfpathlineto{\pgfqpoint{3.155099in}{1.805227in}}%
+\pgfpathlineto{\pgfqpoint{3.165620in}{1.776515in}}%
+\pgfpathlineto{\pgfqpoint{3.176140in}{1.732801in}}%
+\pgfpathlineto{\pgfqpoint{3.186661in}{1.636375in}}%
+\pgfpathlineto{\pgfqpoint{3.197182in}{1.658528in}}%
+\pgfpathlineto{\pgfqpoint{3.207702in}{1.721071in}}%
+\pgfpathlineto{\pgfqpoint{3.218223in}{1.746660in}}%
+\pgfpathlineto{\pgfqpoint{3.228743in}{1.759428in}}%
+\pgfpathlineto{\pgfqpoint{3.239264in}{1.765025in}}%
+\pgfpathlineto{\pgfqpoint{3.249785in}{1.765578in}}%
+\pgfpathlineto{\pgfqpoint{3.260305in}{1.761986in}}%
+\pgfpathlineto{\pgfqpoint{3.270826in}{1.754515in}}%
+\pgfpathlineto{\pgfqpoint{3.281347in}{1.742947in}}%
+\pgfpathlineto{\pgfqpoint{3.291867in}{1.726463in}}%
+\pgfpathlineto{\pgfqpoint{3.302388in}{1.703108in}}%
+\pgfpathlineto{\pgfqpoint{3.312909in}{1.667823in}}%
+\pgfpathlineto{\pgfqpoint{3.333950in}{1.535239in}}%
+\pgfpathlineto{\pgfqpoint{3.344471in}{1.635700in}}%
+\pgfpathlineto{\pgfqpoint{3.354991in}{1.670295in}}%
+\pgfpathlineto{\pgfqpoint{3.365512in}{1.688518in}}%
+\pgfpathlineto{\pgfqpoint{3.376033in}{1.698445in}}%
+\pgfpathlineto{\pgfqpoint{3.386553in}{1.702864in}}%
+\pgfpathlineto{\pgfqpoint{3.397074in}{1.702946in}}%
+\pgfpathlineto{\pgfqpoint{3.407594in}{1.699120in}}%
+\pgfpathlineto{\pgfqpoint{3.418115in}{1.691314in}}%
+\pgfpathlineto{\pgfqpoint{3.428636in}{1.678921in}}%
+\pgfpathlineto{\pgfqpoint{3.439156in}{1.660431in}}%
+\pgfpathlineto{\pgfqpoint{3.449677in}{1.632133in}}%
+\pgfpathlineto{\pgfqpoint{3.460198in}{1.581847in}}%
+\pgfpathlineto{\pgfqpoint{3.470718in}{0.524177in}}%
+\pgfpathlineto{\pgfqpoint{3.481239in}{1.577882in}}%
+\pgfpathlineto{\pgfqpoint{3.491760in}{1.624206in}}%
+\pgfpathlineto{\pgfqpoint{3.502280in}{1.648547in}}%
+\pgfpathlineto{\pgfqpoint{3.512801in}{1.663089in}}%
+\pgfpathlineto{\pgfqpoint{3.523322in}{1.671545in}}%
+\pgfpathlineto{\pgfqpoint{3.533842in}{1.675427in}}%
+\pgfpathlineto{\pgfqpoint{3.544363in}{1.675347in}}%
+\pgfpathlineto{\pgfqpoint{3.554884in}{1.671379in}}%
+\pgfpathlineto{\pgfqpoint{3.565404in}{1.663096in}}%
+\pgfpathlineto{\pgfqpoint{3.575925in}{1.649332in}}%
+\pgfpathlineto{\pgfqpoint{3.586446in}{1.627302in}}%
+\pgfpathlineto{\pgfqpoint{3.596966in}{1.588931in}}%
+\pgfpathlineto{\pgfqpoint{3.607487in}{1.484732in}}%
+\pgfpathlineto{\pgfqpoint{3.628528in}{1.609963in}}%
+\pgfpathlineto{\pgfqpoint{3.639049in}{1.641642in}}%
+\pgfpathlineto{\pgfqpoint{3.649569in}{1.661443in}}%
+\pgfpathlineto{\pgfqpoint{3.660090in}{1.674431in}}%
+\pgfpathlineto{\pgfqpoint{3.670611in}{1.682563in}}%
+\pgfpathlineto{\pgfqpoint{3.681131in}{1.686666in}}%
+\pgfpathlineto{\pgfqpoint{3.691652in}{1.686963in}}%
+\pgfpathlineto{\pgfqpoint{3.702173in}{1.683193in}}%
+\pgfpathlineto{\pgfqpoint{3.712693in}{1.674466in}}%
+\pgfpathlineto{\pgfqpoint{3.723214in}{1.658658in}}%
+\pgfpathlineto{\pgfqpoint{3.733735in}{1.630130in}}%
+\pgfpathlineto{\pgfqpoint{3.744255in}{1.564756in}}%
+\pgfpathlineto{\pgfqpoint{3.754776in}{1.539887in}}%
+\pgfpathlineto{\pgfqpoint{3.765297in}{1.633725in}}%
+\pgfpathlineto{\pgfqpoint{3.775817in}{1.674989in}}%
+\pgfpathlineto{\pgfqpoint{3.786338in}{1.701400in}}%
+\pgfpathlineto{\pgfqpoint{3.796858in}{1.720107in}}%
+\pgfpathlineto{\pgfqpoint{3.807379in}{1.733672in}}%
+\pgfpathlineto{\pgfqpoint{3.817900in}{1.743189in}}%
+\pgfpathlineto{\pgfqpoint{3.828420in}{1.749054in}}%
+\pgfpathlineto{\pgfqpoint{3.838941in}{1.751172in}}%
+\pgfpathlineto{\pgfqpoint{3.849462in}{1.748899in}}%
+\pgfpathlineto{\pgfqpoint{3.859982in}{1.740623in}}%
+\pgfpathlineto{\pgfqpoint{3.870503in}{1.722283in}}%
+\pgfpathlineto{\pgfqpoint{3.881024in}{1.679727in}}%
+\pgfpathlineto{\pgfqpoint{3.891544in}{1.531779in}}%
+\pgfpathlineto{\pgfqpoint{3.902065in}{1.715001in}}%
+\pgfpathlineto{\pgfqpoint{3.912586in}{1.771225in}}%
+\pgfpathlineto{\pgfqpoint{3.923106in}{1.808385in}}%
+\pgfpathlineto{\pgfqpoint{3.933627in}{1.837162in}}%
+\pgfpathlineto{\pgfqpoint{3.944148in}{1.861100in}}%
+\pgfpathlineto{\pgfqpoint{3.965189in}{1.900242in}}%
+\pgfpathlineto{\pgfqpoint{3.986230in}{1.932119in}}%
+\pgfpathlineto{\pgfqpoint{4.007271in}{1.959293in}}%
+\pgfpathlineto{\pgfqpoint{4.028313in}{1.983092in}}%
+\pgfpathlineto{\pgfqpoint{4.049354in}{2.004303in}}%
+\pgfpathlineto{\pgfqpoint{4.080916in}{2.032354in}}%
+\pgfpathlineto{\pgfqpoint{4.112478in}{2.056851in}}%
+\pgfpathlineto{\pgfqpoint{4.144040in}{2.078528in}}%
+\pgfpathlineto{\pgfqpoint{4.175602in}{2.097887in}}%
+\pgfpathlineto{\pgfqpoint{4.217684in}{2.120717in}}%
+\pgfpathlineto{\pgfqpoint{4.259767in}{2.140708in}}%
+\pgfpathlineto{\pgfqpoint{4.301850in}{2.158325in}}%
+\pgfpathlineto{\pgfqpoint{4.354453in}{2.177533in}}%
+\pgfpathlineto{\pgfqpoint{4.407056in}{2.194101in}}%
+\pgfpathlineto{\pgfqpoint{4.459659in}{2.208430in}}%
+\pgfpathlineto{\pgfqpoint{4.522783in}{2.223114in}}%
+\pgfpathlineto{\pgfqpoint{4.585907in}{2.235471in}}%
+\pgfpathlineto{\pgfqpoint{4.659552in}{2.247413in}}%
+\pgfpathlineto{\pgfqpoint{4.733196in}{2.257119in}}%
+\pgfpathlineto{\pgfqpoint{4.817361in}{2.265949in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{2.270438in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{2.270438in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{1.505625pt}%
+\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.672226in}{2.096171in}}%
+\pgfpathlineto{\pgfqpoint{0.724829in}{2.072200in}}%
+\pgfpathlineto{\pgfqpoint{0.777432in}{2.045920in}}%
+\pgfpathlineto{\pgfqpoint{0.830036in}{2.016869in}}%
+\pgfpathlineto{\pgfqpoint{0.872118in}{1.991240in}}%
+\pgfpathlineto{\pgfqpoint{0.914201in}{1.963066in}}%
+\pgfpathlineto{\pgfqpoint{0.956283in}{1.931828in}}%
+\pgfpathlineto{\pgfqpoint{0.987845in}{1.905970in}}%
+\pgfpathlineto{\pgfqpoint{1.019407in}{1.877583in}}%
+\pgfpathlineto{\pgfqpoint{1.050969in}{1.846096in}}%
+\pgfpathlineto{\pgfqpoint{1.082531in}{1.810672in}}%
+\pgfpathlineto{\pgfqpoint{1.103572in}{1.784240in}}%
+\pgfpathlineto{\pgfqpoint{1.124614in}{1.754860in}}%
+\pgfpathlineto{\pgfqpoint{1.145655in}{1.721547in}}%
+\pgfpathlineto{\pgfqpoint{1.166696in}{1.682552in}}%
+\pgfpathlineto{\pgfqpoint{1.177217in}{1.659920in}}%
+\pgfpathlineto{\pgfqpoint{1.187738in}{1.634178in}}%
+\pgfpathlineto{\pgfqpoint{1.198258in}{1.603800in}}%
+\pgfpathlineto{\pgfqpoint{1.208779in}{1.565541in}}%
+\pgfpathlineto{\pgfqpoint{1.219300in}{1.510065in}}%
+\pgfpathlineto{\pgfqpoint{1.229820in}{1.368423in}}%
+\pgfpathlineto{\pgfqpoint{1.240341in}{1.455624in}}%
+\pgfpathlineto{\pgfqpoint{1.250862in}{1.500578in}}%
+\pgfpathlineto{\pgfqpoint{1.261382in}{1.518081in}}%
+\pgfpathlineto{\pgfqpoint{1.271903in}{1.524804in}}%
+\pgfpathlineto{\pgfqpoint{1.282423in}{1.525255in}}%
+\pgfpathlineto{\pgfqpoint{1.292944in}{1.521191in}}%
+\pgfpathlineto{\pgfqpoint{1.303465in}{1.513326in}}%
+\pgfpathlineto{\pgfqpoint{1.313985in}{1.501802in}}%
+\pgfpathlineto{\pgfqpoint{1.324506in}{1.486277in}}%
+\pgfpathlineto{\pgfqpoint{1.335027in}{1.465746in}}%
+\pgfpathlineto{\pgfqpoint{1.345547in}{1.437864in}}%
+\pgfpathlineto{\pgfqpoint{1.356068in}{1.396283in}}%
+\pgfpathlineto{\pgfqpoint{1.366589in}{1.311200in}}%
+\pgfpathlineto{\pgfqpoint{1.377109in}{1.304398in}}%
+\pgfpathlineto{\pgfqpoint{1.387630in}{1.375864in}}%
+\pgfpathlineto{\pgfqpoint{1.398151in}{1.403793in}}%
+\pgfpathlineto{\pgfqpoint{1.408671in}{1.417960in}}%
+\pgfpathlineto{\pgfqpoint{1.419192in}{1.424689in}}%
+\pgfpathlineto{\pgfqpoint{1.429713in}{1.426298in}}%
+\pgfpathlineto{\pgfqpoint{1.440233in}{1.423762in}}%
+\pgfpathlineto{\pgfqpoint{1.450754in}{1.417393in}}%
+\pgfpathlineto{\pgfqpoint{1.461274in}{1.407017in}}%
+\pgfpathlineto{\pgfqpoint{1.471795in}{1.391882in}}%
+\pgfpathlineto{\pgfqpoint{1.482316in}{1.370190in}}%
+\pgfpathlineto{\pgfqpoint{1.492836in}{1.337389in}}%
+\pgfpathlineto{\pgfqpoint{1.503357in}{1.276750in}}%
+\pgfpathlineto{\pgfqpoint{1.513878in}{1.173419in}}%
+\pgfpathlineto{\pgfqpoint{1.524398in}{1.298409in}}%
+\pgfpathlineto{\pgfqpoint{1.534919in}{1.336621in}}%
+\pgfpathlineto{\pgfqpoint{1.545440in}{1.356892in}}%
+\pgfpathlineto{\pgfqpoint{1.555960in}{1.368417in}}%
+\pgfpathlineto{\pgfqpoint{1.566481in}{1.374252in}}%
+\pgfpathlineto{\pgfqpoint{1.577002in}{1.375668in}}%
+\pgfpathlineto{\pgfqpoint{1.587522in}{1.373149in}}%
+\pgfpathlineto{\pgfqpoint{1.598043in}{1.366666in}}%
+\pgfpathlineto{\pgfqpoint{1.608564in}{1.355672in}}%
+\pgfpathlineto{\pgfqpoint{1.619084in}{1.338776in}}%
+\pgfpathlineto{\pgfqpoint{1.629605in}{1.312610in}}%
+\pgfpathlineto{\pgfqpoint{1.640126in}{1.266625in}}%
+\pgfpathlineto{\pgfqpoint{1.650646in}{1.092992in}}%
+\pgfpathlineto{\pgfqpoint{1.661167in}{1.249958in}}%
+\pgfpathlineto{\pgfqpoint{1.671687in}{1.301028in}}%
+\pgfpathlineto{\pgfqpoint{1.682208in}{1.327434in}}%
+\pgfpathlineto{\pgfqpoint{1.692729in}{1.343371in}}%
+\pgfpathlineto{\pgfqpoint{1.703249in}{1.352940in}}%
+\pgfpathlineto{\pgfqpoint{1.713770in}{1.357785in}}%
+\pgfpathlineto{\pgfqpoint{1.724291in}{1.358578in}}%
+\pgfpathlineto{\pgfqpoint{1.734811in}{1.355438in}}%
+\pgfpathlineto{\pgfqpoint{1.745332in}{1.347990in}}%
+\pgfpathlineto{\pgfqpoint{1.755853in}{1.335161in}}%
+\pgfpathlineto{\pgfqpoint{1.766373in}{1.314403in}}%
+\pgfpathlineto{\pgfqpoint{1.776894in}{1.278582in}}%
+\pgfpathlineto{\pgfqpoint{1.787415in}{1.189991in}}%
+\pgfpathlineto{\pgfqpoint{1.797935in}{1.219923in}}%
+\pgfpathlineto{\pgfqpoint{1.808456in}{1.290187in}}%
+\pgfpathlineto{\pgfqpoint{1.818977in}{1.323441in}}%
+\pgfpathlineto{\pgfqpoint{1.829497in}{1.343820in}}%
+\pgfpathlineto{\pgfqpoint{1.840018in}{1.356971in}}%
+\pgfpathlineto{\pgfqpoint{1.850538in}{1.365025in}}%
+\pgfpathlineto{\pgfqpoint{1.861059in}{1.368879in}}%
+\pgfpathlineto{\pgfqpoint{1.871580in}{1.368801in}}%
+\pgfpathlineto{\pgfqpoint{1.882100in}{1.364571in}}%
+\pgfpathlineto{\pgfqpoint{1.892621in}{1.355371in}}%
+\pgfpathlineto{\pgfqpoint{1.903142in}{1.339246in}}%
+\pgfpathlineto{\pgfqpoint{1.913662in}{1.311137in}}%
+\pgfpathlineto{\pgfqpoint{1.934704in}{1.192742in}}%
+\pgfpathlineto{\pgfqpoint{1.945224in}{1.300215in}}%
+\pgfpathlineto{\pgfqpoint{1.955745in}{1.341768in}}%
+\pgfpathlineto{\pgfqpoint{1.966266in}{1.366892in}}%
+\pgfpathlineto{\pgfqpoint{1.976786in}{1.383664in}}%
+\pgfpathlineto{\pgfqpoint{1.987307in}{1.394872in}}%
+\pgfpathlineto{\pgfqpoint{1.997828in}{1.401685in}}%
+\pgfpathlineto{\pgfqpoint{2.008348in}{1.404532in}}%
+\pgfpathlineto{\pgfqpoint{2.018869in}{1.403341in}}%
+\pgfpathlineto{\pgfqpoint{2.029390in}{1.397503in}}%
+\pgfpathlineto{\pgfqpoint{2.039910in}{1.385507in}}%
+\pgfpathlineto{\pgfqpoint{2.050431in}{1.363642in}}%
+\pgfpathlineto{\pgfqpoint{2.060951in}{1.319726in}}%
+\pgfpathlineto{\pgfqpoint{2.071472in}{0.922665in}}%
+\pgfpathlineto{\pgfqpoint{2.081993in}{1.328308in}}%
+\pgfpathlineto{\pgfqpoint{2.092513in}{1.380807in}}%
+\pgfpathlineto{\pgfqpoint{2.103034in}{1.411254in}}%
+\pgfpathlineto{\pgfqpoint{2.113555in}{1.431834in}}%
+\pgfpathlineto{\pgfqpoint{2.124075in}{1.446256in}}%
+\pgfpathlineto{\pgfqpoint{2.134596in}{1.456031in}}%
+\pgfpathlineto{\pgfqpoint{2.145117in}{1.461769in}}%
+\pgfpathlineto{\pgfqpoint{2.155637in}{1.463542in}}%
+\pgfpathlineto{\pgfqpoint{2.166158in}{1.460922in}}%
+\pgfpathlineto{\pgfqpoint{2.176679in}{1.452738in}}%
+\pgfpathlineto{\pgfqpoint{2.187199in}{1.436203in}}%
+\pgfpathlineto{\pgfqpoint{2.197720in}{1.403242in}}%
+\pgfpathlineto{\pgfqpoint{2.208241in}{1.304362in}}%
+\pgfpathlineto{\pgfqpoint{2.229282in}{1.439949in}}%
+\pgfpathlineto{\pgfqpoint{2.239802in}{1.476656in}}%
+\pgfpathlineto{\pgfqpoint{2.250323in}{1.501382in}}%
+\pgfpathlineto{\pgfqpoint{2.260844in}{1.519185in}}%
+\pgfpathlineto{\pgfqpoint{2.271364in}{1.532019in}}%
+\pgfpathlineto{\pgfqpoint{2.281885in}{1.540705in}}%
+\pgfpathlineto{\pgfqpoint{2.292406in}{1.545461in}}%
+\pgfpathlineto{\pgfqpoint{2.302926in}{1.546020in}}%
+\pgfpathlineto{\pgfqpoint{2.313447in}{1.541484in}}%
+\pgfpathlineto{\pgfqpoint{2.323968in}{1.529723in}}%
+\pgfpathlineto{\pgfqpoint{2.334488in}{1.505090in}}%
+\pgfpathlineto{\pgfqpoint{2.345009in}{1.443450in}}%
+\pgfpathlineto{\pgfqpoint{2.355530in}{1.422146in}}%
+\pgfpathlineto{\pgfqpoint{2.366050in}{1.519367in}}%
+\pgfpathlineto{\pgfqpoint{2.376571in}{1.563822in}}%
+\pgfpathlineto{\pgfqpoint{2.387092in}{1.593219in}}%
+\pgfpathlineto{\pgfqpoint{2.397612in}{1.614690in}}%
+\pgfpathlineto{\pgfqpoint{2.408133in}{1.630784in}}%
+\pgfpathlineto{\pgfqpoint{2.418654in}{1.642575in}}%
+\pgfpathlineto{\pgfqpoint{2.429174in}{1.650438in}}%
+\pgfpathlineto{\pgfqpoint{2.439695in}{1.654255in}}%
+\pgfpathlineto{\pgfqpoint{2.450215in}{1.653354in}}%
+\pgfpathlineto{\pgfqpoint{2.460736in}{1.646090in}}%
+\pgfpathlineto{\pgfqpoint{2.471257in}{1.628365in}}%
+\pgfpathlineto{\pgfqpoint{2.481777in}{1.585982in}}%
+\pgfpathlineto{\pgfqpoint{2.492298in}{1.437712in}}%
+\pgfpathlineto{\pgfqpoint{2.502819in}{1.620049in}}%
+\pgfpathlineto{\pgfqpoint{2.513339in}{1.674746in}}%
+\pgfpathlineto{\pgfqpoint{2.523860in}{1.709635in}}%
+\pgfpathlineto{\pgfqpoint{2.534381in}{1.735262in}}%
+\pgfpathlineto{\pgfqpoint{2.544901in}{1.754998in}}%
+\pgfpathlineto{\pgfqpoint{2.555422in}{1.770232in}}%
+\pgfpathlineto{\pgfqpoint{2.565943in}{1.781513in}}%
+\pgfpathlineto{\pgfqpoint{2.576463in}{1.788869in}}%
+\pgfpathlineto{\pgfqpoint{2.586984in}{1.791816in}}%
+\pgfpathlineto{\pgfqpoint{2.597505in}{1.789084in}}%
+\pgfpathlineto{\pgfqpoint{2.608025in}{1.777614in}}%
+\pgfpathlineto{\pgfqpoint{2.618546in}{1.748214in}}%
+\pgfpathlineto{\pgfqpoint{2.629066in}{1.632047in}}%
+\pgfpathlineto{\pgfqpoint{2.639587in}{1.744213in}}%
+\pgfpathlineto{\pgfqpoint{2.650108in}{1.813700in}}%
+\pgfpathlineto{\pgfqpoint{2.660628in}{1.855368in}}%
+\pgfpathlineto{\pgfqpoint{2.671149in}{1.885948in}}%
+\pgfpathlineto{\pgfqpoint{2.681670in}{1.910004in}}%
+\pgfpathlineto{\pgfqpoint{2.692190in}{1.929343in}}%
+\pgfpathlineto{\pgfqpoint{2.702711in}{1.944734in}}%
+\pgfpathlineto{\pgfqpoint{2.713232in}{1.956374in}}%
+\pgfpathlineto{\pgfqpoint{2.723752in}{1.963980in}}%
+\pgfpathlineto{\pgfqpoint{2.734273in}{1.966616in}}%
+\pgfpathlineto{\pgfqpoint{2.744794in}{1.962011in}}%
+\pgfpathlineto{\pgfqpoint{2.755314in}{1.943908in}}%
+\pgfpathlineto{\pgfqpoint{2.765835in}{1.882610in}}%
+\pgfpathlineto{\pgfqpoint{2.776356in}{2.285279in}}%
+\pgfpathlineto{\pgfqpoint{2.797397in}{2.255100in}}%
+\pgfpathlineto{\pgfqpoint{2.818438in}{2.219712in}}%
+\pgfpathlineto{\pgfqpoint{2.839479in}{2.177946in}}%
+\pgfpathlineto{\pgfqpoint{2.850000in}{2.153945in}}%
+\pgfpathlineto{\pgfqpoint{2.860521in}{2.127134in}}%
+\pgfpathlineto{\pgfqpoint{2.871041in}{2.096478in}}%
+\pgfpathlineto{\pgfqpoint{2.881562in}{2.059981in}}%
+\pgfpathlineto{\pgfqpoint{2.892083in}{2.012948in}}%
+\pgfpathlineto{\pgfqpoint{2.902603in}{1.938547in}}%
+\pgfpathlineto{\pgfqpoint{2.913124in}{1.821840in}}%
+\pgfpathlineto{\pgfqpoint{2.923645in}{1.933780in}}%
+\pgfpathlineto{\pgfqpoint{2.934165in}{1.959219in}}%
+\pgfpathlineto{\pgfqpoint{2.944686in}{1.966953in}}%
+\pgfpathlineto{\pgfqpoint{2.955207in}{1.966146in}}%
+\pgfpathlineto{\pgfqpoint{2.965727in}{1.959827in}}%
+\pgfpathlineto{\pgfqpoint{2.976248in}{1.949246in}}%
+\pgfpathlineto{\pgfqpoint{2.986769in}{1.934868in}}%
+\pgfpathlineto{\pgfqpoint{2.997289in}{1.916649in}}%
+\pgfpathlineto{\pgfqpoint{3.007810in}{1.894029in}}%
+\pgfpathlineto{\pgfqpoint{3.018330in}{1.865606in}}%
+\pgfpathlineto{\pgfqpoint{3.028851in}{1.828001in}}%
+\pgfpathlineto{\pgfqpoint{3.039372in}{1.770660in}}%
+\pgfpathlineto{\pgfqpoint{3.049892in}{1.585743in}}%
+\pgfpathlineto{\pgfqpoint{3.060413in}{1.731493in}}%
+\pgfpathlineto{\pgfqpoint{3.070934in}{1.771409in}}%
+\pgfpathlineto{\pgfqpoint{3.081454in}{1.786718in}}%
+\pgfpathlineto{\pgfqpoint{3.091975in}{1.791611in}}%
+\pgfpathlineto{\pgfqpoint{3.102496in}{1.790185in}}%
+\pgfpathlineto{\pgfqpoint{3.113016in}{1.784080in}}%
+\pgfpathlineto{\pgfqpoint{3.123537in}{1.773966in}}%
+\pgfpathlineto{\pgfqpoint{3.134058in}{1.759959in}}%
+\pgfpathlineto{\pgfqpoint{3.144578in}{1.741680in}}%
+\pgfpathlineto{\pgfqpoint{3.155099in}{1.718056in}}%
+\pgfpathlineto{\pgfqpoint{3.165620in}{1.686535in}}%
+\pgfpathlineto{\pgfqpoint{3.176140in}{1.639983in}}%
+\pgfpathlineto{\pgfqpoint{3.186661in}{1.540689in}}%
+\pgfpathlineto{\pgfqpoint{3.197182in}{1.559946in}}%
+\pgfpathlineto{\pgfqpoint{3.207702in}{1.619561in}}%
+\pgfpathlineto{\pgfqpoint{3.218223in}{1.642191in}}%
+\pgfpathlineto{\pgfqpoint{3.228743in}{1.651968in}}%
+\pgfpathlineto{\pgfqpoint{3.239264in}{1.654541in}}%
+\pgfpathlineto{\pgfqpoint{3.249785in}{1.652036in}}%
+\pgfpathlineto{\pgfqpoint{3.260305in}{1.645352in}}%
+\pgfpathlineto{\pgfqpoint{3.270826in}{1.634754in}}%
+\pgfpathlineto{\pgfqpoint{3.281347in}{1.620023in}}%
+\pgfpathlineto{\pgfqpoint{3.291867in}{1.600338in}}%
+\pgfpathlineto{\pgfqpoint{3.302388in}{1.573744in}}%
+\pgfpathlineto{\pgfqpoint{3.312909in}{1.535181in}}%
+\pgfpathlineto{\pgfqpoint{3.333950in}{1.395920in}}%
+\pgfpathlineto{\pgfqpoint{3.344471in}{1.492979in}}%
+\pgfpathlineto{\pgfqpoint{3.354991in}{1.524130in}}%
+\pgfpathlineto{\pgfqpoint{3.365512in}{1.538864in}}%
+\pgfpathlineto{\pgfqpoint{3.376033in}{1.545256in}}%
+\pgfpathlineto{\pgfqpoint{3.386553in}{1.546093in}}%
+\pgfpathlineto{\pgfqpoint{3.397074in}{1.542545in}}%
+\pgfpathlineto{\pgfqpoint{3.407594in}{1.535039in}}%
+\pgfpathlineto{\pgfqpoint{3.418115in}{1.523503in}}%
+\pgfpathlineto{\pgfqpoint{3.428636in}{1.507327in}}%
+\pgfpathlineto{\pgfqpoint{3.439156in}{1.484999in}}%
+\pgfpathlineto{\pgfqpoint{3.449677in}{1.452808in}}%
+\pgfpathlineto{\pgfqpoint{3.460198in}{1.398571in}}%
+\pgfpathlineto{\pgfqpoint{3.469565in}{0.453273in}}%
+\pgfpathmoveto{\pgfqpoint{3.471885in}{0.453273in}}%
+\pgfpathlineto{\pgfqpoint{3.481239in}{1.386526in}}%
+\pgfpathlineto{\pgfqpoint{3.491760in}{1.428716in}}%
+\pgfpathlineto{\pgfqpoint{3.502280in}{1.448858in}}%
+\pgfpathlineto{\pgfqpoint{3.512801in}{1.459133in}}%
+\pgfpathlineto{\pgfqpoint{3.523322in}{1.463253in}}%
+\pgfpathlineto{\pgfqpoint{3.533842in}{1.462727in}}%
+\pgfpathlineto{\pgfqpoint{3.544363in}{1.458165in}}%
+\pgfpathlineto{\pgfqpoint{3.554884in}{1.449637in}}%
+\pgfpathlineto{\pgfqpoint{3.565404in}{1.436714in}}%
+\pgfpathlineto{\pgfqpoint{3.575925in}{1.418227in}}%
+\pgfpathlineto{\pgfqpoint{3.586446in}{1.391387in}}%
+\pgfpathlineto{\pgfqpoint{3.596966in}{1.348118in}}%
+\pgfpathlineto{\pgfqpoint{3.607487in}{1.238927in}}%
+\pgfpathlineto{\pgfqpoint{3.628528in}{1.353878in}}%
+\pgfpathlineto{\pgfqpoint{3.639049in}{1.380261in}}%
+\pgfpathlineto{\pgfqpoint{3.649569in}{1.394657in}}%
+\pgfpathlineto{\pgfqpoint{3.660090in}{1.402123in}}%
+\pgfpathlineto{\pgfqpoint{3.670611in}{1.404614in}}%
+\pgfpathlineto{\pgfqpoint{3.681131in}{1.402950in}}%
+\pgfpathlineto{\pgfqpoint{3.691652in}{1.397347in}}%
+\pgfpathlineto{\pgfqpoint{3.702173in}{1.387538in}}%
+\pgfpathlineto{\pgfqpoint{3.712693in}{1.372625in}}%
+\pgfpathlineto{\pgfqpoint{3.723214in}{1.350477in}}%
+\pgfpathlineto{\pgfqpoint{3.733735in}{1.315447in}}%
+\pgfpathlineto{\pgfqpoint{3.744255in}{1.243398in}}%
+\pgfpathlineto{\pgfqpoint{3.754776in}{1.211672in}}%
+\pgfpathlineto{\pgfqpoint{3.765297in}{1.298459in}}%
+\pgfpathlineto{\pgfqpoint{3.775817in}{1.332466in}}%
+\pgfpathlineto{\pgfqpoint{3.786338in}{1.351399in}}%
+\pgfpathlineto{\pgfqpoint{3.796858in}{1.362392in}}%
+\pgfpathlineto{\pgfqpoint{3.807379in}{1.367991in}}%
+\pgfpathlineto{\pgfqpoint{3.817900in}{1.369269in}}%
+\pgfpathlineto{\pgfqpoint{3.828420in}{1.366601in}}%
+\pgfpathlineto{\pgfqpoint{3.838941in}{1.359866in}}%
+\pgfpathlineto{\pgfqpoint{3.849462in}{1.348392in}}%
+\pgfpathlineto{\pgfqpoint{3.859982in}{1.330533in}}%
+\pgfpathlineto{\pgfqpoint{3.870503in}{1.302188in}}%
+\pgfpathlineto{\pgfqpoint{3.881024in}{1.249161in}}%
+\pgfpathlineto{\pgfqpoint{3.891544in}{1.090218in}}%
+\pgfpathlineto{\pgfqpoint{3.902065in}{1.261856in}}%
+\pgfpathlineto{\pgfqpoint{3.912586in}{1.305823in}}%
+\pgfpathlineto{\pgfqpoint{3.923106in}{1.329949in}}%
+\pgfpathlineto{\pgfqpoint{3.933627in}{1.344782in}}%
+\pgfpathlineto{\pgfqpoint{3.944148in}{1.353688in}}%
+\pgfpathlineto{\pgfqpoint{3.954668in}{1.358056in}}%
+\pgfpathlineto{\pgfqpoint{3.965189in}{1.358433in}}%
+\pgfpathlineto{\pgfqpoint{3.975710in}{1.354846in}}%
+\pgfpathlineto{\pgfqpoint{3.986230in}{1.346809in}}%
+\pgfpathlineto{\pgfqpoint{3.996751in}{1.333050in}}%
+\pgfpathlineto{\pgfqpoint{4.007271in}{1.310510in}}%
+\pgfpathlineto{\pgfqpoint{4.017792in}{1.269993in}}%
+\pgfpathlineto{\pgfqpoint{4.028313in}{1.142660in}}%
+\pgfpathlineto{\pgfqpoint{4.038833in}{1.243608in}}%
+\pgfpathlineto{\pgfqpoint{4.049354in}{1.301819in}}%
+\pgfpathlineto{\pgfqpoint{4.059875in}{1.332149in}}%
+\pgfpathlineto{\pgfqpoint{4.070395in}{1.351321in}}%
+\pgfpathlineto{\pgfqpoint{4.080916in}{1.363884in}}%
+\pgfpathlineto{\pgfqpoint{4.091437in}{1.371634in}}%
+\pgfpathlineto{\pgfqpoint{4.101957in}{1.375318in}}%
+\pgfpathlineto{\pgfqpoint{4.112478in}{1.375108in}}%
+\pgfpathlineto{\pgfqpoint{4.122999in}{1.370687in}}%
+\pgfpathlineto{\pgfqpoint{4.133519in}{1.361075in}}%
+\pgfpathlineto{\pgfqpoint{4.144040in}{1.343949in}}%
+\pgfpathlineto{\pgfqpoint{4.154561in}{1.312980in}}%
+\pgfpathlineto{\pgfqpoint{4.165081in}{1.238385in}}%
+\pgfpathlineto{\pgfqpoint{4.175602in}{1.241964in}}%
+\pgfpathlineto{\pgfqpoint{4.186122in}{1.323721in}}%
+\pgfpathlineto{\pgfqpoint{4.196643in}{1.361866in}}%
+\pgfpathlineto{\pgfqpoint{4.207164in}{1.386190in}}%
+\pgfpathlineto{\pgfqpoint{4.217684in}{1.403030in}}%
+\pgfpathlineto{\pgfqpoint{4.228205in}{1.414722in}}%
+\pgfpathlineto{\pgfqpoint{4.238726in}{1.422252in}}%
+\pgfpathlineto{\pgfqpoint{4.249246in}{1.425947in}}%
+\pgfpathlineto{\pgfqpoint{4.259767in}{1.425647in}}%
+\pgfpathlineto{\pgfqpoint{4.270288in}{1.420614in}}%
+\pgfpathlineto{\pgfqpoint{4.280808in}{1.409065in}}%
+\pgfpathlineto{\pgfqpoint{4.291329in}{1.386460in}}%
+\pgfpathlineto{\pgfqpoint{4.301850in}{1.336089in}}%
+\pgfpathlineto{\pgfqpoint{4.312370in}{1.243109in}}%
+\pgfpathlineto{\pgfqpoint{4.322891in}{1.378553in}}%
+\pgfpathlineto{\pgfqpoint{4.333412in}{1.427339in}}%
+\pgfpathlineto{\pgfqpoint{4.343932in}{1.458322in}}%
+\pgfpathlineto{\pgfqpoint{4.354453in}{1.480714in}}%
+\pgfpathlineto{\pgfqpoint{4.364974in}{1.497596in}}%
+\pgfpathlineto{\pgfqpoint{4.375494in}{1.510260in}}%
+\pgfpathlineto{\pgfqpoint{4.386015in}{1.519216in}}%
+\pgfpathlineto{\pgfqpoint{4.396535in}{1.524465in}}%
+\pgfpathlineto{\pgfqpoint{4.407056in}{1.525490in}}%
+\pgfpathlineto{\pgfqpoint{4.417577in}{1.520937in}}%
+\pgfpathlineto{\pgfqpoint{4.428097in}{1.507479in}}%
+\pgfpathlineto{\pgfqpoint{4.438618in}{1.474617in}}%
+\pgfpathlineto{\pgfqpoint{4.449139in}{1.314577in}}%
+\pgfpathlineto{\pgfqpoint{4.459659in}{1.485673in}}%
+\pgfpathlineto{\pgfqpoint{4.470180in}{1.551495in}}%
+\pgfpathlineto{\pgfqpoint{4.480701in}{1.593377in}}%
+\pgfpathlineto{\pgfqpoint{4.491221in}{1.625643in}}%
+\pgfpathlineto{\pgfqpoint{4.501742in}{1.652565in}}%
+\pgfpathlineto{\pgfqpoint{4.522783in}{1.696993in}}%
+\pgfpathlineto{\pgfqpoint{4.543825in}{1.733708in}}%
+\pgfpathlineto{\pgfqpoint{4.564866in}{1.765480in}}%
+\pgfpathlineto{\pgfqpoint{4.585907in}{1.793716in}}%
+\pgfpathlineto{\pgfqpoint{4.617469in}{1.831170in}}%
+\pgfpathlineto{\pgfqpoint{4.649031in}{1.864168in}}%
+\pgfpathlineto{\pgfqpoint{4.680593in}{1.893718in}}%
+\pgfpathlineto{\pgfqpoint{4.712155in}{1.920483in}}%
+\pgfpathlineto{\pgfqpoint{4.754238in}{1.952620in}}%
+\pgfpathlineto{\pgfqpoint{4.796320in}{1.981401in}}%
+\pgfpathlineto{\pgfqpoint{4.838403in}{2.007379in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{2.025274in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{2.025274in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{1.505625pt}%
+\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.672226in}{0.835937in}}%
+\pgfpathlineto{\pgfqpoint{0.682746in}{1.256802in}}%
+\pgfpathlineto{\pgfqpoint{0.693267in}{1.291493in}}%
+\pgfpathlineto{\pgfqpoint{0.703788in}{1.304580in}}%
+\pgfpathlineto{\pgfqpoint{0.714308in}{1.308198in}}%
+\pgfpathlineto{\pgfqpoint{0.724829in}{1.306018in}}%
+\pgfpathlineto{\pgfqpoint{0.735350in}{1.299517in}}%
+\pgfpathlineto{\pgfqpoint{0.745870in}{1.289274in}}%
+\pgfpathlineto{\pgfqpoint{0.756391in}{1.275334in}}%
+\pgfpathlineto{\pgfqpoint{0.766912in}{1.257247in}}%
+\pgfpathlineto{\pgfqpoint{0.777432in}{1.233822in}}%
+\pgfpathlineto{\pgfqpoint{0.787953in}{1.202253in}}%
+\pgfpathlineto{\pgfqpoint{0.798474in}{1.154448in}}%
+\pgfpathlineto{\pgfqpoint{0.808994in}{1.040899in}}%
+\pgfpathlineto{\pgfqpoint{0.830036in}{1.147619in}}%
+\pgfpathlineto{\pgfqpoint{0.840556in}{1.170105in}}%
+\pgfpathlineto{\pgfqpoint{0.851077in}{1.180735in}}%
+\pgfpathlineto{\pgfqpoint{0.861598in}{1.184559in}}%
+\pgfpathlineto{\pgfqpoint{0.872118in}{1.183522in}}%
+\pgfpathlineto{\pgfqpoint{0.882639in}{1.178435in}}%
+\pgfpathlineto{\pgfqpoint{0.893159in}{1.169509in}}%
+\pgfpathlineto{\pgfqpoint{0.903680in}{1.156468in}}%
+\pgfpathlineto{\pgfqpoint{0.914201in}{1.138408in}}%
+\pgfpathlineto{\pgfqpoint{0.924721in}{1.113191in}}%
+\pgfpathlineto{\pgfqpoint{0.935242in}{1.075165in}}%
+\pgfpathlineto{\pgfqpoint{0.945763in}{1.000188in}}%
+\pgfpathlineto{\pgfqpoint{0.956283in}{0.965596in}}%
+\pgfpathlineto{\pgfqpoint{0.966804in}{1.049574in}}%
+\pgfpathlineto{\pgfqpoint{0.977325in}{1.080824in}}%
+\pgfpathlineto{\pgfqpoint{0.987845in}{1.097048in}}%
+\pgfpathlineto{\pgfqpoint{0.998366in}{1.105375in}}%
+\pgfpathlineto{\pgfqpoint{1.008887in}{1.108347in}}%
+\pgfpathlineto{\pgfqpoint{1.019407in}{1.107033in}}%
+\pgfpathlineto{\pgfqpoint{1.029928in}{1.101804in}}%
+\pgfpathlineto{\pgfqpoint{1.040449in}{1.092536in}}%
+\pgfpathlineto{\pgfqpoint{1.050969in}{1.078551in}}%
+\pgfpathlineto{\pgfqpoint{1.061490in}{1.058202in}}%
+\pgfpathlineto{\pgfqpoint{1.072010in}{1.027383in}}%
+\pgfpathlineto{\pgfqpoint{1.082531in}{0.971895in}}%
+\pgfpathlineto{\pgfqpoint{1.093052in}{0.810490in}}%
+\pgfpathlineto{\pgfqpoint{1.103572in}{0.979693in}}%
+\pgfpathlineto{\pgfqpoint{1.114093in}{1.021217in}}%
+\pgfpathlineto{\pgfqpoint{1.124614in}{1.042901in}}%
+\pgfpathlineto{\pgfqpoint{1.135134in}{1.055287in}}%
+\pgfpathlineto{\pgfqpoint{1.145655in}{1.061740in}}%
+\pgfpathlineto{\pgfqpoint{1.156176in}{1.063645in}}%
+\pgfpathlineto{\pgfqpoint{1.166696in}{1.061546in}}%
+\pgfpathlineto{\pgfqpoint{1.177217in}{1.055466in}}%
+\pgfpathlineto{\pgfqpoint{1.187738in}{1.044917in}}%
+\pgfpathlineto{\pgfqpoint{1.198258in}{1.028623in}}%
+\pgfpathlineto{\pgfqpoint{1.208779in}{1.003523in}}%
+\pgfpathlineto{\pgfqpoint{1.219300in}{0.960416in}}%
+\pgfpathlineto{\pgfqpoint{1.229820in}{0.830465in}}%
+\pgfpathlineto{\pgfqpoint{1.240341in}{0.928751in}}%
+\pgfpathlineto{\pgfqpoint{1.250862in}{0.984265in}}%
+\pgfpathlineto{\pgfqpoint{1.261382in}{1.011855in}}%
+\pgfpathlineto{\pgfqpoint{1.271903in}{1.028241in}}%
+\pgfpathlineto{\pgfqpoint{1.282423in}{1.037968in}}%
+\pgfpathlineto{\pgfqpoint{1.292944in}{1.042829in}}%
+\pgfpathlineto{\pgfqpoint{1.303465in}{1.043567in}}%
+\pgfpathlineto{\pgfqpoint{1.313985in}{1.040349in}}%
+\pgfpathlineto{\pgfqpoint{1.324506in}{1.032854in}}%
+\pgfpathlineto{\pgfqpoint{1.335027in}{1.020100in}}%
+\pgfpathlineto{\pgfqpoint{1.345547in}{0.999757in}}%
+\pgfpathlineto{\pgfqpoint{1.356068in}{0.965493in}}%
+\pgfpathlineto{\pgfqpoint{1.366589in}{0.887519in}}%
+\pgfpathlineto{\pgfqpoint{1.377109in}{0.887632in}}%
+\pgfpathlineto{\pgfqpoint{1.387630in}{0.965829in}}%
+\pgfpathlineto{\pgfqpoint{1.398151in}{1.000316in}}%
+\pgfpathlineto{\pgfqpoint{1.408671in}{1.020877in}}%
+\pgfpathlineto{\pgfqpoint{1.419192in}{1.033844in}}%
+\pgfpathlineto{\pgfqpoint{1.429713in}{1.041545in}}%
+\pgfpathlineto{\pgfqpoint{1.440233in}{1.044960in}}%
+\pgfpathlineto{\pgfqpoint{1.450754in}{1.044410in}}%
+\pgfpathlineto{\pgfqpoint{1.461274in}{1.039726in}}%
+\pgfpathlineto{\pgfqpoint{1.471795in}{1.030162in}}%
+\pgfpathlineto{\pgfqpoint{1.482316in}{1.013925in}}%
+\pgfpathlineto{\pgfqpoint{1.492836in}{0.986467in}}%
+\pgfpathlineto{\pgfqpoint{1.503357in}{0.931067in}}%
+\pgfpathlineto{\pgfqpoint{1.513878in}{0.832872in}}%
+\pgfpathlineto{\pgfqpoint{1.524398in}{0.962900in}}%
+\pgfpathlineto{\pgfqpoint{1.534919in}{1.006057in}}%
+\pgfpathlineto{\pgfqpoint{1.545440in}{1.031183in}}%
+\pgfpathlineto{\pgfqpoint{1.555960in}{1.047476in}}%
+\pgfpathlineto{\pgfqpoint{1.566481in}{1.057995in}}%
+\pgfpathlineto{\pgfqpoint{1.577002in}{1.064015in}}%
+\pgfpathlineto{\pgfqpoint{1.587522in}{1.066021in}}%
+\pgfpathlineto{\pgfqpoint{1.598043in}{1.063990in}}%
+\pgfpathlineto{\pgfqpoint{1.608564in}{1.057374in}}%
+\pgfpathlineto{\pgfqpoint{1.619084in}{1.044787in}}%
+\pgfpathlineto{\pgfqpoint{1.629605in}{1.022861in}}%
+\pgfpathlineto{\pgfqpoint{1.640126in}{0.981052in}}%
+\pgfpathlineto{\pgfqpoint{1.650646in}{0.811526in}}%
+\pgfpathlineto{\pgfqpoint{1.661167in}{0.972546in}}%
+\pgfpathlineto{\pgfqpoint{1.671687in}{1.027607in}}%
+\pgfpathlineto{\pgfqpoint{1.682208in}{1.057946in}}%
+\pgfpathlineto{\pgfqpoint{1.692729in}{1.077759in}}%
+\pgfpathlineto{\pgfqpoint{1.703249in}{1.091151in}}%
+\pgfpathlineto{\pgfqpoint{1.713770in}{1.099764in}}%
+\pgfpathlineto{\pgfqpoint{1.724291in}{1.104275in}}%
+\pgfpathlineto{\pgfqpoint{1.734811in}{1.104802in}}%
+\pgfpathlineto{\pgfqpoint{1.745332in}{1.100974in}}%
+\pgfpathlineto{\pgfqpoint{1.755853in}{1.091716in}}%
+\pgfpathlineto{\pgfqpoint{1.766373in}{1.074483in}}%
+\pgfpathlineto{\pgfqpoint{1.776894in}{1.042143in}}%
+\pgfpathlineto{\pgfqpoint{1.787415in}{0.956989in}}%
+\pgfpathlineto{\pgfqpoint{1.797935in}{0.990316in}}%
+\pgfpathlineto{\pgfqpoint{1.808456in}{1.063932in}}%
+\pgfpathlineto{\pgfqpoint{1.818977in}{1.100499in}}%
+\pgfpathlineto{\pgfqpoint{1.829497in}{1.124150in}}%
+\pgfpathlineto{\pgfqpoint{1.840018in}{1.140536in}}%
+\pgfpathlineto{\pgfqpoint{1.850538in}{1.151786in}}%
+\pgfpathlineto{\pgfqpoint{1.861059in}{1.158800in}}%
+\pgfpathlineto{\pgfqpoint{1.871580in}{1.161845in}}%
+\pgfpathlineto{\pgfqpoint{1.882100in}{1.160704in}}%
+\pgfpathlineto{\pgfqpoint{1.892621in}{1.154558in}}%
+\pgfpathlineto{\pgfqpoint{1.903142in}{1.141454in}}%
+\pgfpathlineto{\pgfqpoint{1.913662in}{1.116333in}}%
+\pgfpathlineto{\pgfqpoint{1.934704in}{1.003819in}}%
+\pgfpathlineto{\pgfqpoint{1.945224in}{1.114186in}}%
+\pgfpathlineto{\pgfqpoint{1.955745in}{1.158603in}}%
+\pgfpathlineto{\pgfqpoint{1.966266in}{1.186562in}}%
+\pgfpathlineto{\pgfqpoint{1.976786in}{1.206139in}}%
+\pgfpathlineto{\pgfqpoint{1.987307in}{1.220125in}}%
+\pgfpathlineto{\pgfqpoint{1.997828in}{1.229688in}}%
+\pgfpathlineto{\pgfqpoint{2.008348in}{1.235258in}}%
+\pgfpathlineto{\pgfqpoint{2.018869in}{1.236763in}}%
+\pgfpathlineto{\pgfqpoint{2.029390in}{1.233595in}}%
+\pgfpathlineto{\pgfqpoint{2.039910in}{1.224244in}}%
+\pgfpathlineto{\pgfqpoint{2.050431in}{1.204998in}}%
+\pgfpathlineto{\pgfqpoint{2.060951in}{1.163677in}}%
+\pgfpathlineto{\pgfqpoint{2.071472in}{0.922658in}}%
+\pgfpathlineto{\pgfqpoint{2.081993in}{1.177378in}}%
+\pgfpathlineto{\pgfqpoint{2.092513in}{1.232401in}}%
+\pgfpathlineto{\pgfqpoint{2.103034in}{1.265350in}}%
+\pgfpathlineto{\pgfqpoint{2.113555in}{1.288409in}}%
+\pgfpathlineto{\pgfqpoint{2.124075in}{1.305288in}}%
+\pgfpathlineto{\pgfqpoint{2.134596in}{1.317498in}}%
+\pgfpathlineto{\pgfqpoint{2.145117in}{1.325651in}}%
+\pgfpathlineto{\pgfqpoint{2.155637in}{1.329817in}}%
+\pgfpathlineto{\pgfqpoint{2.166158in}{1.329570in}}%
+\pgfpathlineto{\pgfqpoint{2.176679in}{1.323739in}}%
+\pgfpathlineto{\pgfqpoint{2.187199in}{1.309537in}}%
+\pgfpathlineto{\pgfqpoint{2.197720in}{1.278890in}}%
+\pgfpathlineto{\pgfqpoint{2.208241in}{1.182304in}}%
+\pgfpathlineto{\pgfqpoint{2.229282in}{1.322423in}}%
+\pgfpathlineto{\pgfqpoint{2.239802in}{1.361369in}}%
+\pgfpathlineto{\pgfqpoint{2.250323in}{1.388316in}}%
+\pgfpathlineto{\pgfqpoint{2.260844in}{1.408322in}}%
+\pgfpathlineto{\pgfqpoint{2.271364in}{1.423343in}}%
+\pgfpathlineto{\pgfqpoint{2.281885in}{1.434198in}}%
+\pgfpathlineto{\pgfqpoint{2.292406in}{1.441106in}}%
+\pgfpathlineto{\pgfqpoint{2.302926in}{1.443801in}}%
+\pgfpathlineto{\pgfqpoint{2.313447in}{1.441385in}}%
+\pgfpathlineto{\pgfqpoint{2.323968in}{1.431728in}}%
+\pgfpathlineto{\pgfqpoint{2.334488in}{1.409184in}}%
+\pgfpathlineto{\pgfqpoint{2.345009in}{1.349617in}}%
+\pgfpathlineto{\pgfqpoint{2.355530in}{1.330370in}}%
+\pgfpathlineto{\pgfqpoint{2.366050in}{1.429635in}}%
+\pgfpathlineto{\pgfqpoint{2.376571in}{1.476118in}}%
+\pgfpathlineto{\pgfqpoint{2.387092in}{1.507528in}}%
+\pgfpathlineto{\pgfqpoint{2.397612in}{1.531000in}}%
+\pgfpathlineto{\pgfqpoint{2.408133in}{1.549079in}}%
+\pgfpathlineto{\pgfqpoint{2.418654in}{1.562841in}}%
+\pgfpathlineto{\pgfqpoint{2.429174in}{1.572662in}}%
+\pgfpathlineto{\pgfqpoint{2.439695in}{1.578423in}}%
+\pgfpathlineto{\pgfqpoint{2.450215in}{1.579451in}}%
+\pgfpathlineto{\pgfqpoint{2.460736in}{1.574104in}}%
+\pgfpathlineto{\pgfqpoint{2.471257in}{1.558281in}}%
+\pgfpathlineto{\pgfqpoint{2.481777in}{1.517788in}}%
+\pgfpathlineto{\pgfqpoint{2.492298in}{1.371394in}}%
+\pgfpathlineto{\pgfqpoint{2.502819in}{1.555594in}}%
+\pgfpathlineto{\pgfqpoint{2.513339in}{1.612142in}}%
+\pgfpathlineto{\pgfqpoint{2.523860in}{1.648868in}}%
+\pgfpathlineto{\pgfqpoint{2.534381in}{1.676321in}}%
+\pgfpathlineto{\pgfqpoint{2.544901in}{1.697871in}}%
+\pgfpathlineto{\pgfqpoint{2.555422in}{1.714908in}}%
+\pgfpathlineto{\pgfqpoint{2.565943in}{1.727983in}}%
+\pgfpathlineto{\pgfqpoint{2.576463in}{1.737122in}}%
+\pgfpathlineto{\pgfqpoint{2.586984in}{1.741843in}}%
+\pgfpathlineto{\pgfqpoint{2.597505in}{1.740877in}}%
+\pgfpathlineto{\pgfqpoint{2.608025in}{1.731167in}}%
+\pgfpathlineto{\pgfqpoint{2.618546in}{1.703520in}}%
+\pgfpathlineto{\pgfqpoint{2.629066in}{1.589101in}}%
+\pgfpathlineto{\pgfqpoint{2.639587in}{1.703010in}}%
+\pgfpathlineto{\pgfqpoint{2.650108in}{1.774234in}}%
+\pgfpathlineto{\pgfqpoint{2.660628in}{1.817635in}}%
+\pgfpathlineto{\pgfqpoint{2.671149in}{1.849943in}}%
+\pgfpathlineto{\pgfqpoint{2.681670in}{1.875718in}}%
+\pgfpathlineto{\pgfqpoint{2.692190in}{1.896769in}}%
+\pgfpathlineto{\pgfqpoint{2.702711in}{1.913859in}}%
+\pgfpathlineto{\pgfqpoint{2.713232in}{1.927182in}}%
+\pgfpathlineto{\pgfqpoint{2.723752in}{1.936450in}}%
+\pgfpathlineto{\pgfqpoint{2.734273in}{1.940721in}}%
+\pgfpathlineto{\pgfqpoint{2.744794in}{1.937721in}}%
+\pgfpathlineto{\pgfqpoint{2.755314in}{1.921182in}}%
+\pgfpathlineto{\pgfqpoint{2.765835in}{1.861402in}}%
+\pgfpathlineto{\pgfqpoint{2.776356in}{2.284549in}}%
+\pgfpathlineto{\pgfqpoint{2.797397in}{2.251411in}}%
+\pgfpathlineto{\pgfqpoint{2.818438in}{2.213008in}}%
+\pgfpathlineto{\pgfqpoint{2.839479in}{2.168179in}}%
+\pgfpathlineto{\pgfqpoint{2.860521in}{2.114265in}}%
+\pgfpathlineto{\pgfqpoint{2.871041in}{2.082043in}}%
+\pgfpathlineto{\pgfqpoint{2.881562in}{2.043971in}}%
+\pgfpathlineto{\pgfqpoint{2.892083in}{1.995353in}}%
+\pgfpathlineto{\pgfqpoint{2.902603in}{1.919359in}}%
+\pgfpathlineto{\pgfqpoint{2.913124in}{1.801051in}}%
+\pgfpathlineto{\pgfqpoint{2.923645in}{1.911381in}}%
+\pgfpathlineto{\pgfqpoint{2.934165in}{1.935200in}}%
+\pgfpathlineto{\pgfqpoint{2.944686in}{1.941307in}}%
+\pgfpathlineto{\pgfqpoint{2.955207in}{1.938863in}}%
+\pgfpathlineto{\pgfqpoint{2.965727in}{1.930899in}}%
+\pgfpathlineto{\pgfqpoint{2.976248in}{1.918663in}}%
+\pgfpathlineto{\pgfqpoint{2.986769in}{1.902621in}}%
+\pgfpathlineto{\pgfqpoint{2.997289in}{1.882730in}}%
+\pgfpathlineto{\pgfqpoint{3.007810in}{1.858428in}}%
+\pgfpathlineto{\pgfqpoint{3.018330in}{1.828313in}}%
+\pgfpathlineto{\pgfqpoint{3.028851in}{1.789008in}}%
+\pgfpathlineto{\pgfqpoint{3.039372in}{1.729956in}}%
+\pgfpathlineto{\pgfqpoint{3.049892in}{1.543319in}}%
+\pgfpathlineto{\pgfqpoint{3.060413in}{1.687338in}}%
+\pgfpathlineto{\pgfqpoint{3.070934in}{1.725514in}}%
+\pgfpathlineto{\pgfqpoint{3.081454in}{1.739072in}}%
+\pgfpathlineto{\pgfqpoint{3.091975in}{1.742204in}}%
+\pgfpathlineto{\pgfqpoint{3.102496in}{1.739006in}}%
+\pgfpathlineto{\pgfqpoint{3.113016in}{1.731118in}}%
+\pgfpathlineto{\pgfqpoint{3.123537in}{1.719211in}}%
+\pgfpathlineto{\pgfqpoint{3.134058in}{1.703398in}}%
+\pgfpathlineto{\pgfqpoint{3.144578in}{1.683304in}}%
+\pgfpathlineto{\pgfqpoint{3.155099in}{1.657852in}}%
+\pgfpathlineto{\pgfqpoint{3.165620in}{1.624492in}}%
+\pgfpathlineto{\pgfqpoint{3.176140in}{1.576089in}}%
+\pgfpathlineto{\pgfqpoint{3.186661in}{1.474932in}}%
+\pgfpathlineto{\pgfqpoint{3.197182in}{1.492314in}}%
+\pgfpathlineto{\pgfqpoint{3.207702in}{1.550041in}}%
+\pgfpathlineto{\pgfqpoint{3.218223in}{1.570771in}}%
+\pgfpathlineto{\pgfqpoint{3.228743in}{1.578635in}}%
+\pgfpathlineto{\pgfqpoint{3.239264in}{1.579281in}}%
+\pgfpathlineto{\pgfqpoint{3.249785in}{1.574838in}}%
+\pgfpathlineto{\pgfqpoint{3.260305in}{1.566201in}}%
+\pgfpathlineto{\pgfqpoint{3.270826in}{1.553636in}}%
+\pgfpathlineto{\pgfqpoint{3.281347in}{1.536925in}}%
+\pgfpathlineto{\pgfqpoint{3.291867in}{1.515245in}}%
+\pgfpathlineto{\pgfqpoint{3.302388in}{1.486643in}}%
+\pgfpathlineto{\pgfqpoint{3.312909in}{1.446057in}}%
+\pgfpathlineto{\pgfqpoint{3.333950in}{1.302705in}}%
+\pgfpathlineto{\pgfqpoint{3.344471in}{1.397697in}}%
+\pgfpathlineto{\pgfqpoint{3.354991in}{1.426764in}}%
+\pgfpathlineto{\pgfqpoint{3.365512in}{1.439399in}}%
+\pgfpathlineto{\pgfqpoint{3.376033in}{1.443676in}}%
+\pgfpathlineto{\pgfqpoint{3.386553in}{1.442382in}}%
+\pgfpathlineto{\pgfqpoint{3.397074in}{1.436687in}}%
+\pgfpathlineto{\pgfqpoint{3.407594in}{1.427017in}}%
+\pgfpathlineto{\pgfqpoint{3.418115in}{1.413299in}}%
+\pgfpathlineto{\pgfqpoint{3.428636in}{1.394925in}}%
+\pgfpathlineto{\pgfqpoint{3.439156in}{1.370381in}}%
+\pgfpathlineto{\pgfqpoint{3.449677in}{1.335956in}}%
+\pgfpathlineto{\pgfqpoint{3.460198in}{1.279468in}}%
+\pgfpathlineto{\pgfqpoint{3.468361in}{0.453273in}}%
+\pgfpathmoveto{\pgfqpoint{3.473113in}{0.453273in}}%
+\pgfpathlineto{\pgfqpoint{3.481239in}{1.262863in}}%
+\pgfpathlineto{\pgfqpoint{3.491760in}{1.302745in}}%
+\pgfpathlineto{\pgfqpoint{3.502280in}{1.320560in}}%
+\pgfpathlineto{\pgfqpoint{3.512801in}{1.328489in}}%
+\pgfpathlineto{\pgfqpoint{3.523322in}{1.330242in}}%
+\pgfpathlineto{\pgfqpoint{3.533842in}{1.327329in}}%
+\pgfpathlineto{\pgfqpoint{3.544363in}{1.320358in}}%
+\pgfpathlineto{\pgfqpoint{3.554884in}{1.309401in}}%
+\pgfpathlineto{\pgfqpoint{3.565404in}{1.294028in}}%
+\pgfpathlineto{\pgfqpoint{3.575925in}{1.273069in}}%
+\pgfpathlineto{\pgfqpoint{3.586446in}{1.243734in}}%
+\pgfpathlineto{\pgfqpoint{3.596966in}{1.197947in}}%
+\pgfpathlineto{\pgfqpoint{3.607487in}{1.086216in}}%
+\pgfpathlineto{\pgfqpoint{3.628528in}{1.196016in}}%
+\pgfpathlineto{\pgfqpoint{3.639049in}{1.219786in}}%
+\pgfpathlineto{\pgfqpoint{3.649569in}{1.231545in}}%
+\pgfpathlineto{\pgfqpoint{3.660090in}{1.236349in}}%
+\pgfpathlineto{\pgfqpoint{3.670611in}{1.236152in}}%
+\pgfpathlineto{\pgfqpoint{3.681131in}{1.231772in}}%
+\pgfpathlineto{\pgfqpoint{3.691652in}{1.223428in}}%
+\pgfpathlineto{\pgfqpoint{3.702173in}{1.210850in}}%
+\pgfpathlineto{\pgfqpoint{3.712693in}{1.193139in}}%
+\pgfpathlineto{\pgfqpoint{3.723214in}{1.168166in}}%
+\pgfpathlineto{\pgfqpoint{3.733735in}{1.130280in}}%
+\pgfpathlineto{\pgfqpoint{3.744255in}{1.055346in}}%
+\pgfpathlineto{\pgfqpoint{3.754776in}{1.020705in}}%
+\pgfpathlineto{\pgfqpoint{3.765297in}{1.104545in}}%
+\pgfpathlineto{\pgfqpoint{3.775817in}{1.135574in}}%
+\pgfpathlineto{\pgfqpoint{3.786338in}{1.151496in}}%
+\pgfpathlineto{\pgfqpoint{3.796858in}{1.159445in}}%
+\pgfpathlineto{\pgfqpoint{3.807379in}{1.161966in}}%
+\pgfpathlineto{\pgfqpoint{3.817900in}{1.160131in}}%
+\pgfpathlineto{\pgfqpoint{3.828420in}{1.154313in}}%
+\pgfpathlineto{\pgfqpoint{3.838941in}{1.144393in}}%
+\pgfpathlineto{\pgfqpoint{3.849462in}{1.129696in}}%
+\pgfpathlineto{\pgfqpoint{3.859982in}{1.108576in}}%
+\pgfpathlineto{\pgfqpoint{3.870503in}{1.076931in}}%
+\pgfpathlineto{\pgfqpoint{3.881024in}{1.020563in}}%
+\pgfpathlineto{\pgfqpoint{3.891544in}{0.858239in}}%
+\pgfpathlineto{\pgfqpoint{3.902065in}{1.026453in}}%
+\pgfpathlineto{\pgfqpoint{3.912586in}{1.066952in}}%
+\pgfpathlineto{\pgfqpoint{3.923106in}{1.087567in}}%
+\pgfpathlineto{\pgfqpoint{3.933627in}{1.098842in}}%
+\pgfpathlineto{\pgfqpoint{3.944148in}{1.104143in}}%
+\pgfpathlineto{\pgfqpoint{3.954668in}{1.104858in}}%
+\pgfpathlineto{\pgfqpoint{3.965189in}{1.101533in}}%
+\pgfpathlineto{\pgfqpoint{3.975710in}{1.094192in}}%
+\pgfpathlineto{\pgfqpoint{3.986230in}{1.082349in}}%
+\pgfpathlineto{\pgfqpoint{3.996751in}{1.064730in}}%
+\pgfpathlineto{\pgfqpoint{4.007271in}{1.038274in}}%
+\pgfpathlineto{\pgfqpoint{4.017792in}{0.993784in}}%
+\pgfpathlineto{\pgfqpoint{4.028313in}{0.862420in}}%
+\pgfpathlineto{\pgfqpoint{4.038833in}{0.959274in}}%
+\pgfpathlineto{\pgfqpoint{4.049354in}{1.013330in}}%
+\pgfpathlineto{\pgfqpoint{4.059875in}{1.039439in}}%
+\pgfpathlineto{\pgfqpoint{4.070395in}{1.054322in}}%
+\pgfpathlineto{\pgfqpoint{4.080916in}{1.062528in}}%
+\pgfpathlineto{\pgfqpoint{4.091437in}{1.065849in}}%
+\pgfpathlineto{\pgfqpoint{4.101957in}{1.065030in}}%
+\pgfpathlineto{\pgfqpoint{4.112478in}{1.060240in}}%
+\pgfpathlineto{\pgfqpoint{4.122999in}{1.051159in}}%
+\pgfpathlineto{\pgfqpoint{4.133519in}{1.036805in}}%
+\pgfpathlineto{\pgfqpoint{4.144040in}{1.014850in}}%
+\pgfpathlineto{\pgfqpoint{4.154561in}{0.978963in}}%
+\pgfpathlineto{\pgfqpoint{4.165081in}{0.899359in}}%
+\pgfpathlineto{\pgfqpoint{4.175602in}{0.897831in}}%
+\pgfpathlineto{\pgfqpoint{4.186122in}{0.974381in}}%
+\pgfpathlineto{\pgfqpoint{4.196643in}{1.007214in}}%
+\pgfpathlineto{\pgfqpoint{4.207164in}{1.026117in}}%
+\pgfpathlineto{\pgfqpoint{4.217684in}{1.037423in}}%
+\pgfpathlineto{\pgfqpoint{4.228205in}{1.043460in}}%
+\pgfpathlineto{\pgfqpoint{4.238726in}{1.045210in}}%
+\pgfpathlineto{\pgfqpoint{4.249246in}{1.042995in}}%
+\pgfpathlineto{\pgfqpoint{4.259767in}{1.036646in}}%
+\pgfpathlineto{\pgfqpoint{4.270288in}{1.025419in}}%
+\pgfpathlineto{\pgfqpoint{4.280808in}{1.007523in}}%
+\pgfpathlineto{\pgfqpoint{4.291329in}{0.978410in}}%
+\pgfpathlineto{\pgfqpoint{4.301850in}{0.921361in}}%
+\pgfpathlineto{\pgfqpoint{4.312370in}{0.821523in}}%
+\pgfpathlineto{\pgfqpoint{4.322891in}{0.949917in}}%
+\pgfpathlineto{\pgfqpoint{4.333412in}{0.991449in}}%
+\pgfpathlineto{\pgfqpoint{4.343932in}{1.014960in}}%
+\pgfpathlineto{\pgfqpoint{4.354453in}{1.029650in}}%
+\pgfpathlineto{\pgfqpoint{4.364974in}{1.038578in}}%
+\pgfpathlineto{\pgfqpoint{4.375494in}{1.043021in}}%
+\pgfpathlineto{\pgfqpoint{4.386015in}{1.043466in}}%
+\pgfpathlineto{\pgfqpoint{4.396535in}{1.039890in}}%
+\pgfpathlineto{\pgfqpoint{4.407056in}{1.031747in}}%
+\pgfpathlineto{\pgfqpoint{4.417577in}{1.017652in}}%
+\pgfpathlineto{\pgfqpoint{4.428097in}{0.994238in}}%
+\pgfpathlineto{\pgfqpoint{4.438618in}{0.950964in}}%
+\pgfpathlineto{\pgfqpoint{4.449139in}{0.780000in}}%
+\pgfpathlineto{\pgfqpoint{4.459659in}{0.939598in}}%
+\pgfpathlineto{\pgfqpoint{4.470180in}{0.993268in}}%
+\pgfpathlineto{\pgfqpoint{4.480701in}{1.022242in}}%
+\pgfpathlineto{\pgfqpoint{4.491221in}{1.040722in}}%
+\pgfpathlineto{\pgfqpoint{4.501742in}{1.052809in}}%
+\pgfpathlineto{\pgfqpoint{4.512263in}{1.060152in}}%
+\pgfpathlineto{\pgfqpoint{4.522783in}{1.063425in}}%
+\pgfpathlineto{\pgfqpoint{4.533304in}{1.062752in}}%
+\pgfpathlineto{\pgfqpoint{4.543825in}{1.057760in}}%
+\pgfpathlineto{\pgfqpoint{4.554345in}{1.047379in}}%
+\pgfpathlineto{\pgfqpoint{4.564866in}{1.029065in}}%
+\pgfpathlineto{\pgfqpoint{4.575386in}{0.995686in}}%
+\pgfpathlineto{\pgfqpoint{4.585907in}{0.909540in}}%
+\pgfpathlineto{\pgfqpoint{4.596428in}{0.941921in}}%
+\pgfpathlineto{\pgfqpoint{4.606948in}{1.014643in}}%
+\pgfpathlineto{\pgfqpoint{4.617469in}{1.050366in}}%
+\pgfpathlineto{\pgfqpoint{4.627990in}{1.073230in}}%
+\pgfpathlineto{\pgfqpoint{4.638510in}{1.088886in}}%
+\pgfpathlineto{\pgfqpoint{4.649031in}{1.099466in}}%
+\pgfpathlineto{\pgfqpoint{4.659552in}{1.105872in}}%
+\pgfpathlineto{\pgfqpoint{4.670072in}{1.108376in}}%
+\pgfpathlineto{\pgfqpoint{4.680593in}{1.106762in}}%
+\pgfpathlineto{\pgfqpoint{4.691114in}{1.100216in}}%
+\pgfpathlineto{\pgfqpoint{4.701634in}{1.086787in}}%
+\pgfpathlineto{\pgfqpoint{4.712155in}{1.061420in}}%
+\pgfpathlineto{\pgfqpoint{4.733196in}{0.948666in}}%
+\pgfpathlineto{\pgfqpoint{4.743717in}{1.059048in}}%
+\pgfpathlineto{\pgfqpoint{4.754238in}{1.103576in}}%
+\pgfpathlineto{\pgfqpoint{4.764758in}{1.131746in}}%
+\pgfpathlineto{\pgfqpoint{4.775279in}{1.151641in}}%
+\pgfpathlineto{\pgfqpoint{4.785799in}{1.166055in}}%
+\pgfpathlineto{\pgfqpoint{4.796320in}{1.176164in}}%
+\pgfpathlineto{\pgfqpoint{4.806841in}{1.182402in}}%
+\pgfpathlineto{\pgfqpoint{4.817361in}{1.184707in}}%
+\pgfpathlineto{\pgfqpoint{4.827882in}{1.182476in}}%
+\pgfpathlineto{\pgfqpoint{4.838403in}{1.174207in}}%
+\pgfpathlineto{\pgfqpoint{4.848923in}{1.156199in}}%
+\pgfpathlineto{\pgfqpoint{4.859444in}{1.116278in}}%
+\pgfpathlineto{\pgfqpoint{4.866636in}{0.453273in}}%
+\pgfpathlineto{\pgfqpoint{4.866636in}{0.453273in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{1.505625pt}%
+\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.672226in}{0.835897in}}%
+\pgfpathlineto{\pgfqpoint{0.682746in}{0.660479in}}%
+\pgfpathlineto{\pgfqpoint{0.693267in}{0.705644in}}%
+\pgfpathlineto{\pgfqpoint{0.703788in}{0.728746in}}%
+\pgfpathlineto{\pgfqpoint{0.714308in}{0.741963in}}%
+\pgfpathlineto{\pgfqpoint{0.724829in}{0.749005in}}%
+\pgfpathlineto{\pgfqpoint{0.735350in}{0.751379in}}%
+\pgfpathlineto{\pgfqpoint{0.745870in}{0.749695in}}%
+\pgfpathlineto{\pgfqpoint{0.756391in}{0.744023in}}%
+\pgfpathlineto{\pgfqpoint{0.766912in}{0.733932in}}%
+\pgfpathlineto{\pgfqpoint{0.777432in}{0.718253in}}%
+\pgfpathlineto{\pgfqpoint{0.787953in}{0.694197in}}%
+\pgfpathlineto{\pgfqpoint{0.798474in}{0.653684in}}%
+\pgfpathlineto{\pgfqpoint{0.808994in}{0.547172in}}%
+\pgfpathlineto{\pgfqpoint{0.830036in}{0.667544in}}%
+\pgfpathlineto{\pgfqpoint{0.840556in}{0.696577in}}%
+\pgfpathlineto{\pgfqpoint{0.851077in}{0.713587in}}%
+\pgfpathlineto{\pgfqpoint{0.861598in}{0.723637in}}%
+\pgfpathlineto{\pgfqpoint{0.872118in}{0.728681in}}%
+\pgfpathlineto{\pgfqpoint{0.882639in}{0.729536in}}%
+\pgfpathlineto{\pgfqpoint{0.893159in}{0.726420in}}%
+\pgfpathlineto{\pgfqpoint{0.903680in}{0.719063in}}%
+\pgfpathlineto{\pgfqpoint{0.914201in}{0.706568in}}%
+\pgfpathlineto{\pgfqpoint{0.924721in}{0.686802in}}%
+\pgfpathlineto{\pgfqpoint{0.935242in}{0.654114in}}%
+\pgfpathlineto{\pgfqpoint{0.945763in}{0.584381in}}%
+\pgfpathlineto{\pgfqpoint{0.956283in}{0.554998in}}%
+\pgfpathlineto{\pgfqpoint{0.966804in}{0.643925in}}%
+\pgfpathlineto{\pgfqpoint{0.977325in}{0.680121in}}%
+\pgfpathlineto{\pgfqpoint{0.987845in}{0.701198in}}%
+\pgfpathlineto{\pgfqpoint{0.998366in}{0.714293in}}%
+\pgfpathlineto{\pgfqpoint{1.008887in}{0.721949in}}%
+\pgfpathlineto{\pgfqpoint{1.019407in}{0.725241in}}%
+\pgfpathlineto{\pgfqpoint{1.029928in}{0.724539in}}%
+\pgfpathlineto{\pgfqpoint{1.040449in}{0.719723in}}%
+\pgfpathlineto{\pgfqpoint{1.050969in}{0.710119in}}%
+\pgfpathlineto{\pgfqpoint{1.061490in}{0.694082in}}%
+\pgfpathlineto{\pgfqpoint{1.072010in}{0.667507in}}%
+\pgfpathlineto{\pgfqpoint{1.082531in}{0.616188in}}%
+\pgfpathlineto{\pgfqpoint{1.093052in}{0.457318in}}%
+\pgfpathlineto{\pgfqpoint{1.103572in}{0.632167in}}%
+\pgfpathlineto{\pgfqpoint{1.114093in}{0.677682in}}%
+\pgfpathlineto{\pgfqpoint{1.124614in}{0.703303in}}%
+\pgfpathlineto{\pgfqpoint{1.135134in}{0.719571in}}%
+\pgfpathlineto{\pgfqpoint{1.145655in}{0.729851in}}%
+\pgfpathlineto{\pgfqpoint{1.156176in}{0.735530in}}%
+\pgfpathlineto{\pgfqpoint{1.166696in}{0.737155in}}%
+\pgfpathlineto{\pgfqpoint{1.177217in}{0.734748in}}%
+\pgfpathlineto{\pgfqpoint{1.187738in}{0.727824in}}%
+\pgfpathlineto{\pgfqpoint{1.198258in}{0.715107in}}%
+\pgfpathlineto{\pgfqpoint{1.208779in}{0.693538in}}%
+\pgfpathlineto{\pgfqpoint{1.219300in}{0.653924in}}%
+\pgfpathlineto{\pgfqpoint{1.229820in}{0.527682in}}%
+\pgfpathlineto{\pgfqpoint{1.240341in}{0.629097in}}%
+\pgfpathlineto{\pgfqpoint{1.250862in}{0.687971in}}%
+\pgfpathlineto{\pgfqpoint{1.261382in}{0.718881in}}%
+\pgfpathlineto{\pgfqpoint{1.271903in}{0.738545in}}%
+\pgfpathlineto{\pgfqpoint{1.282423in}{0.751514in}}%
+\pgfpathlineto{\pgfqpoint{1.292944in}{0.759578in}}%
+\pgfpathlineto{\pgfqpoint{1.303465in}{0.763483in}}%
+\pgfpathlineto{\pgfqpoint{1.313985in}{0.763396in}}%
+\pgfpathlineto{\pgfqpoint{1.324506in}{0.758997in}}%
+\pgfpathlineto{\pgfqpoint{1.335027in}{0.749304in}}%
+\pgfpathlineto{\pgfqpoint{1.345547in}{0.731990in}}%
+\pgfpathlineto{\pgfqpoint{1.356068in}{0.700721in}}%
+\pgfpathlineto{\pgfqpoint{1.366589in}{0.625700in}}%
+\pgfpathlineto{\pgfqpoint{1.377109in}{0.628738in}}%
+\pgfpathlineto{\pgfqpoint{1.387630in}{0.709854in}}%
+\pgfpathlineto{\pgfqpoint{1.398151in}{0.747213in}}%
+\pgfpathlineto{\pgfqpoint{1.408671in}{0.770617in}}%
+\pgfpathlineto{\pgfqpoint{1.419192in}{0.786397in}}%
+\pgfpathlineto{\pgfqpoint{1.429713in}{0.796883in}}%
+\pgfpathlineto{\pgfqpoint{1.440233in}{0.803057in}}%
+\pgfpathlineto{\pgfqpoint{1.450754in}{0.805238in}}%
+\pgfpathlineto{\pgfqpoint{1.461274in}{0.803257in}}%
+\pgfpathlineto{\pgfqpoint{1.471795in}{0.796371in}}%
+\pgfpathlineto{\pgfqpoint{1.482316in}{0.782786in}}%
+\pgfpathlineto{\pgfqpoint{1.492836in}{0.757956in}}%
+\pgfpathlineto{\pgfqpoint{1.503357in}{0.705161in}}%
+\pgfpathlineto{\pgfqpoint{1.513878in}{0.609553in}}%
+\pgfpathlineto{\pgfqpoint{1.524398in}{0.742126in}}%
+\pgfpathlineto{\pgfqpoint{1.534919in}{0.787816in}}%
+\pgfpathlineto{\pgfqpoint{1.545440in}{0.815452in}}%
+\pgfpathlineto{\pgfqpoint{1.555960in}{0.834231in}}%
+\pgfpathlineto{\pgfqpoint{1.566481in}{0.847216in}}%
+\pgfpathlineto{\pgfqpoint{1.577002in}{0.855679in}}%
+\pgfpathlineto{\pgfqpoint{1.587522in}{0.860108in}}%
+\pgfpathlineto{\pgfqpoint{1.598043in}{0.860478in}}%
+\pgfpathlineto{\pgfqpoint{1.608564in}{0.856243in}}%
+\pgfpathlineto{\pgfqpoint{1.619084in}{0.846017in}}%
+\pgfpathlineto{\pgfqpoint{1.629605in}{0.826432in}}%
+\pgfpathlineto{\pgfqpoint{1.640126in}{0.786944in}}%
+\pgfpathlineto{\pgfqpoint{1.650646in}{0.619669in}}%
+\pgfpathlineto{\pgfqpoint{1.661167in}{0.783026in}}%
+\pgfpathlineto{\pgfqpoint{1.671687in}{0.840352in}}%
+\pgfpathlineto{\pgfqpoint{1.682208in}{0.872937in}}%
+\pgfpathlineto{\pgfqpoint{1.692729in}{0.894981in}}%
+\pgfpathlineto{\pgfqpoint{1.703249in}{0.910583in}}%
+\pgfpathlineto{\pgfqpoint{1.713770in}{0.921391in}}%
+\pgfpathlineto{\pgfqpoint{1.724291in}{0.928079in}}%
+\pgfpathlineto{\pgfqpoint{1.734811in}{0.930767in}}%
+\pgfpathlineto{\pgfqpoint{1.745332in}{0.929082in}}%
+\pgfpathlineto{\pgfqpoint{1.755853in}{0.921952in}}%
+\pgfpathlineto{\pgfqpoint{1.766373in}{0.906831in}}%
+\pgfpathlineto{\pgfqpoint{1.776894in}{0.876587in}}%
+\pgfpathlineto{\pgfqpoint{1.787415in}{0.793515in}}%
+\pgfpathlineto{\pgfqpoint{1.797935in}{0.828905in}}%
+\pgfpathlineto{\pgfqpoint{1.808456in}{0.904571in}}%
+\pgfpathlineto{\pgfqpoint{1.818977in}{0.943172in}}%
+\pgfpathlineto{\pgfqpoint{1.829497in}{0.968844in}}%
+\pgfpathlineto{\pgfqpoint{1.840018in}{0.987236in}}%
+\pgfpathlineto{\pgfqpoint{1.850538in}{1.000478in}}%
+\pgfpathlineto{\pgfqpoint{1.861059in}{1.009469in}}%
+\pgfpathlineto{\pgfqpoint{1.871580in}{1.014478in}}%
+\pgfpathlineto{\pgfqpoint{1.882100in}{1.015288in}}%
+\pgfpathlineto{\pgfqpoint{1.892621in}{1.011079in}}%
+\pgfpathlineto{\pgfqpoint{1.903142in}{0.999898in}}%
+\pgfpathlineto{\pgfqpoint{1.913662in}{0.976687in}}%
+\pgfpathlineto{\pgfqpoint{1.934704in}{0.867955in}}%
+\pgfpathlineto{\pgfqpoint{1.945224in}{0.980194in}}%
+\pgfpathlineto{\pgfqpoint{1.955745in}{1.026471in}}%
+\pgfpathlineto{\pgfqpoint{1.966266in}{1.056277in}}%
+\pgfpathlineto{\pgfqpoint{1.976786in}{1.077690in}}%
+\pgfpathlineto{\pgfqpoint{1.987307in}{1.093499in}}%
+\pgfpathlineto{\pgfqpoint{1.997828in}{1.104874in}}%
+\pgfpathlineto{\pgfqpoint{2.008348in}{1.112244in}}%
+\pgfpathlineto{\pgfqpoint{2.018869in}{1.115538in}}%
+\pgfpathlineto{\pgfqpoint{2.029390in}{1.114148in}}%
+\pgfpathlineto{\pgfqpoint{2.039910in}{1.106563in}}%
+\pgfpathlineto{\pgfqpoint{2.050431in}{1.089072in}}%
+\pgfpathlineto{\pgfqpoint{2.060951in}{1.049496in}}%
+\pgfpathlineto{\pgfqpoint{2.071472in}{0.922657in}}%
+\pgfpathlineto{\pgfqpoint{2.081993in}{1.066653in}}%
+\pgfpathlineto{\pgfqpoint{2.092513in}{1.123389in}}%
+\pgfpathlineto{\pgfqpoint{2.103034in}{1.158040in}}%
+\pgfpathlineto{\pgfqpoint{2.113555in}{1.182790in}}%
+\pgfpathlineto{\pgfqpoint{2.124075in}{1.201351in}}%
+\pgfpathlineto{\pgfqpoint{2.134596in}{1.215234in}}%
+\pgfpathlineto{\pgfqpoint{2.145117in}{1.225048in}}%
+\pgfpathlineto{\pgfqpoint{2.155637in}{1.230867in}}%
+\pgfpathlineto{\pgfqpoint{2.166158in}{1.232261in}}%
+\pgfpathlineto{\pgfqpoint{2.176679in}{1.228064in}}%
+\pgfpathlineto{\pgfqpoint{2.187199in}{1.215486in}}%
+\pgfpathlineto{\pgfqpoint{2.197720in}{1.186452in}}%
+\pgfpathlineto{\pgfqpoint{2.208241in}{1.091471in}}%
+\pgfpathlineto{\pgfqpoint{2.229282in}{1.234773in}}%
+\pgfpathlineto{\pgfqpoint{2.239802in}{1.275297in}}%
+\pgfpathlineto{\pgfqpoint{2.250323in}{1.303813in}}%
+\pgfpathlineto{\pgfqpoint{2.260844in}{1.325380in}}%
+\pgfpathlineto{\pgfqpoint{2.271364in}{1.341952in}}%
+\pgfpathlineto{\pgfqpoint{2.281885in}{1.354351in}}%
+\pgfpathlineto{\pgfqpoint{2.292406in}{1.362794in}}%
+\pgfpathlineto{\pgfqpoint{2.302926in}{1.367016in}}%
+\pgfpathlineto{\pgfqpoint{2.313447in}{1.366118in}}%
+\pgfpathlineto{\pgfqpoint{2.323968in}{1.357972in}}%
+\pgfpathlineto{\pgfqpoint{2.334488in}{1.336930in}}%
+\pgfpathlineto{\pgfqpoint{2.345009in}{1.278858in}}%
+\pgfpathlineto{\pgfqpoint{2.355530in}{1.261098in}}%
+\pgfpathlineto{\pgfqpoint{2.366050in}{1.361842in}}%
+\pgfpathlineto{\pgfqpoint{2.376571in}{1.409796in}}%
+\pgfpathlineto{\pgfqpoint{2.387092in}{1.442670in}}%
+\pgfpathlineto{\pgfqpoint{2.397612in}{1.467598in}}%
+\pgfpathlineto{\pgfqpoint{2.408133in}{1.487126in}}%
+\pgfpathlineto{\pgfqpoint{2.418654in}{1.502330in}}%
+\pgfpathlineto{\pgfqpoint{2.429174in}{1.513585in}}%
+\pgfpathlineto{\pgfqpoint{2.439695in}{1.520773in}}%
+\pgfpathlineto{\pgfqpoint{2.450215in}{1.523221in}}%
+\pgfpathlineto{\pgfqpoint{2.460736in}{1.519286in}}%
+\pgfpathlineto{\pgfqpoint{2.471257in}{1.504869in}}%
+\pgfpathlineto{\pgfqpoint{2.481777in}{1.465774in}}%
+\pgfpathlineto{\pgfqpoint{2.492298in}{1.320772in}}%
+\pgfpathlineto{\pgfqpoint{2.502819in}{1.506356in}}%
+\pgfpathlineto{\pgfqpoint{2.513339in}{1.564281in}}%
+\pgfpathlineto{\pgfqpoint{2.523860in}{1.602378in}}%
+\pgfpathlineto{\pgfqpoint{2.534381in}{1.631195in}}%
+\pgfpathlineto{\pgfqpoint{2.544901in}{1.654103in}}%
+\pgfpathlineto{\pgfqpoint{2.555422in}{1.672491in}}%
+\pgfpathlineto{\pgfqpoint{2.565943in}{1.686911in}}%
+\pgfpathlineto{\pgfqpoint{2.576463in}{1.697389in}}%
+\pgfpathlineto{\pgfqpoint{2.586984in}{1.703445in}}%
+\pgfpathlineto{\pgfqpoint{2.597505in}{1.703809in}}%
+\pgfpathlineto{\pgfqpoint{2.608025in}{1.695424in}}%
+\pgfpathlineto{\pgfqpoint{2.618546in}{1.669098in}}%
+\pgfpathlineto{\pgfqpoint{2.629066in}{1.555997in}}%
+\pgfpathlineto{\pgfqpoint{2.639587in}{1.671220in}}%
+\pgfpathlineto{\pgfqpoint{2.650108in}{1.743757in}}%
+\pgfpathlineto{\pgfqpoint{2.660628in}{1.788467in}}%
+\pgfpathlineto{\pgfqpoint{2.671149in}{1.822081in}}%
+\pgfpathlineto{\pgfqpoint{2.681670in}{1.849160in}}%
+\pgfpathlineto{\pgfqpoint{2.692190in}{1.871508in}}%
+\pgfpathlineto{\pgfqpoint{2.702711in}{1.889890in}}%
+\pgfpathlineto{\pgfqpoint{2.713232in}{1.904497in}}%
+\pgfpathlineto{\pgfqpoint{2.723752in}{1.915038in}}%
+\pgfpathlineto{\pgfqpoint{2.734273in}{1.920568in}}%
+\pgfpathlineto{\pgfqpoint{2.744794in}{1.918808in}}%
+\pgfpathlineto{\pgfqpoint{2.755314in}{1.903485in}}%
+\pgfpathlineto{\pgfqpoint{2.765835in}{1.844893in}}%
+\pgfpathlineto{\pgfqpoint{2.776356in}{2.283975in}}%
+\pgfpathlineto{\pgfqpoint{2.797397in}{2.248513in}}%
+\pgfpathlineto{\pgfqpoint{2.818438in}{2.207752in}}%
+\pgfpathlineto{\pgfqpoint{2.839479in}{2.160537in}}%
+\pgfpathlineto{\pgfqpoint{2.860521in}{2.104212in}}%
+\pgfpathlineto{\pgfqpoint{2.871041in}{2.070776in}}%
+\pgfpathlineto{\pgfqpoint{2.881562in}{2.031485in}}%
+\pgfpathlineto{\pgfqpoint{2.892083in}{1.981643in}}%
+\pgfpathlineto{\pgfqpoint{2.902603in}{1.904418in}}%
+\pgfpathlineto{\pgfqpoint{2.913124in}{1.784875in}}%
+\pgfpathlineto{\pgfqpoint{2.923645in}{1.893964in}}%
+\pgfpathlineto{\pgfqpoint{2.934165in}{1.916538in}}%
+\pgfpathlineto{\pgfqpoint{2.944686in}{1.921394in}}%
+\pgfpathlineto{\pgfqpoint{2.955207in}{1.917694in}}%
+\pgfpathlineto{\pgfqpoint{2.965727in}{1.908469in}}%
+\pgfpathlineto{\pgfqpoint{2.976248in}{1.894967in}}%
+\pgfpathlineto{\pgfqpoint{2.986769in}{1.877653in}}%
+\pgfpathlineto{\pgfqpoint{2.997289in}{1.856485in}}%
+\pgfpathlineto{\pgfqpoint{3.007810in}{1.830901in}}%
+\pgfpathlineto{\pgfqpoint{3.018330in}{1.799499in}}%
+\pgfpathlineto{\pgfqpoint{3.028851in}{1.758900in}}%
+\pgfpathlineto{\pgfqpoint{3.039372in}{1.698550in}}%
+\pgfpathlineto{\pgfqpoint{3.049892in}{1.510609in}}%
+\pgfpathlineto{\pgfqpoint{3.060413in}{1.653318in}}%
+\pgfpathlineto{\pgfqpoint{3.070934in}{1.690179in}}%
+\pgfpathlineto{\pgfqpoint{3.081454in}{1.702415in}}%
+\pgfpathlineto{\pgfqpoint{3.091975in}{1.704220in}}%
+\pgfpathlineto{\pgfqpoint{3.102496in}{1.699689in}}%
+\pgfpathlineto{\pgfqpoint{3.113016in}{1.690462in}}%
+\pgfpathlineto{\pgfqpoint{3.123537in}{1.677209in}}%
+\pgfpathlineto{\pgfqpoint{3.134058in}{1.660045in}}%
+\pgfpathlineto{\pgfqpoint{3.144578in}{1.638594in}}%
+\pgfpathlineto{\pgfqpoint{3.155099in}{1.611777in}}%
+\pgfpathlineto{\pgfqpoint{3.165620in}{1.577047in}}%
+\pgfpathlineto{\pgfqpoint{3.176140in}{1.527267in}}%
+\pgfpathlineto{\pgfqpoint{3.186661in}{1.424726in}}%
+\pgfpathlineto{\pgfqpoint{3.197182in}{1.440718in}}%
+\pgfpathlineto{\pgfqpoint{3.207702in}{1.497048in}}%
+\pgfpathlineto{\pgfqpoint{3.218223in}{1.516374in}}%
+\pgfpathlineto{\pgfqpoint{3.228743in}{1.522828in}}%
+\pgfpathlineto{\pgfqpoint{3.239264in}{1.522056in}}%
+\pgfpathlineto{\pgfqpoint{3.249785in}{1.516188in}}%
+\pgfpathlineto{\pgfqpoint{3.260305in}{1.506119in}}%
+\pgfpathlineto{\pgfqpoint{3.270826in}{1.492115in}}%
+\pgfpathlineto{\pgfqpoint{3.281347in}{1.473957in}}%
+\pgfpathlineto{\pgfqpoint{3.291867in}{1.450824in}}%
+\pgfpathlineto{\pgfqpoint{3.302388in}{1.420760in}}%
+\pgfpathlineto{\pgfqpoint{3.312909in}{1.378705in}}%
+\pgfpathlineto{\pgfqpoint{3.333950in}{1.232393in}}%
+\pgfpathlineto{\pgfqpoint{3.344471in}{1.325892in}}%
+\pgfpathlineto{\pgfqpoint{3.354991in}{1.353460in}}%
+\pgfpathlineto{\pgfqpoint{3.365512in}{1.364587in}}%
+\pgfpathlineto{\pgfqpoint{3.376033in}{1.367348in}}%
+\pgfpathlineto{\pgfqpoint{3.386553in}{1.364530in}}%
+\pgfpathlineto{\pgfqpoint{3.397074in}{1.357302in}}%
+\pgfpathlineto{\pgfqpoint{3.407594in}{1.346091in}}%
+\pgfpathlineto{\pgfqpoint{3.418115in}{1.330824in}}%
+\pgfpathlineto{\pgfqpoint{3.428636in}{1.310891in}}%
+\pgfpathlineto{\pgfqpoint{3.439156in}{1.284781in}}%
+\pgfpathlineto{\pgfqpoint{3.449677in}{1.248781in}}%
+\pgfpathlineto{\pgfqpoint{3.460198in}{1.190708in}}%
+\pgfpathlineto{\pgfqpoint{3.467474in}{0.453273in}}%
+\pgfpathmoveto{\pgfqpoint{3.474024in}{0.453273in}}%
+\pgfpathlineto{\pgfqpoint{3.481239in}{1.170908in}}%
+\pgfpathlineto{\pgfqpoint{3.491760in}{1.209179in}}%
+\pgfpathlineto{\pgfqpoint{3.502280in}{1.225373in}}%
+\pgfpathlineto{\pgfqpoint{3.512801in}{1.231671in}}%
+\pgfpathlineto{\pgfqpoint{3.523322in}{1.231785in}}%
+\pgfpathlineto{\pgfqpoint{3.533842in}{1.227222in}}%
+\pgfpathlineto{\pgfqpoint{3.544363in}{1.218593in}}%
+\pgfpathlineto{\pgfqpoint{3.554884in}{1.205967in}}%
+\pgfpathlineto{\pgfqpoint{3.565404in}{1.188915in}}%
+\pgfpathlineto{\pgfqpoint{3.575925in}{1.166267in}}%
+\pgfpathlineto{\pgfqpoint{3.586446in}{1.135233in}}%
+\pgfpathlineto{\pgfqpoint{3.596966in}{1.087737in}}%
+\pgfpathlineto{\pgfqpoint{3.607487in}{0.974286in}}%
+\pgfpathlineto{\pgfqpoint{3.628528in}{1.080614in}}%
+\pgfpathlineto{\pgfqpoint{3.639049in}{1.102633in}}%
+\pgfpathlineto{\pgfqpoint{3.649569in}{1.112629in}}%
+\pgfpathlineto{\pgfqpoint{3.660090in}{1.115659in}}%
+\pgfpathlineto{\pgfqpoint{3.670611in}{1.113676in}}%
+\pgfpathlineto{\pgfqpoint{3.681131in}{1.107500in}}%
+\pgfpathlineto{\pgfqpoint{3.691652in}{1.097347in}}%
+\pgfpathlineto{\pgfqpoint{3.702173in}{1.082949in}}%
+\pgfpathlineto{\pgfqpoint{3.712693in}{1.063407in}}%
+\pgfpathlineto{\pgfqpoint{3.723214in}{1.036589in}}%
+\pgfpathlineto{\pgfqpoint{3.733735in}{0.996848in}}%
+\pgfpathlineto{\pgfqpoint{3.744255in}{0.920045in}}%
+\pgfpathlineto{\pgfqpoint{3.754776in}{0.883523in}}%
+\pgfpathlineto{\pgfqpoint{3.765297in}{0.965470in}}%
+\pgfpathlineto{\pgfqpoint{3.775817in}{0.994592in}}%
+\pgfpathlineto{\pgfqpoint{3.786338in}{1.008595in}}%
+\pgfpathlineto{\pgfqpoint{3.796858in}{1.014611in}}%
+\pgfpathlineto{\pgfqpoint{3.807379in}{1.015185in}}%
+\pgfpathlineto{\pgfqpoint{3.817900in}{1.011391in}}%
+\pgfpathlineto{\pgfqpoint{3.828420in}{1.003600in}}%
+\pgfpathlineto{\pgfqpoint{3.838941in}{0.991693in}}%
+\pgfpathlineto{\pgfqpoint{3.849462in}{0.974994in}}%
+\pgfpathlineto{\pgfqpoint{3.859982in}{0.951858in}}%
+\pgfpathlineto{\pgfqpoint{3.870503in}{0.918182in}}%
+\pgfpathlineto{\pgfqpoint{3.881024in}{0.859769in}}%
+\pgfpathlineto{\pgfqpoint{3.891544in}{0.695384in}}%
+\pgfpathlineto{\pgfqpoint{3.902065in}{0.861522in}}%
+\pgfpathlineto{\pgfqpoint{3.912586in}{0.899930in}}%
+\pgfpathlineto{\pgfqpoint{3.923106in}{0.918438in}}%
+\pgfpathlineto{\pgfqpoint{3.933627in}{0.927591in}}%
+\pgfpathlineto{\pgfqpoint{3.944148in}{0.930753in}}%
+\pgfpathlineto{\pgfqpoint{3.954668in}{0.929312in}}%
+\pgfpathlineto{\pgfqpoint{3.965189in}{0.923815in}}%
+\pgfpathlineto{\pgfqpoint{3.975710in}{0.914285in}}%
+\pgfpathlineto{\pgfqpoint{3.986230in}{0.900236in}}%
+\pgfpathlineto{\pgfqpoint{3.996751in}{0.880393in}}%
+\pgfpathlineto{\pgfqpoint{4.007271in}{0.851695in}}%
+\pgfpathlineto{\pgfqpoint{4.017792in}{0.804945in}}%
+\pgfpathlineto{\pgfqpoint{4.028313in}{0.671302in}}%
+\pgfpathlineto{\pgfqpoint{4.038833in}{0.765860in}}%
+\pgfpathlineto{\pgfqpoint{4.049354in}{0.817600in}}%
+\pgfpathlineto{\pgfqpoint{4.059875in}{0.841373in}}%
+\pgfpathlineto{\pgfqpoint{4.070395in}{0.853902in}}%
+\pgfpathlineto{\pgfqpoint{4.080916in}{0.859733in}}%
+\pgfpathlineto{\pgfqpoint{4.091437in}{0.860658in}}%
+\pgfpathlineto{\pgfqpoint{4.101957in}{0.857423in}}%
+\pgfpathlineto{\pgfqpoint{4.112478in}{0.850196in}}%
+\pgfpathlineto{\pgfqpoint{4.122999in}{0.838656in}}%
+\pgfpathlineto{\pgfqpoint{4.133519in}{0.821822in}}%
+\pgfpathlineto{\pgfqpoint{4.144040in}{0.797365in}}%
+\pgfpathlineto{\pgfqpoint{4.154561in}{0.758953in}}%
+\pgfpathlineto{\pgfqpoint{4.165081in}{0.676800in}}%
+\pgfpathlineto{\pgfqpoint{4.175602in}{0.672700in}}%
+\pgfpathlineto{\pgfqpoint{4.186122in}{0.746654in}}%
+\pgfpathlineto{\pgfqpoint{4.196643in}{0.776867in}}%
+\pgfpathlineto{\pgfqpoint{4.207164in}{0.793125in}}%
+\pgfpathlineto{\pgfqpoint{4.217684in}{0.801761in}}%
+\pgfpathlineto{\pgfqpoint{4.228205in}{0.805101in}}%
+\pgfpathlineto{\pgfqpoint{4.238726in}{0.804129in}}%
+\pgfpathlineto{\pgfqpoint{4.249246in}{0.799164in}}%
+\pgfpathlineto{\pgfqpoint{4.259767in}{0.790038in}}%
+\pgfpathlineto{\pgfqpoint{4.270288in}{0.776006in}}%
+\pgfpathlineto{\pgfqpoint{4.280808in}{0.755276in}}%
+\pgfpathlineto{\pgfqpoint{4.291329in}{0.723301in}}%
+\pgfpathlineto{\pgfqpoint{4.301850in}{0.663359in}}%
+\pgfpathlineto{\pgfqpoint{4.312370in}{0.560600in}}%
+\pgfpathlineto{\pgfqpoint{4.322891in}{0.686038in}}%
+\pgfpathlineto{\pgfqpoint{4.333412in}{0.724584in}}%
+\pgfpathlineto{\pgfqpoint{4.343932in}{0.745077in}}%
+\pgfpathlineto{\pgfqpoint{4.354453in}{0.756714in}}%
+\pgfpathlineto{\pgfqpoint{4.364974in}{0.762557in}}%
+\pgfpathlineto{\pgfqpoint{4.375494in}{0.763880in}}%
+\pgfpathlineto{\pgfqpoint{4.386015in}{0.761169in}}%
+\pgfpathlineto{\pgfqpoint{4.396535in}{0.754400in}}%
+\pgfpathlineto{\pgfqpoint{4.407056in}{0.743028in}}%
+\pgfpathlineto{\pgfqpoint{4.417577in}{0.725665in}}%
+\pgfpathlineto{\pgfqpoint{4.428097in}{0.698944in}}%
+\pgfpathlineto{\pgfqpoint{4.438618in}{0.652322in}}%
+\pgfpathlineto{\pgfqpoint{4.449139in}{0.477972in}}%
+\pgfpathlineto{\pgfqpoint{4.459659in}{0.634137in}}%
+\pgfpathlineto{\pgfqpoint{4.470180in}{0.684334in}}%
+\pgfpathlineto{\pgfqpoint{4.480701in}{0.709791in}}%
+\pgfpathlineto{\pgfqpoint{4.491221in}{0.724706in}}%
+\pgfpathlineto{\pgfqpoint{4.501742in}{0.733183in}}%
+\pgfpathlineto{\pgfqpoint{4.512263in}{0.736867in}}%
+\pgfpathlineto{\pgfqpoint{4.522783in}{0.736433in}}%
+\pgfpathlineto{\pgfqpoint{4.533304in}{0.732001in}}%
+\pgfpathlineto{\pgfqpoint{4.543825in}{0.723198in}}%
+\pgfpathlineto{\pgfqpoint{4.554345in}{0.708952in}}%
+\pgfpathlineto{\pgfqpoint{4.564866in}{0.686718in}}%
+\pgfpathlineto{\pgfqpoint{4.575386in}{0.649362in}}%
+\pgfpathlineto{\pgfqpoint{4.585907in}{0.559179in}}%
+\pgfpathlineto{\pgfqpoint{4.596428in}{0.587464in}}%
+\pgfpathlineto{\pgfqpoint{4.606948in}{0.656026in}}%
+\pgfpathlineto{\pgfqpoint{4.617469in}{0.687526in}}%
+\pgfpathlineto{\pgfqpoint{4.627990in}{0.706099in}}%
+\pgfpathlineto{\pgfqpoint{4.638510in}{0.717395in}}%
+\pgfpathlineto{\pgfqpoint{4.649031in}{0.723544in}}%
+\pgfpathlineto{\pgfqpoint{4.659552in}{0.725446in}}%
+\pgfpathlineto{\pgfqpoint{4.670072in}{0.723368in}}%
+\pgfpathlineto{\pgfqpoint{4.680593in}{0.717094in}}%
+\pgfpathlineto{\pgfqpoint{4.691114in}{0.705805in}}%
+\pgfpathlineto{\pgfqpoint{4.701634in}{0.687548in}}%
+\pgfpathlineto{\pgfqpoint{4.712155in}{0.657266in}}%
+\pgfpathlineto{\pgfqpoint{4.733196in}{0.534402in}}%
+\pgfpathlineto{\pgfqpoint{4.743717in}{0.639578in}}%
+\pgfpathlineto{\pgfqpoint{4.754238in}{0.678796in}}%
+\pgfpathlineto{\pgfqpoint{4.764758in}{0.701552in}}%
+\pgfpathlineto{\pgfqpoint{4.775279in}{0.715918in}}%
+\pgfpathlineto{\pgfqpoint{4.785799in}{0.724684in}}%
+\pgfpathlineto{\pgfqpoint{4.796320in}{0.729021in}}%
+\pgfpathlineto{\pgfqpoint{4.806841in}{0.729358in}}%
+\pgfpathlineto{\pgfqpoint{4.817361in}{0.725625in}}%
+\pgfpathlineto{\pgfqpoint{4.827882in}{0.717212in}}%
+\pgfpathlineto{\pgfqpoint{4.838403in}{0.702610in}}%
+\pgfpathlineto{\pgfqpoint{4.848923in}{0.678109in}}%
+\pgfpathlineto{\pgfqpoint{4.859444in}{0.631528in}}%
+\pgfpathlineto{\pgfqpoint{4.861399in}{0.453273in}}%
+\pgfpathlineto{\pgfqpoint{4.861399in}{0.453273in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetrectcap%
+\pgfsetmiterjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.672226in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{0.672226in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetrectcap%
+\pgfsetmiterjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{4.869965in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetrectcap%
+\pgfsetmiterjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.672226in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{0.463273in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetrectcap%
+\pgfsetmiterjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.672226in}{2.458330in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetmiterjoin%
+\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetfillopacity{0.800000}%
+\pgfsetlinewidth{1.003750pt}%
+\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetstrokeopacity{0.800000}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.753212in}{1.516709in}}%
+\pgfpathlineto{\pgfqpoint{1.470533in}{1.516709in}}%
+\pgfpathquadraticcurveto{\pgfqpoint{1.493672in}{1.516709in}}{\pgfqpoint{1.493672in}{1.539848in}}%
+\pgfpathlineto{\pgfqpoint{1.493672in}{2.377344in}}%
+\pgfpathquadraticcurveto{\pgfqpoint{1.493672in}{2.400483in}}{\pgfqpoint{1.470533in}{2.400483in}}%
+\pgfpathlineto{\pgfqpoint{0.753212in}{2.400483in}}%
+\pgfpathquadraticcurveto{\pgfqpoint{0.730073in}{2.400483in}}{\pgfqpoint{0.730073in}{2.377344in}}%
+\pgfpathlineto{\pgfqpoint{0.730073in}{1.539848in}}%
+\pgfpathquadraticcurveto{\pgfqpoint{0.730073in}{1.516709in}}{\pgfqpoint{0.753212in}{1.516709in}}%
+\pgfpathlineto{\pgfqpoint{0.753212in}{1.516709in}}%
+\pgfpathclose%
+\pgfusepath{stroke,fill}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{1.505625pt}%
+\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.776351in}{2.306797in}}%
+\pgfpathlineto{\pgfqpoint{0.892045in}{2.306797in}}%
+\pgfpathlineto{\pgfqpoint{1.007740in}{2.306797in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=1.100295in,y=2.266304in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle n=2\)}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{1.505625pt}%
+\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.776351in}{2.136984in}}%
+\pgfpathlineto{\pgfqpoint{0.892045in}{2.136984in}}%
+\pgfpathlineto{\pgfqpoint{1.007740in}{2.136984in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=1.100295in,y=2.096491in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle n=4\)}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{1.505625pt}%
+\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.776351in}{1.967171in}}%
+\pgfpathlineto{\pgfqpoint{0.892045in}{1.967171in}}%
+\pgfpathlineto{\pgfqpoint{1.007740in}{1.967171in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=1.100295in,y=1.926678in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle n=6\)}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{1.505625pt}%
+\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.776351in}{1.797358in}}%
+\pgfpathlineto{\pgfqpoint{0.892045in}{1.797358in}}%
+\pgfpathlineto{\pgfqpoint{1.007740in}{1.797358in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=1.100295in,y=1.756865in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle n=8\)}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{1.505625pt}%
+\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.776351in}{1.627545in}}%
+\pgfpathlineto{\pgfqpoint{0.892045in}{1.627545in}}%
+\pgfpathlineto{\pgfqpoint{1.007740in}{1.627545in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=1.100295in,y=1.587052in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle n=10\)}%
+\end{pgfscope}%
+\end{pgfpicture}%
+\makeatother%
+\endgroup%
diff --git a/buch/papers/laguerre/images/rel_error_simple.pgf b/buch/papers/laguerre/images/rel_error_simple.pgf
new file mode 100644
index 0000000..9368616
--- /dev/null
+++ b/buch/papers/laguerre/images/rel_error_simple.pgf
@@ -0,0 +1,2940 @@
+%% Creator: Matplotlib, PGF backend
+%%
+%% To include the figure in your LaTeX document, write
+%% \input{<filename>.pgf}
+%%
+%% Make sure the required packages are loaded in your preamble
+%% \usepackage{pgf}
+%%
+%% Also ensure that all the required font packages are loaded; for instance,
+%% the lmodern package is sometimes necessary when using math font.
+%% \usepackage{lmodern}
+%%
+%% Figures using additional raster images can only be included by \input if
+%% they are in the same directory as the main LaTeX file. For loading figures
+%% from other directories you can use the `import` package
+%% \usepackage{import}
+%%
+%% and then include the figures with
+%% \import{<path to file>}{<filename>.pgf}
+%%
+%% Matplotlib used the following preamble
+%% \usepackage{fontspec}
+%% \setmainfont{DejaVuSerif.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}]
+%% \setsansfont{DejaVuSans.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}]
+%% \setmonofont{DejaVuSansMono.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}]
+%%
+\begingroup%
+\makeatletter%
+\begin{pgfpicture}%
+\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{5.000000in}{2.500000in}}%
+\pgfusepath{use as bounding box, clip}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetmiterjoin%
+\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.000000pt}%
+\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{5.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{5.000000in}{2.500000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{2.500000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathclose%
+\pgfusepath{fill}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetmiterjoin%
+\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.000000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetstrokeopacity{0.000000}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.672226in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{2.458330in}}%
+\pgfpathlineto{\pgfqpoint{0.672226in}{2.458330in}}%
+\pgfpathlineto{\pgfqpoint{0.672226in}{0.463273in}}%
+\pgfpathclose%
+\pgfusepath{fill}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.672226in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{0.672226in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.672226in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.672226in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}5}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{1.271903in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.271903in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{1.271903in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=1.271903in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{1.871580in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.871580in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{1.871580in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=1.871580in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{2.471257in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{2.471257in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{2.471257in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=2.471257in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{3.070934in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{3.070934in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{3.070934in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=3.070934in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 15}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{3.670611in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{3.670611in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{3.670611in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=3.670611in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 20}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{4.270288in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.270288in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{4.270288in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=4.270288in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 25}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{4.869965in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{4.869965in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=4.869965in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 30}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.792161in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{0.792161in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.792161in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.912097in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{0.912097in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.912097in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{1.032032in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.032032in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{1.032032in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{1.151967in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.151967in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{1.151967in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{1.391838in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.391838in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{1.391838in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{1.511774in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.511774in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{1.511774in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{1.631709in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.631709in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{1.631709in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{1.751644in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.751644in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{1.751644in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{1.991515in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.991515in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{1.991515in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{2.111451in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{2.111451in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{2.111451in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{2.231386in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{2.231386in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{2.231386in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{2.351321in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{2.351321in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{2.351321in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{2.591192in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{2.591192in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{2.591192in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{2.711128in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{2.711128in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{2.711128in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{2.831063in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{2.831063in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{2.831063in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{2.950998in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{2.950998in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{2.950998in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{3.190869in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{3.190869in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{3.190869in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{3.310805in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{3.310805in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{3.310805in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{3.430740in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{3.430740in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{3.430740in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{3.550675in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{3.550675in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{3.550675in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{3.790546in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{3.790546in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{3.790546in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{3.910481in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{3.910481in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{3.910481in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{4.030417in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.030417in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{4.030417in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{4.150352in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.150352in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{4.150352in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{4.390223in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.390223in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{4.390223in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{4.510158in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.510158in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{4.510158in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{4.630094in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.630094in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{4.630094in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{4.750029in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.750029in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.602250pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{4.750029in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=2.771095in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z\)}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.672226in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{0.463273in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.672226in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.231638in, y=0.410512in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-11}}\)}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.672226in}{0.697986in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{0.697986in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.672226in}{0.697986in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.287001in, y=0.645224in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-9}}\)}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.672226in}{0.932698in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{0.932698in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.672226in}{0.932698in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.287001in, y=0.879937in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-7}}\)}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.672226in}{1.167411in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{1.167411in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.672226in}{1.167411in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.287001in, y=1.114649in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-5}}\)}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.672226in}{1.402124in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{1.402124in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.672226in}{1.402124in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.287001in, y=1.349362in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-3}}\)}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.672226in}{1.636836in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{1.636836in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.672226in}{1.636836in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.287001in, y=1.584075in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-1}}\)}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.672226in}{1.871549in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{1.871549in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.672226in}{1.871549in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.373807in, y=1.818787in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{1}}\)}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.672226in}{2.106261in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{2.106261in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.672226in}{2.106261in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.373807in, y=2.053500in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{3}}\)}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.672226in}{2.340974in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{2.340974in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.672226in}{2.340974in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.373807in, y=2.288212in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{5}}\)}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.176083in,y=1.460802in,,bottom,rotate=90.000000]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont Relativer Fehler}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{1.505625pt}%
+\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.672226in}{1.754205in}}%
+\pgfpathlineto{\pgfqpoint{0.682746in}{2.019288in}}%
+\pgfpathlineto{\pgfqpoint{0.693267in}{2.042641in}}%
+\pgfpathlineto{\pgfqpoint{0.703788in}{2.050108in}}%
+\pgfpathlineto{\pgfqpoint{0.714308in}{2.050176in}}%
+\pgfpathlineto{\pgfqpoint{0.724829in}{2.045361in}}%
+\pgfpathlineto{\pgfqpoint{0.735350in}{2.036564in}}%
+\pgfpathlineto{\pgfqpoint{0.745870in}{2.023921in}}%
+\pgfpathlineto{\pgfqpoint{0.756391in}{2.006908in}}%
+\pgfpathlineto{\pgfqpoint{0.766912in}{1.983910in}}%
+\pgfpathlineto{\pgfqpoint{0.777432in}{1.950189in}}%
+\pgfpathlineto{\pgfqpoint{0.787953in}{1.881573in}}%
+\pgfpathlineto{\pgfqpoint{0.798474in}{1.884842in}}%
+\pgfpathlineto{\pgfqpoint{0.808994in}{1.926450in}}%
+\pgfpathlineto{\pgfqpoint{0.819515in}{1.939872in}}%
+\pgfpathlineto{\pgfqpoint{0.830036in}{1.943485in}}%
+\pgfpathlineto{\pgfqpoint{0.840556in}{1.941360in}}%
+\pgfpathlineto{\pgfqpoint{0.851077in}{1.934890in}}%
+\pgfpathlineto{\pgfqpoint{0.861598in}{1.924441in}}%
+\pgfpathlineto{\pgfqpoint{0.872118in}{1.909649in}}%
+\pgfpathlineto{\pgfqpoint{0.882639in}{1.889114in}}%
+\pgfpathlineto{\pgfqpoint{0.893159in}{1.858716in}}%
+\pgfpathlineto{\pgfqpoint{0.903680in}{1.799567in}}%
+\pgfpathlineto{\pgfqpoint{0.914201in}{1.782399in}}%
+\pgfpathlineto{\pgfqpoint{0.924721in}{1.833386in}}%
+\pgfpathlineto{\pgfqpoint{0.935242in}{1.850485in}}%
+\pgfpathlineto{\pgfqpoint{0.945763in}{1.857161in}}%
+\pgfpathlineto{\pgfqpoint{0.956283in}{1.858149in}}%
+\pgfpathlineto{\pgfqpoint{0.966804in}{1.855162in}}%
+\pgfpathlineto{\pgfqpoint{0.977325in}{1.848916in}}%
+\pgfpathlineto{\pgfqpoint{0.987845in}{1.839643in}}%
+\pgfpathlineto{\pgfqpoint{0.998366in}{1.827223in}}%
+\pgfpathlineto{\pgfqpoint{1.008887in}{1.811140in}}%
+\pgfpathlineto{\pgfqpoint{1.019407in}{1.790185in}}%
+\pgfpathlineto{\pgfqpoint{1.029928in}{1.761445in}}%
+\pgfpathlineto{\pgfqpoint{1.040449in}{1.715196in}}%
+\pgfpathlineto{\pgfqpoint{1.050969in}{1.572762in}}%
+\pgfpathlineto{\pgfqpoint{1.061490in}{1.698583in}}%
+\pgfpathlineto{\pgfqpoint{1.072010in}{1.716349in}}%
+\pgfpathlineto{\pgfqpoint{1.082531in}{1.716239in}}%
+\pgfpathlineto{\pgfqpoint{1.093052in}{1.702510in}}%
+\pgfpathlineto{\pgfqpoint{1.103572in}{1.663978in}}%
+\pgfpathlineto{\pgfqpoint{1.114093in}{1.620733in}}%
+\pgfpathlineto{\pgfqpoint{1.124614in}{1.699269in}}%
+\pgfpathlineto{\pgfqpoint{1.135134in}{1.728962in}}%
+\pgfpathlineto{\pgfqpoint{1.145655in}{1.746635in}}%
+\pgfpathlineto{\pgfqpoint{1.156176in}{1.758337in}}%
+\pgfpathlineto{\pgfqpoint{1.166696in}{1.766290in}}%
+\pgfpathlineto{\pgfqpoint{1.177217in}{1.771577in}}%
+\pgfpathlineto{\pgfqpoint{1.187738in}{1.774811in}}%
+\pgfpathlineto{\pgfqpoint{1.198258in}{1.776376in}}%
+\pgfpathlineto{\pgfqpoint{1.208779in}{1.776523in}}%
+\pgfpathlineto{\pgfqpoint{1.219300in}{1.775424in}}%
+\pgfpathlineto{\pgfqpoint{1.240341in}{1.769923in}}%
+\pgfpathlineto{\pgfqpoint{1.261382in}{1.760408in}}%
+\pgfpathlineto{\pgfqpoint{1.282423in}{1.746983in}}%
+\pgfpathlineto{\pgfqpoint{1.303465in}{1.729347in}}%
+\pgfpathlineto{\pgfqpoint{1.324506in}{1.706592in}}%
+\pgfpathlineto{\pgfqpoint{1.335027in}{1.692698in}}%
+\pgfpathlineto{\pgfqpoint{1.345547in}{1.676497in}}%
+\pgfpathlineto{\pgfqpoint{1.356068in}{1.657053in}}%
+\pgfpathlineto{\pgfqpoint{1.366589in}{1.632441in}}%
+\pgfpathlineto{\pgfqpoint{1.377109in}{1.597524in}}%
+\pgfpathlineto{\pgfqpoint{1.387630in}{1.525604in}}%
+\pgfpathlineto{\pgfqpoint{1.398151in}{1.537523in}}%
+\pgfpathlineto{\pgfqpoint{1.408671in}{1.578018in}}%
+\pgfpathlineto{\pgfqpoint{1.419192in}{1.592425in}}%
+\pgfpathlineto{\pgfqpoint{1.429713in}{1.597694in}}%
+\pgfpathlineto{\pgfqpoint{1.440233in}{1.597702in}}%
+\pgfpathlineto{\pgfqpoint{1.450754in}{1.593795in}}%
+\pgfpathlineto{\pgfqpoint{1.461274in}{1.586349in}}%
+\pgfpathlineto{\pgfqpoint{1.471795in}{1.575089in}}%
+\pgfpathlineto{\pgfqpoint{1.482316in}{1.558888in}}%
+\pgfpathlineto{\pgfqpoint{1.492836in}{1.534614in}}%
+\pgfpathlineto{\pgfqpoint{1.503357in}{1.490506in}}%
+\pgfpathlineto{\pgfqpoint{1.513878in}{1.416100in}}%
+\pgfpathlineto{\pgfqpoint{1.524398in}{1.502705in}}%
+\pgfpathlineto{\pgfqpoint{1.534919in}{1.527886in}}%
+\pgfpathlineto{\pgfqpoint{1.545440in}{1.540201in}}%
+\pgfpathlineto{\pgfqpoint{1.555960in}{1.546078in}}%
+\pgfpathlineto{\pgfqpoint{1.566481in}{1.547571in}}%
+\pgfpathlineto{\pgfqpoint{1.577002in}{1.545393in}}%
+\pgfpathlineto{\pgfqpoint{1.587522in}{1.539547in}}%
+\pgfpathlineto{\pgfqpoint{1.598043in}{1.529328in}}%
+\pgfpathlineto{\pgfqpoint{1.608564in}{1.512687in}}%
+\pgfpathlineto{\pgfqpoint{1.619084in}{1.483205in}}%
+\pgfpathlineto{\pgfqpoint{1.629605in}{1.392330in}}%
+\pgfpathlineto{\pgfqpoint{1.640126in}{1.462505in}}%
+\pgfpathlineto{\pgfqpoint{1.650646in}{1.502427in}}%
+\pgfpathlineto{\pgfqpoint{1.661167in}{1.522570in}}%
+\pgfpathlineto{\pgfqpoint{1.671687in}{1.534701in}}%
+\pgfpathlineto{\pgfqpoint{1.682208in}{1.541960in}}%
+\pgfpathlineto{\pgfqpoint{1.692729in}{1.545484in}}%
+\pgfpathlineto{\pgfqpoint{1.703249in}{1.545557in}}%
+\pgfpathlineto{\pgfqpoint{1.713770in}{1.541811in}}%
+\pgfpathlineto{\pgfqpoint{1.724291in}{1.532911in}}%
+\pgfpathlineto{\pgfqpoint{1.734811in}{1.514991in}}%
+\pgfpathlineto{\pgfqpoint{1.745332in}{1.471110in}}%
+\pgfpathlineto{\pgfqpoint{1.755853in}{1.455947in}}%
+\pgfpathlineto{\pgfqpoint{1.766373in}{1.524776in}}%
+\pgfpathlineto{\pgfqpoint{1.776894in}{1.556770in}}%
+\pgfpathlineto{\pgfqpoint{1.787415in}{1.578643in}}%
+\pgfpathlineto{\pgfqpoint{1.797935in}{1.595546in}}%
+\pgfpathlineto{\pgfqpoint{1.808456in}{1.609424in}}%
+\pgfpathlineto{\pgfqpoint{1.829497in}{1.631519in}}%
+\pgfpathlineto{\pgfqpoint{1.850538in}{1.648783in}}%
+\pgfpathlineto{\pgfqpoint{1.871580in}{1.662871in}}%
+\pgfpathlineto{\pgfqpoint{1.892621in}{1.674670in}}%
+\pgfpathlineto{\pgfqpoint{1.924183in}{1.689203in}}%
+\pgfpathlineto{\pgfqpoint{1.955745in}{1.700894in}}%
+\pgfpathlineto{\pgfqpoint{1.987307in}{1.710435in}}%
+\pgfpathlineto{\pgfqpoint{2.029390in}{1.720592in}}%
+\pgfpathlineto{\pgfqpoint{2.071472in}{1.728489in}}%
+\pgfpathlineto{\pgfqpoint{2.124075in}{1.735954in}}%
+\pgfpathlineto{\pgfqpoint{2.187199in}{1.742298in}}%
+\pgfpathlineto{\pgfqpoint{2.260844in}{1.747154in}}%
+\pgfpathlineto{\pgfqpoint{2.355530in}{1.750770in}}%
+\pgfpathlineto{\pgfqpoint{2.481777in}{1.752994in}}%
+\pgfpathlineto{\pgfqpoint{2.692190in}{1.754026in}}%
+\pgfpathlineto{\pgfqpoint{3.491760in}{1.754192in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{1.754192in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{1.754192in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{1.505625pt}%
+\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.672226in}{1.754519in}}%
+\pgfpathlineto{\pgfqpoint{0.682746in}{2.181128in}}%
+\pgfpathlineto{\pgfqpoint{0.693267in}{2.201913in}}%
+\pgfpathlineto{\pgfqpoint{0.703788in}{2.206736in}}%
+\pgfpathlineto{\pgfqpoint{0.714308in}{2.204138in}}%
+\pgfpathlineto{\pgfqpoint{0.724829in}{2.196641in}}%
+\pgfpathlineto{\pgfqpoint{0.735350in}{2.185146in}}%
+\pgfpathlineto{\pgfqpoint{0.745870in}{2.169783in}}%
+\pgfpathlineto{\pgfqpoint{0.756391in}{2.150008in}}%
+\pgfpathlineto{\pgfqpoint{0.766912in}{2.124151in}}%
+\pgfpathlineto{\pgfqpoint{0.777432in}{2.087265in}}%
+\pgfpathlineto{\pgfqpoint{0.787953in}{2.012959in}}%
+\pgfpathlineto{\pgfqpoint{0.798474in}{2.021124in}}%
+\pgfpathlineto{\pgfqpoint{0.808994in}{2.058129in}}%
+\pgfpathlineto{\pgfqpoint{0.819515in}{2.068517in}}%
+\pgfpathlineto{\pgfqpoint{0.830036in}{2.069376in}}%
+\pgfpathlineto{\pgfqpoint{0.840556in}{2.064626in}}%
+\pgfpathlineto{\pgfqpoint{0.851077in}{2.055639in}}%
+\pgfpathlineto{\pgfqpoint{0.861598in}{2.042809in}}%
+\pgfpathlineto{\pgfqpoint{0.872118in}{2.025866in}}%
+\pgfpathlineto{\pgfqpoint{0.882639in}{2.003663in}}%
+\pgfpathlineto{\pgfqpoint{0.893159in}{1.972966in}}%
+\pgfpathlineto{\pgfqpoint{0.903680in}{1.921325in}}%
+\pgfpathlineto{\pgfqpoint{0.914201in}{1.850576in}}%
+\pgfpathlineto{\pgfqpoint{0.924721in}{1.923920in}}%
+\pgfpathlineto{\pgfqpoint{0.935242in}{1.941559in}}%
+\pgfpathlineto{\pgfqpoint{0.945763in}{1.946553in}}%
+\pgfpathlineto{\pgfqpoint{0.956283in}{1.945065in}}%
+\pgfpathlineto{\pgfqpoint{0.966804in}{1.939109in}}%
+\pgfpathlineto{\pgfqpoint{0.977325in}{1.929423in}}%
+\pgfpathlineto{\pgfqpoint{0.987845in}{1.916087in}}%
+\pgfpathlineto{\pgfqpoint{0.998366in}{1.898587in}}%
+\pgfpathlineto{\pgfqpoint{1.008887in}{1.875417in}}%
+\pgfpathlineto{\pgfqpoint{1.019407in}{1.842331in}}%
+\pgfpathlineto{\pgfqpoint{1.029928in}{1.779898in}}%
+\pgfpathlineto{\pgfqpoint{1.040449in}{1.762527in}}%
+\pgfpathlineto{\pgfqpoint{1.050969in}{1.809789in}}%
+\pgfpathlineto{\pgfqpoint{1.061490in}{1.823622in}}%
+\pgfpathlineto{\pgfqpoint{1.072010in}{1.826680in}}%
+\pgfpathlineto{\pgfqpoint{1.082531in}{1.823354in}}%
+\pgfpathlineto{\pgfqpoint{1.093052in}{1.814840in}}%
+\pgfpathlineto{\pgfqpoint{1.103572in}{1.800842in}}%
+\pgfpathlineto{\pgfqpoint{1.114093in}{1.779173in}}%
+\pgfpathlineto{\pgfqpoint{1.124614in}{1.741528in}}%
+\pgfpathlineto{\pgfqpoint{1.135134in}{1.425341in}}%
+\pgfpathlineto{\pgfqpoint{1.145655in}{1.733313in}}%
+\pgfpathlineto{\pgfqpoint{1.156176in}{1.763336in}}%
+\pgfpathlineto{\pgfqpoint{1.166696in}{1.777868in}}%
+\pgfpathlineto{\pgfqpoint{1.177217in}{1.785653in}}%
+\pgfpathlineto{\pgfqpoint{1.187738in}{1.789455in}}%
+\pgfpathlineto{\pgfqpoint{1.198258in}{1.790513in}}%
+\pgfpathlineto{\pgfqpoint{1.208779in}{1.789493in}}%
+\pgfpathlineto{\pgfqpoint{1.219300in}{1.786789in}}%
+\pgfpathlineto{\pgfqpoint{1.229820in}{1.782650in}}%
+\pgfpathlineto{\pgfqpoint{1.250862in}{1.770657in}}%
+\pgfpathlineto{\pgfqpoint{1.271903in}{1.754192in}}%
+\pgfpathlineto{\pgfqpoint{1.292944in}{1.733343in}}%
+\pgfpathlineto{\pgfqpoint{1.313985in}{1.707635in}}%
+\pgfpathlineto{\pgfqpoint{1.335027in}{1.675702in}}%
+\pgfpathlineto{\pgfqpoint{1.345547in}{1.656452in}}%
+\pgfpathlineto{\pgfqpoint{1.356068in}{1.633904in}}%
+\pgfpathlineto{\pgfqpoint{1.366589in}{1.606132in}}%
+\pgfpathlineto{\pgfqpoint{1.377109in}{1.568002in}}%
+\pgfpathlineto{\pgfqpoint{1.387630in}{1.492814in}}%
+\pgfpathlineto{\pgfqpoint{1.398151in}{1.501409in}}%
+\pgfpathlineto{\pgfqpoint{1.408671in}{1.538524in}}%
+\pgfpathlineto{\pgfqpoint{1.419192in}{1.549490in}}%
+\pgfpathlineto{\pgfqpoint{1.429713in}{1.551259in}}%
+\pgfpathlineto{\pgfqpoint{1.440233in}{1.547705in}}%
+\pgfpathlineto{\pgfqpoint{1.450754in}{1.540169in}}%
+\pgfpathlineto{\pgfqpoint{1.461274in}{1.529026in}}%
+\pgfpathlineto{\pgfqpoint{1.471795in}{1.513998in}}%
+\pgfpathlineto{\pgfqpoint{1.482316in}{1.493955in}}%
+\pgfpathlineto{\pgfqpoint{1.492836in}{1.465760in}}%
+\pgfpathlineto{\pgfqpoint{1.503357in}{1.417650in}}%
+\pgfpathlineto{\pgfqpoint{1.513878in}{1.339156in}}%
+\pgfpathlineto{\pgfqpoint{1.524398in}{1.421582in}}%
+\pgfpathlineto{\pgfqpoint{1.534919in}{1.442488in}}%
+\pgfpathlineto{\pgfqpoint{1.545440in}{1.450426in}}%
+\pgfpathlineto{\pgfqpoint{1.555960in}{1.451821in}}%
+\pgfpathlineto{\pgfqpoint{1.566481in}{1.448717in}}%
+\pgfpathlineto{\pgfqpoint{1.577002in}{1.441822in}}%
+\pgfpathlineto{\pgfqpoint{1.587522in}{1.431133in}}%
+\pgfpathlineto{\pgfqpoint{1.598043in}{1.415935in}}%
+\pgfpathlineto{\pgfqpoint{1.608564in}{1.394171in}}%
+\pgfpathlineto{\pgfqpoint{1.619084in}{1.359410in}}%
+\pgfpathlineto{\pgfqpoint{1.629605in}{1.263092in}}%
+\pgfpathlineto{\pgfqpoint{1.640126in}{1.327646in}}%
+\pgfpathlineto{\pgfqpoint{1.650646in}{1.361757in}}%
+\pgfpathlineto{\pgfqpoint{1.661167in}{1.375881in}}%
+\pgfpathlineto{\pgfqpoint{1.671687in}{1.381771in}}%
+\pgfpathlineto{\pgfqpoint{1.682208in}{1.382547in}}%
+\pgfpathlineto{\pgfqpoint{1.692729in}{1.379323in}}%
+\pgfpathlineto{\pgfqpoint{1.703249in}{1.372356in}}%
+\pgfpathlineto{\pgfqpoint{1.713770in}{1.361248in}}%
+\pgfpathlineto{\pgfqpoint{1.724291in}{1.344630in}}%
+\pgfpathlineto{\pgfqpoint{1.734811in}{1.318592in}}%
+\pgfpathlineto{\pgfqpoint{1.745332in}{1.266142in}}%
+\pgfpathlineto{\pgfqpoint{1.755853in}{1.241894in}}%
+\pgfpathlineto{\pgfqpoint{1.766373in}{1.301044in}}%
+\pgfpathlineto{\pgfqpoint{1.776894in}{1.322660in}}%
+\pgfpathlineto{\pgfqpoint{1.787415in}{1.333319in}}%
+\pgfpathlineto{\pgfqpoint{1.797935in}{1.337986in}}%
+\pgfpathlineto{\pgfqpoint{1.808456in}{1.338336in}}%
+\pgfpathlineto{\pgfqpoint{1.818977in}{1.334919in}}%
+\pgfpathlineto{\pgfqpoint{1.829497in}{1.327605in}}%
+\pgfpathlineto{\pgfqpoint{1.840018in}{1.315497in}}%
+\pgfpathlineto{\pgfqpoint{1.850538in}{1.296075in}}%
+\pgfpathlineto{\pgfqpoint{1.861059in}{1.260797in}}%
+\pgfpathlineto{\pgfqpoint{1.871580in}{0.519076in}}%
+\pgfpathlineto{\pgfqpoint{1.882100in}{1.257532in}}%
+\pgfpathlineto{\pgfqpoint{1.892621in}{1.289548in}}%
+\pgfpathlineto{\pgfqpoint{1.903142in}{1.305714in}}%
+\pgfpathlineto{\pgfqpoint{1.913662in}{1.314575in}}%
+\pgfpathlineto{\pgfqpoint{1.924183in}{1.318655in}}%
+\pgfpathlineto{\pgfqpoint{1.934704in}{1.318855in}}%
+\pgfpathlineto{\pgfqpoint{1.945224in}{1.315305in}}%
+\pgfpathlineto{\pgfqpoint{1.955745in}{1.307462in}}%
+\pgfpathlineto{\pgfqpoint{1.966266in}{1.293652in}}%
+\pgfpathlineto{\pgfqpoint{1.976786in}{1.268916in}}%
+\pgfpathlineto{\pgfqpoint{1.987307in}{1.206680in}}%
+\pgfpathlineto{\pgfqpoint{1.997828in}{1.227879in}}%
+\pgfpathlineto{\pgfqpoint{2.008348in}{1.277323in}}%
+\pgfpathlineto{\pgfqpoint{2.018869in}{1.300401in}}%
+\pgfpathlineto{\pgfqpoint{2.029390in}{1.314112in}}%
+\pgfpathlineto{\pgfqpoint{2.039910in}{1.322369in}}%
+\pgfpathlineto{\pgfqpoint{2.050431in}{1.326549in}}%
+\pgfpathlineto{\pgfqpoint{2.060951in}{1.327055in}}%
+\pgfpathlineto{\pgfqpoint{2.071472in}{1.323636in}}%
+\pgfpathlineto{\pgfqpoint{2.081993in}{1.315185in}}%
+\pgfpathlineto{\pgfqpoint{2.092513in}{1.298591in}}%
+\pgfpathlineto{\pgfqpoint{2.103034in}{1.262110in}}%
+\pgfpathlineto{\pgfqpoint{2.113555in}{1.195296in}}%
+\pgfpathlineto{\pgfqpoint{2.124075in}{1.289475in}}%
+\pgfpathlineto{\pgfqpoint{2.134596in}{1.322227in}}%
+\pgfpathlineto{\pgfqpoint{2.145117in}{1.342129in}}%
+\pgfpathlineto{\pgfqpoint{2.155637in}{1.355628in}}%
+\pgfpathlineto{\pgfqpoint{2.166158in}{1.364797in}}%
+\pgfpathlineto{\pgfqpoint{2.176679in}{1.370371in}}%
+\pgfpathlineto{\pgfqpoint{2.187199in}{1.372378in}}%
+\pgfpathlineto{\pgfqpoint{2.197720in}{1.370141in}}%
+\pgfpathlineto{\pgfqpoint{2.208241in}{1.361645in}}%
+\pgfpathlineto{\pgfqpoint{2.218761in}{1.340509in}}%
+\pgfpathlineto{\pgfqpoint{2.229282in}{1.258231in}}%
+\pgfpathlineto{\pgfqpoint{2.239802in}{1.337313in}}%
+\pgfpathlineto{\pgfqpoint{2.250323in}{1.386533in}}%
+\pgfpathlineto{\pgfqpoint{2.260844in}{1.416465in}}%
+\pgfpathlineto{\pgfqpoint{2.271364in}{1.439016in}}%
+\pgfpathlineto{\pgfqpoint{2.281885in}{1.457526in}}%
+\pgfpathlineto{\pgfqpoint{2.302926in}{1.487469in}}%
+\pgfpathlineto{\pgfqpoint{2.323968in}{1.511626in}}%
+\pgfpathlineto{\pgfqpoint{2.345009in}{1.532075in}}%
+\pgfpathlineto{\pgfqpoint{2.366050in}{1.549871in}}%
+\pgfpathlineto{\pgfqpoint{2.397612in}{1.572894in}}%
+\pgfpathlineto{\pgfqpoint{2.429174in}{1.592585in}}%
+\pgfpathlineto{\pgfqpoint{2.460736in}{1.609711in}}%
+\pgfpathlineto{\pgfqpoint{2.502819in}{1.629408in}}%
+\pgfpathlineto{\pgfqpoint{2.544901in}{1.646237in}}%
+\pgfpathlineto{\pgfqpoint{2.586984in}{1.660749in}}%
+\pgfpathlineto{\pgfqpoint{2.639587in}{1.676223in}}%
+\pgfpathlineto{\pgfqpoint{2.692190in}{1.689255in}}%
+\pgfpathlineto{\pgfqpoint{2.755314in}{1.702255in}}%
+\pgfpathlineto{\pgfqpoint{2.818438in}{1.712886in}}%
+\pgfpathlineto{\pgfqpoint{2.892083in}{1.722846in}}%
+\pgfpathlineto{\pgfqpoint{2.976248in}{1.731634in}}%
+\pgfpathlineto{\pgfqpoint{3.070934in}{1.738919in}}%
+\pgfpathlineto{\pgfqpoint{3.176140in}{1.744563in}}%
+\pgfpathlineto{\pgfqpoint{3.302388in}{1.748887in}}%
+\pgfpathlineto{\pgfqpoint{3.460198in}{1.751846in}}%
+\pgfpathlineto{\pgfqpoint{3.681131in}{1.753541in}}%
+\pgfpathlineto{\pgfqpoint{4.122999in}{1.754161in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{1.754192in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{1.754192in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{1.505625pt}%
+\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.672226in}{1.756434in}}%
+\pgfpathlineto{\pgfqpoint{0.682746in}{2.278618in}}%
+\pgfpathlineto{\pgfqpoint{0.693267in}{2.297753in}}%
+\pgfpathlineto{\pgfqpoint{0.703788in}{2.300924in}}%
+\pgfpathlineto{\pgfqpoint{0.714308in}{2.296672in}}%
+\pgfpathlineto{\pgfqpoint{0.724829in}{2.287522in}}%
+\pgfpathlineto{\pgfqpoint{0.735350in}{2.274372in}}%
+\pgfpathlineto{\pgfqpoint{0.745870in}{2.257353in}}%
+\pgfpathlineto{\pgfqpoint{0.756391in}{2.235920in}}%
+\pgfpathlineto{\pgfqpoint{0.766912in}{2.208398in}}%
+\pgfpathlineto{\pgfqpoint{0.777432in}{2.169830in}}%
+\pgfpathlineto{\pgfqpoint{0.787953in}{2.093676in}}%
+\pgfpathlineto{\pgfqpoint{0.798474in}{2.100656in}}%
+\pgfpathlineto{\pgfqpoint{0.808994in}{2.135897in}}%
+\pgfpathlineto{\pgfqpoint{0.819515in}{2.144614in}}%
+\pgfpathlineto{\pgfqpoint{0.830036in}{2.143818in}}%
+\pgfpathlineto{\pgfqpoint{0.840556in}{2.137423in}}%
+\pgfpathlineto{\pgfqpoint{0.851077in}{2.126800in}}%
+\pgfpathlineto{\pgfqpoint{0.861598in}{2.112346in}}%
+\pgfpathlineto{\pgfqpoint{0.872118in}{2.093801in}}%
+\pgfpathlineto{\pgfqpoint{0.882639in}{2.070042in}}%
+\pgfpathlineto{\pgfqpoint{0.893159in}{2.037916in}}%
+\pgfpathlineto{\pgfqpoint{0.903680in}{1.985469in}}%
+\pgfpathlineto{\pgfqpoint{0.914201in}{1.906049in}}%
+\pgfpathlineto{\pgfqpoint{0.924721in}{1.982150in}}%
+\pgfpathlineto{\pgfqpoint{0.935242in}{1.998529in}}%
+\pgfpathlineto{\pgfqpoint{0.945763in}{2.001970in}}%
+\pgfpathlineto{\pgfqpoint{0.956283in}{1.998824in}}%
+\pgfpathlineto{\pgfqpoint{0.966804in}{1.991138in}}%
+\pgfpathlineto{\pgfqpoint{0.977325in}{1.979639in}}%
+\pgfpathlineto{\pgfqpoint{0.987845in}{1.964367in}}%
+\pgfpathlineto{\pgfqpoint{0.998366in}{1.944703in}}%
+\pgfpathlineto{\pgfqpoint{1.008887in}{1.918851in}}%
+\pgfpathlineto{\pgfqpoint{1.019407in}{1.881454in}}%
+\pgfpathlineto{\pgfqpoint{1.029928in}{1.801434in}}%
+\pgfpathlineto{\pgfqpoint{1.040449in}{1.823671in}}%
+\pgfpathlineto{\pgfqpoint{1.050969in}{1.858105in}}%
+\pgfpathlineto{\pgfqpoint{1.061490in}{1.868238in}}%
+\pgfpathlineto{\pgfqpoint{1.072010in}{1.869149in}}%
+\pgfpathlineto{\pgfqpoint{1.082531in}{1.864396in}}%
+\pgfpathlineto{\pgfqpoint{1.093052in}{1.855086in}}%
+\pgfpathlineto{\pgfqpoint{1.103572in}{1.841204in}}%
+\pgfpathlineto{\pgfqpoint{1.114093in}{1.821572in}}%
+\pgfpathlineto{\pgfqpoint{1.124614in}{1.792333in}}%
+\pgfpathlineto{\pgfqpoint{1.135134in}{1.735889in}}%
+\pgfpathlineto{\pgfqpoint{1.145655in}{1.713198in}}%
+\pgfpathlineto{\pgfqpoint{1.156176in}{1.768084in}}%
+\pgfpathlineto{\pgfqpoint{1.166696in}{1.787295in}}%
+\pgfpathlineto{\pgfqpoint{1.177217in}{1.796238in}}%
+\pgfpathlineto{\pgfqpoint{1.187738in}{1.799938in}}%
+\pgfpathlineto{\pgfqpoint{1.198258in}{1.800301in}}%
+\pgfpathlineto{\pgfqpoint{1.208779in}{1.798256in}}%
+\pgfpathlineto{\pgfqpoint{1.219300in}{1.794325in}}%
+\pgfpathlineto{\pgfqpoint{1.229820in}{1.788826in}}%
+\pgfpathlineto{\pgfqpoint{1.250862in}{1.773855in}}%
+\pgfpathlineto{\pgfqpoint{1.271903in}{1.754192in}}%
+\pgfpathlineto{\pgfqpoint{1.292944in}{1.730001in}}%
+\pgfpathlineto{\pgfqpoint{1.313985in}{1.700844in}}%
+\pgfpathlineto{\pgfqpoint{1.335027in}{1.665376in}}%
+\pgfpathlineto{\pgfqpoint{1.345547in}{1.644328in}}%
+\pgfpathlineto{\pgfqpoint{1.356068in}{1.619966in}}%
+\pgfpathlineto{\pgfqpoint{1.366589in}{1.590361in}}%
+\pgfpathlineto{\pgfqpoint{1.377109in}{1.550380in}}%
+\pgfpathlineto{\pgfqpoint{1.387630in}{1.473325in}}%
+\pgfpathlineto{\pgfqpoint{1.398151in}{1.480034in}}%
+\pgfpathlineto{\pgfqpoint{1.408671in}{1.515247in}}%
+\pgfpathlineto{\pgfqpoint{1.419192in}{1.524294in}}%
+\pgfpathlineto{\pgfqpoint{1.429713in}{1.524125in}}%
+\pgfpathlineto{\pgfqpoint{1.440233in}{1.518615in}}%
+\pgfpathlineto{\pgfqpoint{1.450754in}{1.509105in}}%
+\pgfpathlineto{\pgfqpoint{1.461274in}{1.495970in}}%
+\pgfpathlineto{\pgfqpoint{1.471795in}{1.478930in}}%
+\pgfpathlineto{\pgfqpoint{1.482316in}{1.456856in}}%
+\pgfpathlineto{\pgfqpoint{1.492836in}{1.426611in}}%
+\pgfpathlineto{\pgfqpoint{1.503357in}{1.376429in}}%
+\pgfpathlineto{\pgfqpoint{1.513878in}{1.295843in}}%
+\pgfpathlineto{\pgfqpoint{1.524398in}{1.376155in}}%
+\pgfpathlineto{\pgfqpoint{1.534919in}{1.394925in}}%
+\pgfpathlineto{\pgfqpoint{1.545440in}{1.400705in}}%
+\pgfpathlineto{\pgfqpoint{1.555960in}{1.399917in}}%
+\pgfpathlineto{\pgfqpoint{1.566481in}{1.394608in}}%
+\pgfpathlineto{\pgfqpoint{1.577002in}{1.385483in}}%
+\pgfpathlineto{\pgfqpoint{1.587522in}{1.372539in}}%
+\pgfpathlineto{\pgfqpoint{1.598043in}{1.355059in}}%
+\pgfpathlineto{\pgfqpoint{1.608564in}{1.330987in}}%
+\pgfpathlineto{\pgfqpoint{1.619084in}{1.293892in}}%
+\pgfpathlineto{\pgfqpoint{1.629605in}{1.195210in}}%
+\pgfpathlineto{\pgfqpoint{1.640126in}{1.257372in}}%
+\pgfpathlineto{\pgfqpoint{1.650646in}{1.289061in}}%
+\pgfpathlineto{\pgfqpoint{1.661167in}{1.300734in}}%
+\pgfpathlineto{\pgfqpoint{1.671687in}{1.304140in}}%
+\pgfpathlineto{\pgfqpoint{1.682208in}{1.302400in}}%
+\pgfpathlineto{\pgfqpoint{1.692729in}{1.296627in}}%
+\pgfpathlineto{\pgfqpoint{1.703249in}{1.287077in}}%
+\pgfpathlineto{\pgfqpoint{1.713770in}{1.273351in}}%
+\pgfpathlineto{\pgfqpoint{1.724291in}{1.254079in}}%
+\pgfpathlineto{\pgfqpoint{1.734811in}{1.225350in}}%
+\pgfpathlineto{\pgfqpoint{1.745332in}{1.170170in}}%
+\pgfpathlineto{\pgfqpoint{1.755853in}{1.143153in}}%
+\pgfpathlineto{\pgfqpoint{1.766373in}{1.199493in}}%
+\pgfpathlineto{\pgfqpoint{1.776894in}{1.218257in}}%
+\pgfpathlineto{\pgfqpoint{1.787415in}{1.226021in}}%
+\pgfpathlineto{\pgfqpoint{1.797935in}{1.227747in}}%
+\pgfpathlineto{\pgfqpoint{1.808456in}{1.225112in}}%
+\pgfpathlineto{\pgfqpoint{1.818977in}{1.218661in}}%
+\pgfpathlineto{\pgfqpoint{1.829497in}{1.208264in}}%
+\pgfpathlineto{\pgfqpoint{1.840018in}{1.193022in}}%
+\pgfpathlineto{\pgfqpoint{1.850538in}{1.170413in}}%
+\pgfpathlineto{\pgfqpoint{1.861059in}{1.131894in}}%
+\pgfpathlineto{\pgfqpoint{1.870642in}{0.453273in}}%
+\pgfpathmoveto{\pgfqpoint{1.872530in}{0.453273in}}%
+\pgfpathlineto{\pgfqpoint{1.882100in}{1.121974in}}%
+\pgfpathlineto{\pgfqpoint{1.892621in}{1.150572in}}%
+\pgfpathlineto{\pgfqpoint{1.903142in}{1.163257in}}%
+\pgfpathlineto{\pgfqpoint{1.913662in}{1.168572in}}%
+\pgfpathlineto{\pgfqpoint{1.924183in}{1.169036in}}%
+\pgfpathlineto{\pgfqpoint{1.934704in}{1.165550in}}%
+\pgfpathlineto{\pgfqpoint{1.945224in}{1.158239in}}%
+\pgfpathlineto{\pgfqpoint{1.955745in}{1.146558in}}%
+\pgfpathlineto{\pgfqpoint{1.966266in}{1.128830in}}%
+\pgfpathlineto{\pgfqpoint{1.976786in}{1.100090in}}%
+\pgfpathlineto{\pgfqpoint{1.987307in}{1.033762in}}%
+\pgfpathlineto{\pgfqpoint{1.997828in}{1.050777in}}%
+\pgfpathlineto{\pgfqpoint{2.008348in}{1.095939in}}%
+\pgfpathlineto{\pgfqpoint{2.018869in}{1.114634in}}%
+\pgfpathlineto{\pgfqpoint{2.029390in}{1.123854in}}%
+\pgfpathlineto{\pgfqpoint{2.039910in}{1.127507in}}%
+\pgfpathlineto{\pgfqpoint{2.050431in}{1.126963in}}%
+\pgfpathlineto{\pgfqpoint{2.060951in}{1.122619in}}%
+\pgfpathlineto{\pgfqpoint{2.071472in}{1.114217in}}%
+\pgfpathlineto{\pgfqpoint{2.081993in}{1.100642in}}%
+\pgfpathlineto{\pgfqpoint{2.092513in}{1.078772in}}%
+\pgfpathlineto{\pgfqpoint{2.103034in}{1.036854in}}%
+\pgfpathlineto{\pgfqpoint{2.113555in}{0.964431in}}%
+\pgfpathlineto{\pgfqpoint{2.124075in}{1.052816in}}%
+\pgfpathlineto{\pgfqpoint{2.134596in}{1.079577in}}%
+\pgfpathlineto{\pgfqpoint{2.145117in}{1.093274in}}%
+\pgfpathlineto{\pgfqpoint{2.155637in}{1.100335in}}%
+\pgfpathlineto{\pgfqpoint{2.166158in}{1.102814in}}%
+\pgfpathlineto{\pgfqpoint{2.176679in}{1.101423in}}%
+\pgfpathlineto{\pgfqpoint{2.187199in}{1.096163in}}%
+\pgfpathlineto{\pgfqpoint{2.197720in}{1.086322in}}%
+\pgfpathlineto{\pgfqpoint{2.208241in}{1.069850in}}%
+\pgfpathlineto{\pgfqpoint{2.218761in}{1.040319in}}%
+\pgfpathlineto{\pgfqpoint{2.229282in}{0.949171in}}%
+\pgfpathlineto{\pgfqpoint{2.239802in}{1.018840in}}%
+\pgfpathlineto{\pgfqpoint{2.250323in}{1.058014in}}%
+\pgfpathlineto{\pgfqpoint{2.260844in}{1.077153in}}%
+\pgfpathlineto{\pgfqpoint{2.271364in}{1.088010in}}%
+\pgfpathlineto{\pgfqpoint{2.281885in}{1.093709in}}%
+\pgfpathlineto{\pgfqpoint{2.292406in}{1.095367in}}%
+\pgfpathlineto{\pgfqpoint{2.302926in}{1.093244in}}%
+\pgfpathlineto{\pgfqpoint{2.313447in}{1.086946in}}%
+\pgfpathlineto{\pgfqpoint{2.323968in}{1.075103in}}%
+\pgfpathlineto{\pgfqpoint{2.334488in}{1.053809in}}%
+\pgfpathlineto{\pgfqpoint{2.345009in}{1.006076in}}%
+\pgfpathlineto{\pgfqpoint{2.355530in}{0.986519in}}%
+\pgfpathlineto{\pgfqpoint{2.366050in}{1.050335in}}%
+\pgfpathlineto{\pgfqpoint{2.376571in}{1.076597in}}%
+\pgfpathlineto{\pgfqpoint{2.387092in}{1.091884in}}%
+\pgfpathlineto{\pgfqpoint{2.397612in}{1.101163in}}%
+\pgfpathlineto{\pgfqpoint{2.408133in}{1.106113in}}%
+\pgfpathlineto{\pgfqpoint{2.418654in}{1.107282in}}%
+\pgfpathlineto{\pgfqpoint{2.429174in}{1.104549in}}%
+\pgfpathlineto{\pgfqpoint{2.439695in}{1.097016in}}%
+\pgfpathlineto{\pgfqpoint{2.450215in}{1.082166in}}%
+\pgfpathlineto{\pgfqpoint{2.460736in}{1.051461in}}%
+\pgfpathlineto{\pgfqpoint{2.468667in}{0.453273in}}%
+\pgfpathmoveto{\pgfqpoint{2.473828in}{0.453273in}}%
+\pgfpathlineto{\pgfqpoint{2.481777in}{1.057357in}}%
+\pgfpathlineto{\pgfqpoint{2.492298in}{1.093968in}}%
+\pgfpathlineto{\pgfqpoint{2.502819in}{1.114744in}}%
+\pgfpathlineto{\pgfqpoint{2.513339in}{1.128233in}}%
+\pgfpathlineto{\pgfqpoint{2.523860in}{1.136963in}}%
+\pgfpathlineto{\pgfqpoint{2.534381in}{1.141841in}}%
+\pgfpathlineto{\pgfqpoint{2.544901in}{1.143002in}}%
+\pgfpathlineto{\pgfqpoint{2.555422in}{1.139907in}}%
+\pgfpathlineto{\pgfqpoint{2.565943in}{1.130891in}}%
+\pgfpathlineto{\pgfqpoint{2.576463in}{1.110998in}}%
+\pgfpathlineto{\pgfqpoint{2.586984in}{1.053664in}}%
+\pgfpathlineto{\pgfqpoint{2.597505in}{1.079831in}}%
+\pgfpathlineto{\pgfqpoint{2.608025in}{1.134319in}}%
+\pgfpathlineto{\pgfqpoint{2.618546in}{1.162527in}}%
+\pgfpathlineto{\pgfqpoint{2.629066in}{1.181467in}}%
+\pgfpathlineto{\pgfqpoint{2.639587in}{1.195065in}}%
+\pgfpathlineto{\pgfqpoint{2.650108in}{1.204714in}}%
+\pgfpathlineto{\pgfqpoint{2.660628in}{1.210838in}}%
+\pgfpathlineto{\pgfqpoint{2.671149in}{1.213206in}}%
+\pgfpathlineto{\pgfqpoint{2.681670in}{1.210740in}}%
+\pgfpathlineto{\pgfqpoint{2.692190in}{1.200360in}}%
+\pgfpathlineto{\pgfqpoint{2.702711in}{1.170364in}}%
+\pgfpathlineto{\pgfqpoint{2.713232in}{1.110355in}}%
+\pgfpathlineto{\pgfqpoint{2.723752in}{1.211724in}}%
+\pgfpathlineto{\pgfqpoint{2.734273in}{1.252138in}}%
+\pgfpathlineto{\pgfqpoint{2.744794in}{1.280286in}}%
+\pgfpathlineto{\pgfqpoint{2.755314in}{1.302773in}}%
+\pgfpathlineto{\pgfqpoint{2.776356in}{1.338760in}}%
+\pgfpathlineto{\pgfqpoint{2.797397in}{1.367853in}}%
+\pgfpathlineto{\pgfqpoint{2.818438in}{1.392713in}}%
+\pgfpathlineto{\pgfqpoint{2.839479in}{1.414609in}}%
+\pgfpathlineto{\pgfqpoint{2.871041in}{1.443403in}}%
+\pgfpathlineto{\pgfqpoint{2.902603in}{1.468547in}}%
+\pgfpathlineto{\pgfqpoint{2.934165in}{1.490888in}}%
+\pgfpathlineto{\pgfqpoint{2.965727in}{1.510973in}}%
+\pgfpathlineto{\pgfqpoint{3.007810in}{1.534893in}}%
+\pgfpathlineto{\pgfqpoint{3.049892in}{1.556115in}}%
+\pgfpathlineto{\pgfqpoint{3.091975in}{1.575094in}}%
+\pgfpathlineto{\pgfqpoint{3.144578in}{1.596166in}}%
+\pgfpathlineto{\pgfqpoint{3.197182in}{1.614745in}}%
+\pgfpathlineto{\pgfqpoint{3.249785in}{1.631200in}}%
+\pgfpathlineto{\pgfqpoint{3.312909in}{1.648547in}}%
+\pgfpathlineto{\pgfqpoint{3.376033in}{1.663642in}}%
+\pgfpathlineto{\pgfqpoint{3.449677in}{1.678816in}}%
+\pgfpathlineto{\pgfqpoint{3.523322in}{1.691739in}}%
+\pgfpathlineto{\pgfqpoint{3.607487in}{1.704155in}}%
+\pgfpathlineto{\pgfqpoint{3.691652in}{1.714432in}}%
+\pgfpathlineto{\pgfqpoint{3.786338in}{1.723834in}}%
+\pgfpathlineto{\pgfqpoint{3.891544in}{1.732043in}}%
+\pgfpathlineto{\pgfqpoint{4.007271in}{1.738858in}}%
+\pgfpathlineto{\pgfqpoint{4.144040in}{1.744568in}}%
+\pgfpathlineto{\pgfqpoint{4.301850in}{1.748821in}}%
+\pgfpathlineto{\pgfqpoint{4.501742in}{1.751815in}}%
+\pgfpathlineto{\pgfqpoint{4.785799in}{1.753552in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{1.753773in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{1.753773in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{1.505625pt}%
+\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.672226in}{1.762704in}}%
+\pgfpathlineto{\pgfqpoint{0.682746in}{2.348594in}}%
+\pgfpathlineto{\pgfqpoint{0.693267in}{2.366527in}}%
+\pgfpathlineto{\pgfqpoint{0.703788in}{2.368495in}}%
+\pgfpathlineto{\pgfqpoint{0.714308in}{2.363041in}}%
+\pgfpathlineto{\pgfqpoint{0.724829in}{2.352687in}}%
+\pgfpathlineto{\pgfqpoint{0.735350in}{2.338335in}}%
+\pgfpathlineto{\pgfqpoint{0.745870in}{2.320113in}}%
+\pgfpathlineto{\pgfqpoint{0.756391in}{2.297476in}}%
+\pgfpathlineto{\pgfqpoint{0.766912in}{2.268750in}}%
+\pgfpathlineto{\pgfqpoint{0.777432in}{2.228974in}}%
+\pgfpathlineto{\pgfqpoint{0.787953in}{2.151584in}}%
+\pgfpathlineto{\pgfqpoint{0.798474in}{2.157443in}}%
+\pgfpathlineto{\pgfqpoint{0.808994in}{2.191463in}}%
+\pgfpathlineto{\pgfqpoint{0.819515in}{2.198974in}}%
+\pgfpathlineto{\pgfqpoint{0.830036in}{2.196977in}}%
+\pgfpathlineto{\pgfqpoint{0.840556in}{2.189382in}}%
+\pgfpathlineto{\pgfqpoint{0.851077in}{2.177560in}}%
+\pgfpathlineto{\pgfqpoint{0.861598in}{2.161911in}}%
+\pgfpathlineto{\pgfqpoint{0.872118in}{2.142177in}}%
+\pgfpathlineto{\pgfqpoint{0.882639in}{2.117239in}}%
+\pgfpathlineto{\pgfqpoint{0.893159in}{2.083965in}}%
+\pgfpathlineto{\pgfqpoint{0.903680in}{2.030518in}}%
+\pgfpathlineto{\pgfqpoint{0.914201in}{1.948071in}}%
+\pgfpathlineto{\pgfqpoint{0.924721in}{2.024152in}}%
+\pgfpathlineto{\pgfqpoint{0.935242in}{2.039427in}}%
+\pgfpathlineto{\pgfqpoint{0.945763in}{2.041688in}}%
+\pgfpathlineto{\pgfqpoint{0.956283in}{2.037334in}}%
+\pgfpathlineto{\pgfqpoint{0.966804in}{2.028418in}}%
+\pgfpathlineto{\pgfqpoint{0.977325in}{2.015664in}}%
+\pgfpathlineto{\pgfqpoint{0.987845in}{1.999096in}}%
+\pgfpathlineto{\pgfqpoint{0.998366in}{1.978055in}}%
+\pgfpathlineto{\pgfqpoint{1.008887in}{1.950639in}}%
+\pgfpathlineto{\pgfqpoint{1.019407in}{1.911038in}}%
+\pgfpathlineto{\pgfqpoint{1.029928in}{1.821833in}}%
+\pgfpathlineto{\pgfqpoint{1.040449in}{1.858238in}}%
+\pgfpathlineto{\pgfqpoint{1.050969in}{1.888826in}}%
+\pgfpathlineto{\pgfqpoint{1.061490in}{1.897222in}}%
+\pgfpathlineto{\pgfqpoint{1.072010in}{1.896843in}}%
+\pgfpathlineto{\pgfqpoint{1.082531in}{1.891030in}}%
+\pgfpathlineto{\pgfqpoint{1.093052in}{1.880877in}}%
+\pgfpathlineto{\pgfqpoint{1.103572in}{1.866462in}}%
+\pgfpathlineto{\pgfqpoint{1.114093in}{1.846897in}}%
+\pgfpathlineto{\pgfqpoint{1.124614in}{1.819337in}}%
+\pgfpathlineto{\pgfqpoint{1.135134in}{1.773055in}}%
+\pgfpathlineto{\pgfqpoint{1.145655in}{1.677277in}}%
+\pgfpathlineto{\pgfqpoint{1.156176in}{1.772491in}}%
+\pgfpathlineto{\pgfqpoint{1.166696in}{1.795146in}}%
+\pgfpathlineto{\pgfqpoint{1.177217in}{1.804656in}}%
+\pgfpathlineto{\pgfqpoint{1.187738in}{1.808065in}}%
+\pgfpathlineto{\pgfqpoint{1.198258in}{1.807765in}}%
+\pgfpathlineto{\pgfqpoint{1.208779in}{1.804863in}}%
+\pgfpathlineto{\pgfqpoint{1.219300in}{1.799960in}}%
+\pgfpathlineto{\pgfqpoint{1.229820in}{1.793414in}}%
+\pgfpathlineto{\pgfqpoint{1.250862in}{1.776207in}}%
+\pgfpathlineto{\pgfqpoint{1.271903in}{1.754192in}}%
+\pgfpathlineto{\pgfqpoint{1.292944in}{1.727572in}}%
+\pgfpathlineto{\pgfqpoint{1.313985in}{1.695933in}}%
+\pgfpathlineto{\pgfqpoint{1.335027in}{1.657937in}}%
+\pgfpathlineto{\pgfqpoint{1.345547in}{1.635611in}}%
+\pgfpathlineto{\pgfqpoint{1.356068in}{1.609961in}}%
+\pgfpathlineto{\pgfqpoint{1.366589in}{1.579060in}}%
+\pgfpathlineto{\pgfqpoint{1.377109in}{1.537774in}}%
+\pgfpathlineto{\pgfqpoint{1.387630in}{1.459404in}}%
+\pgfpathlineto{\pgfqpoint{1.398151in}{1.464792in}}%
+\pgfpathlineto{\pgfqpoint{1.408671in}{1.498674in}}%
+\pgfpathlineto{\pgfqpoint{1.419192in}{1.506382in}}%
+\pgfpathlineto{\pgfqpoint{1.429713in}{1.504866in}}%
+\pgfpathlineto{\pgfqpoint{1.440233in}{1.498000in}}%
+\pgfpathlineto{\pgfqpoint{1.450754in}{1.487126in}}%
+\pgfpathlineto{\pgfqpoint{1.461274in}{1.472618in}}%
+\pgfpathlineto{\pgfqpoint{1.471795in}{1.454196in}}%
+\pgfpathlineto{\pgfqpoint{1.482316in}{1.430731in}}%
+\pgfpathlineto{\pgfqpoint{1.492836in}{1.399086in}}%
+\pgfpathlineto{\pgfqpoint{1.503357in}{1.347495in}}%
+\pgfpathlineto{\pgfqpoint{1.513878in}{1.265490in}}%
+\pgfpathlineto{\pgfqpoint{1.524398in}{1.344373in}}%
+\pgfpathlineto{\pgfqpoint{1.534919in}{1.361705in}}%
+\pgfpathlineto{\pgfqpoint{1.545440in}{1.366037in}}%
+\pgfpathlineto{\pgfqpoint{1.555960in}{1.363791in}}%
+\pgfpathlineto{\pgfqpoint{1.566481in}{1.357012in}}%
+\pgfpathlineto{\pgfqpoint{1.577002in}{1.346409in}}%
+\pgfpathlineto{\pgfqpoint{1.587522in}{1.331974in}}%
+\pgfpathlineto{\pgfqpoint{1.598043in}{1.312993in}}%
+\pgfpathlineto{\pgfqpoint{1.608564in}{1.287409in}}%
+\pgfpathlineto{\pgfqpoint{1.619084in}{1.248790in}}%
+\pgfpathlineto{\pgfqpoint{1.629605in}{1.148573in}}%
+\pgfpathlineto{\pgfqpoint{1.640126in}{1.209188in}}%
+\pgfpathlineto{\pgfqpoint{1.650646in}{1.239319in}}%
+\pgfpathlineto{\pgfqpoint{1.661167in}{1.249420in}}%
+\pgfpathlineto{\pgfqpoint{1.671687in}{1.251243in}}%
+\pgfpathlineto{\pgfqpoint{1.682208in}{1.247907in}}%
+\pgfpathlineto{\pgfqpoint{1.692729in}{1.240525in}}%
+\pgfpathlineto{\pgfqpoint{1.703249in}{1.229352in}}%
+\pgfpathlineto{\pgfqpoint{1.713770in}{1.213991in}}%
+\pgfpathlineto{\pgfqpoint{1.724291in}{1.193070in}}%
+\pgfpathlineto{\pgfqpoint{1.734811in}{1.162677in}}%
+\pgfpathlineto{\pgfqpoint{1.745332in}{1.105820in}}%
+\pgfpathlineto{\pgfqpoint{1.755853in}{1.077112in}}%
+\pgfpathlineto{\pgfqpoint{1.766373in}{1.131745in}}%
+\pgfpathlineto{\pgfqpoint{1.776894in}{1.148788in}}%
+\pgfpathlineto{\pgfqpoint{1.787415in}{1.154816in}}%
+\pgfpathlineto{\pgfqpoint{1.797935in}{1.154791in}}%
+\pgfpathlineto{\pgfqpoint{1.808456in}{1.150389in}}%
+\pgfpathlineto{\pgfqpoint{1.818977in}{1.142154in}}%
+\pgfpathlineto{\pgfqpoint{1.829497in}{1.129957in}}%
+\pgfpathlineto{\pgfqpoint{1.840018in}{1.112899in}}%
+\pgfpathlineto{\pgfqpoint{1.850538in}{1.088457in}}%
+\pgfpathlineto{\pgfqpoint{1.861059in}{1.048087in}}%
+\pgfpathlineto{\pgfqpoint{1.869442in}{0.453273in}}%
+\pgfpathmoveto{\pgfqpoint{1.873757in}{0.453273in}}%
+\pgfpathlineto{\pgfqpoint{1.882100in}{1.034412in}}%
+\pgfpathlineto{\pgfqpoint{1.892621in}{1.061106in}}%
+\pgfpathlineto{\pgfqpoint{1.903142in}{1.071868in}}%
+\pgfpathlineto{\pgfqpoint{1.913662in}{1.075240in}}%
+\pgfpathlineto{\pgfqpoint{1.924183in}{1.073743in}}%
+\pgfpathlineto{\pgfqpoint{1.934704in}{1.068274in}}%
+\pgfpathlineto{\pgfqpoint{1.945224in}{1.058962in}}%
+\pgfpathlineto{\pgfqpoint{1.955745in}{1.045258in}}%
+\pgfpathlineto{\pgfqpoint{1.966266in}{1.025486in}}%
+\pgfpathlineto{\pgfqpoint{1.976786in}{0.994682in}}%
+\pgfpathlineto{\pgfqpoint{1.987307in}{0.926267in}}%
+\pgfpathlineto{\pgfqpoint{1.997828in}{0.941171in}}%
+\pgfpathlineto{\pgfqpoint{2.008348in}{0.984201in}}%
+\pgfpathlineto{\pgfqpoint{2.018869in}{1.000739in}}%
+\pgfpathlineto{\pgfqpoint{2.029390in}{1.007779in}}%
+\pgfpathlineto{\pgfqpoint{2.039910in}{1.009227in}}%
+\pgfpathlineto{\pgfqpoint{2.050431in}{1.006453in}}%
+\pgfpathlineto{\pgfqpoint{2.060951in}{0.999853in}}%
+\pgfpathlineto{\pgfqpoint{2.071472in}{0.989168in}}%
+\pgfpathlineto{\pgfqpoint{2.081993in}{0.973284in}}%
+\pgfpathlineto{\pgfqpoint{2.092513in}{0.949076in}}%
+\pgfpathlineto{\pgfqpoint{2.103034in}{0.904793in}}%
+\pgfpathlineto{\pgfqpoint{2.113555in}{0.829975in}}%
+\pgfpathlineto{\pgfqpoint{2.124075in}{0.915936in}}%
+\pgfpathlineto{\pgfqpoint{2.134596in}{0.940242in}}%
+\pgfpathlineto{\pgfqpoint{2.145117in}{0.951452in}}%
+\pgfpathlineto{\pgfqpoint{2.155637in}{0.955995in}}%
+\pgfpathlineto{\pgfqpoint{2.166158in}{0.955922in}}%
+\pgfpathlineto{\pgfqpoint{2.176679in}{0.951945in}}%
+\pgfpathlineto{\pgfqpoint{2.187199in}{0.944064in}}%
+\pgfpathlineto{\pgfqpoint{2.197720in}{0.931567in}}%
+\pgfpathlineto{\pgfqpoint{2.208241in}{0.912401in}}%
+\pgfpathlineto{\pgfqpoint{2.218761in}{0.880139in}}%
+\pgfpathlineto{\pgfqpoint{2.229282in}{0.786220in}}%
+\pgfpathlineto{\pgfqpoint{2.239802in}{0.853078in}}%
+\pgfpathlineto{\pgfqpoint{2.250323in}{0.889400in}}%
+\pgfpathlineto{\pgfqpoint{2.260844in}{0.905643in}}%
+\pgfpathlineto{\pgfqpoint{2.271364in}{0.913561in}}%
+\pgfpathlineto{\pgfqpoint{2.281885in}{0.916275in}}%
+\pgfpathlineto{\pgfqpoint{2.292406in}{0.914901in}}%
+\pgfpathlineto{\pgfqpoint{2.302926in}{0.909698in}}%
+\pgfpathlineto{\pgfqpoint{2.313447in}{0.900268in}}%
+\pgfpathlineto{\pgfqpoint{2.323968in}{0.885243in}}%
+\pgfpathlineto{\pgfqpoint{2.334488in}{0.860713in}}%
+\pgfpathlineto{\pgfqpoint{2.345009in}{0.809687in}}%
+\pgfpathlineto{\pgfqpoint{2.355530in}{0.786781in}}%
+\pgfpathlineto{\pgfqpoint{2.366050in}{0.847188in}}%
+\pgfpathlineto{\pgfqpoint{2.376571in}{0.869978in}}%
+\pgfpathlineto{\pgfqpoint{2.387092in}{0.881729in}}%
+\pgfpathlineto{\pgfqpoint{2.397612in}{0.887405in}}%
+\pgfpathlineto{\pgfqpoint{2.408133in}{0.888682in}}%
+\pgfpathlineto{\pgfqpoint{2.418654in}{0.886106in}}%
+\pgfpathlineto{\pgfqpoint{2.429174in}{0.879552in}}%
+\pgfpathlineto{\pgfqpoint{2.439695in}{0.868119in}}%
+\pgfpathlineto{\pgfqpoint{2.450215in}{0.849287in}}%
+\pgfpathlineto{\pgfqpoint{2.460736in}{0.814514in}}%
+\pgfpathlineto{\pgfqpoint{2.465711in}{0.453273in}}%
+\pgfpathmoveto{\pgfqpoint{2.476820in}{0.453273in}}%
+\pgfpathlineto{\pgfqpoint{2.481777in}{0.811998in}}%
+\pgfpathlineto{\pgfqpoint{2.492298in}{0.844256in}}%
+\pgfpathlineto{\pgfqpoint{2.502819in}{0.860575in}}%
+\pgfpathlineto{\pgfqpoint{2.513339in}{0.869498in}}%
+\pgfpathlineto{\pgfqpoint{2.523860in}{0.873546in}}%
+\pgfpathlineto{\pgfqpoint{2.534381in}{0.873620in}}%
+\pgfpathlineto{\pgfqpoint{2.544901in}{0.869847in}}%
+\pgfpathlineto{\pgfqpoint{2.555422in}{0.861682in}}%
+\pgfpathlineto{\pgfqpoint{2.565943in}{0.847449in}}%
+\pgfpathlineto{\pgfqpoint{2.576463in}{0.822186in}}%
+\pgfpathlineto{\pgfqpoint{2.586984in}{0.759316in}}%
+\pgfpathlineto{\pgfqpoint{2.597505in}{0.779770in}}%
+\pgfpathlineto{\pgfqpoint{2.608025in}{0.828355in}}%
+\pgfpathlineto{\pgfqpoint{2.618546in}{0.850457in}}%
+\pgfpathlineto{\pgfqpoint{2.629066in}{0.863068in}}%
+\pgfpathlineto{\pgfqpoint{2.639587in}{0.870099in}}%
+\pgfpathlineto{\pgfqpoint{2.650108in}{0.872919in}}%
+\pgfpathlineto{\pgfqpoint{2.660628in}{0.871928in}}%
+\pgfpathlineto{\pgfqpoint{2.671149in}{0.866866in}}%
+\pgfpathlineto{\pgfqpoint{2.681670in}{0.856622in}}%
+\pgfpathlineto{\pgfqpoint{2.692190in}{0.838072in}}%
+\pgfpathlineto{\pgfqpoint{2.702711in}{0.799467in}}%
+\pgfpathlineto{\pgfqpoint{2.713232in}{0.730349in}}%
+\pgfpathlineto{\pgfqpoint{2.723752in}{0.822032in}}%
+\pgfpathlineto{\pgfqpoint{2.734273in}{0.852086in}}%
+\pgfpathlineto{\pgfqpoint{2.744794in}{0.869070in}}%
+\pgfpathlineto{\pgfqpoint{2.755314in}{0.879416in}}%
+\pgfpathlineto{\pgfqpoint{2.765835in}{0.885177in}}%
+\pgfpathlineto{\pgfqpoint{2.776356in}{0.887067in}}%
+\pgfpathlineto{\pgfqpoint{2.786876in}{0.885087in}}%
+\pgfpathlineto{\pgfqpoint{2.797397in}{0.878527in}}%
+\pgfpathlineto{\pgfqpoint{2.807918in}{0.865338in}}%
+\pgfpathlineto{\pgfqpoint{2.818438in}{0.839094in}}%
+\pgfpathlineto{\pgfqpoint{2.828959in}{0.751238in}}%
+\pgfpathlineto{\pgfqpoint{2.839479in}{0.824204in}}%
+\pgfpathlineto{\pgfqpoint{2.850000in}{0.866682in}}%
+\pgfpathlineto{\pgfqpoint{2.860521in}{0.889134in}}%
+\pgfpathlineto{\pgfqpoint{2.871041in}{0.903315in}}%
+\pgfpathlineto{\pgfqpoint{2.881562in}{0.912350in}}%
+\pgfpathlineto{\pgfqpoint{2.892083in}{0.917358in}}%
+\pgfpathlineto{\pgfqpoint{2.902603in}{0.918601in}}%
+\pgfpathlineto{\pgfqpoint{2.913124in}{0.915685in}}%
+\pgfpathlineto{\pgfqpoint{2.923645in}{0.907245in}}%
+\pgfpathlineto{\pgfqpoint{2.934165in}{0.889376in}}%
+\pgfpathlineto{\pgfqpoint{2.944686in}{0.845091in}}%
+\pgfpathlineto{\pgfqpoint{2.955207in}{0.829010in}}%
+\pgfpathlineto{\pgfqpoint{2.965727in}{0.896332in}}%
+\pgfpathlineto{\pgfqpoint{2.976248in}{0.926132in}}%
+\pgfpathlineto{\pgfqpoint{2.986769in}{0.944992in}}%
+\pgfpathlineto{\pgfqpoint{2.997289in}{0.957884in}}%
+\pgfpathlineto{\pgfqpoint{3.007810in}{0.966490in}}%
+\pgfpathlineto{\pgfqpoint{3.018330in}{0.971364in}}%
+\pgfpathlineto{\pgfqpoint{3.028851in}{0.972386in}}%
+\pgfpathlineto{\pgfqpoint{3.039372in}{0.968667in}}%
+\pgfpathlineto{\pgfqpoint{3.049892in}{0.957695in}}%
+\pgfpathlineto{\pgfqpoint{3.060413in}{0.930937in}}%
+\pgfpathlineto{\pgfqpoint{3.066756in}{0.453273in}}%
+\pgfpathmoveto{\pgfqpoint{3.075038in}{0.453273in}}%
+\pgfpathlineto{\pgfqpoint{3.081454in}{0.944967in}}%
+\pgfpathlineto{\pgfqpoint{3.091975in}{0.985782in}}%
+\pgfpathlineto{\pgfqpoint{3.102496in}{1.010868in}}%
+\pgfpathlineto{\pgfqpoint{3.113016in}{1.028785in}}%
+\pgfpathlineto{\pgfqpoint{3.123537in}{1.042076in}}%
+\pgfpathlineto{\pgfqpoint{3.134058in}{1.051663in}}%
+\pgfpathlineto{\pgfqpoint{3.144578in}{1.057703in}}%
+\pgfpathlineto{\pgfqpoint{3.155099in}{1.059680in}}%
+\pgfpathlineto{\pgfqpoint{3.165620in}{1.055958in}}%
+\pgfpathlineto{\pgfqpoint{3.176140in}{1.041616in}}%
+\pgfpathlineto{\pgfqpoint{3.186661in}{0.990133in}}%
+\pgfpathlineto{\pgfqpoint{3.197182in}{1.022509in}}%
+\pgfpathlineto{\pgfqpoint{3.207702in}{1.083633in}}%
+\pgfpathlineto{\pgfqpoint{3.218223in}{1.119001in}}%
+\pgfpathlineto{\pgfqpoint{3.228743in}{1.145751in}}%
+\pgfpathlineto{\pgfqpoint{3.239264in}{1.167995in}}%
+\pgfpathlineto{\pgfqpoint{3.260305in}{1.204794in}}%
+\pgfpathlineto{\pgfqpoint{3.281347in}{1.235403in}}%
+\pgfpathlineto{\pgfqpoint{3.302388in}{1.262072in}}%
+\pgfpathlineto{\pgfqpoint{3.323429in}{1.285925in}}%
+\pgfpathlineto{\pgfqpoint{3.354991in}{1.317792in}}%
+\pgfpathlineto{\pgfqpoint{3.386553in}{1.346086in}}%
+\pgfpathlineto{\pgfqpoint{3.418115in}{1.371604in}}%
+\pgfpathlineto{\pgfqpoint{3.460198in}{1.402189in}}%
+\pgfpathlineto{\pgfqpoint{3.502280in}{1.429588in}}%
+\pgfpathlineto{\pgfqpoint{3.544363in}{1.454371in}}%
+\pgfpathlineto{\pgfqpoint{3.586446in}{1.476944in}}%
+\pgfpathlineto{\pgfqpoint{3.639049in}{1.502518in}}%
+\pgfpathlineto{\pgfqpoint{3.691652in}{1.525575in}}%
+\pgfpathlineto{\pgfqpoint{3.744255in}{1.546462in}}%
+\pgfpathlineto{\pgfqpoint{3.807379in}{1.569042in}}%
+\pgfpathlineto{\pgfqpoint{3.870503in}{1.589262in}}%
+\pgfpathlineto{\pgfqpoint{3.944148in}{1.610259in}}%
+\pgfpathlineto{\pgfqpoint{4.017792in}{1.628821in}}%
+\pgfpathlineto{\pgfqpoint{4.091437in}{1.645249in}}%
+\pgfpathlineto{\pgfqpoint{4.175602in}{1.661731in}}%
+\pgfpathlineto{\pgfqpoint{4.259767in}{1.676062in}}%
+\pgfpathlineto{\pgfqpoint{4.354453in}{1.689932in}}%
+\pgfpathlineto{\pgfqpoint{4.459659in}{1.702910in}}%
+\pgfpathlineto{\pgfqpoint{4.564866in}{1.713673in}}%
+\pgfpathlineto{\pgfqpoint{4.680593in}{1.723322in}}%
+\pgfpathlineto{\pgfqpoint{4.806841in}{1.731635in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{1.735049in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{1.735049in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{1.505625pt}%
+\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.672226in}{1.776224in}}%
+\pgfpathlineto{\pgfqpoint{0.682746in}{2.403219in}}%
+\pgfpathlineto{\pgfqpoint{0.693267in}{2.420206in}}%
+\pgfpathlineto{\pgfqpoint{0.703788in}{2.421228in}}%
+\pgfpathlineto{\pgfqpoint{0.714308in}{2.414827in}}%
+\pgfpathlineto{\pgfqpoint{0.724829in}{2.403528in}}%
+\pgfpathlineto{\pgfqpoint{0.735350in}{2.388229in}}%
+\pgfpathlineto{\pgfqpoint{0.745870in}{2.369060in}}%
+\pgfpathlineto{\pgfqpoint{0.756391in}{2.345477in}}%
+\pgfpathlineto{\pgfqpoint{0.766912in}{2.315804in}}%
+\pgfpathlineto{\pgfqpoint{0.777432in}{2.275080in}}%
+\pgfpathlineto{\pgfqpoint{0.787953in}{2.196735in}}%
+\pgfpathlineto{\pgfqpoint{0.798474in}{2.201671in}}%
+\pgfpathlineto{\pgfqpoint{0.808994in}{2.234740in}}%
+\pgfpathlineto{\pgfqpoint{0.819515in}{2.241304in}}%
+\pgfpathlineto{\pgfqpoint{0.830036in}{2.238361in}}%
+\pgfpathlineto{\pgfqpoint{0.840556in}{2.229821in}}%
+\pgfpathlineto{\pgfqpoint{0.851077in}{2.217055in}}%
+\pgfpathlineto{\pgfqpoint{0.861598in}{2.200463in}}%
+\pgfpathlineto{\pgfqpoint{0.872118in}{2.179786in}}%
+\pgfpathlineto{\pgfqpoint{0.882639in}{2.153911in}}%
+\pgfpathlineto{\pgfqpoint{0.893159in}{2.119711in}}%
+\pgfpathlineto{\pgfqpoint{0.903680in}{2.065391in}}%
+\pgfpathlineto{\pgfqpoint{0.914201in}{1.981333in}}%
+\pgfpathlineto{\pgfqpoint{0.924721in}{2.056903in}}%
+\pgfpathlineto{\pgfqpoint{0.935242in}{2.071266in}}%
+\pgfpathlineto{\pgfqpoint{0.945763in}{2.072589in}}%
+\pgfpathlineto{\pgfqpoint{0.956283in}{2.067287in}}%
+\pgfpathlineto{\pgfqpoint{0.966804in}{2.057414in}}%
+\pgfpathlineto{\pgfqpoint{0.977325in}{2.043691in}}%
+\pgfpathlineto{\pgfqpoint{0.987845in}{2.026137in}}%
+\pgfpathlineto{\pgfqpoint{0.998366in}{2.004074in}}%
+\pgfpathlineto{\pgfqpoint{1.008887in}{1.975548in}}%
+\pgfpathlineto{\pgfqpoint{1.019407in}{1.934531in}}%
+\pgfpathlineto{\pgfqpoint{1.029928in}{1.840042in}}%
+\pgfpathlineto{\pgfqpoint{1.040449in}{1.883070in}}%
+\pgfpathlineto{\pgfqpoint{1.050969in}{1.911652in}}%
+\pgfpathlineto{\pgfqpoint{1.061490in}{1.918892in}}%
+\pgfpathlineto{\pgfqpoint{1.072010in}{1.917554in}}%
+\pgfpathlineto{\pgfqpoint{1.082531in}{1.910889in}}%
+\pgfpathlineto{\pgfqpoint{1.093052in}{1.899990in}}%
+\pgfpathlineto{\pgfqpoint{1.103572in}{1.884984in}}%
+\pgfpathlineto{\pgfqpoint{1.114093in}{1.865118in}}%
+\pgfpathlineto{\pgfqpoint{1.124614in}{1.837985in}}%
+\pgfpathlineto{\pgfqpoint{1.135134in}{1.795200in}}%
+\pgfpathlineto{\pgfqpoint{1.145655in}{1.527200in}}%
+\pgfpathlineto{\pgfqpoint{1.156176in}{1.776572in}}%
+\pgfpathlineto{\pgfqpoint{1.166696in}{1.801850in}}%
+\pgfpathlineto{\pgfqpoint{1.177217in}{1.811631in}}%
+\pgfpathlineto{\pgfqpoint{1.187738in}{1.814694in}}%
+\pgfpathlineto{\pgfqpoint{1.198258in}{1.813795in}}%
+\pgfpathlineto{\pgfqpoint{1.208779in}{1.810166in}}%
+\pgfpathlineto{\pgfqpoint{1.219300in}{1.804460in}}%
+\pgfpathlineto{\pgfqpoint{1.229820in}{1.797064in}}%
+\pgfpathlineto{\pgfqpoint{1.250862in}{1.778069in}}%
+\pgfpathlineto{\pgfqpoint{1.271903in}{1.754192in}}%
+\pgfpathlineto{\pgfqpoint{1.292944in}{1.725664in}}%
+\pgfpathlineto{\pgfqpoint{1.313985in}{1.692083in}}%
+\pgfpathlineto{\pgfqpoint{1.335027in}{1.652119in}}%
+\pgfpathlineto{\pgfqpoint{1.345547in}{1.628800in}}%
+\pgfpathlineto{\pgfqpoint{1.356068in}{1.602151in}}%
+\pgfpathlineto{\pgfqpoint{1.366589in}{1.570246in}}%
+\pgfpathlineto{\pgfqpoint{1.377109in}{1.527951in}}%
+\pgfpathlineto{\pgfqpoint{1.387630in}{1.448568in}}%
+\pgfpathlineto{\pgfqpoint{1.398151in}{1.452936in}}%
+\pgfpathlineto{\pgfqpoint{1.408671in}{1.485794in}}%
+\pgfpathlineto{\pgfqpoint{1.419192in}{1.492473in}}%
+\pgfpathlineto{\pgfqpoint{1.429713in}{1.489923in}}%
+\pgfpathlineto{\pgfqpoint{1.440233in}{1.482019in}}%
+\pgfpathlineto{\pgfqpoint{1.450754in}{1.470100in}}%
+\pgfpathlineto{\pgfqpoint{1.461274in}{1.454543in}}%
+\pgfpathlineto{\pgfqpoint{1.471795in}{1.435068in}}%
+\pgfpathlineto{\pgfqpoint{1.482316in}{1.410544in}}%
+\pgfpathlineto{\pgfqpoint{1.492836in}{1.377833in}}%
+\pgfpathlineto{\pgfqpoint{1.503357in}{1.325173in}}%
+\pgfpathlineto{\pgfqpoint{1.513878in}{1.242092in}}%
+\pgfpathlineto{\pgfqpoint{1.524398in}{1.319895in}}%
+\pgfpathlineto{\pgfqpoint{1.534919in}{1.336141in}}%
+\pgfpathlineto{\pgfqpoint{1.545440in}{1.339381in}}%
+\pgfpathlineto{\pgfqpoint{1.555960in}{1.336037in}}%
+\pgfpathlineto{\pgfqpoint{1.566481in}{1.328156in}}%
+\pgfpathlineto{\pgfqpoint{1.577002in}{1.316443in}}%
+\pgfpathlineto{\pgfqpoint{1.587522in}{1.300893in}}%
+\pgfpathlineto{\pgfqpoint{1.598043in}{1.280791in}}%
+\pgfpathlineto{\pgfqpoint{1.608564in}{1.254080in}}%
+\pgfpathlineto{\pgfqpoint{1.619084in}{1.214327in}}%
+\pgfpathlineto{\pgfqpoint{1.629605in}{1.112971in}}%
+\pgfpathlineto{\pgfqpoint{1.640126in}{1.172439in}}%
+\pgfpathlineto{\pgfqpoint{1.650646in}{1.201417in}}%
+\pgfpathlineto{\pgfqpoint{1.661167in}{1.210359in}}%
+\pgfpathlineto{\pgfqpoint{1.671687in}{1.211016in}}%
+\pgfpathlineto{\pgfqpoint{1.682208in}{1.206507in}}%
+\pgfpathlineto{\pgfqpoint{1.692729in}{1.197945in}}%
+\pgfpathlineto{\pgfqpoint{1.703249in}{1.185586in}}%
+\pgfpathlineto{\pgfqpoint{1.713770in}{1.169031in}}%
+\pgfpathlineto{\pgfqpoint{1.724291in}{1.146909in}}%
+\pgfpathlineto{\pgfqpoint{1.734811in}{1.115308in}}%
+\pgfpathlineto{\pgfqpoint{1.745332in}{1.057236in}}%
+\pgfpathlineto{\pgfqpoint{1.755853in}{1.027305in}}%
+\pgfpathlineto{\pgfqpoint{1.766373in}{1.080708in}}%
+\pgfpathlineto{\pgfqpoint{1.776894in}{1.096513in}}%
+\pgfpathlineto{\pgfqpoint{1.787415in}{1.101295in}}%
+\pgfpathlineto{\pgfqpoint{1.797935in}{1.100016in}}%
+\pgfpathlineto{\pgfqpoint{1.808456in}{1.094352in}}%
+\pgfpathlineto{\pgfqpoint{1.818977in}{1.084847in}}%
+\pgfpathlineto{\pgfqpoint{1.829497in}{1.071373in}}%
+\pgfpathlineto{\pgfqpoint{1.840018in}{1.053029in}}%
+\pgfpathlineto{\pgfqpoint{1.850538in}{1.027292in}}%
+\pgfpathlineto{\pgfqpoint{1.861059in}{0.985620in}}%
+\pgfpathlineto{\pgfqpoint{1.868547in}{0.453273in}}%
+\pgfpathmoveto{\pgfqpoint{1.874680in}{0.453273in}}%
+\pgfpathlineto{\pgfqpoint{1.882100in}{0.969314in}}%
+\pgfpathlineto{\pgfqpoint{1.892621in}{0.994678in}}%
+\pgfpathlineto{\pgfqpoint{1.903142in}{1.004102in}}%
+\pgfpathlineto{\pgfqpoint{1.913662in}{1.006127in}}%
+\pgfpathlineto{\pgfqpoint{1.924183in}{1.003274in}}%
+\pgfpathlineto{\pgfqpoint{1.934704in}{0.996440in}}%
+\pgfpathlineto{\pgfqpoint{1.945224in}{0.985753in}}%
+\pgfpathlineto{\pgfqpoint{1.955745in}{0.970664in}}%
+\pgfpathlineto{\pgfqpoint{1.966266in}{0.949498in}}%
+\pgfpathlineto{\pgfqpoint{1.976786in}{0.917289in}}%
+\pgfpathlineto{\pgfqpoint{1.987307in}{0.847460in}}%
+\pgfpathlineto{\pgfqpoint{1.997828in}{0.860941in}}%
+\pgfpathlineto{\pgfqpoint{2.008348in}{0.902536in}}%
+\pgfpathlineto{\pgfqpoint{2.018869in}{0.917629in}}%
+\pgfpathlineto{\pgfqpoint{2.029390in}{0.923213in}}%
+\pgfpathlineto{\pgfqpoint{2.039910in}{0.923195in}}%
+\pgfpathlineto{\pgfqpoint{2.050431in}{0.918943in}}%
+\pgfpathlineto{\pgfqpoint{2.060951in}{0.910855in}}%
+\pgfpathlineto{\pgfqpoint{2.071472in}{0.898671in}}%
+\pgfpathlineto{\pgfqpoint{2.081993in}{0.881275in}}%
+\pgfpathlineto{\pgfqpoint{2.092513in}{0.855545in}}%
+\pgfpathlineto{\pgfqpoint{2.103034in}{0.809727in}}%
+\pgfpathlineto{\pgfqpoint{2.113555in}{0.733363in}}%
+\pgfpathlineto{\pgfqpoint{2.124075in}{0.817765in}}%
+\pgfpathlineto{\pgfqpoint{2.134596in}{0.840500in}}%
+\pgfpathlineto{\pgfqpoint{2.145117in}{0.850127in}}%
+\pgfpathlineto{\pgfqpoint{2.155637in}{0.853073in}}%
+\pgfpathlineto{\pgfqpoint{2.166158in}{0.851391in}}%
+\pgfpathlineto{\pgfqpoint{2.176679in}{0.845792in}}%
+\pgfpathlineto{\pgfqpoint{2.187199in}{0.836275in}}%
+\pgfpathlineto{\pgfqpoint{2.197720in}{0.822128in}}%
+\pgfpathlineto{\pgfqpoint{2.208241in}{0.801300in}}%
+\pgfpathlineto{\pgfqpoint{2.218761in}{0.767360in}}%
+\pgfpathlineto{\pgfqpoint{2.229282in}{0.671750in}}%
+\pgfpathlineto{\pgfqpoint{2.239802in}{0.736902in}}%
+\pgfpathlineto{\pgfqpoint{2.250323in}{0.771502in}}%
+\pgfpathlineto{\pgfqpoint{2.260844in}{0.786009in}}%
+\pgfpathlineto{\pgfqpoint{2.271364in}{0.792175in}}%
+\pgfpathlineto{\pgfqpoint{2.281885in}{0.793122in}}%
+\pgfpathlineto{\pgfqpoint{2.292406in}{0.789965in}}%
+\pgfpathlineto{\pgfqpoint{2.302926in}{0.782963in}}%
+\pgfpathlineto{\pgfqpoint{2.313447in}{0.771717in}}%
+\pgfpathlineto{\pgfqpoint{2.323968in}{0.754859in}}%
+\pgfpathlineto{\pgfqpoint{2.334488in}{0.728480in}}%
+\pgfpathlineto{\pgfqpoint{2.345009in}{0.675587in}}%
+\pgfpathlineto{\pgfqpoint{2.355530in}{0.650795in}}%
+\pgfpathlineto{\pgfqpoint{2.366050in}{0.709299in}}%
+\pgfpathlineto{\pgfqpoint{2.376571in}{0.730167in}}%
+\pgfpathlineto{\pgfqpoint{2.387092in}{0.739978in}}%
+\pgfpathlineto{\pgfqpoint{2.397612in}{0.743693in}}%
+\pgfpathlineto{\pgfqpoint{2.408133in}{0.742990in}}%
+\pgfpathlineto{\pgfqpoint{2.418654in}{0.738415in}}%
+\pgfpathlineto{\pgfqpoint{2.429174in}{0.729840in}}%
+\pgfpathlineto{\pgfqpoint{2.439695in}{0.716366in}}%
+\pgfpathlineto{\pgfqpoint{2.450215in}{0.695472in}}%
+\pgfpathlineto{\pgfqpoint{2.460736in}{0.658614in}}%
+\pgfpathlineto{\pgfqpoint{2.463586in}{0.453273in}}%
+\pgfpathmoveto{\pgfqpoint{2.478996in}{0.453273in}}%
+\pgfpathlineto{\pgfqpoint{2.481777in}{0.651862in}}%
+\pgfpathlineto{\pgfqpoint{2.492298in}{0.681968in}}%
+\pgfpathlineto{\pgfqpoint{2.502819in}{0.696110in}}%
+\pgfpathlineto{\pgfqpoint{2.513339in}{0.702832in}}%
+\pgfpathlineto{\pgfqpoint{2.523860in}{0.704654in}}%
+\pgfpathlineto{\pgfqpoint{2.534381in}{0.702477in}}%
+\pgfpathlineto{\pgfqpoint{2.544901in}{0.696426in}}%
+\pgfpathlineto{\pgfqpoint{2.555422in}{0.685957in}}%
+\pgfpathlineto{\pgfqpoint{2.565943in}{0.669393in}}%
+\pgfpathlineto{\pgfqpoint{2.576463in}{0.641770in}}%
+\pgfpathlineto{\pgfqpoint{2.586984in}{0.576511in}}%
+\pgfpathlineto{\pgfqpoint{2.597505in}{0.594548in}}%
+\pgfpathlineto{\pgfqpoint{2.608025in}{0.640685in}}%
+\pgfpathlineto{\pgfqpoint{2.618546in}{0.660307in}}%
+\pgfpathlineto{\pgfqpoint{2.629066in}{0.670408in}}%
+\pgfpathlineto{\pgfqpoint{2.639587in}{0.674895in}}%
+\pgfpathlineto{\pgfqpoint{2.650108in}{0.675139in}}%
+\pgfpathlineto{\pgfqpoint{2.660628in}{0.671536in}}%
+\pgfpathlineto{\pgfqpoint{2.671149in}{0.663828in}}%
+\pgfpathlineto{\pgfqpoint{2.681670in}{0.650899in}}%
+\pgfpathlineto{\pgfqpoint{2.692190in}{0.629629in}}%
+\pgfpathlineto{\pgfqpoint{2.702711in}{0.588265in}}%
+\pgfpathlineto{\pgfqpoint{2.713232in}{0.516347in}}%
+\pgfpathlineto{\pgfqpoint{2.723752in}{0.605191in}}%
+\pgfpathlineto{\pgfqpoint{2.734273in}{0.632363in}}%
+\pgfpathlineto{\pgfqpoint{2.744794in}{0.646422in}}%
+\pgfpathlineto{\pgfqpoint{2.755314in}{0.653798in}}%
+\pgfpathlineto{\pgfqpoint{2.765835in}{0.656543in}}%
+\pgfpathlineto{\pgfqpoint{2.776356in}{0.655368in}}%
+\pgfpathlineto{\pgfqpoint{2.786876in}{0.650275in}}%
+\pgfpathlineto{\pgfqpoint{2.797397in}{0.640551in}}%
+\pgfpathlineto{\pgfqpoint{2.807918in}{0.624146in}}%
+\pgfpathlineto{\pgfqpoint{2.818438in}{0.594630in}}%
+\pgfpathlineto{\pgfqpoint{2.828959in}{0.503446in}}%
+\pgfpathlineto{\pgfqpoint{2.839479in}{0.573026in}}%
+\pgfpathlineto{\pgfqpoint{2.850000in}{0.612056in}}%
+\pgfpathlineto{\pgfqpoint{2.860521in}{0.630997in}}%
+\pgfpathlineto{\pgfqpoint{2.871041in}{0.641602in}}%
+\pgfpathlineto{\pgfqpoint{2.881562in}{0.646994in}}%
+\pgfpathlineto{\pgfqpoint{2.892083in}{0.648287in}}%
+\pgfpathlineto{\pgfqpoint{2.902603in}{0.645741in}}%
+\pgfpathlineto{\pgfqpoint{2.913124in}{0.638959in}}%
+\pgfpathlineto{\pgfqpoint{2.923645in}{0.626572in}}%
+\pgfpathlineto{\pgfqpoint{2.934165in}{0.604673in}}%
+\pgfpathlineto{\pgfqpoint{2.944686in}{0.556271in}}%
+\pgfpathlineto{\pgfqpoint{2.955207in}{0.535980in}}%
+\pgfpathlineto{\pgfqpoint{2.965727in}{0.598993in}}%
+\pgfpathlineto{\pgfqpoint{2.976248in}{0.624386in}}%
+\pgfpathlineto{\pgfqpoint{2.986769in}{0.638733in}}%
+\pgfpathlineto{\pgfqpoint{2.997289in}{0.646999in}}%
+\pgfpathlineto{\pgfqpoint{3.007810in}{0.650860in}}%
+\pgfpathlineto{\pgfqpoint{3.018330in}{0.650865in}}%
+\pgfpathlineto{\pgfqpoint{3.028851in}{0.646885in}}%
+\pgfpathlineto{\pgfqpoint{3.039372in}{0.638024in}}%
+\pgfpathlineto{\pgfqpoint{3.049892in}{0.621760in}}%
+\pgfpathlineto{\pgfqpoint{3.060413in}{0.589552in}}%
+\pgfpathlineto{\pgfqpoint{3.060425in}{0.453273in}}%
+\pgfpathmoveto{\pgfqpoint{3.081442in}{0.453273in}}%
+\pgfpathlineto{\pgfqpoint{3.081454in}{0.592162in}}%
+\pgfpathlineto{\pgfqpoint{3.091975in}{0.626979in}}%
+\pgfpathlineto{\pgfqpoint{3.102496in}{0.645857in}}%
+\pgfpathlineto{\pgfqpoint{3.113016in}{0.657338in}}%
+\pgfpathlineto{\pgfqpoint{3.123537in}{0.663945in}}%
+\pgfpathlineto{\pgfqpoint{3.134058in}{0.666578in}}%
+\pgfpathlineto{\pgfqpoint{3.144578in}{0.665366in}}%
+\pgfpathlineto{\pgfqpoint{3.155099in}{0.659763in}}%
+\pgfpathlineto{\pgfqpoint{3.165620in}{0.648096in}}%
+\pgfpathlineto{\pgfqpoint{3.176140in}{0.625402in}}%
+\pgfpathlineto{\pgfqpoint{3.186661in}{0.565104in}}%
+\pgfpathlineto{\pgfqpoint{3.197182in}{0.588134in}}%
+\pgfpathlineto{\pgfqpoint{3.207702in}{0.639300in}}%
+\pgfpathlineto{\pgfqpoint{3.218223in}{0.663990in}}%
+\pgfpathlineto{\pgfqpoint{3.228743in}{0.679196in}}%
+\pgfpathlineto{\pgfqpoint{3.239264in}{0.688829in}}%
+\pgfpathlineto{\pgfqpoint{3.249785in}{0.694259in}}%
+\pgfpathlineto{\pgfqpoint{3.260305in}{0.695887in}}%
+\pgfpathlineto{\pgfqpoint{3.270826in}{0.693455in}}%
+\pgfpathlineto{\pgfqpoint{3.281347in}{0.685850in}}%
+\pgfpathlineto{\pgfqpoint{3.291867in}{0.669953in}}%
+\pgfpathlineto{\pgfqpoint{3.302388in}{0.634013in}}%
+\pgfpathlineto{\pgfqpoint{3.312909in}{0.567577in}}%
+\pgfpathlineto{\pgfqpoint{3.323429in}{0.661953in}}%
+\pgfpathlineto{\pgfqpoint{3.333950in}{0.694719in}}%
+\pgfpathlineto{\pgfqpoint{3.344471in}{0.714432in}}%
+\pgfpathlineto{\pgfqpoint{3.354991in}{0.727527in}}%
+\pgfpathlineto{\pgfqpoint{3.365512in}{0.736057in}}%
+\pgfpathlineto{\pgfqpoint{3.376033in}{0.740739in}}%
+\pgfpathlineto{\pgfqpoint{3.386553in}{0.741575in}}%
+\pgfpathlineto{\pgfqpoint{3.397074in}{0.737857in}}%
+\pgfpathlineto{\pgfqpoint{3.407594in}{0.727538in}}%
+\pgfpathlineto{\pgfqpoint{3.418115in}{0.704194in}}%
+\pgfpathlineto{\pgfqpoint{3.428636in}{0.619270in}}%
+\pgfpathlineto{\pgfqpoint{3.439156in}{0.695202in}}%
+\pgfpathlineto{\pgfqpoint{3.449677in}{0.740685in}}%
+\pgfpathlineto{\pgfqpoint{3.460198in}{0.766182in}}%
+\pgfpathlineto{\pgfqpoint{3.470718in}{0.783452in}}%
+\pgfpathlineto{\pgfqpoint{3.481239in}{0.795624in}}%
+\pgfpathlineto{\pgfqpoint{3.491760in}{0.803819in}}%
+\pgfpathlineto{\pgfqpoint{3.502280in}{0.808305in}}%
+\pgfpathlineto{\pgfqpoint{3.512801in}{0.808692in}}%
+\pgfpathlineto{\pgfqpoint{3.523322in}{0.803621in}}%
+\pgfpathlineto{\pgfqpoint{3.533842in}{0.789193in}}%
+\pgfpathlineto{\pgfqpoint{3.544363in}{0.748427in}}%
+\pgfpathlineto{\pgfqpoint{3.554884in}{0.735950in}}%
+\pgfpathlineto{\pgfqpoint{3.565404in}{0.806971in}}%
+\pgfpathlineto{\pgfqpoint{3.575925in}{0.840575in}}%
+\pgfpathlineto{\pgfqpoint{3.586446in}{0.863355in}}%
+\pgfpathlineto{\pgfqpoint{3.596966in}{0.880294in}}%
+\pgfpathlineto{\pgfqpoint{3.607487in}{0.893092in}}%
+\pgfpathlineto{\pgfqpoint{3.618007in}{0.902319in}}%
+\pgfpathlineto{\pgfqpoint{3.628528in}{0.907878in}}%
+\pgfpathlineto{\pgfqpoint{3.639049in}{0.908904in}}%
+\pgfpathlineto{\pgfqpoint{3.649569in}{0.902917in}}%
+\pgfpathlineto{\pgfqpoint{3.660090in}{0.881422in}}%
+\pgfpathlineto{\pgfqpoint{3.666381in}{0.453273in}}%
+\pgfpathmoveto{\pgfqpoint{3.674695in}{0.453273in}}%
+\pgfpathlineto{\pgfqpoint{3.681131in}{0.907017in}}%
+\pgfpathlineto{\pgfqpoint{3.691652in}{0.954276in}}%
+\pgfpathlineto{\pgfqpoint{3.702173in}{0.986379in}}%
+\pgfpathlineto{\pgfqpoint{3.712693in}{1.012034in}}%
+\pgfpathlineto{\pgfqpoint{3.733735in}{1.053510in}}%
+\pgfpathlineto{\pgfqpoint{3.754776in}{1.087620in}}%
+\pgfpathlineto{\pgfqpoint{3.775817in}{1.117269in}}%
+\pgfpathlineto{\pgfqpoint{3.796858in}{1.143814in}}%
+\pgfpathlineto{\pgfqpoint{3.828420in}{1.179394in}}%
+\pgfpathlineto{\pgfqpoint{3.859982in}{1.211152in}}%
+\pgfpathlineto{\pgfqpoint{3.891544in}{1.239965in}}%
+\pgfpathlineto{\pgfqpoint{3.933627in}{1.274752in}}%
+\pgfpathlineto{\pgfqpoint{3.975710in}{1.306188in}}%
+\pgfpathlineto{\pgfqpoint{4.017792in}{1.334872in}}%
+\pgfpathlineto{\pgfqpoint{4.059875in}{1.361236in}}%
+\pgfpathlineto{\pgfqpoint{4.112478in}{1.391409in}}%
+\pgfpathlineto{\pgfqpoint{4.165081in}{1.418930in}}%
+\pgfpathlineto{\pgfqpoint{4.217684in}{1.444160in}}%
+\pgfpathlineto{\pgfqpoint{4.280808in}{1.471806in}}%
+\pgfpathlineto{\pgfqpoint{4.343932in}{1.496941in}}%
+\pgfpathlineto{\pgfqpoint{4.407056in}{1.519873in}}%
+\pgfpathlineto{\pgfqpoint{4.480701in}{1.544168in}}%
+\pgfpathlineto{\pgfqpoint{4.554345in}{1.566117in}}%
+\pgfpathlineto{\pgfqpoint{4.638510in}{1.588663in}}%
+\pgfpathlineto{\pgfqpoint{4.722676in}{1.608807in}}%
+\pgfpathlineto{\pgfqpoint{4.806841in}{1.626816in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{1.639057in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{1.639057in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetrectcap%
+\pgfsetmiterjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.672226in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{0.672226in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetrectcap%
+\pgfsetmiterjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{4.869965in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetrectcap%
+\pgfsetmiterjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.672226in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{0.463273in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetrectcap%
+\pgfsetmiterjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.672226in}{2.458330in}}%
+\pgfpathlineto{\pgfqpoint{4.869965in}{2.458330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetmiterjoin%
+\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetfillopacity{0.800000}%
+\pgfsetlinewidth{1.003750pt}%
+\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetstrokeopacity{0.800000}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{2.384851in}{2.026148in}}%
+\pgfpathlineto{\pgfqpoint{4.788979in}{2.026148in}}%
+\pgfpathquadraticcurveto{\pgfqpoint{4.812117in}{2.026148in}}{\pgfqpoint{4.812117in}{2.049287in}}%
+\pgfpathlineto{\pgfqpoint{4.812117in}{2.377344in}}%
+\pgfpathquadraticcurveto{\pgfqpoint{4.812117in}{2.400483in}}{\pgfqpoint{4.788979in}{2.400483in}}%
+\pgfpathlineto{\pgfqpoint{2.384851in}{2.400483in}}%
+\pgfpathquadraticcurveto{\pgfqpoint{2.361713in}{2.400483in}}{\pgfqpoint{2.361713in}{2.377344in}}%
+\pgfpathlineto{\pgfqpoint{2.361713in}{2.049287in}}%
+\pgfpathquadraticcurveto{\pgfqpoint{2.361713in}{2.026148in}}{\pgfqpoint{2.384851in}{2.026148in}}%
+\pgfpathlineto{\pgfqpoint{2.384851in}{2.026148in}}%
+\pgfpathclose%
+\pgfusepath{stroke,fill}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{1.505625pt}%
+\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{2.407990in}{2.306797in}}%
+\pgfpathlineto{\pgfqpoint{2.523685in}{2.306797in}}%
+\pgfpathlineto{\pgfqpoint{2.639379in}{2.306797in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=2.731935in,y=2.266304in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle n=2\)}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{1.505625pt}%
+\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{2.407990in}{2.136984in}}%
+\pgfpathlineto{\pgfqpoint{2.523685in}{2.136984in}}%
+\pgfpathlineto{\pgfqpoint{2.639379in}{2.136984in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=2.731935in,y=2.096491in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle n=4\)}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{1.505625pt}%
+\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{3.251394in}{2.306797in}}%
+\pgfpathlineto{\pgfqpoint{3.367088in}{2.306797in}}%
+\pgfpathlineto{\pgfqpoint{3.482782in}{2.306797in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=3.575338in,y=2.266304in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle n=6\)}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{1.505625pt}%
+\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{3.251394in}{2.136984in}}%
+\pgfpathlineto{\pgfqpoint{3.367088in}{2.136984in}}%
+\pgfpathlineto{\pgfqpoint{3.482782in}{2.136984in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=3.575338in,y=2.096491in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle n=8\)}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{1.505625pt}%
+\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{4.094797in}{2.306797in}}%
+\pgfpathlineto{\pgfqpoint{4.210491in}{2.306797in}}%
+\pgfpathlineto{\pgfqpoint{4.326186in}{2.306797in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=4.418741in,y=2.266304in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle n=10\)}%
+\end{pgfscope}%
+\end{pgfpicture}%
+\makeatother%
+\endgroup%
diff --git a/buch/papers/laguerre/images/rel_error_simple.png b/buch/papers/laguerre/images/rel_error_simple.png
new file mode 100644
index 0000000..8bcd8e0
--- /dev/null
+++ b/buch/papers/laguerre/images/rel_error_simple.png
Binary files differ
diff --git a/buch/papers/laguerre/images/schaetzung.pgf b/buch/papers/laguerre/images/schaetzung.pgf
new file mode 100644
index 0000000..873a10c
--- /dev/null
+++ b/buch/papers/laguerre/images/schaetzung.pgf
@@ -0,0 +1,1160 @@
+%% Creator: Matplotlib, PGF backend
+%%
+%% To include the figure in your LaTeX document, write
+%% \input{<filename>.pgf}
+%%
+%% Make sure the required packages are loaded in your preamble
+%% \usepackage{pgf}
+%%
+%% Also ensure that all the required font packages are loaded; for instance,
+%% the lmodern package is sometimes necessary when using math font.
+%% \usepackage{lmodern}
+%%
+%% Figures using additional raster images can only be included by \input if
+%% they are in the same directory as the main LaTeX file. For loading figures
+%% from other directories you can use the `import` package
+%% \usepackage{import}
+%%
+%% and then include the figures with
+%% \import{<path to file>}{<filename>.pgf}
+%%
+%% Matplotlib used the following preamble
+%% \usepackage{fontspec}
+%% \setmainfont{DejaVuSerif.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}]
+%% \setsansfont{DejaVuSans.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}]
+%% \setmonofont{DejaVuSansMono.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}]
+%%
+\begingroup%
+\makeatletter%
+\begin{pgfpicture}%
+\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{5.000000in}{4.000000in}}%
+\pgfusepath{use as bounding box, clip}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetmiterjoin%
+\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.000000pt}%
+\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{5.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{5.000000in}{4.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{4.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathclose%
+\pgfusepath{fill}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetmiterjoin%
+\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.000000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetstrokeopacity{0.000000}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.556162in}{2.276777in}}%
+\pgfpathlineto{\pgfqpoint{4.958330in}{2.276777in}}%
+\pgfpathlineto{\pgfqpoint{4.958330in}{3.958330in}}%
+\pgfpathlineto{\pgfqpoint{0.556162in}{3.958330in}}%
+\pgfpathlineto{\pgfqpoint{0.556162in}{2.276777in}}%
+\pgfpathclose%
+\pgfusepath{fill}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.756261in}{2.276777in}}%
+\pgfpathlineto{\pgfqpoint{0.756261in}{3.958330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.756261in}{2.276777in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{1.556655in}{2.276777in}}%
+\pgfpathlineto{\pgfqpoint{1.556655in}{3.958330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{1.556655in}{2.276777in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{2.357049in}{2.276777in}}%
+\pgfpathlineto{\pgfqpoint{2.357049in}{3.958330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{2.357049in}{2.276777in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{3.157443in}{2.276777in}}%
+\pgfpathlineto{\pgfqpoint{3.157443in}{3.958330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{3.157443in}{2.276777in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{3.957837in}{2.276777in}}%
+\pgfpathlineto{\pgfqpoint{3.957837in}{3.958330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{3.957837in}{2.276777in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{4.758231in}{2.276777in}}%
+\pgfpathlineto{\pgfqpoint{4.758231in}{3.958330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{4.758231in}{2.276777in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.556162in}{2.574427in}}%
+\pgfpathlineto{\pgfqpoint{4.958330in}{2.574427in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.556162in}{2.574427in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.370575in, y=2.521666in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.556162in}{3.092617in}}%
+\pgfpathlineto{\pgfqpoint{4.958330in}{3.092617in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.556162in}{3.092617in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.282209in, y=3.039855in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.556162in}{3.610806in}}%
+\pgfpathlineto{\pgfqpoint{4.958330in}{3.610806in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.556162in}{3.610806in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.282209in, y=3.558045in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 15}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{1.505625pt}%
+\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.556162in}{2.353211in}}%
+\pgfpathlineto{\pgfqpoint{4.958330in}{3.881896in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}%
+\pgfusepath{clip}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{1.000000,0.498039,0.054902}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{1.003750pt}%
+\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.041667in}{-0.041667in}}{\pgfqpoint{0.041667in}{0.041667in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.041667in}{-0.041667in}}%
+\pgfpathlineto{\pgfqpoint{0.041667in}{0.041667in}}%
+\pgfpathmoveto{\pgfqpoint{-0.041667in}{0.041667in}}%
+\pgfpathlineto{\pgfqpoint{0.041667in}{-0.041667in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.756261in}{2.422322in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsys@transformshift{1.156458in}{2.562568in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsys@transformshift{1.556655in}{2.701268in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsys@transformshift{1.956852in}{2.840483in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsys@transformshift{2.357049in}{2.979182in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsys@transformshift{2.757246in}{3.116851in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsys@transformshift{3.157443in}{3.255550in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsys@transformshift{3.557640in}{3.394249in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsys@transformshift{3.957837in}{3.531918in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsys@transformshift{4.358034in}{3.670617in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsys@transformshift{4.758231in}{3.818082in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetrectcap%
+\pgfsetmiterjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.556162in}{2.276777in}}%
+\pgfpathlineto{\pgfqpoint{0.556162in}{3.958330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetrectcap%
+\pgfsetmiterjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{4.958330in}{2.276777in}}%
+\pgfpathlineto{\pgfqpoint{4.958330in}{3.958330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetrectcap%
+\pgfsetmiterjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.556162in}{2.276777in}}%
+\pgfpathlineto{\pgfqpoint{4.958330in}{2.276777in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetrectcap%
+\pgfsetmiterjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.556162in}{3.958330in}}%
+\pgfpathlineto{\pgfqpoint{4.958330in}{3.958330in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetmiterjoin%
+\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetfillopacity{0.800000}%
+\pgfsetlinewidth{1.003750pt}%
+\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetstrokeopacity{0.800000}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.653384in}{3.439504in}}%
+\pgfpathlineto{\pgfqpoint{1.219775in}{3.439504in}}%
+\pgfpathquadraticcurveto{\pgfqpoint{1.247553in}{3.439504in}}{\pgfqpoint{1.247553in}{3.467282in}}%
+\pgfpathlineto{\pgfqpoint{1.247553in}{3.861108in}}%
+\pgfpathquadraticcurveto{\pgfqpoint{1.247553in}{3.888886in}}{\pgfqpoint{1.219775in}{3.888886in}}%
+\pgfpathlineto{\pgfqpoint{0.653384in}{3.888886in}}%
+\pgfpathquadraticcurveto{\pgfqpoint{0.625607in}{3.888886in}}{\pgfqpoint{0.625607in}{3.861108in}}%
+\pgfpathlineto{\pgfqpoint{0.625607in}{3.467282in}}%
+\pgfpathquadraticcurveto{\pgfqpoint{0.625607in}{3.439504in}}{\pgfqpoint{0.653384in}{3.439504in}}%
+\pgfpathlineto{\pgfqpoint{0.653384in}{3.439504in}}%
+\pgfpathclose%
+\pgfusepath{stroke,fill}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{1.505625pt}%
+\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.681162in}{3.776418in}}%
+\pgfpathlineto{\pgfqpoint{0.820051in}{3.776418in}}%
+\pgfpathlineto{\pgfqpoint{0.958940in}{3.776418in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=1.070051in,y=3.727807in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle \hat{m}\)}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{1.000000,0.498039,0.054902}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{1.003750pt}%
+\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.041667in}{-0.041667in}}{\pgfqpoint{0.041667in}{0.041667in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.041667in}{-0.041667in}}%
+\pgfpathlineto{\pgfqpoint{0.041667in}{0.041667in}}%
+\pgfpathmoveto{\pgfqpoint{-0.041667in}{0.041667in}}%
+\pgfpathlineto{\pgfqpoint{0.041667in}{-0.041667in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.820051in}{3.572561in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=1.070051in,y=3.523950in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle \bar{m}\)}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetmiterjoin%
+\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.000000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetstrokeopacity{0.000000}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.556162in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.958330in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.958330in}{2.144826in}}%
+\pgfpathlineto{\pgfqpoint{0.556162in}{2.144826in}}%
+\pgfpathlineto{\pgfqpoint{0.556162in}{0.463273in}}%
+\pgfpathclose%
+\pgfusepath{fill}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.756261in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{0.756261in}{2.144826in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.756261in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.756261in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 2}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{1.556655in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{1.556655in}{2.144826in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{1.556655in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=1.556655in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 4}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{2.357049in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{2.357049in}{2.144826in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{2.357049in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=2.357049in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 6}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{3.157443in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{3.157443in}{2.144826in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{3.157443in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=3.157443in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 8}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{3.957837in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{3.957837in}{2.144826in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{3.957837in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=3.957837in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{4.758231in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.758231in}{2.144826in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{4.758231in}{0.463273in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=4.758231in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 12}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=2.757246in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z\)}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.556162in}{0.814398in}}%
+\pgfpathlineto{\pgfqpoint{4.958330in}{0.814398in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.556162in}{0.814398in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.041670in, y=0.761637in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}0.04}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.556162in}{1.187458in}}%
+\pgfpathlineto{\pgfqpoint{4.958330in}{1.187458in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.556162in}{1.187458in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.041670in, y=1.134696in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}0.02}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.556162in}{1.560518in}}%
+\pgfpathlineto{\pgfqpoint{4.958330in}{1.560518in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.556162in}{1.560518in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.149695in, y=1.507756in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.00}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.556162in}{1.933577in}}%
+\pgfpathlineto{\pgfqpoint{4.958330in}{1.933577in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.556162in}{1.933577in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.149695in, y=1.880816in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.02}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{1.505625pt}%
+\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.756261in}{1.628009in}}%
+\pgfpathlineto{\pgfqpoint{1.156458in}{1.398538in}}%
+\pgfpathlineto{\pgfqpoint{1.556655in}{1.447469in}}%
+\pgfpathlineto{\pgfqpoint{1.956852in}{1.403600in}}%
+\pgfpathlineto{\pgfqpoint{2.357049in}{1.452531in}}%
+\pgfpathlineto{\pgfqpoint{2.757246in}{1.687064in}}%
+\pgfpathlineto{\pgfqpoint{3.157443in}{1.735996in}}%
+\pgfpathlineto{\pgfqpoint{3.557640in}{1.784927in}}%
+\pgfpathlineto{\pgfqpoint{3.957837in}{2.019460in}}%
+\pgfpathlineto{\pgfqpoint{4.358034in}{2.068392in}}%
+\pgfpathlineto{\pgfqpoint{4.758231in}{0.539708in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}%
+\pgfusepath{clip}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.121569,0.466667,0.705882}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{1.003750pt}%
+\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.041667in}{-0.041667in}}{\pgfqpoint{0.041667in}{0.041667in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.041667in}{-0.041667in}}%
+\pgfpathlineto{\pgfqpoint{0.041667in}{0.041667in}}%
+\pgfpathmoveto{\pgfqpoint{-0.041667in}{0.041667in}}%
+\pgfpathlineto{\pgfqpoint{0.041667in}{-0.041667in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.756261in}{1.628009in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsys@transformshift{1.156458in}{1.398538in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsys@transformshift{1.556655in}{1.447469in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsys@transformshift{1.956852in}{1.403600in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsys@transformshift{2.357049in}{1.452531in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsys@transformshift{2.757246in}{1.687064in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsys@transformshift{3.157443in}{1.735996in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsys@transformshift{3.557640in}{1.784927in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsys@transformshift{3.957837in}{2.019460in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsys@transformshift{4.358034in}{2.068392in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsys@transformshift{4.758231in}{0.539708in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetrectcap%
+\pgfsetmiterjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.556162in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{0.556162in}{2.144826in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetrectcap%
+\pgfsetmiterjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{4.958330in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.958330in}{2.144826in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetrectcap%
+\pgfsetmiterjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.556162in}{0.463273in}}%
+\pgfpathlineto{\pgfqpoint{4.958330in}{0.463273in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetrectcap%
+\pgfsetmiterjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.556162in}{2.144826in}}%
+\pgfpathlineto{\pgfqpoint{4.958330in}{2.144826in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetmiterjoin%
+\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetfillopacity{0.800000}%
+\pgfsetlinewidth{1.003750pt}%
+\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetstrokeopacity{0.800000}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.653384in}{1.829858in}}%
+\pgfpathlineto{\pgfqpoint{1.511473in}{1.829858in}}%
+\pgfpathquadraticcurveto{\pgfqpoint{1.539251in}{1.829858in}}{\pgfqpoint{1.539251in}{1.857636in}}%
+\pgfpathlineto{\pgfqpoint{1.539251in}{2.047604in}}%
+\pgfpathquadraticcurveto{\pgfqpoint{1.539251in}{2.075382in}}{\pgfqpoint{1.511473in}{2.075382in}}%
+\pgfpathlineto{\pgfqpoint{0.653384in}{2.075382in}}%
+\pgfpathquadraticcurveto{\pgfqpoint{0.625607in}{2.075382in}}{\pgfqpoint{0.625607in}{2.047604in}}%
+\pgfpathlineto{\pgfqpoint{0.625607in}{1.857636in}}%
+\pgfpathquadraticcurveto{\pgfqpoint{0.625607in}{1.829858in}}{\pgfqpoint{0.653384in}{1.829858in}}%
+\pgfpathlineto{\pgfqpoint{0.653384in}{1.829858in}}%
+\pgfpathclose%
+\pgfusepath{stroke,fill}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{1.505625pt}%
+\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.681162in}{1.962914in}}%
+\pgfpathlineto{\pgfqpoint{0.820051in}{1.962914in}}%
+\pgfpathlineto{\pgfqpoint{0.958940in}{1.962914in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.121569,0.466667,0.705882}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{1.003750pt}%
+\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.041667in}{-0.041667in}}{\pgfqpoint{0.041667in}{0.041667in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.041667in}{-0.041667in}}%
+\pgfpathlineto{\pgfqpoint{0.041667in}{0.041667in}}%
+\pgfpathmoveto{\pgfqpoint{-0.041667in}{0.041667in}}%
+\pgfpathlineto{\pgfqpoint{0.041667in}{-0.041667in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.820051in}{1.962914in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=1.070051in,y=1.914303in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle \hat{m} - \bar{m}\)}%
+\end{pgfscope}%
+\end{pgfpicture}%
+\makeatother%
+\endgroup%
diff --git a/buch/papers/laguerre/images/targets.pdf b/buch/papers/laguerre/images/targets.pdf
new file mode 100644
index 0000000..22c2c5a
--- /dev/null
+++ b/buch/papers/laguerre/images/targets.pdf
Binary files differ
diff --git a/buch/papers/laguerre/quadratur.tex b/buch/papers/laguerre/quadratur.tex
index f4e2955..b5ad316 100644
--- a/buch/papers/laguerre/quadratur.tex
+++ b/buch/papers/laguerre/quadratur.tex
@@ -61,14 +61,14 @@ Der Fehlerterm $R_n$ folgt direkt aus der Approximation
=
\sum_{i=1}^n f(x_i) A_i + R_n
\end{align*}
-un \cite{abramowitz+stegun} gibt in als
+und \cite{abramowitz+stegun} gibt ihn als
\begin{align}
R_n
=
\frac{(n!)^2}{(2n)!} f^{(2n)}(\xi)
,\quad
0 < \xi < \infty
-\label{lagurre:lag_error}
+\label{laguerre:lag_error}
\end{align}
an.
diff --git a/buch/papers/laguerre/references.bib b/buch/papers/laguerre/references.bib
index 6956ade..e12e218 100644
--- a/buch/papers/laguerre/references.bib
+++ b/buch/papers/laguerre/references.bib
@@ -19,4 +19,13 @@
timestamp = {2008-06-25T06:25:58.000+0200},
title = {Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables},
year = 1972
+}
+
+@article{Cassity1965AbcissasCA,
+ title={Abcissas, coefficients, and error term for the generalized Gauss-Laguerre quadrature formula using the zero ordinate},
+ author={C. Ronald Cassity},
+ journal={Mathematics of Computation},
+ year={1965},
+ volume={19},
+ pages={287-296}
} \ No newline at end of file
diff --git a/buch/papers/laguerre/scripts/gamma_approx.ipynb b/buch/papers/laguerre/scripts/gamma_approx.ipynb
index 337b307..a8280aa 100644
--- a/buch/papers/laguerre/scripts/gamma_approx.ipynb
+++ b/buch/papers/laguerre/scripts/gamma_approx.ipynb
@@ -34,7 +34,7 @@
},
{
"cell_type": "code",
- "execution_count": 112,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -48,7 +48,7 @@
},
{
"cell_type": "code",
- "execution_count": 113,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -86,7 +86,7 @@
},
{
"cell_type": "code",
- "execution_count": 114,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -136,21 +136,24 @@
"def laguerre_gamma(z, x, w, target=11):\n",
" # res = 0.0\n",
" z = complex(z)\n",
- " if z.real < 1e-3:\n",
- " res = pi / (\n",
- " sin(pi * z) * laguerre_gamma(1 - z, x, w, target)\n",
- " ) # Reflection formula\n",
- " else:\n",
- " z_shifted, correction_factor = find_shift(z, target)\n",
- " res = np.sum(x ** (z_shifted - 1) * w)\n",
- " res *= correction_factor\n",
+ " # if z.real < 1e-3:\n",
+ " # res = pi / (\n",
+ " # sin(pi * z) * laguerre_gamma(1 - z, x, w, target)\n",
+ " # ) # Reflection formula\n",
+ " # else:\n",
+ " # z_shifted, correction_factor = find_shift(z, target)\n",
+ " # res = np.sum(x ** (z_shifted - 1) * w)\n",
+ " # res *= correction_factor\n",
+ " z_shifted, correction_factor = find_shift(z, target)\n",
+ " res = np.sum(x ** (z_shifted - 1) * w)\n",
+ " res *= correction_factor\n",
" res = drop_imag(res)\n",
" return res\n"
]
},
{
"cell_type": "code",
- "execution_count": 115,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -203,26 +206,13 @@
},
{
"cell_type": "code",
- "execution_count": 116,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAANoCAYAAAC1Fsk9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzddVgc19fA8e+sscDimoQQIhB39xB312qa6lt3t1RTd++vbdrGpXEX4u7uLrjDArs77x9DrEnbCDDI+TzPPLs7tmfbCbtn7r3nKqqqIoQQQgghhBBCfwa9AxBCCCGEEEIIoZEETQghhBBCCCGKCUnQhBBCCCGEEKKYkARNCCGEEEIIIYoJSdCEEEIIIYQQopiQBE0IIYQQQgghiokymaApivKLoihxiqLsLqDzLVAUJUVRlDl/W/+ooiiHFUVRFUUJLIj3EkIIIYQQQpReZTJBA34Duhfg+T4C7rzG+jVAZ+BEAb6XEEIIIYQQopQqkwmaqqorgaTL1ymKUjW/JWyLoiirFEWpcQPnWwqkX2P9NlVVj99ywEIIIYQQQogywaR3AMXIj8BDqqoeUhSlOfAt0FHnmIQQQgghhBBliCRogKIoNqAVMEVRlAur3fK3DQTeusZhZ1RV7VY0EQohhBBCCCHKAknQNAYgRVXVBn/foKrqdGB6kUckhBBCCCGEKHPK5Bi0v1NVNQ04pijKEABFU1/nsIQQQgghhBBlTJlM0BRFmQCsA6orinJaUZR7gduBexVF2QHsAfrdwPlWAVOATvnn65a//nFFUU4DYcBORVF+LujPIoQQQgghhCg9FFVV9Y5BCCGEEEIIIQRltAVNCCGEEEIIIYojSdCEEEIIIYQQopgoc1UcAwMD1YiICL3DEGVYZmYmnp6eeochyjC5BoXe5BoUepNrUOhty5YtCaqqBl1rW5lL0CIiIti8ebPeYYgyLCYmhg4dOugdhijD5BoUepNrUOhNrkGhN0VRTvzTNuniKIQQQgghhBDFhCRoQgghhBBCCFFMSIImhBBCCCGEEMVEmRuDJoQQQgghhLg1eXl5nD59GrvdrncoxZrVaiUsLAyz2Xzdx0iCJoQQQgghhLghp0+fxsvLi4iICBRF0TucYklVVRITEzl9+jSVK1e+7uOki6MQQgghhBDihtjtdgICAiQ5+xeKohAQEHDDrYySoAkhhBBCCCFumCRn/+1m/htJgiaEEEIIIYQQxYQkaEIIIYQQQogSJzs7m/bt2+N0OgHo3r07vr6+9O7d+4r9VFXllVdeISoqipo1a/Lll1/+57n/6Vxt27alQYMGNGjQgPLly9O/f38A5syZw+uvv14gn0v3BE1RlF8URYlTFGX3P2y/XVGUnYqi7FIUZa2iKPUv23Y8f/12RVE2F13UQgghhBBCCD398ssvDBw4EKPRCMBzzz3HH3/8cdV+v/32G6dOnWL//v3s27eP4cOH/+e5/+lcq1atYvv27Wzfvp2WLVsycOBAAHr16sXs2bPJysq6xU9VPKo4/gZ8Dfz+D9uPAe1VVU1WFKUH8CPQ/LLt0aqqJhRuiEIIIYQQQohrGT17D3vPphXoOWuV9+aNPrX/dZ9x48Yxfvz4i687depETEzMVft99913jB8/HoNBa5sKDg7+z/f/p3NdkJaWxrJly/j1118BbaxZhw4dmDNnDkOHDv3P8/8b3VvQVFVdCST9y/a1qqom579cD4QVSWBCCCGEEEKIYik3N5ejR48SERHxn/seOXKESZMm0aRJE3r06MGhQ4du+f1nzJhBp06d8Pb2vriuSZMmrFq16pbPXRxa0G7EvcD8y16rwCJFUVTgB1VVf9QnLCGEEEIIIcqm/2rpKgwJCQn4+vpe1745OTlYrVY2b97M9OnTGTVq1C0nUhMmTOC+++67Yl1wcDBnz569pfNCCUrQFEWJRkvQ2ly2uo2qqmcURQkGFiuKsj+/Re7vxz4APAAQEhLyr82VQhS2jIwMuQaFruQaFHqTa1DoTa7BW+fj40N6erpu7+9wOMjOzr4qhqysLBwOxxXry5cvT9euXUlPT6dz587cc8891xX7tc4FkJiYyIYNG/j999+v2JacnIzJZLpqf7vdfkPXW4lI0BRFqQf8DPRQVTXxwnpVVc/kP8YpivIX0Ay4KkHLb1n7EaBJkyZqhw4diiJsIa4pJiYGuQaFnuQaFHqTa1DoTa7BW7dv3z68vLx0e38vLy9cLhdmsxmr1XpxvYeHByaT6YrYBg4cyKZNm6hbty4xMTFERUXh5eXFxo0b+frrr/n992uXwrjWuUAb+9anTx+CgoKuWH/q1CkaNmx41f5Wq5WGDRte92cr9gmaoijhwHTgTlVVD1623hMwqKqanv+8K/CWTmEKIYQQxYKqqjhycsjLsZOXYyfXbifPbs9/ra1X80tSoygo+Y+XP1cUAwaTEYPBiMF44dGAkv/c7OaGu5c3Vi9vTGazfh9WCFGmde3aldWrV9O5c2dAK4G/f/9+MjIyCAsL43//+x/dunXjxRdf5Pbbb+ezzz7DZrPx888/A3Dy5Enc3d2vee5/OhfAxIkTefHFF686Zvny5bz//vu3/Ll0T9AURZkAdAACFUU5DbwBmAFUVf0eeB0IAL7Nn4nboapqEyAE+Ct/nQkYr6rqgiL/AEIIIUQhUFWV3Oxs7BlpZKenk52ehj09jeyMdOwZ6dgzMvIf859nXnjMQHW5iixOs9Uddy8vLWGzaY/acxtWm7e2zeaF1eaF1Ut7rapqkcUnhCi9HnnkET777LOLCdo/jSvz9fVl7ty5V63fsGEDjzzyyDWP+bcxatfqrhgbG0t2djZ169a9jsj/ne4JmqqqI/5j+33AfddYfxSof/URQgghRPGXa88mNS6W1LhY0uJjr3ielZpCdno6LqfjH4938/TUkh5PL6w2G97BIfmvbVjc3TFbrZjdrFjyH81uVsxWKyY3N4xGEyoqqCparqRqSdOF5y4XLpcLl9OpLS4nqtOJy+nC5XL+Y+KYnZ5Gaux5stPTyMnK/MfYFYORw9P+wOYXgM3PH09/f+25v/baOzAY7+BgDAZjQf9nF0KUIo0aNSI6Ohqn03lxLrQb8dFHHxVYLCdPnuSTTz4pkHPpnqAJIYQQpZHL5SQjMZGU2POkxJ4jNe48qbHntce4WLLTr5wzyOTmhk9QCD7BIYRWjdRam/JbpKz5rVLuXvktUTZbsU9eXE4n9kytlS87PR17Rhr2jAyy09PYv3sXATZPMpITSTh1guM7t5KbnX3F8SazBf+wigSGhRNQsRKB+YtXYBD5vWeEEIJRo0bpHQIATZs2LbBzSYImhBBC3AKnw0HS2dMknDhG3IljJJw6Qcr5s6TFx+G6MNYLMBiN+S1DIUQ2a4V3cAg+QcH4BIfiExyCu7dPqUo8DEYjHt4+eHj7XLUtw+Z3VYGG3OwsMpKTyEhKIjXuPImnT5Bw6iQn9+xk76rlF/czW90JCKtIQFj4xeQtICwcr4DAUvXfTwhRdkmCJoQQQlynnKxMYo8eJu74UeJPHCP+5HGSTp/E6dC6IhpNJvzDwgmpXI2oFm3wCQ7FNyQUn+BQvAICMdxEF5yywuLugb+7B/7lw4B6V2yzZ2SQePokiadPknDqBImnT3Bs22b2xCy57Hh3AiqEE1AxnMCKEZSLjCK4cjUpYiKEKHEkQRNCCCGuwZGbS/yJY5w/cpDzhw9y7sghks+evrjd08+foPAIIuo1JKhSZYLCI/ArH4bRJF+tBc1qs1GhRi0q1Kh1xfrs9LTLEjft8ejWTexevhjQEubgylUpH1WDcpE1KR9VA6+AQD0+ghBCXDf5FhFCCFHmuVxOkk6f4vyRQxeX+BPHLhbp8PT1I7RaFLXaRhNaNZLgiCp4+PjqG7TA3cubsJp1CKtZ54r1GclJnDu0n7MHtWX7onlsmTsTAFtAIOUja1Chek3KV69FcEQVadkUooQaNWoUc+bMITg4mN27d19c/9VXX/HNN99gNBrp1asXH374oY5R3jhJ0IQQQpQpqqqSEnuO80cOEXvkIOePHCbu2BHycuyA1tUutGo1mvTuT2jVKEKrRWHzD5DxTSWIzc+fyGatiGzWCgCnI4+440c5d/BS0nZw/WpAK85SPrI65avXokJUTcpF1cDNw1PP8IUQ12nkyJE8+uij3HXXXRfXLV++nJkzZ7Jjxw7c3NyIi4vTMcKbIwmaEEKIUk1VVRJPn+Tk7p2c2rOD0/v2YM9IB7RKgUGVq1CnYxctGasaiV9oeRSDQeeoRUEymsyUq1adctWq06hnPwDSEuI5e2AvZw7s4+yBfWyYPhlVdYGiEBQeQcXa9QivU5+KtepgcffQ+RMIIa6lXbt2HD9+/Ip13333HS+++CJubm4ABAcH6xDZrZEETQghRKmiqiqpsec5uWdHflK2k6zUFAB8gkOo1rQF5SKrE1o1ioCwcBkzVkZ5BwbhHdieGq3bA1oVyXOHDnLmwF7O7N/NjsXz2DpvJorBQGi1KCrVqU94nfqUi6ophUeE+Lv5L8L5XQV7ztC60GPMDR928OBBVq1axSuvvILVauXjjz8u0BL4RUG+lYQQQpR4WakpnNi9g5O7tnNi13bSE+IBratbpXoNCa9dj4q16+ETHKJzpKK4srh7UKleAyrVawBoRWLOHtzHyd07OLlrBxv+msL66ZMwWdyoUKMW1Zq0oFrTFtj8A/QNXAhxBYfDQVJSEuvXr2fTpk0MHTqUo0ePlqhu6pKgCSGEKHHycuyc2b+XE/kJWfzxowBYPW1UrFOPZv2GEF6nHn7lKpSoL2VRfJgsFsLzW80Yrk2xcGrvbk7u3s7x7VtZ+st3LP3lO8pFVieyWSuqNWuJX2h5vcMWQh830dJVWMLCwhg4cCCKotCsWTMMBgMJCQkEBQXpHdp1kwRNCCFEiZASe54jm9dzdOtGzhzYhzMvD6PJRPnqtWgz/C4q1W1AcJWqGAxSkU8UPDcPT6o1aU61Js0BSDx9ikMb13Jo41pWjvuVleN+JTA8gshmLYls1orA8Ai5OSCEDvr378/y5cuJjo7m4MGD5ObmEhhYsqbXkARNCCFEsaSqKnHHjnB40zoOb95AwsnjAASEhdOgay8q1WtIWI3amK1WfQMVZVJAWEUCwobRYuAwUuNiObxpPYc2rmXdtImsmzoBv3LliWrRluot20iyJkQhGTFiBDExMSQkJBAWFsbo0aMZNWoUo0aNok6dOlgsFsaOHVvi/v1JgiaEEKLYcDocnNq7i8Ob1nNkywYyEhNQFAMVatSiw133UbVxc3xDy+kdphBX8AkOoXGvfjTu1Y/MlGQOb1rPwfWr2ThjChv+moRf+TCqt2hNVMu2BFasVOJ+LApRXE2YMOGa6//8888ijqRgSYImhBBCV47cXI7v3MahDWs4smUDOZmZmNzciKjXiGrD7qRywyZ4ePvoHaYQ18XT14/6XXpQv0sPslJTOLRxHQfXr7pYZMS/fBhRLdtQo3V7AipU1DtcIUQxJAmaEEKIIpdnt3Ns+2YObljL0a2byLNn4+bpSdXGzYls3ppK9RpgtrjpHaYQt8TDx/disqa1rK3jwLrVbJg+mfXTJhJSpRo120RTo3U7PH399A5XCFFMSIImhBCiSORmZ3Fky0YOrl/D8R1bceTm4O7tQ43W7Yhq1oqKdephNMn8UqJ00lrWelK/S08ykpM4sHYl+1bHEPP7T6z443+E161PrbbRVGvWEovVXe9whRA6kgRNCCFEocnJysxPylZzfMdWnHl5ePr5Uye6M5HNWhNWszYGo1RdFGWLzc+fxr3607hXfxJPn2Lf6hj2rY5h/jefYvrZjWpNWlC3Y1cq1q4n49WEKIMkQRNCCFGg7JkZHNm8gYPrV3Ni5zacDgc2/wDqd+5BVIs2lI+qgWIw6B2mEMVCQFhF2gy/k9bD7uDsgX3sWx3DgbUr2b9mBX7lw6jfuQe123fCarPpHaoQoohIgiaEEOKWOR0Ojm3bzJ4VSzi6dTMupwOvwCAadOtNVIvWlKtWXZIyIf6FoihUqFHrYsXSg+tXs33xPGJ+/4nVE8ZSvVU76nftQWjVKGlVE6KUkwRNCCHETYs/cYw9K5awd1UM2WmpePj40rB7b6q3bEtoNfkhKcTNMFks1GrXkVrtOhJ3/Cg7Fs9j36oY9qxYQnDlqtTv0oOarTvIHICizBs1ahRz5swhODiY3bt3AzBs2DAOHDgAQEpKCr6+vmzfvl3HKG+cJGhCCCFuSFZaKvvXrGBPzFLijh/BYDRRtUkzarfvTOUGjWVMmRAFKDiiCl3uf5R2t49i36rl7Fg8j8U/fs3Kcb9Sp0MXGnTrjW9IqN5hCqGLkSNH8uijj3LXXXddXDdp0qSLz5955hl8fEreNC2SoAkhhPhPToeD4zu2sCdmKUe2bMTldBBcuSrRIx+kZpv2uHt56x2iEKWam4cHDbr1on7XnpzZv4dtC+eydf4stsybSZWGTWjYvQ+V6jWUVmtRprRr147jx49fc5uqqkyePJlly5YVbVAFQBI0IYQQ/yj+5HH2xCxh3+oYslJTcPf2oUG3XtTp0JmgSpX1Dk+IMkdRFMJq1iGsZh3SkxLYuWQBO5csYNp7r+NXPoyG3XpRu30nLO4eeocqypAPNn7A/qT9BXrOGv41eKHZCzd9/KpVqwgJCSEyMrIAoyoakqAJIYS4gtaFcSV7Viwh7tgRDEYjVRo1o3YHrQuj0SRfHUIUB17+gbQeegfNBwzj4PrVbFswm2W//sDqib9Tr3MPmvQeIBNgizJrwoQJjBgxQu8wbop8ywohhEBVVc4e2Me2hXM4tGGt1oUxoirRIx+gRuv2eHiXvD78QpQVJrOZWm2jqdU2mnOHD7B13iy2zJnB9oVzqde5O037DMTmH6B3mKIUu5WWrsLgcDiYPn06W7Zs0TuUmyIJmhBClGF5OXb2r1nJtoVziD9+FDdPTxp07UntDp0Jjqiid3hCiBtUrlp1ej3+HK2G3MaGv6awbcFsdiyeR53orjTrNwjvwGC9QxSi0C1ZsoQaNWoQFhamdyg3RRI0IYQog1Jiz7Nj8Tx2L1uEPTODwPAIujzwqJTuFqKU8CtXge4PP0mLQcPZOHMKu5YuZNfShdTu0Inm/YfgEyyVH0XJN2LECGJiYkhISCAsLIzRo0dz7733MnHixBLbvREkQRNCiDJDVVVO7NrO4Xl/seX7oyiKQmSzVjTs1psKNWtL9TchSiHfkFC6PvAYLQYOY+PMaexetpDdyxdTq200zfoPxb98Bb1DFOKmTZgw4Zrrf/vtt6INpIBJgiaEEKVcXm4O+1bFsHXeTBJPn8Tk7kGLgcOo17k7Xv6BeocnhCgC3oHBdL73/2gxYCibZk1j55IF7F25nOqt2tJ8wFACK1bSO0QhRD5J0IQQopTKSE5ix6K57Fg8n+z0NIIiqtD94aeIdai07tRZ7/CEEDqw+QcQPfIBmvUfwpa5WiGR/WtWENm8FS0GDpexp0IUA5KgCSFEKRN77Ahb581k/5qVuFxOqjZuRuOe/QirVRdFUYiPidE7RCGEzjx9/Wh3+z007TuIrfNmsnX+bA5tWEuVxs1oOXA4odWi9A5RiDJLEjQhhCgFXE4nhzevZ9v82Zzetxuzm5X6XXrQsEcf/ELL6x2eEKKYcvfypvWwO2ncewDbFsxm69yZjHvlaSo3bELrYXcSUrmq3iEKUeZIgiaEECVYVloqu5YtYseieaQnxuMdFEK7O0ZRt2NXrJ42vcMTQpQQVk8bLQeNoHHPfmxbMIfNs6fz54tPENWiDa2G3k5AhYp6hyhEmSEJmhBClEBxx4+ybcFs9q9egSMvl/A69el4z4NUadwUg8God3hCiBLK4u5B8wFDqd+1J1vmzmDL3Jkc2rCWWu060nLwCHyCQ/QOUYhSTxI0IYQoIVSXi8Ob17N13ixO79uNyeJGrfYdaditN4HhEXqHJ4QoRayeNloPvYOG3fuwccYUti+ay77VMdTr3I3mA4Zh8/PXO0QhGDVqFHPmzCE4OJjdu3cDsH37dh566CHsdjsmk4lvv/2WZs2a6RzpjZEETQghijmX08n+tSvZOGMKiadP4h0UQvs7RlEnuitWm3RjFEIUHg9vHzrcdR+Ne/Vn/bSJ7FyygN3Ll9C4Vz+a9R+Cxequd4iiDBs5ciSPPvood91118V1zz//PG+88QY9evRg3rx5PP/888SUsOJYkqAJIUQx5cjNZc+KJWyaNY3UuFgCK1ai5+PPUb1FGwxG6cYohCg6XgGBdHngUZr2HcSayX+y4a/J7I5ZQtsRd1OrbTSKwaB3iKIMateuHcePH79inaIopKWlAZCamkr58iWvUJYkaEIIUczk2rPZuXg+m+fOIDM5iXLVqhM98gGqNGwqP4KEELryDS1Hr8efo2H33iz/7UcWfPsZ2xfNJfruBygfVUPv8IROzr/3Hjn79hfoOd1q1iD05Zdv+LjPP/+cbt268eyzz+JyuVi7dm2BxlUUJEETQohiwp6RoZW5nj8Le0Y64XXq0/PRZ6hYux6KougdnhBCXFQ+qia3vfMJe1ctZ9X435jw2rPUahtNm9vuxss/UO/wRBn23Xff8dlnnzFo0CAmT57Mvffey5IlS/QO64bonqApivIL0BuIU1W1zjW2K8AXQE8gCxipqurW/G13A6/m7/qOqqpjiyZqIYQoOJkpyWyZO4Pti+aRZ8+mSuNmNO8/VO5GCyGKNcVgoHb7TkQ2a8mGGVPYMucvDm5cS/P+Q2ncuz9mi5veIYoicjMtXYVl7NixfPHFFwAMGTKE++67T+eIbpzuCRrwG/A18Ps/bO8BROYvzYHvgOaKovgDbwBNABXYoijKLFVVkws9YiGEKABpCXFsmjWd3csW4XQ4iGrZhub9hxBUqbLeoQkhxHWzuHvQdsTd1O3YjZV//sKaSX+wa9kiOtx9H9WatJAeAKJIlS9fnhUrVtChQweWLVtGZGSk3iHdMN0TNFVVVyqKEvEvu/QDfldVVQXWK4riqyhKOaADsFhV1SQARVEWA92BCYUcshBC3JLkc2fYOHMqe1cuA6BWu4406zcYv3IVdI5MCCFunm9IKH2feZmTu3ew7NcfmPXxu1Sq15CO9zyIf/kwvcMTpdCIESOIiYkhISGBsLAwRo8ezU8//cQTTzyBw+HAarXy448/6h3mDdM9QbsOFYBTl70+nb/un9YLIUSxlHjmFOunTeTA2lUYTSbqde5B074D8Q4M1js0IYQoMOF16nPnB1+yY9Fc1kwex9hnH6VRz760HDQci7uH3uGJUmTChGu3y2zZsqWIIylYJSFBu2WKojwAPAAQEhJS4uZCEKVLRkaGXINljD0lmXNb1pF0aB8Go4ng+o0Jqd8Eo4cnW3fvBfYWaTxyDQq9yTVYRnj4UGPo3ZzZsIrNs6ezY+lCKrRsj39kTd27Pco1eOt8fHxIT0/XO4wSwW6339D1VhIStDNAxcteh+WvO4PWzfHy9THXOoGqqj8CPwI0adJE7dChw7V2E6JIxMTEINdg2ZASe5710yeyd+UyjCYzTXoPoGmfgXj4+Ooal1yDQm9yDZYxPXtx7tABlv36PceXziP39HE6jXqI4IgquoUk1+Ct27dvH15eXnqHUSJYrVYaNmx43fuXhARtFvCooigT0YqEpKqqek5RlIXAe4qi+OXv1xV4Sa8ghRDigrT4ONZPn8ieFUsxGIw07N6HZv0G4+nr998HCyFEKVQusjq3vfMJu2OWsGrCWP586Uma9hlIi8EjpNqjEH+je4KmKMoEtJawQEVRTqNVZjQDqKr6PTAPrcT+YbQy+/fkb0tSFOVtYFP+qd66UDBECCH0kJGcxPppE9m1bBGKAvW79KRZv8HY/AP0Dk0IIXSnGAzU7diVas1asuKP/7Fx5lQObVxL1wceJ6zWVTMtCVFm6Z6gqao64j+2q8Aj/7DtF+CXwohLCCGulz0zg02zprF13ixcTgd1O3alWf+heAcG6R2aEEIUO+42L7r/35PUbN2BxT99xaTRL1K/Sw/a3nYPbh5SREQI3RM0IYQoqfJy7GxbMIdNM6diz8ygRuv2tB56B76h5fQOTQghir1K9Rpw90ffsGbyH2ydN5sjWzbS+b6Hqdq4ud6hCaErSdCEEOIGOR0O9sQsYd3U8WQkJ1G5YRPaDL9L1wHvQghREpmtVjrcdT/VW7Vj0fdfMuPDt6nesi0d73lQ94JKovgbNWoUc+bMITg4mN27dwOwY8cOHnroITIyMoiIiGDcuHF4e3vrHOmNMegdgBBClBSqy8WBdasY++zDLP7pa7yCghn2xhgGvvimJGdCCHELylWrzh1jPqfV0Ns5vGkdvz7zMPtWx6CNdBHi2kaOHMmCBQuuWHffffcxZswYdu3axYABA/joo490iu7mSYImhBD/QVVVjm7bxB8vPcmczz/AYDTR77nXGPHWRzKwXQghCojRZKbloBHc+cGX+IWUY95XHzPz43fISJYacOLa2rVrh7+//xXrDh48SLt27QDo0qUL06ZN0yO0WyJdHIUQ4l+c3rubVRN/5+yBvfgEh9Djkaep0aY9BoNR79CEEKJUCggLZ/jbH7J17kzWTPqT3575P6LvfoBa7TrqPsG1uLZVkw+ScCqjQM8ZWNFG26FRN3xc7dq1mTlzJv3792fKlCmcOnWqQOMqCpKgCSHENcQePczqib9zfMdWPP386Xzfw9SJ7oLRZNY7NCGEKPUMBiNN+gykSuPmLPrhCxZ8+xkH1q6kywOP4RUQqHd4ohj75ZdfePzxx3n77bfp27cvFotF75BumCRoQghxmcTTp1gz+Q8ObViL1cubdneMokG3XjKRqhBC6MC/fAWGvTGGbQvnsGrCWH575mHa3zmKuh27SWtaMXIzLV2FpUaNGixatAjQujvOnTtX54hunCRoQggBZKWmsHbKOHYuWYjZ6kbLwbfRuFd/mZNHCCF0phgMNOrRlyoNm7Lohy9Z/OPXHFy/hq4PPi7zTYqrxMXFERwcjMvl4p133uGhhx7SO6QbJgmaEKJMc+TmsmXeTDbOmIwjN5cG3XvRYuBwPLx99A5NCCHEZXxDyzHktXfZsWQBK//8hd+fe5TokTI2rSwbMWIEMTExJCQkEBYWxujRo8nIyOCbb74BYODAgdxzzz06R3njJEETQpRJqqpyYO1KVk0YS1p8HFWbNKfd7ffgXz5M79CEEEL8A8VgoEHXnkTUa8iC7z5jwbefcXjTOrrc/6jMm1YGTZgw4Zrrn3jiiSKOpGBJgiaEKHPOHtxHzO8/c+7QAYIiqjDkoScIr1Nf77CEEEJcJ9/Qcgx94322zJ3Jmom/89uzj9Dl/keIbNZK79CEuGWSoAkhyoy0hDhW/vkrB9atwtPPn24PPUGt9h2lZL4QQpRABoORpn0GUrlBY+Z/8ymzPnmPmm2j6XjPg1g9bXqHJ8RNkwRNCFHq5eXY2TRrOptmaZNVthg0nKZ9B2GxuuscmRBCiFsVWLESt73zCeunT2LDX5M4tWcn3f7vSSLqNdQ7NCFuiiRoQohSS1VVDq5fzYo/fyE9IZ6olm1pf8c9eAcG6x2aEEKIAmQ0mWg99HaqNmrK/G8+Zdq7r9G07yBaD7sTo0l+7oqSRa5YIUSpFHf8KMvH/sjpvbsJqlSZno88Q1itOnqHJYQQohCFVovijg++IGbsT2yaNY3Te3fT64nn8AkO1Ts0Ia6bJGhCiFIlKy2VtZP/ZOeShbjZbHS+7xHqduoq48yEEKKMMFvc6HL/o4TXacDiH7/i9+cfp+uDj1O9ZRu9QxPiuhj0DkAIIQqC05HHlrkz+OXJB9i5dCENuvfi3s9/pH6XHpKcCSFEGVS9ZRvu/OALAipUZM7nY1j809fk5eboHZYoIKdOnSI6OppatWpRu3ZtvvjiCwCSkpLo0qULkZGRdOnSheTkZJ0jvXGSoAkhSjRVVTm8aT1jn32EmN9/JrRqFHd9+BUdRz6I1SZVvIQQoizzCQ5l2OgPaNpvMDuXLGDcS0+RcOqE3mGJAmAymfjkk0/Yu3cv69ev55tvvmHv3r2MGTOGTp06cejQITp16sSYMWP0DvWGSRdHIUSJFXf8KDG//8ypPTvxr1CRgS++SeWGTfQOSwghRDFiNJlod9tIwmvXY/43nzLu5aep0LI9avv2KIqid3jiJpUrV45y5coB4OXlRc2aNTlz5gwzZ84kJiYGgLvvvpsOHTrwwQcf6BjpjZMETQhR4mQkJ7Fm0h/sjlmC1eZFp1H/R73O3TEYpSujEEKIa4uo34i7PvyKeV9/wokVi5jvzKXz/Y/IlCsFYPlvPxJ34miBnjO4UhWiRz5wXfseP36cbdu20bx5c2JjYy8mbqGhocTGxhZoXEVBEjQhRInhyM1l8+zpbJw5FafDQZPeA2g+YKhMSCqEEOK6ePr6Mfjlt5j42YfsX7OS80cP0+fJFwiqVFnv0MRNysjIYNCgQXz++ed4e3tfsU1RlBLZSioJmhCiRDi2fQvLfvmelNhzRDZrRbvb78E3tJzeYQkhhChhFIOBco1b0KZ7T+Z++RHjX3mG6HsepG7HriXyx3xxcL0tXQUtLy+PQYMGcfvttzNw4EAAQkJCOHfuHOXKlePcuXMEB5e8uU+lSIgQolhLS4hn1qfvMf39N1CMRga/8g59n3lZkjMhhBC3pGLtetz5wZeUr1GLxT9+xfyvPyHXnq13WOI6qarKvffeS82aNXn66acvru/bty9jx44FYOzYsfTr10+vEG+atKAJIYolp8PB1nkzWTd1Aqqq0mb4XTTuPQCT2ax3aEIIIUoJT18/Br08mo1/TWHtlPHS5bEEWbNmDX/88Qd169alQYMGALz33nu8+OKLDB06lP/9739UqlSJyZMn6xvoTZAETQhR7Jzau4ul//uOxNMnqdqkOdF3P4BPcIjeYQkhhCiFDAYjLQYNp0KNWld0eazXqZveoYl/0aZNG1RVvea2pUuXFnE0BUsSNCFEsZGRnMSqcb+yd9VyvIOC6ffca1Rr0lzvsIQQQpQBF7o8zvv6Exb/+BWxRw/R8Z4HMZqk54YoWpKgCSF058jLY+u8mayfPglnXh7NBwyj+YAhmN2seocmhBCiDLnQ5XHNxD/YOHMqiadP0uepl/D09dM7NFGGSIImhNDV0a2bWD72R1LOn6NK42Z0uOs+/ELL6x2WEEKIMspgMNL2tpEERVRh4Xdf8OdLT9Lv2VcJrRqpd2iijJAETQihi6Szp4kZ+xPHtm/Br3wYA18aTeUGjfUOSwghhACgRqt2+JcPY+bH7zDxjefp+sBj1GrXUe+wihVVVWVqgv/wT+Pk/o0kaEKIIpWTlcX66RPZOm8WJouF9nfeS8PuvaWPvxBCiGInOKIKt7/3GXM+G8P8bz4l7vgR2t0+CoPRqHdourNarSQmJhIQECBJ2j9QVZXExESs1hsbsiEJmhCiSKiqyv61K4kZ+xNZaanU6dCZNsPvkn79QgghijUPbx8GvfI2K/74H1vmziT+xHF6P/kC7l7eeoemq7CwME6fPk18fLzeoRRrVquVsLCwGzpGEjQhRKFLjTvPkp+/5fiOrYRWjWTAC29IX34hhBAlhtFkouM9DxIcUYUlP3/DuJefot9zrxEUHqF3aLoxm81UrizzxRUGSdCEEIXG5XSyZe4M1k4Zj2IwED3yARp064XBIF1DhBBClDx1orvgX6Eisz59jwmvPkv3R54iqnlrvcMSpYxB7wCEEKXT+cMH+fPlp1g57lcq1WvAyE++pVGPvpKcCSGEKNHKR9Xgjvc+I7BiJWZ/+j5rJv+J6nLpHZYoRaQFTQhRoHKzs1g96Q+2L5iLp68vfZ9+mWrNWsoAYiGEEKWGzT+AoW+8z5L/fcv6aROJP3GMHo88g5uHh96hiVJAEjQhRIE5smUjS//3HelJCdTv0pO2I+7CzcNT77CEEEKIAmeyWOj20BMER1Ql5vefGP/qM/R/7lX8ylXQOzRRwkmCJoS4ZZkpySz/7UcOrFtFQFg4I976kPJRNfUOSwghhChUiqLQqEcfrbvj52MY98rT9Hr8eZnXU9wSGYMmhLhpqqqyO2YJvz39fxzetI7WQ+/gzg++kORMCCFEmRJepx53vPcZ3gFB/DVmNBtnTr2pCYqFAGlBE0LcpJTz51j809ec3L2DCjVq0eWBxwioUFHvsIQQQghd+ASHMOLtj1nw/ResGv8biadP0uWBxzCZzXqHJkoY3RM0RVG6A18ARuBnVVXH/G37Z0B0/ksPIFhVVd/8bU5gV/62k6qq9i2SoIUow1xOJ1vmzWTt5HEYjAY63/cw9Tp1RzFIg7wQQoiyzWy10vuJ51kfFs7aKeNIjTtP32dewcPbR+/QRAmia4KmKIoR+AboApwGNimKMktV1b0X9lFV9anL9n8MaHjZKbJVVW1QROEKUebFHj3Moh+/Iu7YEao2aU6ne/8PL/9AvcMSQgghig1FUWg5eAR+5Suw8NvPGf/K0wx44Q0CwsL1Dk2UEHrf8m4GHFZV9aiqqrnARKDfv+w/AphQJJEJIS7KtWcT8/vPjHv5aTKSEunz1Iv0e/ZVSc6EEEKIf1CjVTuGvvE+eTk5jH/1WY5v36J3SKKE0DtBqwCcuuz16fx1V1EUpRJQGVh22WqroiibFUVZryhK/0KLUogy7OjWTfz2zMNsmTuDup26cs9n3xPVoo3MayaEEEL8h3KR1bn9vU/xCQpm+gej2bZwjt4hiRJA0bPCjKIog4Huqqrel//6TqC5qqqPXmPfF4AwVVUfu2xdBVVVzyiKUgUtceukquqRaxz7APAAQEhISOOJEycWzgcS4jpkZGRgs9n0DuM/5WVmcHL1MlKOHsTqF0Cl9l2xydwupUJJuQZF6SXXoNBbUV+Dztxcji2ZQ+qJowTVaUjF1tEydruMi46O3qKqapNrbdO7SMgZ4PKyb2H5665lOPDI5StUVT2T/3hUUZQYtPFpVyVoqqr+CPwI0KRJE7VDhw63GrcQNy0mJobifA2qLhc7lixg1ZTfcTryaD3sTpr2HYjRJFWoSovifg2K0k+uQaE3Pa5BV+dOrBz3G1vm/IWnUaH3ky/i5uFRpDGIkkHvBG0TEKkoSmW0xGw4cNvfd1IUpQbgB6y7bJ0fkKWqao6iKIFAa+DDIolaiFIq8fRJFv7wJecO7ie8Tj063/cIftJqJoQQQtwyg8FIhzvvxb98BZb8/C2TR7/EwJfexNPXT+/QRDGja4KmqqpDUZRHgYVoZfZ/UVV1j6IobwGbVVWdlb/rcGCiemV/zJrAD4qiuNDG0o25vPqjEOL6OR0ONs2axvppEzC7e9D94aeo1a6jjDMTQgghCli9Tt3x8g9k1mfvM+G1Zxn40lv4l5eboeISvVvQUFV1HjDvb+te/9vrN69x3FqgbqEGJ0QZEHf8KAu/+4K440eIatmWTvc8iIePr95hCSGEEKVW5YZNGPb6+0z/YDQTX3+OAS+8QbnI6nqHJYoJGZ0oRBnlyMtjzeQ/GffyU2QkJ9L36Zfp8+QLkpwJIYQQRSC0WhQj3v4Ii4cHk99+maNbN+kdkigmJEETogw6f/ggf774BOunTaRGq3aM/PQ7Ipu30jssIYQQokzxCy3PiLc+IqBCRWZ89Da7li/SOyRRDOjexVEIUXTycnNYN2U8m2f/haefHwNeeIMqjZrqHZYQQghRZnn6+jH0jfeZ/en7LPr+SzKSEmkxcLiMAy/DJEEToow4vW83i374iuRzZ6jbqRvt7xiFm4en3mEJIYQQZZ7F6k7/519n0Q9fsnbyODKSEul07/9hMBj1Dk3oQBI0IUq5nKwsVo3/jR2L5+ETHMLgV96hUr0GeoclhBBCiMsYTSa6P/wUNj9/Ns6cSlZqKr0efw6TxaJ3aKKISYImRCl2dOsmFv/8DZlJSTTu1Z/WQ+/AbLXqHZYQQgghrkFRFNreNhJPP3+Wj/2Jae+9Tr/nXsXqadM7NFGEJEETohTKSktl+W8/sn/NCgLCwun79ktSvlcIIYQoIRr16IuHtw/zv/mMSW++yKCXRmPzD9A7LFFEJEETohRRVZX9a1ey/NcfyMnKouXg22g+YAhGk1nv0IQQQghxA2q0bo+7lw8zP3mXCa8/x6CX38K/fJjeYYkiIGX2hSglMlOSmfnxO8z78iN8QkK5c8zntBpymyRnQgghRAlVqV4Dhr3xPnk5OUx4/XnOHT6gd0iiCEiCJkQJp6oq+9es4LdnHub4jq20v2MUI97+iMDwCL1DE0IIIcQtCqlSjRFvfYibuzuT33qZY9u36B2SKGSSoAlRgmWlpTLnszHM/fIjfEPLcecHX9Kkz0ApyyuEEEKUIn7lKjDi7Y/xK1eBGR++xd5Vy/UOSRQiGYMmRAl1aMNaFv/8DblZmbQZcTdN+wzEYJTETAghhCiNPH39GPbGGGZ+/A7zv/6EnMwMGnbvo3dYohBIgiZECZOdkc6yX75n/5oVBFeuSo/X3pXujEIIIUQZ4ObhwcCXRjPn8w9Y9usPOHJzadp3kN5hiQImCZoQJcjRrZtY9ONXZKel0mro7TTrNwSjSf4ZCyGEEGWFyWymz1MvMv/rT1g57lfycnJoOXgEiqLoHZooIPLLTogSICcri5jff2L38sUEhUcw8MU3CY6oondYQgghhNCB0WSi5+PPYrJYWDd1PI68XNqOuFuStFJCEjQhirmTu3ew4LvPyUhMpPmAobQcPEJK5wshhBBlnMFgpNtDT2CyWNg0cyqOnByi774fxSA1AEs6SdCEKKbycuysGj+WbQtm51dv+ohykdX1DksIIYQQxYRiMNDp3ocxmi1snTcTR24One9/RKo5l3CSoAlRDJ09uI8F335G8rmzNOrRlzYj7sLsZtU7LCGEEEIUM4qi0OGu+zC7ubHhr8k48vLo/n9PSmXnEkwSNCGKEUdeHuumjGPTrOl4BQYy5LX3CK9TT++whBBCCFGMKYpCm+F3YbK4sWbSHzhyc+j1+HMyJKKEkgRNiGIi9tgRFnz7GQknj1Mnuisd7roPNw8PvcMSQgghRAnRYuAwTBYLK/74H7M+eY8+T72EyWLROyxxgyRBE0JnToeDDX9NZsNfk3D39mHAC29QpVFTvcMSQgghRAnUpPcATBY3lv7vW/768C36P/sqZqsMkyhJJEETQkcJJ48z/9vPiDt2hJptOhB9z4O427z0DksIIYQQJViDrj0xWSws+v5Lpr3/BgNffAOLu/TKKSkkQRNCBy6nk02zp7NuyjgsHp70feZlIpu10jssIYQQQpQSdTp0xmQ2M+/rT5j6zmsMfGk0VptN77DEdZAETYgiZk9OYuLrz3Pu8AGimrem030P4+Hto3dYQgghhChlarRuj9FiYc5nHzD57ZcZ/Mrb8pujBJCZ7IQoIqrLxZa5M9k75XeSz5+l1+PP0fupF+UPpRBCCCEKTWTTlvR//jWSz5xm8uiXyEhO0jsk8R8kQROiCKQlxDP13VeJ+f0nvMPCGfnJt9Ro3R5FUfQOTQghhBClXOUGjRnw4pukxccxefSLpCXE6x2S+BeSoAlRyPatWcHvzz/KuUMH6fLAY1TtMQBPXz+9wxJCCCFEGRJepx6DXnmbzJQUJr35Aqlx5/UOSfwDSdCEKCT2jAzmfPEh8778CP8KFbnrw6+o16mbtJoJIYQQQhcVqtdk6OvvkZuVxaQ3XyLl/Dm9QxLXIAmaEIXgxM7tjH3uEQ5tWEOb4Xcx/M0P8A0tp3dYQgghhCjjQqpUY/Br75KXY2fSWy+RfP6s3iGJv5EETYgClJebw7LffmDqu69icffgtnc+ofmAoRiMRr1DE0IIIYQAIKRyVYa89i6O3Fwmj36J5HNn9A5JXEYSNCEKyLlDB/jzhSfYNn82jXr05Y4xnxNSpZreYQkhhBBCXCU4ogpDX3sXZ14ek0a/RNLZ03qHJPJJgibELXLk5bFqwlgmvPYceTk5DH7lHaJHPoDZ4qZ3aEIIIYQQ/yioUmWGvv4eLqeTyW+9TOKZU3qHJJAETYhbEnvsCONefoqNM6ZQu0Mn7v74ayrVa6B3WEIIIYQQ1yUwPIKhr7+H6nIxefRLJJ6WJE1vkqAJcROcDgdrp4xn/CtPk52exoAX3qDbQ0/g5uGpd2hCCCGEEDcksGIlhr7+PgCT33qJxNMndY6obJMETYgblHDyOONffYZ1U8dTvWVb7v74G6o0aqp3WEIIIYQQNy0grCJD33gfxWBg0uiXSDh1Qu+QyixJ0IS4Ti6Xk40zp/LnS0+SnphA32depudjz+Ju89I7NCGEEEKIWxZQoSJDX38fg9HIlLdfIemsVHfUgyRoQlyHtIQ4prz9CqvG/0aVxs0Y+cm3RDZrpXdYQgghhBAFyr98BYa8+i6qqjLlnVdIjTuvd0hljknvAIQo7vatjmHp/77D5XLR/eGnqNWuI4qi6B2WEKIQqKqKmpODKzsb1W7HlZ192XM7qj1be8zNQc3NRc3NxZWbi5qTe/G1mpenncxoQFEMYDSiGBQwGMGgoBiMgIqqqqCq4Mp/RHtUVRXFZMZgdUOxuKG4uWnP3fKfu7mhmM1gNKGYjChG48XnGI0oJpO2WCxXLmaz/O0SQlyXgLCKDH7lbaa89TKT33qFYW+OwTswSO+wygxJ0IT4B/bMDJb+7zv2r1lB+aia9Hj0GXxDQvUOSwhxGTUvD2dGBq7MTFyXPTozMnBlXFj3t9cZGbjsdlz2bNRsOy67HTU7G1dODmp29s0HYzRqSZTZrL12ucDp1BKxyx5xubTtigIGg/aoKCigvQZUh0Pbt4ApZjOKxYLB0xOjjw9GHx8Mvj75z30x+vpqz729MNi8MHrZMHh5YbDZMNpsKB4ekuQJUUYER1Rh0CtvM+XtV5j6zisMfWMMNj9/vcMqE4pFgqYoSnfgC8AI/Kyq6pi/bR8JfARc6Aj7taqqP+dvuxt4NX/9O6qqji2SoEWpdnrvbuZ98wkZSYm0Gno7zfsPxWA06h2WEKWempeHIzERR3wCjoR4HAkJOBMS8l/nL4kJF5MtNSfnv0+qKBhstvwkwxODhyeKhztmHx8M7lYUN6v2aHXHYLWiWK0YrFYMHu7aOvf8de7uGNzdtf3dLFe3UBXw3wjV4cBlz9Fa6+x2LYHM0Z6rTieqwwlOR/5zLaFTHdpz1ZGX36KXd0XL3sVWv6xMnCkpOFNSyTt5Cnvqbpypqah2+78HZTRq/x19fDD5+2MMCMAUEIAxwB+TfwCmAH+M/gEY/f0w+flh9PW9lLAKIUqc0KqRDHxpNNPefY2p77zK0Dfex8PbR++wSj3dEzRFUYzAN0AX4DSwSVGUWaqq7v3brpNUVX30b8f6A28ATQAV2JJ/bHIRhC5KIacjj7WTx7Fx1jR8Q0IZ8dZHlIusrndYQpRoqqriSkvDkZSEMykJR0Iijvh4bYmLu/Q8Ph5nUtI1z2H08cEYFIgpMAj32nUweHthtNkweHpi8LTlJ2Cel9Z5eWHw1BKyktrqo5hMGG0moOim73DZ7ThTU3GlpeFMz8CVkY4zPR3XxecZuNLTcaam4khKJO/UKbJ37ND+v11oGfwbg82mtcz5+WH001rpbJlZJB4+jDEwEFNAIKagQC3R8/cv8ERXCHFrKlSvyYAXXmf6+28y9Z1XGfL6e1IgrZDpnqABzYDDqqoeBVAUZSLQD/h7gnYt3YDFqqom5R+7GOgOTCikWEUplnT2NPO++pjYo4ep27ErHe6+H4vVXe+whCjWnBkZ5J05S965s+SdPYvj3DnyzsfiTEy8lJAlJ8OFcVmXMxow+flg8vfG7OOJe8UqmLxrYPKyYPIyY/I0Y7IZMXoYMOAAZw44csGZBK5YcDrAlQfOPEh1QFJe/msHuBygOrVHlwNcf3uuqqC6uDDu64rnqGAwXVqMZjBoY760R4u2zuSmPTe5gdENTJZLjyZ3MFvB7AEmK5jdtcXkfum52eOyR+ul1yb3i10di5ohv/WQkJAbOk51uXCmpmr/3xOTcCYl5rfQpeBITsaZnIIzORlnUjK5R47iER9P3NKl1wjAgNHfH1NwEJYKYZgrVsQcVgFLxYqYw8IwV6iAwWIpoE8rhLheFWvXo9+zrzDjo7eZ/t7rDH71HZn7tRApqqrqG4CiDAa6q6p6X/7rO4Hml7eW5XdxfB+IBw4CT6mqekpRlGcBq6qq7+Tv9xqQrarqx397jweABwBCQkIaT5w4sfA/mCgxVFUlYd8uTq9ZhmIyU6l9V/yqRBba+2VkZGCz2Qrt/EL8l+u6BlUVJSsLY0oKhpRUDCkpGFNTMCYlYUpOwJCUhCE5FcWee+VxBjDYjBitYLSqmNxcmNwcmCx5mC05mKxOTG5OTO4ujG4u/qthy6WYcBlMqIoZl8GEy2BGVUyoigmXwZj/3HiN10ZUxXDZ88vXGQAFVVEABTCgKuQ/1wJSVBeK6kBRnRcfDa4Lzx0YXA4Mrrz853kXF0W98DwXozMXg3qNxPQ6OIzuOExe5Jk98x9tOEzacvlzh8nzb689QCn+BZozMjLwMpkwpKVhSEvHkJaa/5iGIT0NY3IKxoQEjImJKJcl96qi4PL1xRkQgNPfH5e/H05/f5x+/jj9/XD5+6O6y4018d/ku/jmpBw7zJFFs/AMLkdk70EYzXLD5GZFR0dvUVW1ybW2FYcWtOsxG5igqmqOoigPAmOBjtd7sKqqPwI/AjRp0kTt0KFDoQQpSp6stFQW//gVJzetJ7xuA3o8/BQ2/4BCfc+YmBjkGhR6unANqrm55B47Qu7BXeQeOUDu8ePknjpDXmwSjtRM1Lyru6wZ85Mrs6cDc0UnZg8nZk/t0eTrjinAB8XDHyxeYPHUFjcbWGz5r22X1l9YzH9/7a61RBktGAyGkj0fjMsJDjvk2SEvK/951qXXedmXHi9sy83ClJOGKTsZa3YyZKdAdiKkHYbsZK2V8B8pYPUGjwDwDLq02IL/9jwYvEK0/x86dP+MiYmh/XX8HVRdLhzxCeSdOU3eqVPknjpN3unT5J4+hePMGfK2bgWH44pjDDYb5goVsEREYKkcgVvlyljyF6OXdMsSGvkuvkkdOnCgRg3mfvEhSetjGPDCm5ikVbvAFYcE7QxQ8bLXYVwqBgKAqqqJl738GfjwsmM7/O3YmAKPUJRKJ3ZuZ/63n2JPT6P9nffSuGc/FJ26FQlRoFRV+yGffh41/RyOE4fJPXqInOOnyD0TS/jpRA4/7yQv3UV+0xEABosLi82Bu82BKdiE2deKyc8LU6C/NkaoXHkM3kHg7q8lAB7++c/zH03yJX0Vg/FS4kkB3PxRVcjNBHuKlrjZUy97nv86OwWyEiAzHhKPwMn1kJWINlT7b8weYAvRFq/8R1sw2ELBK/TSc89A7bMUMcVgwBwSjDkkGBo1umq76nTiSEi41L323Dnyzp0n79Qp7Pv3kb5kyRXVMI2BgVrCFhGBpVI45orhWCqFY6lYEYOndNcS4npUb9kGR24OC779jNmfj6Hv0y9jNBWHlKL0KA7/NTcBkYqiVEZLuIYDt12+g6Io5VRVPZf/si+wL//5QuA9RVH88l93BV4q/JBFSebIy2P1xN/ZMucv/CtUZOCLbxIcUUXvsIS4fnnZkHoaUk9ByilIPY3z3FFyT54g9/R5cuPTyE1VyE0zkZtuwuW4dONBMYHR14hHuB/e5QJwCyuHJSICc5UoTOUraz/IPQK1MVGi+FEUrUXSzQY+Ydd/nNMB2UmQEQeZcZARDxnntdfp5yEjFuL2wdEYLcm76n0N+a1vIVri5lVOe//LF+8K2ni8IqQYjZhDQjCHhEDDhldtV3NzyT11itxjx8g5dozcY8fJPXaM9CVLcCZfWU/MGBiIpWJFLOEVMYeHY6kUoSVyEZUwSlc4Ia5Qu30n8ux2lv7yHfO//oSejz+LQYebOKWV7gmaqqoORVEeRUu2jMAvqqruURTlLWCzqqqzgMcVRekLOIAkYGT+sUmKoryNluQBvHWhYIgQ15J4+hRzv/qI+ONHqd+1F+3vuAezm/wQFcVMbqaWeKWchJQT2mPqKZyxx8k5fobcuHRyM0zkZZjITTeSm2HClXdZ66/iidnfC0ulUHwiwrFUjcKtRj0sUTUxBQezYsUK6dpT1hhN+a1hwf+9b162lrhlxGpLen4il3Ee0mO1x3M7tG1/5xl8KWHzDb+0+FTUHq3eBf/Z/oViseBWtSpuVavy986NzvR0ck+e1LpOnjhJ7qmT5J04SeaGjThmzrpiX2NAQH6rW6WLSZu1Vi3MFSqUyAqhQhSEBt16kZdjZ+W4XzFbrXR94DHpiVRAdE/QAFRVnQfM+9u61y97/hL/0DKmquovwC+FGqAo8VSXi20LZrNq/FjM7u70f/51qjZupndYoizLToako5B0LP/x0uJKiyc3zUROqpmcFBP2NDdy0txwZKhof7b9wKBgDgnEEhWOd0RVLBGVtTv/FStq3bWkUIK4WWZ38KukLf/GkQNpZ/Jbc09fatVNPaO1xh1apI2ru5zVB3zDqe3wgJzF4BcBfpW1R9+KRdoCZ/Tywr12bdxr175qmys7m9yTp8g9cZzcEyfIPXGCvOMnyFi1Euf06Rf3M3h7Y61VS1tqa4+WSpXkR6ooM5r2HUSuPZv10yZitlqJvvsBuWlRAIpFgiZEYUpLiGfhd59zcvcOqjRqStcHH8fT1++/DxTiVqgqZCVdlXxdXLKTcDkUctONWiKW40dupic5Kb7kJljAlT9eyGTCrUoVPBpF4RYZiVtUJG5VqmAuX14mABb6MrmBfxVtuRZVhcyESy3BqRdahU/hcWYPbNrxtwRO0Vre/CLyE8TK4F/5UhLn4V8EH0pjcHfHWj0Ka/Woq7Y5MzLJPXYM+7692Pfsxb53L8l//omaq1U0NXh44FarJtao/H+zkZG4VauG0de3yOIXoii1GnI7efZstsydicXqTpvhd+kdUoknCZootVRVZd/qGJb98j0up5MuDzxG3Y5d5c6OKFiOHK0QQ8IBiD+oPSYe0VrGcrSxPKoKeZkm7Dmh2DN8yEmpSE5CMHkJ6fnzbgFGI5bwYNzqV8WratWLP+4sERGSiImSSVHAFqQtYY2v2LQpJoYO7dpp3SSTj1+2HNMeDy7SxspdzupzqbXNvwoERkFQFAREFmnXSaPNE/e6dXCvW+fiOjUvj5yjR7Hv3oN9717s+/aROnsOrvT0i/uYgoIuJWxRkbhFVcctspo275wQJZiiKLS/8z5y7XY2/DUZs9Wd5v2H6B1WiSYJmiiVstPTWPLTNxzcsIby1WvR4+Gn8A0tp3dYoiRz5EDCQYjdC/H7If6AlowlHdMmRAZAQfWpSJ6xEtmuNthTFexn0rEfPYsrIxNwgTkDt4gI3JtWw6dKVdyqaeNjzJUqyQS8omwxGMC7nLZUann19txMLVlLOnYpeUs6Bud3wf452qTjF3iVg8BICKx+KXELrqUVNimCm3KK2Yy1enWs1avDoIGAdpPQERtLzqFD5Bw8pD0eOkTypEmo9vyWQ6MRS0QE1ho1cKtRXXusXh1TUJDcTBQliqIodL7vYfLsdlZPGIvFaqVh9z56h1ViSYImSp1j2zaz8PsvyE5Pp82Iu2nad6BUFhLXT1W1sTSxeyBuj5aQxe6BxEOXfhAaTOBfFTWwBrmBnbAnu2E/l4392Hns+w/gyjgCaD/a3KpXx7tnL6y1a2OtXRu3qEhJxIS4HhZPCKmtLX/nzNOStvgD2o2ThEPaDZOdkyAn7dJ+HgFaohZcC4JraucKqlEkLW6KomAODcUcGoqtbduL61WnU5sG4MBBcg7sx77/AFnbtpI2d+7FfYwBAVjr1Ma9bj3c69fDvW5d6SIpij2DwUj3h58iLyeHZb/+gNnqTp0OnfUOq0SSBE2UGnl2Oyv+/B87Fs8nsGIlBr40Wsrni3+XnawlYHH5S+xerbhBzmVlxn3CIaQWalR3cvOCsScZsJ9IJHv9PnL27sOVtRXIrxZXowbefXrjfiEZq1oVRZIxIQqe0ZzfYhZ55XpVvTRlQPz+/Bst+2Dbn5CXeWk/n4pa0hZSC4Lzk8DASO28hUzJbzWzRERAt64X1ztTU7EfOEDO/gPY9+/HvmsnCStXXewGba4Ujnu9+rjXrYt7/Xq41awpN3tEsWM0mej95AvM+PAtFn3/JW4eHkQ2a6V3WCWOJGiiVIg9doS5X35E8rkzNOkzkNbD7sQk43bEBS4nJB6Gczvh/M78H217If3cpX2sPtoPtbqDUQNqkJPtgz02F/uhY9g37MO+f+bFbkmK1Yq1enV8+vfXWsbq1MatShUZKyaE3hQlf562UKgafWm9ywWpJ7Vk7eLNmL1wZOllLeNmrXtkSC0tYQutC6H1rm9qggJg9PHBs1kzPJtdqjDszMjEvns32Tt3Yt+1k6wNG0ibPVvbmN+t0r1eXax16+Fery6WypWlgqTQnclspu8zLzP1nVeZ+8WHDHjhTSrVa6B3WCWKJGiiRFNdLjbPncHqCb/j4e3NkFffIbxOfb3DEnrKs2tdEy8kY+fyEzJHtrbdaIGg6lC5vdYyFlSLPKcf2YfPkb19B9lzt2M/uATy8gAweHpirVkTv2FDsdaqhVvNmloyZpI/n0KUGAZDfjXICKje49J6R67WfTl276UuzSfXw64pl/axheQna/kJW2g9rUhJESRCRpsnni2a49mi+cV1eefPk71jJ/bdu8jeuYvUmbNIHj9B+5g2G9Y6dbRWtsaN8GjcGKPX32eAE6LwWazuDHxxNJNGv8jMj99h8KvvUD6qht5hlRjyC0OUWOlJCSz45jNO7t5BtaYt6frgY7h7Fe0kqEJneXYt+Tq7Fc5th7M7tLviF4p2uPloP6qa3HPxx5XLOwL7/oNkb9tG9vLtZG2fijM+AQDFwwP3unUJuPuui3MbmcPD5Y60EKWVyXLZOLfLqs5lp0Dsbq0gybmd2uPRmEutbWZPbUxbaB0IqXPpHFafQg/5wrg27/zukarTSe6xY2Tv3HUxaUv87Tf46ScwGLDWrIlH06Z4NGuqJWw+hR+jEABWm41BL7/FpDde4K8xbzL0zTEEhUfoHVaJIAmaKJEObVrHou+/xJGXK+XzywpHrnaH+8wWOLtdW+L3XfrB5BEA5RpAVFcoV1+7y+0XgSM5meytW8latI3sLbPI3rv3YuuYOTwcz5Yt8WjYEPcGDXCLjJSWMSEEuPtCRBttucCRo41rO79LW2L3wJ4ZsOW3S/v4hOd3j6wD5RtChcZad8tCpBiNuFWrhlu1ajBwAAAuu53sHTvJ2riRrE2bSB4/nqTffgNFwa1GDTyaNsGjSRM8GjXCFBhYqPGJss3m58/gV99m4uvPM+3d1xg++kOpqn0d5JeIKFHy7HZifv+ZnUsXEFKlGj0fexb/8mF6hyUKmssFSUe0ZOzMVu3x/C5w5mjb3f21Hz9RXbWkrHwD8KmIqqrkHj9B9ratZP35M9lbt5J7/DiQXwY7v3XMvVEj3OvXxxQQoNcnFEKUNCY37eZPucu60asqpJ3VkrXY3ZceDy261JLvXUFL1C4s5RuAW+F2OzRYrXg2b4Znc208mysnh+wdO8jatImsjZtImTSZ5N//ALQbVR4NG2pdIhs1wlKlivQaEAXKJziUQa+8zaQ3X2Tqu68yfPSH2Pzl+/ffSIImSozzRw4x7+tPSD53hqb9BtN66O0YTVKUoVTIToHTm+HUBm05u/1SJUWzp5aMNX8g/8dNI/ANB0UhLy4O+65dZC+cjn3XTrJ37b44MazR1xf3Ro3wHTwI90aNsdapLRXPhBAFS1HAp4K2RF2qyEhulnZT6cyWS8u+WRcO0kr9V2gMFRpBWBOtomQhVpA0uLldKkDyCLhyc7Hv2UP21m1kbdtKxsqVpM6cqe3r44NHgwa4N26MR5MmuNepLdVoxS0LrFiJQS+NZvLbrzD13dcY9uYYGZbyLyRBE8Wey+lkw4zJrJ82EQ9fPykEUtKpqlZR8UIydmqj1m0IQDFq3YPqDrqUjAVVB4MRNS8P+549ZE5dhH2nlow5zp/XjjOZsEZF4d2rpzY4vmFDrZqZdHsVQujB4gHhzbXlgsxEbbzsmS3aDamD82H7n9o2k1Vrmbu8pc0votAm2TZYLHg0bIhHw4YEMCq/98Hxiwlb9patZKxYAYDi5oZ7vXq4N9ESNo8GDTB4ehZKXKJ0C60WRf/nXmP6mDeYPuZNhrz6DhZ3D73DKpYkQRPFWvK5M8z/+lPOHT5AzTYd6DjqIayeNr3DEjfCkaO1iJ1cpyVkJ9dDdpK2zeoLFZtB3cFQsbmWkLlp/38vJmQzf9HGUWzdipqVBWjzAXk0aZJfXrou1po1MVit+nw+IYS4Hp4BENlFW0C7WZVyIj9hy29l2/wLrP9W2+4RCGFNoWJTCGum9SRwK5zvP0VRcKtcGbfKlfEdNBAAR2IiWVu2kL1lC1mbt5D4w48kfvc9GI1Ya9bUqku2bo1748bSO0Fct/A69ej95IvM+uRdZn7yHgNffEN6Q12DJGiiWFJVlV1LF7L8958wmkz0euJ5arRqp3dY4npkJ8OpTVpCdnK99qPjwtixgGpQvad2V7licwiIvFiq2pWTg333brK2bCVr0yayt2zBlZ+QuUVWw7d/fzyaNcOjaRMZOyaEKPkU5VLp/zqDtHXOPG2utjOb87t9b9Ra2gAUg9bDICw/YQtrCgFVC62VzRQQgHfXrnh31bpuOjMyyd6+nazNm8javJnEsb+T+PP/UKxWPJo1xdamDZ6tW2tj2KT3gvgX1Zo0p+sDj7Hw+y9Y+P2X9Hjkablm/kYSNFHsZKYks+iHLzm6dRPhdRvQ/f+exCtAqkwVWxlxcGINnFirLbF7ABUMJq3LTrP7IbwFVGwBtqCLhzni48lasoTsrdu0kveXVVe0VKuKT/9++QlZU0nIhBBlg9EM5eppS5NR2rqsJO1G16mNcHoj7JyitbSBVjAprOmllrYKjQutAInR5omtTWtsbVoDWsKWtWkjmavXkLlmDbHvvQ+AqVw5PFu3wtaqFR7Nm8vfb3FNdaK7kJGUyJrJf2LzD6DdbSP1DqlYkQRNFCuHN61n0Q9fkme3Ez3yARp26y3VpIqblFP5yVh+UpZ4SFtv9tC6K3Z4CSq10n4oWC71Lc87f57MRX+RtWE9WVu3kXfqFACKxXKpumLDhrg3bIjJ31+PTyaEEMWPh/+VXSNdTog/AKc3aQnbqU1waGH+zopWcKRiU+2mWKWW4FupUFrZjDZPvKKj8YqOBiD39Bky16whc/Vq0hcuInXqNADcoqLwaNEczxYt8GjaVCbOFhc1HziMjORENs2cis0vgEY9+ugdUrEhCZooFvJy8svnL1lAcERVej72DAFh4XqHJUArIX1sFRxfqT2mnNDWu/loX/6N7oRKrbXWssuqkDnT08latZTMNWvJXLeO3GPHADD6++PRuDF+I0bg0aghbrVqyfgFIYS4XgYjhNTSlsZ3a+uyU67sFrn7r0vzs3mV1/5Wh7fUbp4F1bzYtbwgWcIqYBk2FL9hQ1EdDux795K5fgNZ69eTMnmKVtbfYMBapw6ezbXxax6NG6GYZfxRWaUoCh1HPURGcjLLx/6Izd+fqOat9Q6rWJAETegu7vhR5n75EUlnTtG07yBaD7tDBozqKT0Wjq+CYyvh+GptPjLQCnpEtIEWD0NEa+0urcF48TA1L4/sbZvJWLOGrLXryN61C1wuFHd3PJo2wXfoUDxbtcQtKkr6mgshREFy94VqnbUFtLkk4/dpvRxOroMT62C31qKF1Se/da2V9jf9bzfXCoJiMmmVH+vVgwfux5Wbq41fW7+BzA0bSPz1VxJ/+gmDtze2du2wRXfA1rYtRm8pu17WGAxGej3+LFPeeZV5X32Mh7cPYTXr6B2W7iRBE7pRVZVt82exctyvWL28GfzKO1Sq10DvsMqe3Ew4vgaOLocjy7UvdchvIWsFTe+FiLYQUuequ665p8+QuXo1GatXkbV+A66MDDAYcK9bl4AHH8DWqhXu9evLHDpCCFGUDPkFRUJqa+OAL1SMPLEOTq7VHi90izR7aoWbItpApTZatUhTwf7NNlgsF+dhC+IxXJmZZK5bR/qy5WTExJA2Zw6YTHg0bYJXdEdsHaOxhIUVaAyi+DK7WRnw/OtMeP15Znz0NsNHf0hgxUp6h6UrSdCELjJTkln43ecc276Fqk2a0/XBx/Hw9tE7rLLB5dTK3h9dBkditNL3rjxtHp7wllB/OFRup91VvayFDNC+VDdt0gaFr15N7vHjAJjKl8O7Rw8827TBs2ULuQsqhBDFyeUVIxuM0Nalx+aPJV6j3aRb+pa23uSujSeu3BYqt9cStgJuYTN4euLVuTNenTujOp1k79hJxvJlpC9bTux77xH73ntYqlXF1qYtnm3a4NGksUylUsq5e3kz6KXRTHjtWaa9/wa3vf1xmS4Qp6iqqncMRapJkybq5s2b9Q6jTDu2fQsLvv2M3Kws2t95L/W79ixTXd5iYmLo0KFD0b5pyik4shSOLIOjK8Ceoq0PrQdVo6FKtJacma/8AnTl5mLfsYPMdevJXL+e7J07weHQyio3bYqtTWs827SRssoljC7XoBCXkWuwGMpMvDJhi92lrbfYtHHGldtpyzV6UxSk3BMnSF+2nMxVK8natBk1Lw/FzU37zmnbpsC+c+QaLJ7ijh9l0psv4B0YzLDRH5TquW8VRdmiqmqTa22TFjRRZBx5eawa/xtb580ksGIlhrz6DoHhEXqHVTrlZGhfsofzk7ILlRa9K0DN3lpCVqUDeF55d0p1OrHv3UfWhvVkrltP1pYtqHa7NrC7dm0C7rkHjxbN8WjSBIObW9F/LiGEEIXDMwBq9dUWyE/YVms39Y6tvNQl0t0/v3WtHVTuUOBzsVkqVSLgnpEE3DMSV1YWWZs2kZHfayP2/TGAVsrf1qYNtg7t8WzRAoOnZ4G9v9BXcEQV+j79CtPHvMnMj99h0MtvYyqDhWQkQRNFIvH0SeZ++RHxJ47RoFtv2t1xD2aL/MAvMC4XnN+pJWNHlmkTRLvytK4qEW20+XSqdYLAqKu+SPNi48hcvVorj7x2Lc6UFECbi8x38GA8W+aXRpZui0IIUXZ4BkCtftoClyr6HlsJx1bA3pnaeu8K+clae6jSHrzLF1gIBg8PbO3bY2vfHrg07jlzzWrS5s0jZcoUFLNZa13roO1nqVS2xy6VBpXqNaD7/z3BvK8/YcE3n9Lr8efK3JRLkqCJQqWqKjuXLCDm958xu7nR//nXqdq4md5hlQ6pp7WiHkeXw9EYyErU1ofUgRb/pyVkFVtc3W0xJ4eszZsvjiPLOaS1rhkDA7G1b49nm9Z4tmiBKSgIIYQQAtASr/rDtEVVIemolqgdXQGHFsGOCdp+AZFaola5nVZgyqPg5rW0hFXAMnwYfsOHoebmkrV1KxkrVpKxYgWx771P7HvvY4mIwNa+HbboaDwaN5Yy/iVUzbbRpCclsmr8b9j8A+hw1316h1SkJEEThSYrLZVFP3zFkc3rqVSvId0ffgqbn0xAfNPysrWy9xe6LSYc0NbbQiCyK1TtqHVbtAVfcZiqquQePkzGmjVkrllL1qZNqHY7itmMe+PGBPfri2ebNrhVry7jyIQQQvw3RdG6NgZU1XpouFwQtye/O+QK2DERNv0MKFCunta6Vrm9Nh+bpWC6IyoWC54tWuDZogUhLzxP7qlTF5O15AkTSRr7OwYfH7w6dMCrS2c8W7fG4O5eIO8tikbTvoNIT0xgy9wZeAUE0bhXP71DKjKSoIlCcXL3DuZ//QlZaWm0v/NeGvfsV+aapwtE8nE4tFi7O3lsJTjsWrXFSq2h0V1agY/gWld1W3QkJ5O5dq02SfSaNThiYwGwVK6sdVts0xrPZs0weHjo8KGEEEKUKgYDhNbVllaPgjMPzmzRvreOroD138HaL8FghrCmWgtblQ5QoQkYC+anqKViRfzvuB3/O27HlZVF5tq1pC9eQvry5aTOnIni7o6tTRu8unTGJsVBSgRFUYgeeT8ZSYnE/PEzNn9/qrdsq3dYRUISNFGgnI481kwex6ZZ0/ArV4HbXniDkMpV9Q6r5HDkanPUXEjKEg5q6/0qQ+ORENlFS87MV94FVFUV+569ZCxbRsbKldj37AFVxeDtjWfLlni2boWtdWvMFSoU/WcSQghRthjNEN5CW9o/D7lZ2oTZF7pExoyBmPfBzVvrClm1o7b4Vy6Qtzd4eFwq45+XR9amTaQvWaIlbIsXg8mEb2QkyefP49Wpk3TpL8YMBiM9H3+Wqe+8xvyvP8HDx5eKterqHVahkzL7osAknT3NvK8+IfboIep16k6Hu+7DLPOWXOWq0r4Z8VoydnCBNqYsNx2MFq24R2RXbQm4Osl15eSQtX79xYk+HbGx2iTR9evj2aY1tjZtsNapg2I0XnWsKNukvLTQm1yDZVxWkta6dqGwVeopbb1fZW38dNWO2vg1a8EWp1JdLuw7d5K+ZAmxM2dhio8HRcG9YUO8unTBq0tnmSC7mMrOSGfia8+RmZpcaiay/rcy+5KgiVumqio7Fs1jxZ+/YLJY6PLAo0Q1b613WMVWzPLldKgZCAcWaEnZmS2ACl7lIKobRHbTun9co5++IzGRjJgVpC9fRuaatajZ2SgeHthat8bWsSO29u0w+cs4P/Hv5Mex0Jtcg+IiVYXEw5eStWOrIC8TDCZtfs4LNyqDqhdoOf+Y5ctpUaEC6YsXk75kKTn79gHgVrMmXl06492lC26RkQX2fuLWpcXHMf61Z1EMhlIxkbUkaJeRBK1gZSQnsfD7Lzi+fQsR9RvR7aEnsPkH6B1W8ePM0wp87J+DfedfWHPyKy5WaAxR3bXELLTeNb98co4eI2P5MtKXLiN72zZQVUwhIdg6RuPVsSMezZrJnGTihsiPY6E3uQbFP3LkwqkNcHiJ1t0/bo+23idc6+Yf2VWbh+0Wi438/RrMPXXqYhfI7G3bAHCLrIZXjx549+iBW+WC6X4pbs3FiayDQhg++gPcPEruHHiSoF1GErSCc2jDWhb99DUOu512d46iQddeUgXwcrlZcGQp7JujtZTZU8DsQbxPXYJa3al9yXiFXHWY6nSSvWMnGcuWkr50GbnHjgH5d/Wio7F16oi1Vi35by1umvw4FnqTa1Bct9TT+eOyF2tTyuRlgtHtsmEAXa45DOC//Ns1mBcXR/rixaTNn0/25i2A9h3s3aMH3j26Y6lY8RY+kLhVx3du468xbxJWsw4DXxqN0VQyS2pIgnYZSdBuXU5WFst/+4E9K5YSUqUaPR59hoAK8scK0PrVH1wI++do5fAd2eDuB1E9oGZvqBJNzNqNV30pOFNTyVy7loyVq8hYuRJnYiKYTHg0bYJXx054dYyWAh+iwMiPY6E3uQbFTXHkwIm12rjtQ4shUZvHE/+ql5K1Sq2vmv/zWq73Gsw7f560BQtImz8f+46dAFjr1sW7Rw+8unbFEibfzXrYs2IpC779jLodu9LlgcdK5E3rf0vQSmbKKXRzet9u5n/zGekJ8bQYOIwWg0aU2DsXBSb5BByYB/vnal8cqhO8ykOjO6FGb6jUSqtodRlVVcnZt09LyFatInv7dnA6MXh7Y2vTGlvHTtjatcXoXbADpIUQQogSy+SmTS9TNRq6v69Nln1oiZawbfkVNnwHZg9tzrXILtoQAp9bS6DMoaEEjBxJwMiR5J4+Q/qC+aTNm0/chx8S9+GHWOvUwatbV7y7dcMSHl5AH1T8l9rtO5F87gwb/pqMX/kwmvYZqHdIBUpa0MR1cTocrJ82gfV/TcY3OJQejz5N+aiaeoelD1WFc9th/zwtMYvdra0Pqgk1ekL1XlC+oTYvzGVcWVlkrF7N4YkT8Tp0GEd8PADWWrXwbNcWW7t2uNerh1LWE15R6KT1QuhNrkFR4HKztLHehxbBoYWQclJbH1oPqvfQkrVyDS5+N9/qNZh78iTpixaRtnAR9l27gPxukN264tW1G25VZMxaYVNdLuZ88SEHN6yh7zMvE9m0pd4h3RDp4ngZSdBuXGrceeZ++RHnDh2gdofOdLznQSxW9/8+sDRxOrT5yfbN1lrK0s6AYtAqTFXvqSVm/lWuPiwlhfSYGNIXLyFzzRpUux2Xhzu+HTrg2bYdtjatZf4VUeTkx7HQm1yDolCpKsTvhwPztTHgpzZyRbXkqB6sPK3QrlO3Anm73NNntGqQCxdqPWIAt8hIvHp0x7t7D0nWClFebg6TR79EwqkTDH/zA0KqVNM7pOsmCdplJEG7MfvWrGDJT98A0OWBR6nRqp3OERUhZ542qebeWVpSlpUAJndtjpbqPbW7cZ5XV6zMi43VJsRcsoSsjZvA6cQUGnpx0sxNmRl06NRJhw8khEZ+HAu9yTUoilRmgtaydmC+Vso/NwOnwYKxagdt7FpUN/AtmO6JeefPk75oMWkLF5K9dSuoKm7Vq+PdvRte3btLNchCkJmSzLhXnsbldHL7u5+WmPL7kqBdRhK065Nrz2bZLz+wZ8USykXVoNdjz+ETfHXFwVInzw5Hl2tJ2YG5YE8Fi037412zr9an/W+lfS+MJ0uPiSFjeczFrg6WypUvTnxprVPn4gBW+WEi9CbXoNCbXINCN44cOL6a08t/ISxrDyRrlZIJqnFpzrXwFleNHb8ZebGxpC9cRNqCBVqyBrjVqIF39+5aNchKJX+y5eIi/uRxJr7+HD7BoQx/68MS0dNLioSIGxJ79DBzv/yQ5PPnaDFwGC0H34bBaNQ7rMKTm6lVg9o3S6vAmJsBVh+tlaxmX6ja8aqKUK7sbDLXrScjJoaMFStwxMaCouBerx5BTz6JV5fOuFW98bK/QgghhChEJjeo1onDp42EtW+vTZJ9aJH2/b/+O1j7Jbj5aIVIqvfUbsx6+N/UW5lDQvC/607877pTa1lbuJC0+QuI//xz4j//HPf69fHp3w/vHj0w+voW7OcsY4LCI+j95Iv8NWY0c7/4kH7PvYrBUHJ/u+qeoCmK0h34AjACP6uqOuZv258G7gMcQDwwSlXVE/nbnMCu/F1Pqqrat8gCL4VUl4vNc2ewesLvePj6MvT196hYq67eYRUOe6r2x3jvzEvl8D0Coc4gqNUXItqByXLFIY7ERNKXLCVj2TIy169HzcnB4OGBZ5s22Dp0wNa+HaYAmaRbCCGEKBEUBQIjtaXlI5CTrs21dnChlrTtnQGKMX+8eXctYbuJOddAqwbpf/fd+N99N3nnzpE2bx6pM2ZwfvRbxL73PraOHfHp1w9b2zYo5ltvvSuLKjdoTPQ9D7Dsl+9Z8ccvRN99v94h3TRdEzRFUYzAN0AX4DSwSVGUWaqq7r1st21AE1VVsxRF+T/gQ2BY/rZsVVUbFGXMpVVafBwLvv2MU3t3Ua1pS7o+9DjuNi+9wypY2SnaWLK9M7VujM5csIVq5fBr9tX+ABuv/CfhiI8nbfFi0hcuImvTJnC5MIeF4Tt0KLYO7fFo2hSDxXLt9xNCCCFEyeHmBTX7aIvLBee2aePWDsyHRa9qS2CUVhWyek8Iawo30UpjLleOgHvvxX/UKOx795I6cyZpc+aSvnAhRn9/vHv3wrd/f9xq1iyR83vpqWG33iSfO8PWeTPxK1eBBl176h3STdG7Ba0ZcFhV1aMAiqJMBPoBFxM0VVWXX7b/euCOIo2wlFNVlT0xS1g+9kdUFbo++Dh1oruUnj8IuZlaBafd07W7Yc5c8AmHZg9oSVlY06vK4efFxpK+SKvGlLVlC6gqlsqVCXjwAby7dcOtevXS899HCCGEEFczGKBCY23p+Ko25+nBBdr0Ouu+gTVfgEeAVjCseg+oEg1utht6C0VRcK9dG/fatQl57jkyVq0mdcYMUiZMJPn3P7BUrYpPn9549+6NJSyskD5o6dPhrvtIOX+OZb9+j29wCBENGusd0g3TO0GrAJy67PVpoPm/7H8vMP+y11ZFUTajdX8co6rqjAKPsBTLTElm0Y9fcXTLRsJq1qH7w0/iExyqd1i3zpGjdVvcPU2765WXqbWUNb1P68JYobHWreEyeXFxpC9YSNr8+WRv2waAW2Q1Ah95BO9uXbFUqyZJmRBCCFFW+VWC5g9qiz0VDi+BAwtg/xzYPg6MblCl/aU517zL39DpFbMZr47ReHWMxpmSQtqCBaTOnkP8518Q//kXuDdsiHef3nj36IHJz6+QPmTpYDAY6f3E80x8/Xlmfz6GEW99RGB4hN5h3RBdqzgqijIY6K6q6n35r+8Emquq+ug19r0DeBRor6pqTv66CqqqnlEUpQqwDOikquqRaxz7APAAQEhISOOJEycW2mcqKZKPHOTkysU483Kp0LwtwfUal+gERHE58U3ZRXDcKgIT1mF2ZJJn8iI+qBWxIe1I9amp9SO//Ji0NKzbtmHdvAXz4cMoqkpehQrkNGqEvVFDnOXKFUqsGRkZ2Gw3dpdNiIIk16DQm1yDQm8FdQ0qLgc+qfsISNxIYMJG3O3nAUjzqkZCYEvig1qQ7XHzrV+GhESsmzfhvnEjprPnUA0GcmvXwt6sGfb69UGGWfyj3Iw09k8bh2IwUGPQHZg9PP/7oCIUHR1dPMvsK4rSEnhTVdVu+a9fAlBV9f2/7dcZ+AotOYv7h3P9BsxRVXXqv71nWS+zb8/MYNmvP7Bv1XJCqlSjxyNPExBWMHN/FDmXC06t11rK9szQ5imzeEGNXlB3MFTpcFWZXEdysjZH2fz5ZK7fAC4XlipV8O7RA++ePYqk8qKUlxZ6k2tQ6E2uQaG3QrkGVRXiD2jdIPfPgTNbtPVBNbUCZDX7QEidq3rxXN+pVXIOHCB19mzS5s7Dcf48Bm9vfHr3xnfIYKw1axbsZyklYo8eZuKbLxBYsRJDX38Ps5v1vw8qIsW5zP4mIFJRlMrAGWA4cNvlOyiK0hD4Aa2lLe6y9X5AlqqqOYqiBAKt0QqIiH9wcvcO5n/7GZnJSbQcPILmA4ZhNOl9CdwgVYWz2/KTsr8g7Yw2eXT17lr3xWpdriqJn3fuHOlLl2kTR2/SJo42Vwon4IH78e7RE7eoyBLdeiiEEEKIYkBRILiGtrR9GlJPw745sG82rPwIVnwAfpXzk7W+1xxy8c+nVrDWqIG1Rg2Cn3mGrI0bSZk6jZSpU0kePx5rrVr4DhmMd69eGL29C/mDlhwhVarR87FnmfXJe8z/5lP6PPkiyt9qDxRHuv46V1XVoSjKo8BCtDL7v6iqukdRlLeAzaqqzgI+AmzAlPwf0RfK6dcEflAUxQUY0Mag7b3mG5VxTkceayb9yabZ0/ELLc9tb39MaLUovcO6MYlHYOdk2DUZko6CwQzVOkPn0Vpy5nZlxcmcI0dIX7yE9CVLsO/eDYClalUC7rsPr65dsNaqJUmZEEIIIQqPTxi0eEhbMuLhwFzYO+tSkRHvCpeqRoa3vO6KkIrBgGeLFni2aIEz5RVSZ88hZdo0rWT/mA/w6tYV38GD8WjSpEQkI4UtsmlL2t9+Dyv+/IXVE3+n7W0j9Q7pP+nefKKq6jxg3t/WvX7Z887/cNxaoJRO0lVwks6eZt5XHxN79DD1OnWnw133YbYWn+bdf5WZoLWS7ZwEpzcBClRuC62f1P6YXTZxpKqq5OzfT9r8BaQvXkzusWMAWOvVI+jpp/Hq3Bm3KpX1+RxCCCGEKNtsQdB4pLZkJ+fPxToLtvwGG77X5mKt0esf52L9J0ZfX/zvvAO/O27HvmcvKVOnkDZnLmmzZmOuUAHvvn3w6dsXt8pl+zdQ494DSD5/lo0zp+Jbrjx1o7vqHdK/0j1BE4VDVVV2LVvE8rE/YjJb6PvMy0Q2a6V3WP8tL1vru71zslYhyeXQ+mt3eQvqDAafClfsnnP4MGnz5pM2f76WlBmNeDRrit8dt+PVuTPmkBCdPogQQgghxDW4+0H94dqSkwGHF2vJ2u5psHUsWH0gqod2M7pqR7B4/OcpFUXBvU5t3OvUJuSFF0hfvJjUmbNI/OFHEr/7Hmu9evj07Yt3r55lsgqkoih0vOchUuNiWfLTN/gEhRBep77eYf0jSdBKoeyMdBb/8BWHNq4lvE49uj/yNF7+gXqH9c+cDji+EnZO0fpp56aDV3lo+QjUHQqhda7YPff4cdLmzydt3nxyDh0CRcGjWTP8774br65dMPn7/8MbCSGEEEIUI242qD1AW/LscHS5lqwdmAc7J2rj7Kt10sasRXUDd9//PKXB3R2fvn3x6duXvNg40ubOJXXWLGLfeYfYMWOwtW2LT7++2KKjMbi5Ff5nLCaMJhN9nnqRCa89x6xP32PE2x8TUKGi3mFdkyRopczJ3TuY/82nZKWm0u72e2jSe0Dx7H+sqnB2q5aU7Z4GmXHg5g21+kG9oRDR5oq+2DlHj5G+aCFpixaRs3cfAO6NGxPy6qt4d+uKKShIr08ihBBCCHHrzFZtHrXqPcCZByfWaDeu98/VqkIaTBDRVmtZq9ELvP577lpzSDABo+4hYNQ92A8cIHXmLNLmzCFj+XIMPj549+yB74ABWOvWLRNj8908PBnwwhuMf/UZ/vpgNLe/+ynuXsWvqIquZfb1UFrL7DsdeayZPI5Ns6bhF1qeXo8/R0iVanqHdbXEI7BrirYkHgajBSK7aklZZLeLFRhVVSXn0CHSFy4ifdFCcg4dBsC9QQO8unfDu3t3zKElc1JtKS8t9CbXoNCbXINCbyXqGnS5tJva+2ZrS9IRQIHwFtqN7Zp9tIIk10l1Oslcv57UGTNJX7QINScHS9Wq+A7oj3efvphDggvvsxQTZw/uZ/JbL1EusjqDX3kbo8n83wcVsH8rsy8JWimQdPYM8776iNijh6nbqRvRd91fvAqBZCVpxT52TITTGwFFayGrO0QbDOuu9YVWVZWcfftIW7iI9IULyT1+XOu+2LgxXt264dW1S6kYU1aivhREqSTXoNCbXINCbyX2GlRViN+vJWp7Z0KsVqmaCk20ZK1WX/CLuO7TOdPTSVuwgNS/ZpC9dSsYDHi2aY3vgAHYOnXCUIonwt63ajnzvv6Eup260eX+R4u8BbE4z4MmboGqquxevphlv/1Q/AqBOPPg0GLYMQEOLgBnrjZRY+fRWmJ2WbGP3OPHSZ07l7Q5cy8W+vBs3gz/kXfj1amTdF8UQgghhID8udZqakv757WeSXtnasvi17SlXAMtWavdH/yr/OvpjF5e+A0Zgt+QIeQcO0bqzJmkzpjJmaeexujri8+AAfgOGVIqK2HXbBtN4pnTbPhrEgEVwmncq5/eIV0kCVoJlZ2RzuIfv+LQhmJUCERV4dx22D4Bdk+FrEStbGzT+7RKRaH1Lk7ImBcbR9r8eaTNmavNU6YoeDRtiv/IkVqhjzJYYUgIIYQQ4oYEVNUmxW77NCQf1wqM7J0JS0drS7kGUGcg1OoPfpX+9VRulSsT/OSTBD32GJnr1pMyZQpJf/xB0q+/4tGsGb5Dh+LVtUupalVrPfR2Ek+fZMUf/8O/fAUqN7xmg1aRkwStBDq1ZyfzvvmUrJRk2t42kqZ9BupbCCQjTpurbPt4iNsLRjdtgGv9EVrlIaPWr9eZlkb6okWkzplL1oYNoKpYa9Ui+Pnn8e7Zo8SOKRNCCCGE0J1fBLR+XFtSTsHeGdoQk8Wva0uFJvkVI/v/65g1xWjE1qY1tjatccTHk/LXDFKmTOHss8+WulY1xWCg56PPMOGN55nzxQeMePtjAiv+eyJbJHHJGLSSw+lwsHbKODbOnIpfaDl6PvYcoVUj9QnGkQuHFsK2cXBoEahO7R9+g9u0OzX548pcOTlkrFhB2uzZZMSsQM3Lw1KpEt69e+Pdq1ep+Md9o0psv3dRasg1KPQm16DQW5m6BpOPw54ZsGc6nNuhravYHGoP1LpCepf7z1OoLheZ69aRMnkK6UuXgsOBR5Mm+A4dglfXrhiKU+2Dm5CWEM/4V57GZLFw27uf4uHtU+jvKWPQSoGEk8eZ/81nxB0/Qp3orkSPvB+L1b3oAzm/S0vKdk3WujDaQqDVo1D/NgiuAWj/iLPWbyB1zmzSFy7ClZ6OMTAQ3xHD8enTB2udOmWilKsQQgghhO78IqDNk9qSeERrVdvzFyx4ARa8CJVaaS1rtfqB7doVHBWDAVvr1thaX9aqNnUqZ59/AcM77+LTty++QwZjrV69KD9ZgfEODKLfs68yafSLzP70fQa/qk9lxwskQSvmXC4nm2f/xdrJf2Lx8NSnEEhmolYWf/ufWoJmMEONntDgdqjaCYwmVFXFvmsXafMXkDZ3Lo7YWAweHnh16YJ3nz54tmiOYpLLTQghhBBCNwFVod2z2hJ/MD9Zmw7znoX5z2tVtmsPgJr9wDPgmqcwBQUR+MD9BNx3L1kbN5IyZSopkyaR/OefWOvVw3fIYHx69sTg6VnEH+7WlIusTrf/e5J5X37Ekp+/peuDj+vWoCC/mIux5PNnWfDNZ5w9uI/IZq3ofP8jRdLkCoDTAUeWwrY/4cB8cOVpRT56fKhVYfTwR3W5yN6xg/SFi0hbtBDH2XNgMmkz1L/wvDZDvbsOrXxCCCGEEOLfBUVBhxe0JW4f7J6uJWtznoK5z0LltlpxkZp9wPPqQnSKwYBnixZ4tmiBIzmZtFmzSJ4yhfOvvU7c+2Pw7tUT3yFDStQk2DVbtyfpzCnWT5tIQFg4TXoP0CUOSdCKIdXlYsfi+awY9wtGk4mejz5DjTYdiubijj+otZTtmAQZ58EjAJrdr40tC62rJWXbtpG28HvSFy3Gcf48itmMZ+vWeD32OF4dozH6FFESKYQQQgghbl1wTej4CkS/rM2ttnu6VmRkzpMw92mtZa1Wf6jZF2xXT39k8vPD/+678bvrLrK3bydlylRS58wlZcpU3KpXx3fIEHz69C4RvxFbDb6NxNMnWfnnrwSFV6ZSvQZFHoMUCSlm0hLiWfj9F5zctZ2I+o3o+uDjeAUUcvn87GTYPU0rj39mMyhGiOqmdWGM7IpqNJOzfz+ps2Zr3Rfj4lAsFjzbtsW7W1ds0dEYvbwKN8ZSpEwNTBbFklyDQm9yDQq9yTV4HVRVS9b2zNCStcTDoBigUuv8SbH/ecwagDMjg7Q5c0mZMgX7nj0obm54deuK35AhuDdpUqxb1XLt2Yx/5RkyU5K54/3P8Aku+ErjUiSkBFBVlX2rY1j6v+9QXS663P8odTt1K7yL1+mAo8th+zjYPw+cORBcC7q+A/WGgS2YvHPnSP11LGmzZpFz6DCYzdjatsW7Z09sHdpjtNkKJzYhhBBCCKEvRYHQutrS8VVtKqULydqFMWuV20PdwVCjN7j7XnG40WbDb/gw/IYPw753L8lTppA2ew5ps2ZjiYjAd9gwfAcOKJataharO/2ee5VxLz/FzE/eY8RbH2J2K7pKldKCVgzYMzJY8vM3HFi3igo1atH94afxDSmkOcHi9mtJ2c7JWhdGd39tTFmD26BcfZwZGaQvXEjqrNlkbdoEqop7w4b49O2DV/fuMoF0AZC7dkJvcg0Kvck1KPQm1+AtUFUtWds9DXZNhZQTYLRAZFeoMwiiuoPF45qHurKySFu4iJTJk8netg3F3R2fPn3wu/22YlkB8ti2zUz/YDQ1WrWj52PPFmjDibSgFWMnd+9g/refkZWSTJvhd9G03yAMBmPBvklOuvaPaOsfWhdGg0n7R9TgNojshtOeR8by5aQt/JnMlatQc3OxVKpE4GOP4tO7N5bw8IKNRwghhBBClEyKAiG1taXja3Bmi5ao7ZkO++eAxQbVe2ota1WiwWS5eKjBwwPfAf3xHdAf+969JI0fT+rMmaRMnoxHkyb43XE7Xp06oZj1K3F/ucoNm9Bm2J2snvg7oVUjadyrf5G8ryRoOnHk5bFm0h9snvMXfqHlGfH2xwU76bSqwqkNWlK25y/Iy4SgGtD1Xag3DCceWlL2zdMXkzJTcDC+w4bh06d3iaq4I4QQQgghdKAoENZEW7q9C8dXw+6psHeWNmeu1Rdq9dVa1iLawmWNENZatSj/zjuEPPssKdOmkzxhAmeefEr7PTp8GH5DhmAKurogSVFr1n8IsUcPs+LPXwiqVJnwOvUL/T2li6MOEk6dYN5XHxN/4hj1u/Sg/R33Yi6oGdgz4mHHBNj2ByQc1O5i1BkIDe/C5VeT9OUxpC1ccEVS5tW9G97du+PeoAGKwVAwcYh/JN0qhN7kGhR6k2tQ6E2uwULmyNVqHeyeBvvnQm4GeAZD7f5ashbWDP72m1N1OslYuZLkcePJXL0aTCa8OnbEd9hQPFu21PU3am52FuNeeYbstFTueP9zvIP+uTjK9ZIujsWE6nKxbeEcVo77FYu7B/2ff52qjZvd+oldTji8FLb9nj9nmQMqNoe+X6NW70Pm1t2kfjWF9CVLUbOyMIWE4Dt8mCRlQgghhBCi4JksWkXwqG6Qlw2HFuUPt/kdNv4I3mGXkrXyDUFRUIxGvKKj8YqOJufYMVImTyH1r79IX7QIc3g4fkOH4DNwICZ//yL/OBZ3D/o9e6FoyLsMf+tDzBa3Qns/SdCKSEZSIgu++5wTO7dRpVFTuj74OJ6+t1hwI+mYNpH09vGQfhY8AqH5Q6gN7yQnwUXqrNmkPtEHZ3wCBm9vfHr3xqdvH9wbNZKkTAghhBBCFD6z+6Wy/DnpWmPC7mmw4QdY9zX4RUDtgVqPr5A6oCi4Va5MyAvPE/TkE6QvWkzKpEnEffwJcV98iXeXLvgOG4ZHs6ZFOhzHv3wFej72LDM+fIvFP35Nj0eeLrT3lwStCBzcsIbFP36NIzeXTvc+TP0uPW7+f2ieHfbN1lrLjq3U5qOo2gl6fECed0NS5y0g7evnLpXFb98On759sXXogMFi+e/zCyGEEEIIURjcvKDeUG3JToZ9c7TiImu+gNWfQmDUpWQtqDoGNzd8+vTGp09vcg4fJnnyZFJnzCRt3jws1arif9dd+PTti6Gghgr9h6qNm9FqyO2snTKO0CrVaNSzX6G8jyRohSgnK4vlv/3AnhVLCakSSc/HnsG/fNjNnSz+IGz+RRtfZk8B33CIfhVXjYGkb9xL6sd/kbnuxYtl8UPffAPv7t0x+voW5EcSQgghhBDi1rn7QaM7tSUzAfbO1ArbrfgAVoyBkLpQbwjUGQw+FXCrVo3Ql18m+OmnSZs3n6Q//uD8628Q/9nnWlGRESMwB9/62LD/0mLgMGKPHSHmj/8RVKkyFWvXK/D3kAStkJzev4f5X39KekI8LQYOo8WgERhNN/if25GrlSvd/AscXwUGM9Tsg9roLrITPUmZOZP0p4fhyszEXL48gf/3f/j07ydl8YUQQgghRMnhGQhN79WWtHNasrZrCix+HRa/ARFttHl7a/XF4O6H78AB+AzoT9bGTSSNHUvi9z+Q+PP/8OnZA/+778Zaq1ahhaoYDPR45GnGv/I0sz8bU2BFQy4nCVoBczryWDd1AhtnTMU7OJhhoz+gQvWaN3aSlFOw5TdtIGVmHPiEQ6fXyfHvQNry9aQ+9D55p06heHjg3a0bPv3749G0iYwrE0IIIYQQJZt3OWjxkLYkHtHmWNs1GWY/DvOe1ebyrTsEJao7ns2b4dm8GbknTpD0x5+kTJ9O6sxZeDRtit9dd+IVHY1yow0k18HNw4N+z72mFQ35+F2Gv/UBZreC62YpCVoBSjx9inlff0zcsSPUie5C9N33Y3G/9kzqV3E54fAS2PwrHFqozWMW1Y2ccn1I35dG2ieLydn/MygKHs2bE/jIw3h36YLB07NwP5QQQgghhBB6CKgKHV6A9s/D2W1aq9ruafkTYntBjZ5QeyCWqh0JffUVgh5/jJQpU0ka9ydnHntcm1NtyBB8hwzGHBpaoKH5l69Ar8ef468P32LRD1/R87FnC6xoiCRoBcDldLJ5zl+snTIOs9Wdvs+8TGSzVtd3cMpJbTLpbX9qlRg9g8mJvJf02EDSJm8gZ/+7ALg3aEDISy/i1bUr5nLlCvHTCCGEEEIIUYwoClRopC1d34FjK2D3dNg3C3ZOAqsP1OiDsc4AAkbeif/dd2lzqk2YSMK335Lw3XfYoqPxGz4Mz9atC6zXWZVGTWkz7E5WT/ydkCrVaNJ7QIGcVxK0W5Rw6gQLv/uc80cOEdmsFZ3u/b//Lp/vyIWD82HLWDiyDIC8kHak5fQkdfURcg7MBSQpE0IIIYQQ4goGI1TtqC29Ps2fEHu6Nm5t+5/g7o9Sqy9edQbj9cN35J45S8rkKaRMm0bG0qWYw8LwHToU30EDMQUE3HI4zfoPIfbYYVb++StB4ZWpVK/BLZ9TErSb5HI62TRrGuumjsfi7kHvJ18gqkWbf2/aTDwCW8dq85ZlxuPyKE+GbRgpe7LJnLwFXIew1q8nSZkQQgghhBD/5YoJse3acKE902HnFK2eg1c5LHUGETxiMIGPPkL6kiWkTJxE/KefEv/VV3h364bfbbfh3rDBTXdPVBSF7g8/xYSzzzLniw+4/b3P8A25te6UkqDdhPiTx1n43efEHj1MVIs2dBr1EB4+vtfe2emAA/O0SoxHl6NixG5rR0pKIGnzduFKW4kpNJSA++/Hp18/3KpULtLPIoQQQgghRIlntkLN3tqSm6X1Vtt1aUJsQ0A1fOoMxuez18lJgeQJE0mdMYO0OXNwq1kTv9tG4NO7NwZ39xt+a4vVnX7PvsqfLz/JzI/f4ba3P8Z8C3OzSYJ2A5wOB5tmTmXdtIm4eXrS+8kXqd6yzbV3Tj2jtZZt/R3Sz5FnqECqvQ+p2+PJPX4AxXoCry5d8B3QH4/mzVGMxqL9MEIIIYQQQpRGFg+oM0hbspJg32ytwEj+HGtu5RoQ2mkIwfdPIjVmE8njxnP+tdeJ++hjfAf0x2/ECCwRETf0lr6h5ej9+PNMHzOaBd9/Qe8nnr/pVjlJ0K5T4ulTzP/mE2KPHqZ6y7Z0HPUQHt4+V+7kcsHRZVolxgPzceaqpOc2IvV4JFm7j4C6BfdGjQi99z5tEmkvL30+jBBCCCGEEGWBhz80vltb0s5q49V2TYFFr2DgVfwqt8X3zcFk2yuRPG0WSePGkzT2dzzbtiXgnpF4tGx53YlWRIPGtL3tblaO+5WNEVVo3n/ITYUsCdp/UF0uti2YzarxYzFZrfR56kWiWvyt1SwjTqvCuHUsauJxMlOCSE1uRvrO86g5ZzGHhxP4yCP49O0jk0gLIYQQQgihB+/y0OpRbUk4pCVqu6agzH4cD6MFj2ZdCRn0Aslbk0ieNIWTo+7FrUYNAkbdg3ePHihm83++RZM+A4k9doQ1E/8gpEo1Iuo1vOEwJUH7F2kJcSz87nNO7t5JlUZN6frg45cqNLpcWonPLb+i7puLPUEhLaUaaYer40hOx+CdjE///vj063dLAw+FEEIIIYQQBSwwEqJfhg4vwZmtF+dYM+2fQ5CbNwFP9iYtoSKJs9dy9vkXiPv0M/zvvBPfoUP+tRecoih0e/BxEk+dYO6XH3Hn+5/jHRR8Q6FJgnYNqqqyb9Vylv7yParLRZcHHqVux25akpURD9vHwZbfyDl+itSzfqSdqUxeQiaYs7C1bYtPv37Y/p+9u46P477zP/6aJa2YmRktsmQGme0wN2naJk3TNtf2ml6vkDJce81dr9frlX7NlZI22HAMMctMki3bMskWMzMuzO+PldaSY7alFXyej4ceuzs7M/tZabQ77/l+5zt5S9E4OTn6rQghhBBCCCGuRFEgbLbtZ/VPoGI3nPgHmjMf4DXUjeeyYHpXLqT1cBdNP/85Lb/7HV4PP4zPpz6JPiTksqvUG43c86/f5u/f+hfe/++f8eiP/gOdwXDdJUlAu0RfVyfb/u+3nD+8n5DEFNZ98at4BQRC5T4o+DNDh9fTVaGnq96XweYA0GhwmTsLv6/cifuqVWg9Pa/9IkIIIYQQQojJRau7eI21u/4bzm1COfEGbhfexS3RTH9CPG3lQbT97SXaXnoJ95Ur8f7E47jk5n6kt5x3cCjrvvhV3vuvn7Djr39g9ef++brLkIA2StnRI2z+f79ioKeHxR9/kpxVK9CcfAPz3/5Id1ENnVXu9DfZLmjnnJlK4OfuxGPtGnT+/g6uXAghhBBCCHHb6J0h7QHbT18bnHoH5xNvEKrsISBQS3tTPB37dtO9ZQtOiYl4f+LxjwzTH5c7j7n3P8Khd94gOC6RWctXX9dLS0ADhgb62fW3P3Fi24f4RUTx0Oc+gW/l+/R85at0lmroqXcGqxeG2Bj8H78XjzvvxBAW6uiyxQymqipWFSxWFauqYrGqWFQVq1VFVa+xLGC2WrFYVcwWFbNVxWK1YrIMr8d69RWojH1dq3W4luHXH6lFVVUsVrCqo+ZVbY8BNIqCgq1ngaLYHoOt77aq2t6H9XK3w3WMHKdSFFBQ7BOU4RoZNf/I8urIY+vIdNs0Rs8zvA6NoqAooNUoaBQFjWKrTatRRtV08T1ZrBdrvJaRdY+sV6tRUJTRrzP6b32FdWgUtMP1XLyPfT0jv9sxv6PhX9DJZjPquaar1qgdqUdjq3P072Gk/itRsM1v0CnoNBp0WgW9VoNea7uv01z7nNyR7eHS15TzeYUQQkw4Fx/I/Yztp70C/cl/EHDyTfzCy+iqcqWtooKG732f5v/6L7wefhjvxx5DH2rLCgseeZz6CyVs//Pv8Y+MJig2/povp6jXsTMxneTk5KgFBQX2x3UlZ9n021/Q0dhAzpxkslr30nOshu5qF6wmBZ2vNx733IfnPXfjlJQkOwcOYB3e4R8JD2aLislqtd1arJgsVsxW2/2RwGFVbfNdGl7MI+uwqpiH5zcNhxWTZXja8LouN81sGQkfoHJxp986vGNvveR1RtYz8noWq0pHVzeurm5jQsfo+xZVxWK5uI5LH5utVq6RoYSYtkaCrVZjC3o6jYJOq0GrUdBrFLRaWyhUgJHcrow+GMDFcKzTKvZ1aYdD7uhp9lA+KqiOPDc6YI8Oj5pL6tNqNMO3w4+1ij38jl5GwRa6R+rVjwq1eq0Gg27sY+01Qq7CxYMLtvc3/J41GjQa0Gk0ttfQadAP3x85UDAR8vPzycvLm5DXEuJyZBsUt0xVoek0FL+FevJN+kvqabvgTne1E6DgvjwPn6c/i0tWFn1dnfz9W18B4BM/+x9cPDxRFKVQVdWcy616UgQ0RVHWAr8CtMAfVVV9/pLnnYCXgNlAK/AxVVUrhp/7FvAZwAJ8WVXVzVd7rZGAZjGbOfj2axx6+3XcXPQs6C/H6VwP5j4dGqMe91Wr8HzgIVzmzJkWF5FWVZVBs3VMYBgdJCyjQtCQ2cqQxYrJbGtVGbJYGDKr9mnm4daWi8Hl4n2z1WpbfngdI8sNmS2j1qsyOLwu23O2ukaeH13fSBhyBEUBvebiEf+Ro/+aMTtXF1uCNLa9v+GdvIs7ZSM7PiMtCe1tbfj7+dl35DSjWj1Gpo0sO2YnT3txJ3J0i8mYlpThdVzL2Po0F3d2tZqPtOBcjn2nb6QWzdgd07G3F3dyL92pHN1qNRJ0QR3TCmRvbdKMbRUCxiw78theo2bs8pfunGtGtbyN7IiPXv9IC+XoVrKRbXJsC9jY1rVLa7yUOirMq9bhlsdRIf1yLZiXrm9kvostkxdbK0da8kbaGkdej1G/p8KjR5mdnX3lGofntbeAjhzkUBluMb36P6Xtd2dlyDL2QMjIQRWzVeVqm5g6XPfI64y00o60WlqGaxv53Bk5cGEebgU2Df/dRlpSLx5MuXh/5Hd12QM61rEt1Ko66u806nNp9AGWkdbYkXntB5RGfcZOBQbtxc+aS0OjZjj1Kgr2z0SDbjhAjgqUBp3t80Wx/5/Y/tdGPusUoKW5iaDAwOH/JeUjn4cjnxcjoVav0Yx5rNNc/Cy2f/6MfOYMT9PrbHXpNBpbENUqGEa15F76/3tp6B792TryeWcP2Brsz8mB26lJApq4rVQV6o7CybcwHXqb9qIe2ktdsQ5pcE6OxvcLX6EnKpLXf/hNwlJm8cC3fohWq7tiQHN4F0dFUbTAb4FVQA1wRFGU91VVPT1qts8A7aqqximK8ijwH8DHFEVJAR4FUoEQYJuiKAmqqlqu9pqttdVs/OW/01RdTWR/JwknWtFaVZyy0gh4/DO4r1gxpv/ozVJVW3jpN1kYNFlst2YrgyYrg+bh+2YLgyZbMBmZPrJTY7LYdnBM9rBkezw0vJztduz90bcj4WfQbMFkmZidA63G9gVo0A3/aMfe6rUKBp0GT4N+eNrFL8yRL3q99uIXo2509y2tYg8/eu3FwGOwd5u6eBR4zBfq8DpGvtBH5rUFkuHgNSpA6YZ3BjTXk3Rugu1L4bL/j0JMiM4yLVkR3o4uY0ZR1bGBbaT7rWq1hcaRgDdyO9Jqbxo+0GW/P/y5fq0DV5eG99G9CEZuRw6omUZ955iGD9KNBMqLPQRGgi2AOqoHw/DBu1EH2/r6LZgt1rEh+5Luyr19VuqHOoZDL2MPhAwH/JFga5oCIffiASvsIdH+vTPq+0c7atpIEISL4fRi9+SL322Xb0VVrtgyzPC0kYNu+uHbke82vfZiq/NIOL20NXj0gcjR89hC+8UQbW8dHnXQb+Q71h7yRx1kG/0a2uEW3ZHAPfK7kcArpiRFgdDZEDob/eqfEFC1H7+C1+j4YBNtJ89T88/PYvB3Zd6yxew7cYwD/3jlqqtzeEAD5gAXVFUtA1AU5TXgXmB0QLsX+OHw/TeB3yi2/+B7gddUVR0EyhVFuTC8vgNXerHexnr+9tVn0JitZNU0E6Y103//XZQt/zhtrt70DpoZ2FfNwHBYGjBZGRwOVgMmi/2LaKQr3chR25EubCaLyoDJwsBwILsd3yeXdnVx0tl+DLqR+1pcDDq8XS5OuxiQtGOnjTo6OjrAjP7RfyRUaexhynbk8aMf+COtTPLBKoQQH6WMHBya+h0yboubab0YHXJHWj7t58BaL7ZE24PdqG7wo4OuLZhebGW9tAX0cuHWYrFiGW5BNlvHtl5f7IZ/scYxgXh0a61VxTIcQFX18q89ElTNwwdkewfNl7wXWygeWWakxXtMy7OKfR9log7Q3i4aBXtXXM2oYHgx5F0MsWNaaEe1hI4EwJF9FoP24sHdkYOyHe0DvFxlO+Vl9J7LyG7MZbsqjwqTWuXq5+JeXJ8yqsv1xQCtUfhoF2h7K7EG7SUrv3gG9ujf1cU6RvbhLrYs2150ZDWju3uP1HBp/colfRvG9BTRfLTXyEeX/6iLPTgunWJbYnTvm9GvZ6t/dE+Zi7+HkfvKJX97jTL24AKM/Z+63HnjF1/jo/9PwJgu6WN/D7b6R3+OjD4IpepmwbxZKLk/wLVyB64bXqR/z3k83/iQiCh/Dr79+mV+WxdNhoAWClSPelwDzL3SPKqqmhVF6QR8h6cfvGTZq47e0dPbi9HkSqC5hb9m3Mtu7yywKLC1Fqi1z2fQanDS28KPUa/BqNfaQ45eY7t11oxqfRnVouOs12LUa4dvbcuOPHbSazDqbLe219DaA5eTXoteq+Ck1aLXXVy3hB4hhBAznYTcmzM62I4EPLPFOqrF8qPh8OJASpcfsGlkIKiRwaVGBpsaOWBtGtWCeumtddTy5kuXv6Rr8OgdalX9aEsrXLr+izvaI12fh8wjQdX23nsGzZgtKh39KgPt/fau35caferHleq89u9+7I6/beLFVvPJ3Cosbic3UL6I6+JeHuz5B9nlbejwuuoSkyGgjTtFUT4HfA4gzDcIs//nqdKY8fUrZmXYASJ8o4h1isbNoMWoA73mYjeBi1Rsp7ldtffk5Y0sNjB2Uv/wj5hZenp6yM/Pd3QZYgaTbVA4mmyD048GMAz/3PQKNLetnGvq6bHg5nY9+3QKl28bunUjrS+21tnhW3Xk9jLnI49eFka1ml78sQXrsaMew9hztEeWHVvMRx+OXv/I/dHrv+p746O/tdGtdyM1jazPfquCdfi+Mno55ZKWztHvY3iZ0S1gVnWkhW24dY2LrYa2rrcX1zO6lXGkvpH7l3vv9sfq2HUqjH7Nkfeo0qbWUmo5SqXpBNU1c/CzfhbV2gq8fMXf32QIaLVA+KjHYYxuyho7T42iKDrAE9tgIdezLKqqvgC8ALZBQu79Tho7NhYRUzwLTbOOevcyPox4h+ScMFZHryI7MBuNMoGfEmJGkROThaPJNigcTbZB4WiyDYrxVNVVxYbyDWwq30R5Zzkh3XE8VPkVnLo9iM31Y+nH8viXF668/GQIaEeAeEVRorGFq0eBj18yz/vAE9jOLXsI2KGqqqooyvvAK4qi/De2QULigcPXesHwiECeeGYNg30mju+p5NhOK8GnYug938GvA1+hKeqHLEtYwtqotczymyVdDIUQQgghhBBX1NLfwuaKzWwo28DJlpMoKOT6zOW+vmfoP2XEzduJvH9OIjLV95rrcnhAGz6n7EvAZmzD7P9ZVdVTiqL8GChQVfV94E/A34YHAWnDFuIYnu8NbAOKmIEvXmsEx9GcXPTMWRNH7qpYKk+1cmx7Ja5nvbDWWTh/roB/DvoazoEa1kStYV30OhK9EyWsCSGEEEIIIegz9bG9ajsbyjdwsO4gFtVConciX539VTL7F3Hi7SZ6OgZJzwtj7r0xGIzXF70cHtAAVFXdCGy8ZNr3R90fAB6+wrI/BX56K6+vaBSiZvkRNcuPtvpeTuysQX9AT2LTXHr8G9lZvZ6/nPwLkZ6RrItex10xdxHhEXErLymEEEIIIYSYYkwWE/vr9rOhfAP51fn0m/sJcQ3h02mf5s7oOwnTR7L79RL2H6nGJ8SVBz+bRlCM5w29xqQIaJOJT7AreR9PZN69MZzeW8fJfCfWnP0MWk8LFRHH+FPbX/j98d+T6Z/J3bF3syZqDZ5ON/ZLF0IIIYQQQkwNZquZww2H+bD8Q7ZVbaN7qBtPJ0/ujrmbO2PuJDMgE42ioayomVdeOcRgj4ncO6OYvS4Kre7Gx7WQgHYFRlc92WsiyVgZTtmxZk7sqMFyMofPGedAcjs7ut7k3w7+G88ffp688DzuirmLxaGL0Wv1ji5dCCGEEEIIcQssVgtHm46yuWIzWyu30jbQhqveleXhy1kbvZb5wfPt+/0DvSb2vH6GksON+IW7cc+XM/ALc7/p15aAdg1arYb4nEDicwJprOiiaFsVpYVW8jRP80iGkbLIw6xvfJutlVvxcvJiTdQa1katJSsgC61GLtYihBBCCCHEVKCqKmfazrC+bD2byzfT1N+Es86ZpWFLWRu1lkVhi3DSOo1ZpqyomfxXztlaze6KZvbayJtqNRtNAtoNCIzyYM3TaXTe28/x7dWc2VeHy9FZfC1tKbqsTrabPuDdC+/y+rnX8Xf2Z2XkStZErSErIEuG7RdCCCGEEGISquupY2P5Rj4o/YCyzjL0Gj2LQhfx9eivsyRsCS56l48sM9BrYs8bJZQcasQ3zI27/zkD//CbbzUbTQLaTfD0d2bJownk3hVF8a5aTuysYaDYwrzoR3lq+bNU+BSzpWozb59/m1fPvoq/sz+rIlexOmq1hDUhhBBCCCEcrGuoiy0VW1hftp7CxkIAsgOy+f7877M6cvVVx5goP95M/svnGLjFc82uRALaLXB2M5B7ZzSZqyI4d6CeY9uq2fmn87j7evLksq/yg3t+xIGWfWyp3MKbJW/yytlXCHAOYGXkSglrQgghhBBCTCCT1cS+2n28X/o++dX5mKwmojyi+Oesf+aO6DsIcw+76vK9nYPsef08pUeb8A11464vZeAfcXtazUaTgHYb6A1a0paGkbI4lIrjLRzfUc2+Ny9w+AMtyQvi+OGyPPSLVHZV72JzxWZ7WJOWNSGEEEIIIcaPqqqcbjvNB6UfsLFsI+2D7fgYfXgk8RHujrmbFN+Ua17nWFVVzuyvZ/9bFzAPWZl7bwxZqyPQasdn310C2m2k0SjEZPkTk+VPU2UXJ3bUULy7lhP5NUTN8iNjxXzWLVtHn7mPXdW72FK5hbfOv2UPa3LOmhBCCCGEELeuobeBDWUb+KD0A0o7S9Fr9CwLX8Y9sfewIHQBes31jbze0dRH/svnqD3XTki8F3mPJ+Id5DqutUtAGycBkR6s/HQK8x+IpXhXLcW7a6k40YJvmBsZy8NZnbuGO2LuoNfUy+6a3Wyp2GI/Zy3ENYS7Yu/i7pi7ifKMcvRbEUIIIYQQYtJr7mtme9V2tlZu5UjDEVRUsgKyruu8sktZLVaKtlVzeH05Wq1C3uOJpCwMQdFcvbXtdpCANs5cPZ2Ye08Ms9dGUnK4keM7qtnx0hkOvHOBtCWhpC0NY130OtZFr6PP1MeO6h2sL13PH0/+kRdOvMAsv1ncHXs3a6PW4m30dvTbEUIIIYQQYtJo6G1gW+U2tlZu5VjTMVRUoj2j+XzG57k75m4iPCJueJ3NVd3s+NsZWqp7iM7wY8mjibh5O117wdtEAtoE0Rm0pCwKIXlhMDXn2jmxvZojGyoo3FxJQk4g6SvC8Q93566Yu7gr5i6a+5rtw33++6F/5z8P/yeLwhZxd8zdLA5bjLPO2dFvSQghhBBCiAlX013D1sqtbKvcxomWEwAkeCfwT5n/xOrI1cR6xd7Ues1DFo5sqODY1iqc3fSs/VwasdkBt7P06yIBbYIpikJ4kg/hST50NPZxYmcNZw7Uc/ZgAyHxXmSsCCc63Q9/F3+eSH2CJ1Kf4FzbOdaXrWdD2Qbyq/Nx1jmzOHQxq6JWsST08tdmEEIIIYQQYrroGOhgS6VtWPxjTccASPFN4dnsZ1kVuYpIj8hbWn/dhQ52/u0sHY19JC8IZsGDcRhdr+88tdtNApoDeQW6sOTRBObeE83pffWc3FnDpv93Eq9AF7JWRZA4NwitXkOiTyKJPol8JfsrHGk8wrbKbWyr3MaWyi0YtUYWhS5iVeQqloQtwc3g5ui3JYQQQgghxC0btAyyu2Y3H5R+wJ7aPZitZmI9Y3k2+1nWRq295rD412NowMzBd0o5uasWd18j9zybSXiyz22o/uZJQJsEnFz0ZK2KIGN5GKXHmjm6uZKdfz/LoQ/KyFgeTuqSUJycdWg1WuYFz2Ne8Dy+NedbHG06am/e3Va1DYPGwIKQBayOWs3S8KV4GDwc/daEEEIIIYS4bharhcLGQjaWb2RLxRa6Td34O/vzeNLj3BV7F4neidccFv96VZ1qZefLZ+lpHyR9eRhz74nBYHR8PHJ8BcJOo9UQnxNI3OwAas62c3RzJQfeKaVwUwWpS0LJWBGOq6ftBEWtRktuUC65Qbk8N+c5jjcfZ0vFFrZWbiW/Jh+dRmcLa5GrWRaxTMKaEEIIIYSYlEwWE4caDrGtchs7q3fSNtCGs86ZVZGruDPmTuYGzUWr0d621xvoNbHvH+c5e7AB7yAXHvz6bIJirn+Ex/EmAW0SUhSF8GQfwpN9aK7q5uiWSoq2VnF8RzVJc4PIWBGBT8jF6y9oFA1ZAVlkBWTx9dyvc7LlpD2s7a7Zje6AjvnB81kVuYrlEctvaIhRIYQQQgghbrcB8wD76vaxrXIbu6p30W3qxkXnwtKwpayMXMmi0EW3fZwFVVW5UNDEnjdKGOw1k3NHFDnrotDqJ9f1hyWgTXL+Ee6seTqNznv7KNpWzZn99ZzeV09Eqg+ZKyIIS/Ye08yrUTRk+GeQ4Z/B13K+RnFLMVsqbWHt+/u/z48P/JgFoQtYF72O5eHLZYARIYQQQggxIQYtg+yt2cvG8o3sqd1Dv7kfD4MHyyOWsypyFfNC5uGkHZ/h7Lta+9n9agmVxa0ERLpzz7NJ+IW5j8tr3SoJaFOEp78LSx9LZM7d0ZzaXcvJ/Fre/98ifEJcyVwZTnxuIDr92KZfRVGY5T+LWf6z+Orsr3K69TSbKzazqWITu2t2Y9QaWRq+lHXR61gcuhiD1uCgdyeEEEIIIaYjs9XM4frDbCzfyPaq7fSYevAx+nBXzF2sjFxJblAues34jZZotaqc3FnDwffLAFj0cDyzloWhmYALTt8sCWhTjLObgZw7oslaFcn5gkaKtlWz46WzHHinlFl5YaQtCcXZ/aNBS1EUUv1SSfVL5Suzv0JRUxEbyzeytXIrmys24653Z0XkCtZFr2NO0Bx0Gtk0hBBCCCHEjVNVlePNx9lYvpHNFZtpG2jDVe/KiogV3BF9B3OD507IvmZLTTc7/3aWpspuItN8WfJYAh6+k/9awrIXPkVp9RqS5geTOC+ImnPtHN9WzeEPyincVEnC3EAylofjG3r5Ifc1iobswGyyA7N5bs5zHKo/xMbyjWyr3Ma7F97Fy8mLFRErWBW5ijnBc8b1qIYQQgghhJj6VFWlpL2EjeUb+bD8Q+p66zBoDCwNX8od0XewOGzxuHVfvJTtgtPlHNtajdFVx+qnU4mbHXDbRn8cbxLQprjRF75ub+jl+PZqzh1s4My+esKSvMlYHk5kmi/KFZpxdRodC0MXsjB0ob1f8NaqrXxY8SFvnX8LD4MHeeF5rI5czfyQ+dINUgghhBBC2FV2VbKxfCObyjdR3lmOVtEyL2QeX8z6IsvDl0/4NXorTraw5/USuloGHH7B6ZslAW0a8Q5yJe/xJObdF8vpvXWc2FnDht+dwDPAmfRl4STND7rqtR2ctE6siFzBisgVDFoGOVB3gK2VW9lZtZP3S9/HTe/G0vClrIlcw8LQhRLWhBBCCCFmoIbeBj4s/5CN5Rs503YGBYXZgbP5RPInWBW5Cm+j94TX1N02wN43zlNW1Ix3kAv3/ksWYYkTX8ftIAFtGjK66sleE0nGynDKjjZTtL2aPa+XcOj9MlIWBpO+PBx3H+NV1+GkdSIvPI+88DxMFhMH6w+ytXIr26u2s6FsA256N5ZHLGdN1BrmB89Hr51aRyaEEEIIIcT1UVWVss4ydlTtYEfVDopbiwFI803j6zlfZ03UGgJdAx1Sm8Vs5fj2ao5sKAcV5t0XQ+bKCLS6yTV0/o2QgDaNabUa4nMDic8NpKGsk+M7qjm+o4YTO2qIywkga3XEdQ0vqtfqWRy2mMVhi/ne/O9xsO4gmys2s6NqB++Xvo+HwYOVkStZE7mGOcEywIgQQgghxFRnVa2cbDnJ9qrt7KzaSUVXBQDpfuk8m/0sqyNXE+ER4dAaa8+1s+vVc7Q39BGd4ceiR+KnxCAg1yJ70jNEUIwnQTGedLX2c2J7Daf21VFyuJHwZG+yVkV+5HpqV6LXXAxrQ5Yh9tftZ3PFZjZXbObt82/j7eTNsohlLA9fPq7XshBCCCGEELeX2WqmsLGQLRVb2FG9g5b+FnSKjtygXD6R/AnywvMc1lI2Wm/nIPvfvkDJoUbcfY3c+YV0otL9HF3WbSMBbYbx8HVm0SPx5NwZxak9tZzYUcP7/1uEX7gbmSsjiMsJQKu9viZhg9Zg7wY5aBlkb+1eNldsZkvFFt4+/zbOOmcWhS5iecRyloQtwcPgMc7vTgghhBBC3AiL1cLRpqNsrtjM1sqttA20jdmHWxy6GE8nT0eXCYBqVTm1p5YD75ZhNlnIuSOK2Wsj0Rm01154CpGANkMZXfXMXhtF5ooIzh1uoGhrFdv+cpqD75WSnhdOyqJgnFyu/7wyJ60TKyJWsCJiBUOWIY40HLE1iVfvZGvlVvvRl+URy8kLzyPINWgc350QQgghhLgSi9XCsaZj9lDWOtCKUWtkSdgS1kStYXHYYpx1k6urYEtNN/kvn6OxvIuwJG+WPpaIV6CLo8saFxLQZjitXkPKwhCS5wdTUdxK0dYq9r99gcMbykmeF0T68vAb3vgNWoN96P7vzvuuvf/yjqod/PTQT/npoZ+S7JPMsvBl5IXnkeSTNGWuSyGEEEIIMRWNhLItlVvYVrmN5v5mjFoji8MW20JZ6GJc9JMv8AwNmDmyvpzjO2owuupY+ekUEuYETut9RwloAgBFoxCd7kd0uh/N1d2c2FHNqX11nNxVS2SaLxnLw6/7PLXRNIqGDP8MMvwz+Jfsf6G8s5yd1TvJr87n98d/z++O/45Al0B7V8k5QXNk+H4hhBBCiNtgdCjbWrmVlv4WnLROLA61hbIlYUsmZSgbUVbUzJ7XS+hpHyRlcQjz74udctc0uxkS0MRH+Ie7s+KJFObfH8epPbWc3FXL+/9bhHewKxnLw0icG3RTfX0VRSHGK4YYrxg+M+sztPa3srtmN7tqdvF+6fu8fu51XHQuLAlbwuqo1SwKXTTpmteFEEIIISYzs9VsC2UVW9hWtW3KhTKwXdNsz+sllB9vwSfElQeeTiM4dnKcBzcRJKCJK3LxMJB7ZzTZqyO5UNhI0fZq8l8+x6H3y8hYEU7aktAbOk/tUr7Ovtwffz/3x9/PoGWQQ/WH2Fm9kx1VO/iw4kOcdc4sDVsqYU0IIYQQ4ir6TH3sr9vPzuqd7K7ZTcdgx5QLZQBmk4WibdUUbqoAFebfH0vGyvDrHsBuupCAJq5Jq9eQOC+YhLlB1J3v4OjmSg6+W8bRDytJWxpK+vJwXD1vbTh9J60TS8KWsCRsCd+Z+x0KGgvYUrGF7VXbPxLWFoYsnBIfMkIIIYQQ46Wpr4n86nx2Vu/kUP0hTFYTHgYPloQtIS88b9KeU3Y5qqpScaKFvf84T1fLADFZ/ix8MA4Pv5l5cF4CmrhuiqIQmuBNaII3zdXdHNtcybEtVRRtryZpfjBZqyLwCrj1DwKdRse84HnMC57Ht+d++yNhzUnrxLzgeSwNX8rSsKUEuATchncnhBBCCDG5lXWWsb1yO9urtnOq9RQAYW5hPJr0KMvCl5EVkIVOM7V279sbetn7xnmqTrfhHeTCPc9mEp7s4+iyHGpq/QXFpOEf7s7qp9OYe28fx7ZWc3Z/PWf21hGbHUDmyggCo2/PNc8uDWuFjYX2QUZ21ewCIM03zT7ISIJ3wrQe1UcIIYQQM4eqqpxuO20PZWWdZQCk+6XzbPazLAtfRoxnzJTc9xnqN3NkQzkndtSgM2hY9HA8aXmhM6474+VIQBO3xNPfhbyPJ5J7ZxQndtRQvKuGC4VNBEZ7kL48jNjs67/w9bXoNDrmBs9lbvBcvpn7TS50XCC/Op/8mnx+W/RbflP0G4Jdg1kesZwVESvIDshGq5leFy4UQgghxPRmtpopaipie5UtlNX31qNVtOQE5vBo0qMsD19OoGugo8u8aapV5ezBBg68W0p/9xDJC4KZd28sLh4yivcICWjitnD1dGL+/bHMXhfJ2QP1nNhZw9Y/nWb/mxdIWxpG6uIQnN1v3z+eoijEe8cT7x3PZ9M/S0t/C7trdrOzeidvlrzJy2dexsfow7LwZayIWMHc4LkyfL8QQgghJqX2gXb21e1jd81u9tXuo2uoC4PGwIKQBXwh8wvkheXhZfRydJm3rLmqm92vnaOhrIvAaA/u/EI6gVG3p9fVdCIBTdxWBqOO9GXhzFoaRuWpVk7srOHQ+2UUbKwgYU4g6cvD8Atzv+2v6+fsxwPxD/BA/AP0mfrYW7uXbVXb+LDiQ946/xZuejcWhy1mZcRKFoUumjInzQohhBBi+lFVlbNtZ9lds5s9tXs40XwCFRUfow954XksCVvCotBFuOpdHV3qbTHQa+Lw+2UU767F6KZn+aeSSZoXhKKZel0zJ4IENDEuFI1C1Cw/omb50VbXy4n8Gs4drOfM/npC4r3IWB5OVIYfmnH4x3TRu7A6ajWro1YzZBniYP1BtldtZ0fVDjaVb0Kv0TM7cDaLQxezOGwxUR5RU7LvthBCCCGmDpPFxOGGw2yv2s6u6l009TcBkOqbyjMZz7AkbAkpvilolOlzDpa9O+M7FxjoMZG2JJQ598TMiItN3woJaGLc+YS4kvfxRObdG8OZffWczK9h0x9O4u5jZFZeGMkLg8ftH9WgNdiH7//evO9xrOkYu6p3sad2Dz8v+Dk/L/g5YW5hLA5bzOLQxeQG5WLUGcelFiGEEELMLH2mPvbV7WN71XZ2V++m29SNs86ZhSELWRq+lEWhi/Bz9nN0meNidHfGoBgP7v7nTPwjbn8vqunIoQFNURQf4HUgCqgAHlFVtf2SeTKB3wMegAX4qaqqrw8/91dgKdA5PPuTqqoWjX/l4mYYXfVkrY4gY0UY5SdaOLGjhv1vX+Dw+jKS5gWTvjwM76Dxa8rXaXTkBuWSG5TL13K/Rm1PLXtr9rKndg/vnH+HV8++ipPWiTlBc1gUuojFYYsJdw8ft3qEEEIIMf20D7Szq2YX26u2c6DuAIOWQbycvFgRuYIVESuYFzxvWh8MHug1cfiDcop31Uh3xpvk6Ba054Dtqqo+ryjKc8OPv3nJPH3Ap1RVPa8oSghQqCjKZlVVO4af/7qqqm9OXMniVmm0GmKzAojNCqC5upsTO2s4s7+e4t21hKf4kLEinIgUn3HvdhjqFsrHkj7Gx5I+xqBlkIKGAnbX7GZvrS20/ezwz4jyiLKFtdDFzA6ajZP21i7ILYQQQojpp6Kzwn7R6KLmIqyqlSDXIB5KeIgVESum5PXJbpRqVTmzv54D75Yy2CvdGW+Fo7eUe4G84fsvAvlcEtBUVS0Zdb9OUZQmwB/omJAKxbjyD3dnxaeSWXB/LKf21FG8q4b1vz6OT4grmSsjSMgNRKsf/77YTlonFoYuZGHoQgAquyrtQe2Nc2/w9zN/x1nnTG5QLktCbV0mg92Cx70uIYQQQkw+FquF483H7aGsoqsCgGSfZD6f/nmWhi8lxSdlxpzj3lDeyZ7XSmiq7CY4zpMljyaMy6BwM4WiqqrjXlxROlRV9Rq+rwDtI4+vMP8cbEEuVVVV63AXx/nAILAdeE5V1cHLLPc54HMAgYGBs1977bXb/E7E7WK1qHRVQcs5lcEO0BnBJ0HBJw60Bsd8yA1Zhzg/eJ7T/ac53X+aFnMLACH6ENKc00hzSSPSEHndJ/X29PTg5uY2niULcVWyDQpHk21QONrNbIMd5g7ODpzlXP85zg6cpcfagxYt8cZ4ZrnMIs05DR+dzzhVPDmZB1Qaj6t0lNv22QIzFTwjmTHB9FYsW7asUFXVnMs9N+4BTVGUbUDQZZ76DvDi6ECmKEq7qqreV1hPMLYWtidUVT04aloDYABeAEpVVf3x1erJyclRCwoKbuKdiImkqio1Z9o5tq2K6tNt6Jy0pCwIJmNFOB5+zg6tq7yrnN3Vu9lVs4tjTcewqBa8nbxZHLaYJWFLWBCyAHfDlY8a5efnk5eXN3FFC3EJ2QaFo8k2KBzterbBPlMfBY0FHKg7wIG6A5R2lgLga/Rlfsh88sLzWBiyEDfDzDvYYLFYKc6v5fAHZZhNVjJWhJNzRxQGo6M7500diqJcMaCN+29RVdWVV3pOUZRGRVGCVVWtHw5bTVeYzwPYAHxnJJwNr7t++O6goih/Ab52G0sXDqQoCuEpPoSn+NBS00PRtiqKd9dyMr+GmEx/0peHERznNeFHaBRFIcYzhhjPGJ5Me5LOwU721+1nV80udtXs4v3S99EqWjL8M1gctpiFIQtJ9EmcVkPmCiGEENORqqqc7zjPnpo97Kvbx7GmY5itZpy0TswOnM19cfcxP2Q+Cd4JM7aFSFVVKotbOfBOKW11vUSk+LDokfhxHeRtJnJ0zH0feAJ4fvj2vUtnUBTFALwDvHTpYCCjwp0C3AcUj3vFYsL5hbmx8skU5t0by8n8ak7traP0WDN+4W6kLwsjPjcQnV7rkNo8nTxZF72OddHrMFvNHG8+zt7aveyr3cevjv6KXx39Fb5GXxaGLmRR6CIWhCxwSJ1CCCGE+Kg+Ux8H6w+yp3YPe2r20NjXCECidyKfTP4k80Pmkx2YLYOEYTvP7MDbpdSd78DT35l1z8wiOsNvxobV8eToc9B8gTeACKAS2zD7bYqi5ADPqKr6tKIonwD+ApwateiTqqoWKYqyA9uAIQpQNLxMz9VeU7o4Tn2mIQvnDzdyfEc1bXW9GN30pC4KIW1pKG7ek2fY2pb+FvbV7mNf7T721++nc7ATjaIhQh/BHcl3sDB0Iam+qWg1jgmXYuaS7mXC0WQbFI6iqiplnWW8tPsl6o31FDQWYLKacNW7Mj94PovDFrModBEBLgGOLnXS6Gjs4+B7pZQebcbZXU/undGkLA5Bq5XeQbfial0cHRrQHEEC2vShqiq1JR2c2FFNxYkWUBRis/xJXx5OUIzHpDqiY7FaKG4tZm/tXjad2UTVUBUqKl5OXswPmW9vXZuuF6sUk4vsHAtHk21QTBRVVanpqeFw/WEONRzicP1hWgdaAYjxjGFJ2BIWhy4mKyALvVaGgx+tr2uII+vLOb23Do1eQ9bKcDJXRch5ZreJQ89BE2K8KIpCWKI3YYnedLX0c3JXLWf21XGhsInAaA8yVoQTm+WPZhIc4dFqbOelZfhnkNqRSsa8DA7UHWBf3T5baCvfBNiG510QsoC5wXPJDMjEWee4AVGEEEKIqai5r5mD9Qc53HCYw/WHqeutA8DP2Y+5wXOZGzwXtVLlwZUPOrjSyWlowEzR1iqObavGarKSsjiE3DujcfEwOLq0GUMCmpgWPPycWfhgHLl3RnHuYAPHt1ez5Y+ncPNxImN5OMkLQ3Bynjybu7fRmzti7uCOmDuwqlbOtp1lX60trL146kX+VPwn9Bo9Gf4Z9i+TNL809Bo5uieEEEKMNmgZ5GjjUfbX7Wdf3T7Ot58HbOeJzwmaw6fTPs2c4DlEe0Tbe9fk1+Y7sOLJSbWqnD3YwMH3SunrHCI2259598biFeji6NJmnMmzxyrEbWAw6piVF0bqklAqT7ZQtK2afW9e4PD6clIWhJC+PMyhw/RfjkbRkOKbQopvCp9N/yy9pl6ONh7lcMNhDtUf4ndFv+O3Rb/FWefM7MDZzAmaQ25QLkk+Seg08i8shBBiZhm55M3+WlsgK2goYMAygE6jIzsgm69kf4UFIQtkFOUbUFvSzt5/nKeluofAaA/WfX4WQTGeji5rxpK9OzEtaTQK0Rn+RGf401TZxfHt1ZzMr+HEzmqiM/1JzwsjJGHih+m/Hq56VxaHLWZx2GIAOgY6KGgs4FD9IQ43HOa/C//bPl92QDY5QTnkBuaS7JssgU0IIcS01DnYyaH6Q+yv28+BugP2bouRHpHcH38/C0MWkhuUi4teWntuREdTHwfeLqWsqBk3bydWfSaF+JzASbl/NJPI3pyY9gIiPVj1VCrz74/jZH4Np/bWUnasGZ8QV9KXhZEwJwi90+QdSdHL6MXKyJWsjLRdUrC5r5nCxkKONBzhSOMR9hTuAcBF50JWYBZzguawIGQBCd4JcuRQCCHElGS2miluKWZf3T721+2nuKUYq2rFVe/K3KC5PJX2FAtCFxDuHu7oUqekwT4TBRsrOLGzBo1Ow9x7YshcGY7OMHn3h2YSCWhixnDzdmL+/bHk3hlFyZFGTubXkP/yOQ68U0rygmDSlobh6T+5uj9ejr+LP2uj17I2ei1gG86/oLGAgoYCjjQc4ZeFv+SXhb/E1+jL/JD5LAhZwPyQ+TJCpBBCiEnLbDVzru0cBY0FFDYWUtBQQLepG42iIc03jc/O+iwLQxfK+di3yGK2Ury7loINFQz0mUheEMzce2Jw9ZTrvE0mEtDEjKMzaElZGELygmDqSzs5ubOG4ztqKNpeTVSaL7PywghP9kHRTI3mfT9nP9ZGrWVtlC2wNfU12UeI3Fe7j/Vl6wFI8kmyh7V0v3TpBiKEEMJhhixDFLcUU9hYSGFjIceajtFn7gMgwj2CVVGrWBCygHnB8/B0knOhbpWqqpQda+bAO6V0NvcTmujNwofi8A93d3Rp4jIkoIkZS1EUQuK8CInzoqd9kFN7ajm1p5aKXx/Hw9+ZtCWhJM8Pxug2tY7UBbgEcG/cvdwbdy9W1cqZtjO2wFa7j5dOvcSfi/+MTtGR7JtMVkAW2QHZZAVm4WP0cXTpQgghpqkB8wAnmk/Yenw0FnCi+QSDlkEA4rziuDv2bnICc8gOzJaLRN9m9aWd7H/rAg1lnfiEuHLXlzKISPWR88wmMQloQmDr/jj3nhhy1kVReqyJ4t217H/rAofeKyM+J4DUpaEERk2ui19fD42iIdU3lVTfVJ6e9bR9hMhjTcc42nSU186+xkunXwIgyiOK7MBssgOyyQ3KJcQtxMHVCyGEmKr6TH0UNRdR0GDrsniy5SQmqwmNoiHRO5GHEx4mJyiH7IBsvI3eji53Wupo6uPgO6WUHmvGxdPAsk8kkTQ/aFJcH1ZcnQQ0IUbR6jUkzAkiYU4QrbU9FO+q5dyhBs4ebMA/wp20JaHE5wZO6kFFrubSESKHLEOcbj3N0aajHG08yrbKbbx9/m0AQt1C7UP6zwmaQ6BroCNLF0IIMYk19zVT1FxEUZPt53TracyqGa2iJcU3hU8kf4KcoByyArJwN0i3uvHU1zVE4aYKinfVotFrmHN3NJkrI6bsvstMJAFNiCvwDXVj6ccTmf9ALCWHGji5q5adfz/L/rcvkLwgmFl5k++aajfKoDWQGZBJZkAmT6U9hVW1cqHjAkcajnC4/jDbq7bzzoV3ANtQxrlBueQG5pIZkEmwa/CUa1EUQghx6yxWCxc6LlDUVMSx5mMUNRVR21MLgEFjIM0vjSdSn7AHMle9q4MrnhkG+0wc21rF8R01WIYspCwKIfeuaBkAZAqSgCbENRiMOtKW2i5+XX+hk5P5owYVmeVHel4YYcne0yKsaBQNCd4JJHgn8Hjy41hVK+faznG44TBHGo7wYfmHvFnyJgD+zv6k+6eT7p9Ohn8GKb4pOOumdmAVQgjxUSariTOtZ+wjBh9rOkaPqQewDVSVFZDFY0mPkRmQSYpPCnrt1Dp3e6ozDVo4sbOaY1uqGOwzE5cTwJy7ovEOkmA8VUlAE+I6KYpCSLwXIfFjBxV5/0QL3kEuzMoLI3FeEAbj9Pm30igakn2TSfZN5onUJ7BYLZxrP8eJ5hMcbz7O8ebjbK/aDoBW0ZLgnUCGfwaz/Gcxy28WkR6Rci02IYSYYkwWE6daT9kD2dGmo/Sb+wHb+cpro9faBpgKyCLULXRaHKCciiwmK8V7ain8sJL+riGiZvky554YGZlxGpg+e5JCTKDRg4pcKGzkxM4adr9WwsF3S0maH0zq4lB8QqbfkSutxnYuQYpvCo8mPQpA20AbJ5pP2EPbe6Xv8dq51wBwN7iT5ptGml8a6f7ppPmlyfXYhBBikukc7OR483GONR3jWNMxiluKx4yweE/sPeQE5ZATmCOf4ZOA1WLl7MEGjmwop6dtkNAEL+Y9M4ugGLkcwXQhAU2IW6DVa0icF0zC3CAay7s4sbOG4t21nNhZQ0i8F6lLQojNDECrn76tSD5GH/LC88gLzwNs5yaUdZZxsuWk7af5JH8u/jMW1QJAiGsImQGZzA6cTXZANjFeMdLKJoQQE8SqWqnurradP9ZkO3+stLMUAJ2iI8kniYcTHmZ24GxmB86WERYnEatV5fyRRo5sKKezqZ+ASHeWfzKZsKTpcZqFuEgCmhC3gaIoBMV4EhTjSd/D8Zw9UM+pvXVs/dNp9ridJ3l+MCmLQ/AKmP4Xh9ZqtMR7xxPvHc8D8Q8AtuGWz7ad5WTLSY43H+dww2E2lm8EwNPJkyz/LLIDbd1lUn1T5fwFIYS4DSxWC5VdlZxuO82Z1jOcbj3N2baz9vPH3A3uZPhncEfMHWQFZJHmlybnEk9CqlWlrKiZQx+U017fi2+oG+uemUV0hp8Es2lKApoQt5mLh4HsNZFkrYqg5mw7xXtqKdpezbGtVbajXL4qVot1Rl2HxEXvYrvGWmA2AKqqUt1dbR/e/1jTMfJr8gFw0jqR6JNIsk8yKb4pJPskE+cVJ6FNCCGuQlVVqrqrONlykuKWYnsYGzl3zEnrRKJ3InfG3EmyTzLp/unEesVKD4ZJTFVVKk+2cuiDMlqqe/AOcmH106nEZQegaCSYTWcS0IQYJ4pGITzFh/AUH3o7Bjm9r47Te+voOavytzMHmLU0jJSFIRjdZl7wUBSFCI8IIjwiuC/uPgBa+lvsXW5Ot55mQ9kGXj/3OgA6jY54r3j7+W8pvikkeCdg0Boc+C6EEMJx2gbaKG4p5kTzCYpbijnZcpKuoS4AjFojST5J3B93P8m+toNdMZ4x6DSy2zcVqKpKzZl2Dn1QRmN5Fx7+zqx8Mpn4OUFoJJjNCPKfKsQEcPVyIvfOaGavi2L9K/lYm5058E4ph9eXkzAnkPRlYfiFzexRl/yc/VgZuZKVkSsB23kSNd019q45Z1rPsK1qG2+dfwuwhbZE70RSfVNJ80sj1S9VdkCEENOO2WqmsquS8+3nKWkvsd/W9dYBttF247ziWBW5ijS/NGb5zSLWK1Y+C6cgVVWpOtVGwcZyGsq6cPNxYtknk0icF4R2BvW6ERLQhJhQGo2CR5hC3ieyaa3t4UR+DSUHGzizr56QeC9m5YURk+k3o7o/XolG0dhb2dZGrQVsX171vfUUtxRzqvUUp1pOsbF8I2+UvAGAs86ZJJ8kEr0TSfCxXc8t3iseF/30P/dPCDH1dQ52cqbtDGdbz1LSXkJJewllnWWYrCbAdjmTKI8o0v3TeSzpMdL80kjxTZHPuClOVVXKj7dQuKmCpspu3HycWPpYAskLQqb1IGPiyiSgCeEgvqFuLHs8ifn3xXJmfz0n82vY/H/FuHo5kbwgmOQFwXj4ycnaoymKQohbCCFuIayOWg3YWtoquyrtga24pZgPyj6g91yvfblw93DiveLtoS3WK5Zw93D0mpnXvVQIMTl0DnZyqvWUffCO062nqempsT8f4BJAvHc8C0IWEO8dT4J3AtGe0dK1expRrSqlx5op2FhBa20PHn5GW4vZ3CC0OglmM5kENCEczOiqJ2tVBBkrwqk82cKpPXUUbqqgYFMF4UneJC8MISbDX46iXYFG0RDtGU20ZzR3xdwF2EJbXU+dvSvQyE9+TT5W1QrYukhGeUQR4xlDrFcsMV4xxHrGEukRKTtAQojbRlVVantqOdd2jnPt5+y3tT219nlC3UJJ8U3hwYQH7YMjyfD205fVYuV8QROFmypob+jDK9DFdo5ZbqD0oBGABDQhJg2NRiE6w5/oDH+62wY4e6Ce0/vq2PLHUxjd9CTOCyJlQci0vAD27aZRNIS5hxHmHsayiGX26f3mfso6yijtLKW0o5SyjjLOtJ1ha+VWVFTA1oUo2jPavpOU7JtMkk8Srnr5vQshrq5zsJPyznJKO0rtYaykvcQ+rL2CQqRHJGl+aTyS+Ij9c8bTSS4wPBNYLVZKjjRSsLGCzqZ+fEJcWf10KrHZATL4hxhDApoQk5C7j9E+qEjNmTZO76vj5M4ajm+rJijGk5RFwcRmB2Awyr/wjXDWOZPql0qqX+qY6QPmASq7KintKOVCxwXOtZ/jQN0B3i99H7i4UzUS2GK9bC1tIW4h0k1SiBlGVVUaehso7yynrLOMss4y+/22gTb7fM46Z/uw9ok+iSR6JxLnFSfni81AVouVc4caKdxUQWdzP75hbqz9fBoxGf4yXL64LNm7E2IS02gUIlJ9iUj1pa9riHMHGzi9r44dL51lz+vnic8NJGVhCAFR7nKxyltg1BltO1A+iWOmN/c1c6bNdn7ImdYzFDUXsalik/15raIl1C2UCI8IIj0iiXC/eBvsFiyjqAkxhVmsFmp7am2t7cNBrKzDdttn7rPP52HwIMYzhqVhS4nxjCHaM5oYzxhC3UPlGmMznMVi5dzBBgo3VdDVMoBfuFxgWlwf2XsQYopw8TCQtTqCzFXhNJR2cnpfHSWHGzi9tw6fEFdSFoaQODdoRl5Xbbz4u/jj7+LPkrAl9mntA+1UdFVQ2VVJVVeV7ba7isLGQvsFYQF0io5Q91Ai3G0jUYa7h9vDW4hbiIQ3ISYJk8VEZVclZZ227s/lHeWUdpZS0VnBkHXIPl+AcwAxXjHcH3+/PYhFe0bja/SVnW0xxqXBzD/CnTu+kEDULNlWxPWRPQQhphhFUQiO8yI4zovFjyRwvqCR0/vq2fuP8+x/5wIxmf6kLgohNNFbvgjGgbfRG2+jN1kBWWOmq6pK60CrPbhVdVfZbwsbC8cccddpdES6R9p38EaOuEd5Rsm5bkKMA5PVRGNvI3U9ddT21FLdXW1vFavqqsKiWuzzhrqFEuMZw4KQBcR4xhDjFUOMZwzuhpl9rUpxbeYhC2f213N0SyU9bYMERLqz+GMJRKZJMBM3RgKaEFOYwVlH6uJQUheH0lrbw+m9dZw71MCFgiY8A5xJXRRK0vwgnN1lVMLxpigKfs5++Dn7MTtw9pjnRsLbSItbRVcF5Z3lXOi4wM7qnWN2DgNcAoj0iCTYNdh2SQHXEPulBYJcgtBrpYVUiEuN/I/VdNdQ3V1NTXcNNT011PXUUddTR2Nf45j/M62iJdw9nFivWFZGrLSP4hrlGYWzTi5vIm7M0ICZ4t21FG2rpr9riOBYT/I+nkREqo8EM3FTJKAJMU34hrqx+GMJzL8/ltKjTZzaW8f+ty9w8P1SYjP9SV0cSkiCl3xZOMDo8JYdmD3mOZPFRHV39ZgBB2q6azhYf5Dmvmb76JJgG6wkwCVgzHlv4e7hRLjbulC6Gdwm+q0JMSFUVaVjsIOmviaa+pqo7623h7GRn9Gt1KP/V7IDswl1CyXULfTiwQ7XIBngR9yygV4TJ3bWcGJHNYN9ZsKSvMl5OpWQePmuFbdGApoQ04zOoCVxXjCJ84JprRtuVTvYwPmCJrwCXUhZGELC3EBcPZ0cXaoA9Fq9rQuVVwwrWDHmOZPFRENvA3W9tlaAkdua7hr21u7l3Qvvjpnfx+hDhHsEoe6hBDgHEOASgL+LPwEuw/ed/eUab2LSsapW2gbaqOupo763nobeBhp6G+xhrLm/maa+JkxW05jl9Bo9Ye5hhLuHkxOUQ7h7uP0n1C1UtnUxbno7Bzmxo5qT+bWYBi1EpfuRsy6KwGgPR5cmpglFVdVrzzWN5OTkqAUFBY4uQ8xg+fn55OXlTehrmocsXDjaxOk9ddSXdqJoFCLTfEmaH0TULD+0OhlpbCrqM/VR3V1tP9+turuayq5K6nvrae5rHjPAwQgvJy+crc5E+EXg5+yHr9EXX2dffI2+tsfOtltvJ2+0Gq0D3pWYTlRVpWuoi4beBhr7Gmnsa6Sht4Gi0iJwxx7ILg1fzjpnAl0Cxx5kGD7oEOASYH9OtlFxs27mu7i5upvj26s5f6QRq1UlfnYA2Wuj8AuT3gviximKUqiqas7lnpMWNCFmAJ1BS9K8YJLmBdNW38u5g/WcPdhAxYkWjK564ucEkjw/GL9wN+mWMYW46F0ue3kAsO0Ydw520tTfRHNf85jWiNNVp+k391PUVETbQNuY0SdHaBUtPkYf20iWzv74OfsR4BJg76rpbfTG08kTLycvPA2esqM8Q5itZjoGO2gfaKdrqIvOwU66hrroGuyic6jTfts20EZjry2QXbp9aRQNHhoPolyiSPNNY2XkSoJdgy/+uAXjrpdLh4jJQbWqVBS3cnx7FbXnOtA5aUldHEr68jC8AuSadmJ8SEATYobxCXZl/v1xzL0nhuqz7Zw9UM/pPbYLYfuGupI0P5jEuTKwyFSnKApeRi+8jF4keCeMeS5/YOyR4z5TH639rbQMtNhu+1to7m+mpb+Fpr4mGvsaKW4ppm2gbcw5cfbXQsHd4G4Pbd5O3vgYfewtc2PuO/vg5eQl14dyILPVTK+p1/7TZ+6z3Zr67NM6hzpp62+jbWDsT8dgxxXXO7IdjGwD8d7xLA5bTKBLIIGugQS5BBHkGoSfsx97d++d8J4EQtwI06CFswfqOb6jms6mfty8nZh/fywpi0Iwusr5i2J8SUATYobSaDVEpvoSmerLQK+JC4VNnD1Qz743L3DgnVKiM/xJWRRMeJIPikaOZE9nLnoXXPQuhHuEX3U+k9VEW38bLQMtdA502lpSBtvpHLTd7xjooGOwg8a+Rs60nqFtoA2zav7IehQUjDojLjoXnHXOOOud7fdddC44651x1jlj1Bptt7qLt0atbTkXvQtuejdcDa62W70rzjrnGRH8VFVl0DJob7nqNnXTNdhlezzyM9hF91C3/bH9/mDXmME0rsbTyRMfow8+Rh9ivWLJNebaA7eX0QsPgwceTh54GjzxcPLATe82I37/Ynrr7RzkxM4aTu2uZbDPTECkO6s/k0pMtj9arWzfYmJIQBNCYHTVk7YklLQlobTW9XBmXz3nDjZQerQJdx8jyQuDSV4QjJu30dGlCgfSa/QEutpaQ66HVbXSPdRNa38rrQOt9tuOwQ76TH30m/vpM/fRb+q3328baKPP1MeAZYAB8wD95v4xw6NfjYKCq94VF50Leq0evUaPTqNDr9F/5LGT1gmD1oBRa8SgNeCkdbJPc9I6XTVoqKqKRbVgVa32W7PVjFW1jpmmoqKq6tj7WFFVFZPVhMliYsg6xJBliCHrECaLCZPVxJBlCJPVhNlqvuLttX4nLjoXPJw88DB44G5wJ9QtlCRDki1UGTxwM9hCrYveBVedK65614uP9a64693lkg5iRmmt7aFoWxUlh23nl8Vk+pO5IpygWE/pbismnAQ0IcQYviFuLHo4nvn3xVJ2vJnTe+s4/EE5R9aXE5HqS8rCECJn+crAIuKaNIoGTydPPJ08iSHmptahqipmq5k+cx8D5gEGLAP2rnh95j56hnroMfXQZ+qjx9Rj76I3OtCMvj9oHqTH2sOgZZAhy9CY20HL4HWHwcu9V42iQato7bcKCopi+9Ggsd0fnqbX6DFoDfZbg8aAXqvHWef80XB5mfsuehd72BppyXI3uNsDmU4jX+9CXIuqqtScbadoWxVVp9rQGTSkLgohY2U4nv5yfplwHPkEF0JcllavIT4nkPicQDqb+zmzv46z++vZ9IeTOLnoiJ0dQOKcQIJjvaQLpBg3iqKg1+rx1NqC3ngzW80MWYYue67daB8JY3KEXYgpw2Kx0lGh8vreI7TW9ODsYWDuPTGkLQnF6CYtx8LxJKAJIa7J09+ZeffGMueuaKrPtFNyuIGSQw2c3lOHm48TCbmBJMwJwjdUhhoWU5tOo5PWJyGmqa6Wfk7vrePM/nr6ulS8g6ws+2QSCXMC0ellJFoxeci3kBDiumm0GiLTfIlM82VowEzFiRZKDjdybGs1RzdX4RvqSsKcIOJmB+Dh5+zocoUQQsxwVqtKZXErp3bXUnmqFQWInOWH1auVux6dKz1AxKTk0ICmKIoP8DoQBVQAj6iq2n6Z+SzAyeGHVaqq3jM8PRp4DfAFCoFPqqr60SuzCiFuO4NRR8KcIBLmBNHfPcSFwiZKDjdw4J1SDrxTSmC0B/E5gcRmB+Dm7eTocoUQQswgPe2DnNlfx+m9dfS0D+LiaSBnXRQpi0Jw9zGSn58v4UxMWo5uQXsO2K6q6vOKojw3/Pibl5mvX1XVzMtM/w/gl6qqvqYoyv8DPgP8ftyqFUJclrO7gVl5YczKC6OrpZ8LhU2cL2hk7z/Os/fN84TEeRE3O4DY7ABcPOT6akIIIW4/VVWpK+ngZH4NZcdbUK0q4Sk+LHoknqh0PxkmX0wZjg5o9wJ5w/dfBPK5fED7CMV2RvZy4OOjlv8hEtCEcCgPP2ey10SSvSaS9oZeW1g70sju10rY83oJoYneJMwJIjbbH4PR0R9BQgghprqhATMlhxs5mV9DW10vTq46MleEk7I4BK8AGY1RTD2Kql59pKpxfXFF6VBV1Wv4vgK0jzy+ZD4zUASYgedVVX1XURQ/4KCqqnHD84QDm1RVTbvM8p8DPgcQGBg4+7XXXhufNyTEdejp6cHNbWYNpqGqKoOd0Fml0lkJpl5QtOARCp5RCm5BSFeTCTQTt0Exucg2KG6HwW6VtvMqHeVgNYHRG3ziFTwjQKO7+neKbIPC0ZYtW1aoqmrO5Z4b98PXiqJsA4Iu89R3Rj9QVVVVFOVKaTFSVdVaRVFigB2KopwEOq+3BlVVXwBeAMjJyVHz8vKud1Ehbrv8/Hxm8jaoqioNZV2cO9TAhYJGOqvMOHsYSMgNJHFuEH7hbjJk+Tib6dugcDzZBsXNslpVqk61cjK/lqpTrWg0CrGzA5iVF0ZQjMd1f3/INigms3EPaKqqrrzSc4qiNCqKEqyqar2iKMFA0xXWUTt8W6YoSj6QBbwFeCmKolNV1QyEAbW3/Q0IIW4rRVEIjvUkONaTxQ/HU1ncyrlDDZzMr+H49mp8QlyJmx1A3OwAvINcHV2uEEKISaC3Y5DT++o4va+OnrZBXDwM5N4VTeriEFw9ZSAqMb04+gSQ94EngOeHb9+7dAZFUbyBPlVVB4e7NS4E/nO4xW0n8BC2kRwvu7wQYvLS6jXEZPkTk+XPQK/JNhLkoQYOf1DO4Q/K8QlxJTY7gNhsf3xDpCuKEELMJKpVpfpsG6d211F+wjboR1iSN4seiicqQwb9ENOXowPa88AbiqJ8BqgEHgFQFCUHeEZV1aeBZOAPiqJYAQ22c9BODy//TeA1RVF+AhwD/jTRb0AIcXsYXfWkLQklbUkoPe2DlBU1UXq0mSMbyjmyvhzvIBdis20taz4hrtINUgghpqm+riHOHqjn1J5auloGMLrpZdAPMaM4NKCpqtoKrLjM9ALg6eH7+4FZV1i+DJgznjUKISaem7cT6cvCSV8WTm/nIGXHmik92kThpgoKNlbgHeRCXE4g8TnSDVIIIaYD85CF8hMtnDvYQNXpNlSrSki8F3PvjSE2MwCtXlrLxMzh6BY0IYS4KldPJ/s11vq6hig71sT5giZ7y5pvmBvxOQHE5wTi4efs6HKFEEJcJ9WqUl/awdmDDZQWNjE0YMHN24msVeEkzgvGJ1gOwImZSQKaEGLKcPEwkLY0jLSlYfR2DNoviH3w3TIOvltGQJQH8TkBxGT54+ErYU0IISajjsY+zh1q4NyhBrpbB9A5aYnL8idhXhChCd5o5LIrYoaTgCaEmJJcvZzIWBFOxopwulr6uVDYxIXCJva9eYF9b17AN8yN6Aw/otP98I9wl3PWhBDCgUYGgjp3sJ6Gsi4UBcKSfZh7Twwxmf7onbSOLlGISUMCmhBiyvPwcyZ7TSTZayLpaOyj/EQL5cebKdxYQcGGCty8nYhK9yM6w4/QBG+0OjmXQQghxpvVYqXqdBtnDzRQcaIFi9mKd7Ar8++PJWFOEG7eMjy+EJcjAU0IMa14BbqQtSqCrFUR9HcPUXGylfLjzZw9UE/xrlr0Ri0RKb5EpfsSmeaLs5vB0SULIcS0oaoqLdU9nDvUQMnhBvq7TRhd9aQsDiFpXpD0aBDiOkhAE0JMW87uBpIXBJO8IBjzkIWas+2UH2+m4mQrpUebQIGgaE+i0n2JmuUnw/cLIcRNGAllF442UVrYRGdzPxqtQtQsPxLnBRGZ5is9F4S4ARLQhBAzgs6gJSrdj6h0P1SrSnN1NxUnWqg42WofZMTdx0jULF+iM/wJSfCSHQohhLiCy4UyRaMQmuBF1uoIYrL8pYeCEDdJApoQYsZRNAoBkR4ERHow5+4YejsGqThpC2tn9tdzclctBmcdkWm+RGf4EZnqi8FZPi6FEDObqqq01vZyvqBxTCgLSxwOZZn+OLtLKBPiVskehxBixnP1ciJ1cSipi0MxD1moHukKeaKF80ca0egUwhJ9iMm0tcC5esqJ7UKImaO9oZfzBU1cKGikvaFPWsqEGGcS0IQQYhSdQUt0um14fqtVpaGsk/KiZsqOt5D/8jl4+RwBke6EJ/sQnuJDUIyndIUUQkw7XS39nC9o5HxBE601PaBASJwX6cvDic2SljIhxpMENCGEuAKNRiEkzouQOC8WPBhHW10v5cdbqDrdytEtVRR+WIneSUtoojfhyT5EpPjgGeAsA40IIaak9oZeyoqaKTvWTFNlNwCB0R4sejieuNkBuHpJ7wEhJoIENCGEuA6KouAb6oZvqBs5d0Qx2G+m9lw71afbqDrdSsWJFgDcfY2EJ/sQluRNWKK3HGUWQkxaqlWlqbLbFsqKmulo7AMgINKd+ffHEjc7AA8/ZwdXKcTMIwFNCCFugpOzjphMf2Iy/QHobO4bDmttXCho5PTeOgD8wt0IS/QmLNmHkDgv9E5aR5YthJjhLCYrdec7KDveTPnxFno7Bu3nlKUvCyM6ww83b6OjyxRiRpOAJoQQt4GnvwueS11IWxqG1WKlqaqbmjPt1Jxt40R+DUXbqtFoFYJiPAlP9iYi1Rf/cHcUjXSHFEKMr67WfqpOtVFZ3ErNuXbMgxZ0Bg0Rqb7EZPgROcsPo6ve0WUKIYZJQBNCiNtMo9UQFO1JULQnOXdEYRqyUH+hg5qz7VSfaePQ++Ucer8cZ3c94Sk+RKb6Ep7iIyOhCSFuC4vZSv2FDiqHQ1l7fS9g64KdNC+IyFRfQpO80RukRV+IyUgCmhBCjDO9QUtEii8RKb4A9HUNUX3GtuNUVdxGyaFGUCAgwp2INF/Ck3wIiHJHp5edJyHE9eluG6DqVKutlexsO6ZBCxqtQki8FykLg4lM88Ur0EUGMRJiCpCAJoQQE8zFw0Di3CAS5wZhtao0V3VTdaqVqlOtFG6soGBDBRqdQmCUB8GxXgTHeRIc64mTi3RBEkLYWCxWGi50UlncSuWpVtrqbK1kbt5OxM8JJDLVl7AkbwxG2dUTYqqR/1ohhHAgjcYWxAKjPMi9M5qBXhN15zuoL+2k/kIHRVurOLpZBQV8Q91sw/7H235cPKRLpBAzhdWq0lrbQ935DupKOqg+24ZpwNZKFhznyYIH4ohI88En2FVayYSY4iSgCSHEJGJ01Y8ZHdI0aKGxvJO6C7bAduZAPSfzawDwCXElNMGb0EQvQuO9MbpJC5sQ04XFYqW5qpu6kg7qLnRQf6GToX4zYDuXLD4nkMg0aSUTYjqS/2ghhJjE9E5awpJ8CEvyAS7utNWea6e2pIMz++vsgc031I3QRFvrWmCUJ27eclFZIaaKkdFfa8+1U3O2nYayTsxDVgC8g1yIywmwt6C7+8gw+EJMZxLQhBBiCtGOGiFy9lrbaG1NFV3UlnRQW9LOqT11nNhhC2yungYCoz0JiHInMMqDgEgPDM7ysS/EZKBaVVpqe2yB7Fw7dec7MA1YAPANdSV5YQih8V4Ex0l3ZiFmGvmmFkKIKUyr0xAcZ9uJy7kjCovJSnNNN43lXTRVdNFY3kVZUbNtZgW8g1xRjVZOqDUERLrjG+YmQ20LMQGsFiuttb22c0wvdFBb0sFArwkAr0AXEuYEEZboTWiCF87uEsiEmMkkoAkhxDSi1V9sYRsx0GuyhbXhwFZzvpc9r5cAoGgUfIJd8I9wJyDSA/8Id/zC3NBJaBPilpiGLDSWd1F/wTboT0NpJ6ZBWwuZu4+RqHRfWyBL9MbNW7osCiEukoAmhBDTnNFVT0SqLxGptuuw7dy5k9zM+TRVdtNc1U1TZTeVxa2cPdAADIe2EFcCI90JGO4a6RPqilarceTbEGLSspittNX30lzVTUtVN01V3TRXdmO1Do/AGuJG4ryg4UtmyDlkQoirk4AmhBAzjKIouHkbcfM22keLVFWVnvbB4cDWRVNlN6XHmjm9rx6wtcz5hbkNBzZ3fEPc8A52kYtpixnHPGShpbaHlirbAY7m6h5a63qwmlUA9EYt/uHuZK6OIDjWk6AYT4yuMsKqEOL6SUATQgiBoii4+xhx9xkb2rpa+mmq6Kax0nZO25n99ZzcaRuERNEoeAU44xPihm+oK76htlsPX2cUjVyHSUx9FrOV1toeW2tzZRdNVd201fbaWsYAJ1cd/uHuZCwPxz/CHf9wdzz9ZfsXQtwaCWhCCCEuS1EUPP1d8PR3IT43ELBdLLejsY/W2h7a6nppre2huaqL0qNN9uV0Tlr8Qt3wC3fDP9wdv3A3fEJcpbVNTGqmIQtttb201HTTUt1DU2UXLbUXW8acXHUERHqQtdoX/0h3/CPccfcxykWhhRC3nQQ0IYQQ102jUfAJdsUn2HXM9KEBM231vcM7uD201HRz7lADxbtq7ct5B7vgF2YbOdIr0AVPf2c8/ZzR6uXcNjFxVFWlr3PIvp221PTQWtNDR2Mfqi2LYTBq8Y90J2NZOP6RtstUuPtKGBNCTAwJaEIIIW6Zwaj7yOiRqlWls6WfluoeWqptO8LVZ9s4d6jBPo+igJuPEa8AZ1trXYAzXgEuuPsZ8fB1Ru8krW7ixqmqykCvic6mfjqa+j5yO3K9MQB3XyN+YW7EzQ7AL8zW4ithTAjhSBLQhBBCjAvbOWoueAW4EDc7wD59oMdER/PYnebOpj5KjjQy1G8esw5ndz3uvs54DAc2d18jHn5GPP1dcPdxQiMjS85YqqrS322is7mfzuHtqbPZti11Nvcz2HdxW1IUWxDzCnAhKCYYr0Bn/MLc8A11w8lFBvAQQkwuEtCEEEJMKKObniC3sa1tMLbVo6u1n66WAbpbB2wDlVR2U3a02T44A9i6TboPhzVPf2fbT4Dt1tXLCYNRvuKmMtWq0tc9RHfbAD1tg/S0D9jutw/S3TpAZ1MfQ6NawkZCmKe/M/E5gfbWWM8AZzz8nNHqJMwLIaYG+fYSQggxKSiKgrObAWc3A0Exnh953mpV6e0YpKtluKWkuX+41aSP+tKOMd3WwDbcuaunE65eBtutpxOuXk64eBqGLzNguy/Xd5t4I2G8p32QnrYBW/iy37eFsZ72QawWdcxyOict7t5OuPsaCYoJtodyrwAX3H2NEsKEENOCBDQhhBBTgkZz8VIAoQneY55TVZWBHpM9uPV2DNLbOUhvxxB9nYM0lHXS2zGExWwdu1IFXDwMuHk54eZtxNXbCTcvJ4xuepxcdDi5jNzqMLro0Ru1cm7SVaiqimnQwkCvib7OIXraR/4OF/8evR2DdLWqnH59z5hlNRoFVy8n3HycCIz2JG627W/i7mPEzcd238lFJ79/IcS0JwFNCCHElKcoCs7uBpzdL9/6BrbwMNhrpqfDFhh62gds99sH6ekYpL2xj5qzbWO6zX3kdTQKTs46DM5aDM46DEYdBqMW/fCtwWh7Tu+kQz/yeNTzeifbNK1eg0aroNEqDgkcqqpitapYzSpWixWrRcUy6r5pyMJQn5nBPjOD/abhW7NtWr+ZoX4zQwNmTAMWhgYsmAbMDA1aMA1aQP3o62m0ir0F0zfUFY1nH0mz4mzhy9sWvlw8DWjk+mFCCCEBTQghxMygKApGNz1GNz1+YW5XnG9owMxA73Ao6TMz2Dd8v/fi/aEBM0MDFob6zfR2DjHU0GefZjFZr7juy9FoFHtY02g1aHQKWp0GnV6DzqBFp9egHXVfp9eAYuvyqVpUrJbhsDXy2KpiMVuxmKxYzFbMpov3LSYrZrPVfm2vG2Vw1l0MqEYdRjfbIC62EGqbpnfSYnTV4+o13L3Uywmjq35MEM3PzycrL+KmahBCiOlOApoQQggxiq3VSwe+N7e8xWIdblm6pIVpwIJpcDjEmW0tVdaRW4uKxXJxmtlsxTJkC1dmk61lqr/HZAtYQ7YWvpFAp2gUe8gbua/VK+idDLZwp1PQ6jVo9Vp0Og1avYJGp0E7EgiHb7W6iyFRZ9DYunc66+xdPPVGnbRwCSHEBJCAJoQQQtxGWq0GrasGo6sM3y6EEOLGyXBHQgghhBBCCDFJODSgKYrioyjKVkVRzg/fel9mnmWKohSN+hlQFOW+4ef+qihK+ajnMif6PQghhBBCCCHE7eLoFrTngO2qqsYD24cfj6Gq6k5VVTNVVc0ElgN9wJZRs3x95HlVVYsmoGYhhBBCCCGEGBeODmj3Ai8O338RuO8a8z8EbFJVtW88ixJCCCGEEEIIR3B0QAtUVbV++H4DEHiN+R8FXr1k2k8VRTmhKMovFUVxuu0VCiGEEEIIIcQEUVT15q6Fct0voCjbgKDLPPUd4EVVVb1GzduuqupHzkMbfi4YOAGEqKpqGjWtATAALwClqqr++DLLfg74HEBgYODs11577ZbekxC3oqenBze3K1+DSYjxJtugcDTZBoWjyTYoHG3ZsmWFqqrmXO65cR9mX1XVlVd6TlGURkVRglVVrR8OW01XWdUjwDsj4Wx43SOtb4OKovwF+NoVangBW4AjJydHzcvLu8F3IcTtk5+fj2yDwpFkGxSOJtugcDTZBsVk5uguju8DTwzffwJ47yrzPsYl3RuHQx2KoijYzl8rvv0lCiGEEEIIIcTEcHRAex5YpSjKeWDl8GMURclRFOWPIzMpihIFhAO7Lln+ZUVRTgInAT/gJxNRtBBCCCGEEEKMh3Hv4ng1qqq2AisuM70AeHrU4wog9DLzLR/P+oQQQgghhBBiIjm6BU0IIYQQQgghxDAJaEIIIYQQQggxSUhAE0IIIYQQQohJQgKaEEIIIYQQQkwSEtCEEEIIIYQQYpKQgCaEEEIIIYQQk4QENCGEEEIIIYSYJBRVVR1dw4RSFKUZqHR0HWJG8wNaHF2EmNFkGxSOJtugcDTZBoWjRaqq6n+5J2ZcQBPC0RRFKVBVNcfRdYiZS7ZB4WiyDQpHk21QTGbSxVEIIYQQQgghJgkJaEIIIYQQQggxSUhAE2LiveDoAsSMJ9ugcDTZBoWjyTYoJi05B00IIYQQQgghJglpQRNCCCGEEEKISUICmhBCCCGEEEJMEhLQhBBCCCGEEGKSkIAmhBBCCCGEEJOEBDQhhBBCCCGEmCQkoAkhhBBCCCHEJKFzdAETzc/PT42KinJ0GWIG6+3txdXV1dFliBlMtkHhaLINCkeTbVA4WmFhYYuqqv6Xe27GBbSoqCgKCgocXYaYwfLz88nLy3N0GWIGk21QOJpsg8LRZBsUjqYoSuWVnpMujkIIIYQQQggxSUhAE0IIIYQQQohJQgKaEEIIIYQQQkwSM+4cNCGEEEIIIcStMZlM1NTUMDAw4OhSJjWj0UhYWBh6vf66l5GAJoQQQkxhFrOJwb4+hvr6GOzvY6i/D9PAAGbTEOahIcxDg8O3wz+mIVSrdcw6FEUBRbHdBxSNxvajaNBoNChare1WY3usMzhhcHHB6OKKwcUVJ1dXnIZvdXqDbX1CiGmtpqYGd3d3oqKi5H/+ClRVpbW1lZqaGqKjo697OQloQgghhINZLRb6OjvoaW+jp72Nge4uBvv6GOzrsd329jLYd/FndBizmEw39FpanQ5FqwV1eIKqoo48UFVUFVTV+pEQd700Wh1OLi44ubhiGL699HFjfQNntCrOHp44e3jiMnyru4EjzEIIxxoYGJBwdg2KouDr60tzc/MNLScBTQghhBgnqqoy1N9HT1sr3a0t9LS12n7aW21hrK2NnvZW+jo6UNXLByKDszNOLm62kOPqipu3D4aQMJxcXGytV84uw/O4YnB2weDsgt7ohM7ghM5gQKc32G4NBrR6PRqN9vrrt1qxWq3Dtxb7Y/Pg4HBYvCRE9vYw2N9nu+2zBcjBvj46GuqH5+1lqL8PgJr9+Zd9ry4eXrh6e+MZEIRnQBBeQcF4BQbhFRiMs4en7AwKMYnI/+O13czvSAKaEEIIcQtMgwN0NNTTXl9Le30d7fV1dLc20d3WRk9bK6aB/o8sY3T3wN3bB1cfX/wjo3Dz9sHNxxdXb1/cvLxx9vDAycUNg4vzDQWq203RaNBqLjOemJs77r5+N7VO1Wpl+5bNZKfPoq+rk/6uTvq7uuz3+7o66WlvpfrUSU7v2Qmqal9Wb3TGKyAQz8Bge3DzDLCFN3c/f7Q62a0RQkx98kkmhBBCXIOqqvS2t9FSU0VrdRXt9TW019fSVl9HT2vLmHndvH1w9w/APzyS6MzZuPn44ubji7uPL24+frh5+6AzGBz0ThxP0WjQGZ3xCQnDJyTsqvOah4bobG6ks7GBjsZ6Ohrr6WxsoK22mvKigjHdOxWNBg//ADwDgvAOCsEvIgr/yGj8IyIxOLuM99sSQjhAf38/a9euZceOHWi1WtauXcvBgwdZtGgR69evt8+nqirf/e53+cc//oFWq+Wf/umf+PKXv3zVdV9pXYsXL6a7uxuApqYm5syZw7vvvsv69es5fPgwP/7xj2/5fUlAE0IIIUbp7+6ipbqSlupKWqurhm8rGejtsc9jdHXDOySUiJRZeAeH4h0SindwKF5BwRiMzg6sfnrRGQz4hobjGxr+kedUq5We9rYxwa2jsYHOxnrO7M23d6UE8AwMwt8e2KLxj4zGMyAQ5XKtg0KIKePPf/4zDzzwAFqtrafB17/+dfr6+vjDH/4wZr6//vWvVFdXc/bsWTQaDU1NTddc95XWtWfPHvv9Bx98kHvvvReAO++8k+9973s899xzuLjc2kEhCWhCCCFmpIHeHlqrq2itqaKlxhbCWqqr6OvssM/j5OKKb3gkCfMX4RceiV94JL7hkbh4eDqucAHYWszcff1w9/UjPGXWmOdUVaW7pZnmqnKaKytoriynuaqC0oLD9nP9DM7O+EfGEBBl+/GPisEvPAKtTgYqEeJG/eiDU5yu67qt60wJ8eAHd6dedZ6XX36ZV155xf54xYoV5Ofnf2S+3//+97zyyitohg/KBAQEXPP1r7SuEV1dXezYsYO//OUvgO1cs7y8PNavX88jjzxyzfVfjQQ0IYQQ015fZwf1F0pouHCOhtLztFRX0tPWan9e72TENyyc6Kwc/MIibEEsIhI3b185CX4KUhQFD/8APPwDiJ091z7dNDhAa001TRVlNFeW0VReRvHOrZgGbddx0mh1+IaFExAVS3B8AsHxSfiFR6LROu48QCHE5Q0NDVFWVkZUVNQ15y0tLeX111/nnXfewd/fn//93/8lPj7+ll7/3XffZcWKFXh4eNin5eTksGfPHgloQgghxGimoUGaykqpv3COhgsl1F8ooau5EbC1uviFRxKRmo7vSItYWAQefv7S3W0G0DsZCYqNJyj24o6Z1Wqho6GBpopSmivKaKooo+zoYU7t2gaAzsmJoJh4guISCIlPIig+AXefmxsgRYjp6lotXeOhpaUFLy+v65p3cHAQo9FIQUEBb7/9Nk899dSYroo349VXX+Xpp58eMy0gIIC6urpbWi9IQBNCCDGFqapKV3MTdefPUl9ylrqSMzRXlmO1WABw9/MnOC6RrDV3EhSXQGB0HHqj0cFVi8lEo9HiExKKT0goSQuWALbtqrOpkfoL56g/f5aG8yUc2/Q+BR+8DYC7rz8RaelEzMokclYmrl7ejnwLQsxIzs7ODAwMXNe8YWFhPPDAAwDcf//9fPrTn76l125paeHw4cO88847Y6YPDAzg7Hzr5yFLQBNCCDFlWMwmGkovUF9yhrqSs9SdP0tvextga+kIjksk5+4HCI5PIjguQXacxU1RFGX42mtBJC9cCoDZZKK5ooz6C+eoPXua0qNHOLVrOwB+4ZFEpmcSMSuTsOQ0GShGiAng7e2NxWJhYGAA4zUOvN13333s3LmT6Ohodu3aRUJCAgCHDx/mN7/5DS+99NINvfabb77JXXfd9ZHXLSkpIS0t7cbeyGVIQBNCCDFpqVYrTZXlVBUfp6r4OLVnTtnPF/IMDCIiNZ3ghCRCEpLxj4iSc4XEuNHp9QTHJxIcn0j2unts22ZFGZUni6g8WUTRlo0UbngPjVZHSEISURnZRGXOJiAqRs5jFGKcrF69mr1797Jy5UrANgT+2bNn6enpISwsjD/96U+sWbOG5557jscff5xf/vKXuLm58cc//hGAqqqqK7Z4XWldAK+99hrPPffcR5bZuXMnP/vZz275fUlAE0IIMWmoqkpHQ50tkJ08TtXpkwx020YG8wkJIzVvBRGpGYQkJkvrmHAoRaMhMCaOwJg45tz7EKahQerOnqGyuIjK48fY+9pL7H3tJVy9vO1hLTI9C2c3d0eXLsS08cUvfpFf/vKX9oB2pfPKvLy82LBhw0emHzp0iC9+8YuXXeZq56hdbnTHxsZG+vv7mTVr1kcXuEES0IQQQjjUYF8fVcVFVBw/SsXxY/YBPdx8/YjNziUiLYPwtHQZmEFManqDE5HpmUSmZ8LHn6S3o52K40cpLyqktPAwp3ZtR1E0BMUnEJ05m5jsOdK6JsQtys7OZtmyZVgsFvu10G7Ez3/+89tWS1VVFb/4xS9uy7okoAkhhJhQqtVKY3npcCA7Sl3JGVSrFb3RmYi0DHLvfoCIWZl4B4fIzquYsly9vElduoLUpSuwWi00XDhPeVEhFccL2f+PV9j/xsu4+/kTO3sucTnzCEtJQ6uT3TIhbtRTTz3l6BIAyM3NvW3rkk8CIYQQ466vq5PK4daEiuNH6R/uthgQHUvuPQ8SnTGb4IQk2UEV05JGoyUkIYmQhCQWPvI4fZ0dlB49TGnBYYp3bqVo83qcXFyJypxNXM5corNycHJxdXTZQggHkW9CIYQQt53VaqGx9ALlRQWUFxXSUHoeVBVnD0+iMmcTnZFNZHoWLp5eji5ViAnn4unFrGWrmbVsNabBASpPHqe04CClhYc5t383Gq2OqMxskhflETt7DnonuTSEEDOJBDQhhBC3hWlggLJjBZQWHLzYSqYoBMclsOChjxOdOZvAmDi5ILQQo+idjMTlzCUuZy5Wq4X68yWcP7yfc/t3U1Z4GL3Rmfg580levIyItHQ0GhmpVIjpTgKaEEKImzbU30fZ0SOUHNpH+bFCzEODOLt72FrJsnKISs/C2d3D0WUKMSVoNFpCE5MJTUxmyeNPUnP6FGf25nP+0D5O796Bq5c3iQuWkLwoz3awQ87RFDPcU089xfr16wkICKC4uNg+/de//jW//e1v0Wq13Hnnnfznf/6nA6u8cRLQhBBC3JDBvj7KCg9RcmgfFUVHMZuGcPXyJm3ZShLmLiQ0OVWO8gtxizQaLRFp6USkpbPiqWcoO3aEM3vyOb5lA0c3vodvWASpS1eQvHgZbt4+ji5XCId48skn+dKXvsSnPvUp+7SdO3fy3nvvcfz4cZycnGhqanJghTdHApoQQohrGuzro7TwEOcO7KHy+FEsZjNu3j7MWrmGhLkLCUlMllAmxDjRGQwkzF1IwtyFDPT0UHJoL6fyt7P75b+w55UXicrMJi1vJTGz56LT6x1drhATZsmSJVRUVIyZ9vvf/57nnnsOJycnAAICAhxQ2a2RgCaEEOKyRkJZycG9VBQV2kKZrx8Zq+8kYd4iQuIT5XwyISaY0c2N9BVrSV+xlra6Wk7t2sbp3Tv44JfPY3R1I2nRUtLyVhEQHStdIMXE2fQcNJy8vesMmgXrnr/hxUpKStizZw/f+c53MBqN/Nd//ddtHQJ/IkhAE0IIYTfU30dpwSHOHdxLxfGjWEwmeyhLnL+I4DgJZUJMFj4hoSx+7AkWfuwTVJ08TnH+Nk7u2ELR5g0ExsQz+857SZi3SC5fIWYUs9lMW1sbBw8e5MiRIzzyyCOUlZVNqQMW8h8rhBAznKqq1J49RfHObZQc3ItpcAA3H18yVt0hLWVCTAEajZaojGyiMrIZ6O3hzN58jm36gI2//i92v/wXMtfcRfrKtTi7uTu6VDFd3URL13gJCwvjgQceQFEU5syZg0ajoaWlBX9/f0eXdt0koAkhxAzV3drC6d07KM7fSkdDPXqjM0kLl5CydAWhCckSyoSYgoyubmStuYvMVXdQXlRI4YZ32fvqixx86zVSly4n+4578QkJc3SZQoyb++67j507d7Js2TJKSkoYGhrCz8/P0WXdEAloQggxg5hNJtpLz/HWgZ1UHj+GqloJS0lj3gOPkjB3IXqjXBBXiOlA0WiIyc4lJjuX5qoKjm58j+L8bRzfuonorBxm33EfEbMyplS3LyEu9dhjj5Gfn09LSwthYWH86Ec/4qmnnuKpp54iLS0Ng8HAiy++OOW2cwloQggxA7Q31HFi24ecyt9Gf3cXbr5+zL3/YVKXrsQrKNjR5QkhxpF/RBRrnnmWxY89QdGWjRzfupE3f/pd/COjmX3nfSQtXIJWJ6M/iqnn1Vdfvez0v//97xNcye0lAU0IIaYpi9lMacFBjm/7kKqTRSgaDbGz50JACHd/4lMyLL4QM4yLpxcLHv44c+59iDP78ilc/y4f/u6X7Hn1RbLW3EX6qnVynpoQk4AENCGEmGY6mxo5uWMzxTu30tvRjruvPwsf+QRpy1bh5uNLfn6+hDMhZjCdwcCsZatJy1tF5fGjFGx4l72vvcTBd14nLW8l2Xfci3dQiKPLFGLGkoAmhBDTgNVioezoEU5s20T58aMoKERn55Cxch1RmdkSyIQQH6EoClGZs4nKnE1zZTmFG97jxLbNFG3ZSMKcBcx94GMERMU4ukwhZhwJaEIIMYV1NTdxcucWindsoae9DTdvH+Y98DFmLV+Nh1+Ao8sTQkwR/pHRrP3CV1j02Kc49uEHFG1eT8mhfcTmzGXeA48SFBvv6BKFmDEkoAkhxBRjby3b/iHlRYUARGfOZsXTXyQmKweNVlrLhBA3x83bh8WPPUHu3Q9ydNP7HN30Hi9/+1+IypzNvAceJTQx2dElCjHtSUATQogpoq+rk+NbNnJi26axrWXLVuPhL61lQojbx+jmxoKHP87sO++jaPN6Cje8y2vf/zoRaenMe/AxwlNmObpEIaYtCWhCCDHJtTfUUbj+XU7t2o55aJCozNms+MwXiMnOldYyIcS4cnJxYe79j5C97h6Ob93IkQ/e5o0ffYuItHSWPP4UgTFxji5RzGBPPfUU69evJyAggOLiYgA+9rGPce7cOQA6Ojrw8vKiqKjIgVXeOAloQggxSdWVnKHgg3c4f+QAWq2W5MXLybnrPnzDIhxdmhBihtEbjeTc/QAZa+7k5LYPOfD26/z9W18hefEyFj36STnnVTjEk08+yZe+9CU+9alP2ae9/vrr9vv/+q//iqenpyNKuyUS0IQQYhKxWi2UFh6m4IN3qDt3GqOrG3Pve5jMNXfh5u3j6PKEEDOc3uBE9h33kpq3ksPv/oOjG9+n5OBesu+4l7n3PYyTi6ujSxQzyJIlS6ioqLjsc6qq8sYbb7Bjx46JLeo2kIAmhBCTgNlk4vTuHRR88Dbt9bV4+Aey7MnPkbZsFQajs6PLE0KIMZxcXFn88SfJWH0H+177G0fee5OTO7Yw/8FHyVi1Dq1O7+gSxQT6j8P/wdm2s7d1nUk+SXxzzjdvevk9e/YQGBhIfPzUG4F0SgU0RVFigO8AnqqqPnSlaUIIMVUM9vVxYtsmCje+R297GwFRsdz57DdImLtQzi8TQkx6Hn4BrPvSv5J9x73sfvnP7PzrCxz78AOWPP5p4nLnoyiKo0sUM9Srr77KY4895ugybsqEBTRFUf4M3AU0qaqaNmr6WuBXgBb4o6qqz19pHaqqlgGfURTlzatNE0KIya63o52jm97n+JaNDPb1EpGWwdov/AuRszJlh0YIMeUExsTx0Hd/SnlRAbv//hfe/8W/E5GWTt4Tn8M/IsrR5YlxdistXePBbDbz9ttvU1hY6OhSbspEtqD9FfgN8NLIBEVRtMBvgVVADXBEUZT3sYW1n12y/FOqqjZNTKlCCDE+OhobKPjgLYrzt2Exm0mYs4Dcex+Si8AKIaY8RVGIycolKj2b49s2sf/1v/O3b3yZjNXrWPDw4zi7ezi6RDFDbNu2jaSkJMLCwhxdyk1RVFWduBdTlChg/UgLmqIo84Efqqq6ZvjxtwBUVb00nF26njcv7c54uWmjnvsc8DmAwMDA2a+99tqtvhUhblpPTw9ubm6OLkNMsMGuDuoLD9J67hSKosE3MZXAzByMXhM/8Idsg8LRZBucGcwD/dQd2U/zqSK0BidCchfgn5qJotE4ujTZBm8DT09P4uIce5mFT3/60+zdu5fW1lYCAgL49re/zac+9SmeeeYZcnNz+cxnPuPQ+kZcuHCBzs7OMdOWLVtWqKpqzuXmd3RAewhYq6rq08OPPwnMVVX1S1dY3hf4KbYWtz+qqvqzy027Wg05OTlqQUHB7XpLQtyw/Px88vLyHF2GmCCdTQ0cfPt1Tu3ajkarJWPlOnLveRA3H1+H1STboHA02QZnlpaqCna++AJVxSfwDYtg2ZOfI3JWpkNrkm3w1p05c4bk5GRHlzElXO53pSjKFQPalBokRFXVVuCZa00TQghH62xq5NA7tmCmaDRkrrmTOfc85NBgJoQQjuAXEcVD3/0pFwoOsuulP/LmT75L/NwFLP/0M3L5ECEuw9EBrRYIH/U4bHiaEEJMSV0tTRx6+w2K87eiKArpK9cx576HcPfxc3RpQgjhMIqiEJ87n+iM2RRueJcDb71KVfFx8j71WVKXrpDBkYQYxdEB7QgQryhKNLZg9ijwcceWJIQQN66vq5PD775B0eYNAKSvXMucex/G3VeCmRBCjNAZDMy9/xHi5y5gyx/+l82//x/O7tvFqs9+Cc+AQEeXJ8SkMJHD7L8K5AF+iqLUAD9QVfVPiqJ8CdiMbeTGP6uqemqiahJCiFtlGhjg6Kb3Ofzem5gGBkjNW8n8hx7Dw8/f0aUJIcSk5RMSxsd+8DzHt25i9yt/5cWvfZFFjz1B1po7J8UgIkI40oQFNFVVL3ulOFVVNwIbJ6oOIYS4HawWC8U7t7L/zVfobW8jNmceix/7FL5hEY4uTQghpoSR83NjZuey9f9+y86//oFz+3ez+vNfxjcs/NorEGKacnQXRyGEmFJUVeXCkQPsefUl2utqCElM4e6vPEdoUoqjSxNCiCnJwy+AB577IWf27GTni//H3775z8x/6OPk3vMgGq3W0eUJMeEkoAkhxHWqOVPM7pf/Qv35c/iEhnPv179H7Ow5cnK7EELcIkVRSFmynMj0LHb8+f+x97WXKC08xNovfBWfkFBHlycmqaeeeor169cTEBBAcXExAEVFRTzzzDMMDAyg0+n43e9+x5w5cxxc6Y2RTr5CCHENrTVVvPOfP+b1Hz5Hd2sLqz//ZZ74+W+Iy5kr4UwIIW4jVy9v7v7qt7jzy1+nva6Wv33zyxz78ANUq9XRpYlJ6Mknn+TDDz8cM+0b3/gGP/jBDygqKuLHP/4x3/jGNxxU3c2TFjQhhLiC7rYW9r/xCqfyt6E3Gln02BNkr7sbvZPR0aUJIcS0lrRwKWHJaWz5w/+y4y9/4MKRg6z5p2fx8AtwdGliElmyZAkVFRVjpimKQldXFwCdnZ2EhIQ4oLJbIwFNCCEuMdjXy+H33uToxvdRrRay77ibufd/DGd3D0eXJoQQM4abjy/3P/dDTu7YTP5Lf+LFr32J5Z/+PClLlkvvhUmm4d//ncEzZ2/rOp2Skwj69rdveLn/+Z//Yc2aNXzta1/DarWyf//+21rXRJCAJoQQwyxmM8e3bODAW68x0NNN8qI8Fn7sk3JtHiGEcBBFUUhfsZaItEw+/N0v+fB3v+T84QOs+uwXcfXydnR5YhL6/e9/zy9/+UsefPBB3njjDT7zmc+wbds2R5d1QySgCSEEUH3qBNv//P9orakiYlYmSx7/NIHRsY4uSwghBOAVGMQjP/h3jm54j72v/40Xv/4l1n3xq0RnznZ0aQJuqqVrvLz44ov86le/AuDhhx/m6aefdnBFN04CmhBiRutua2HX3/7Muf278fAPlJEZhRBiktJotOTc/QBRmbPZ8Kv/5O2f/YCcux9g0aOfRKvTO7o8MUmEhISwa9cu8vLy2LFjB/Hx8Y4u6YZJQBNCzEgWs4mjG9/nwFuvYbWYmffgY8y57yH0BidHlyaEEOIq/MIj+fi//ze7XvoTBR+8TfWpk9z57NfxDpp6g0GIW/PYY4+Rn59PS0sLYWFh/OhHP+L//u//ePbZZzGbzRiNRl544QVHl3nDJKAJIWacypNF7Pjz/6OtroaY7FyWPfE5vIKCHV2WEEKI66Q3OLHy6S8QOSuTzX/4FX9/7llWfuYLJC9e5ujSxAR69dVXLzu9sLBwgiu5vSSgCSFmjJ72Nna++H+UHNiDZ2AQ933j+8TOnloXrxRCCHFR/NwFBMbGseF//4uNv/kFlSeLWP7UMxiMzo4uTYibJgFNCDHtqVYrJ3dsYffLf8FsGmLBw4+Te8+D6AwGR5cmhBDiFnn4BfCxH/yMA2+9ysG3X6eu5Cx3PvsNGehJTFkS0IQQ01prbTVbX/gNtWdPEZ6azqrPfhHv4FBHlyWEEOI20mi1LHzkE0SkprPx1//Fq9/7Gqs//2VSpMujmIIUVVUdXcOEUBTlbuDu0NDQz/797393dDliBuvp6cHNzc3RZUx7VouZhqOHaTh6CI1eT9j8pfgmpcnojMg2KBxPtkExnkz9fZRt+YCeumoCM3IInbcERaMZM49sg7fO09OTuLg4R5cxJVy4cIHOzs4x05YtW1aoqmrO5eafMQFtRE5OjlpQUODoMsQMlp+fT15enqPLmNZqz55mywu/pq22mqSFS8n71NNyQdNRZBsUjibboBhvFrOZ/Jf+SNHm9USmZ3HXs9/EOCqQyTZ4686cOUNycrKjy5gSLve7UhTligFNujgKIaaNwb5e9rzyV45v3YS7nz/3P/cDYrJyHV2WEEKICabV6Vjx1DP4R0az/U+/5+Vv/wv3fv27+IVHOro0Ia5Jc+1ZhBBi8jt/aD9/+eo/cWLbZrLvuJcnf/E7CWdCCDHDpa9YwyM/+BlDA/288t2vceHIQUeXJG6jp556ioCAANLS0uzTjh8/zvz585k1axZ33303XV1dDqzw5khAE0JMad2tLbz3Xz/h/f/+d1w8vfj4T3/Bsic+K0MsCyGEACA0MZlP/Ox/8AkJ473/+gkH3nyVmXaKz3T15JNP8uGHH46Z9vTTT/P8889z8uRJ7r//fn7+8587qLqbJwFNCDElqVYrxzav56//+k9UHD/Gksc/zeM//W+CYuMdXZoQQohJxt3Xj4/96HlSFi9j/z9epmzL+5gGBxxdlrhFS5YswcfHZ8y0kpISlixZAsCqVat46623HFHaLZFz0IQQU05LVQVb/u831JecJTI9i5VPfxGvwCBHlyWEEGIS0xucWPvFr+IfFcOuv/2JN370Le77xvdlEKnbYM8bJbRU99zWdfqFu7H4kYQbXi41NZX33nuP++67j3/84x9UV1ff1romgrSgCSGmDLPJxL7X/8bfnnuWjvo61n3pX3nw2z+WcCaEEOK6KIpCzl33E7v2Plpqqnj5O1+lpbrS0WWJ2+jPf/4zv/vd75g9ezbd3d0YDAZHl3TDpAVNCDEltFRXsvE3v6C5ooyUJctZ+snP4OLh6eiyhBBCTEFe0XHMX/ofvPMfP+LV732de776bSLTMx1d1pR1My1d4yUpKYktW7YAtu6OGzZscHBFN05a0IQQk5pqtXJ00/v8/Vtfoaetlfu+8T3WffGrEs6EEELcksCYOD7+01/g4R/A28//gBPbNzu6JHEbNDU1AWC1WvnJT37CM8884+CKbpwENCHEpNXT1spbP/sBO//6ApGzMnni578hdvZcR5clhBBimvDwC+DRH/0nEWkZbH3h1+x55a+oVqujyxLX6bHHHmP+/PmcO3eOsLAw/vSnP/Hqq6+SkJBAUlISISEhfPrTn3Z0mTdMujgKISalkkP72PrCbzAPDbHy6S+QvnIdiqI4uiwhhBDTjJOLC/d/8wds//PvOfzem3Q0NrD2i/+C3uDk6NLENbz66quXnf7ss89OcCW3lwQ0IcSkMtjXx86/vsCpXdsIjInnjn/+V3xCwhxdlhBCiGlMo9Wy8ukv4h0Uwq6X/0J3WwsPfPOHGN3cHF2amIEkoAkhJo2as6f48Lf/TVdzM/MefJR5DzyKVicfU0IIIcafoijk3P0AHgGBbPzfn/PGv32bh77zb3LOs5hwcg6aEMLhLGYTe175K6//8DkAPvaj/2DhI5+QcCaEEGLCJcxdyL1f/x7ttTW88aNv0dPe5uiSxAwjAU0I4VAtVRW8/O2vcvi9N5m1bBWf+s9fE5qY7OiyhBBCzGDRmbO5/7kf0tXcxOs//CZdLU2OLknMIBLQhBAOoVqtFKx/h79/+1/o7Wjn3q9/j9Wf/zIGZxdHlyaEEEIQkZbOg9/5N/o6O3n9h8/R0djg6JLEDCEBTQgx4bpamvjHT77Lrr/9iaiM2Tzx898QlyPD5wshhJhcQhOTeeT7/85Qfz+v/+AbtNZWO7okMQNIQBNCTBhVVTm9Zycvfu1LNJSeZ/UzX+ber30HF08vR5cmhBBCXFZgTByPfP/fsVqtvPGjb9FcVeHokgRQXV3NsmXLSElJITU1lV/96lcAtLW1sWrVKuLj41m1ahXt7e0OrvTGSUATQkwI09Agm3//Kzb95hf4R0bxxM9/zaxlq+XaZkIIISY9/8hoHvnBz9BoNLzxo2/RWHbB0SXNeDqdjl/84hecPn2agwcP8tvf/pbTp0/z/PPPs2LFCs6fP8+KFSt4/vnnHV3qDZOAJoQYdx0N9bz63a9xatc25j34GI/84Gd4BgQ5uiwhhBDiuvmGhvOxH/4HBmdn3vjxt6m/cM7RJc1owcHBZGdnA+Du7k5ycjK1tbW89957PPHEEwA88cQTvPvuuw6s8ubIGNZCiHFVWniITb/5bxRF4f7nfkBMVq6jSxJCCCFuildQMB/74fO88aNv8dZPv89D3/k3guISHF2Ww+386ws0VZbd1nUGRMaw7MnPXde8FRUVHDt2jLlz59LY2EhwcDAAQUFBNDY23ta6JsKMCWiKotwN3B0aGvr/2bvr8CiutoHDv1lLsnF3I4YT3N3drUgN6m5f+9beuruXGtKW4u7u7k4IUeLua/P9sbxAW5wks0nOfV1zzW4ys/MsTHbnmXPOc9i0aZPS4Qh1WHFxcZ04B2WLhQt7tpN+cDd6b1/q9RlCUkEJSXXgvdu6unIOCrZLnIOC0u70HAzuM4Qzi/9i9hsvETV4NI51sFeIq6srRUVFABiMBswmc6W+vsFouPT611NcXMzw4cN57733Lg2buHI/SZJu6nWqUnl5+S2db5Isy1UXjQ1q1aqVvG/fPqXDEOqwTZs20a1bN6XDqFKlBfks//JDko4doUnPvvS450E0Op3SYQkX1YVzULBt4hwUlFYZ52BhViZ/vfESFaXFjH7lHXzrRVZOcDXEyZMnadBA2XlLjUYjgwYNom/fvjzzzDMAxMTEsGnTJvz9/UlLS6Nbt26cPq1sd9Sr/VtJkrRfluVWV9tejEETBKFSXThzkpkvPsmF06fo+9CT9HngcZGcCYIgCLWOi7cPY157Fzu9I/PefkUUDqlmsixz//3306BBg0vJGcCQIUOYPn06ANOnT2fo0KFKhXjbRIImCEKlObx2JX/99yXUWi3j3vqIxt17Kx2SIAiCIFQZVx9fxrz2LloHB2uSdv6c0iHVGdu3b2fmzJls2LCB2NhYYmNjWbFiBS+++CJr164lKiqKdevW8eKLLyod6i2rM2PQBEGoOmaTkY2//cjhtSsJi23JwMefx97JSemwBEEQBKHKufr4Mea195jzxkvMe/sVRr/6Dj5h9ZQOq9br1KkT1xqqtX79+mqOpWrFgAAA23FJREFUpnKJFjRBEO5IaUE+c996hcNrV9J66CiG/99rIjkTBEEQ6hQ3Xz/GvP4eGjs75r71MpkJlVvRUKhbRIImCMJty0yIZ9Z/nibj3FkGPP4cXe66B5VKrXRYgiAIglDt3Hz9GPvaxSTt7VfISU1WOiShhhIJmiAIt+X0zq38+erzyLLMuDc/pEGnbkqHJAiCIAiKcvPzZ8xr76JSqZj/zmsU5WQrHZJQA4kETRCEWyJbLGybPYNln3+AT3gEE9/9rM6VFhYEQRCEa3H3C2DES29QUVrCvHdepayoUOmQqkxdm67rdtzOv5FI0ARBuGkVpaUs+vhtdi+cQ5MefRj96js4urkrHZYgCIIg2BTf8AiGPf8KBZnpLPzgDYzl5UqHVOns7e3JyckRSdp1yLJMTk4O9vb2t7SfqOIoCMJNyc9IZ9GHb5J7IYUe9z1EbJ+BSJKkdFiCIAiCYJOCGzVl4BPPs/TT91n62XsMff5V1Jrac+kdFBRESkoKWVlZSodi0+zt7QkKCrqlfWrPWSIIQpVJPn6EJZ+9DxYLo15+i5DGzZQOSRAEQRBsXlSbDvSa+ihrf/yK1d9/Qf9HnkZS1Y4ObFqtlvDwcKXDqJVEgiYIwnUdWbeK9b98h5tfAMNeeBV3vwClQxIEQRCEGqNpz76UFRawbfYMHJxd6DZ5iuiBIlyXSNAEQbgqi9nMphk/cXDVUsJjWzLwyRew0zsqHZYgCIIg1Dhtho2mtCCfAysWo3d1o+2w0UqHJNgwkaAJgvAv5cXFLP38fZKOHqLloOF0mSDmNxMEQRCE2yVJEt0mT6G0sIBtf05H7+JKkx59lA5LsFEiQRME4W9yL6Sw6MM3KcjMpO9DT9K4e2+lQxIEQRCEGk9Sqej3yFOUlxSz9sevcfb0IqxZC6XDEmxQ7RilKAhCpUg6dpg/Xn6W8pISRr/2jkjOBEEQBKESqTVaBj/9Il7BISz74gPy0lKVDkmwQSJBEwQBgFM7tjD/3ddx8vBkwjufElS/kdIhCYIgCEKto7N3YOjzr6JSqVn04VtUlJYoHZJgY0SCJggCB1YsZvkXH+IfFcO4Nz7E1cdX6ZAEQRAEodZy9fFl8DMvkZ+RxvIvP8JiMSsdkmBDRIImCHWYbLGw5fdf2Th9GlFtOjDq5bewd3JSOixBEARBqPWCGzahx70Pcv7gPrbNnql0OIINEUVCBKGOMptMrPn+C05s3Uiz3gPocd+DolKjIFQDWZYxmyyYTTJmo+XiY8sVj2VMFWaMFWYMFSaM5dbHxgrzxccmZECtVqHSSKjUKtRqCZVGhUotoVarUGtVaO1UaHRqtDo1GruLa50KrZ0atVaFRqtCrbEukkrMySQISmjWewBZiefZu3ge3sGhNOjcXemQBBsgEjRBqIMM5WUs/fQ9Eg4foOPYSbQdPkZMmikIt0iWZYzlZspLjNal2Eh5qZHyYhMVpZefV5SYLm1TUWL9nSzfxgEl0NlZky1JkrCYrcmcxWTBYpaxWG7nRa1UasmarF1M2nQOGvTOWhycdRcXLXoX3eXnTlrsHbXo9BpUIrkThDvS/Z4HyElNZs0PX+HuH4hfZLTSIQkKEwmaINQxpQX5LHj/DTITztHnwSfEPCyCcAVZlikvMVJaYLAuhRWUFBooLTRQdnFdWmigrNhIRYkRi/naSZHOXo29kxY7vRZ7Rw3OnvbY67XY6TVo7NR/a8FSX3psTZS0dmq09mrr2k6D1t66/fVupMgWGYtZxmy2YDJYMBnMGA1mTBWXHxsrzJgMZsxGCybjlS138qXHJpMFQ5mJsiID2SnFlBUZqCg1XfO4dnoNdnoN9o5a7By12Os16F3tcPV2wM1Hj6uPA04e9iKRE4RrsFZ2fInf//M0iz9+mwnvfY6Tu4fSYQkKEgmaINQh+RnpzH/nVYrzchn63CtEtGyjdEiCoAiT0UxBZhl56aXkZ5SSn3lxnVF61WREo1Whd9Whd9Hh6u2AX7iLNflytLYk2TtqsXe6/NjOUYNaXb3DvCWVhFolodaq0NlX7mubjRbKio2UFVkT1MstgkbKS03W9cXWwcLsMkryszEZLJf2V2kkXL0ccPV2wNVHT26BTGpAHu5+jjg4a0ULvlDn6V1cGfb8q/z56vMs+fgdxrz+HhqdTumwBIWIBE0Q6oisxPPMf/c1zCYTo199h4Do+kqHJAhVymyyUJhdRkFWGQWZZeRnllKQWUp+ZhlFueVwReOXo5sdbr56olr54uarx9HNzpqQOevQu+rQXuxWWFeptSqc3O1wcre7qe1lWaa0wHDx37zs0rogq5SUU3mYjDKL9h0EwM5Rg4efI+5+etz9HXH3c8TdX4+zu70YGyfUKd6h4fR/9BmWfPoua6d9Tb9Hnq7Tnzt1mSTfVkf4mkeSpMHA4MDAwKmzZs1SOhyhDisuLsapmislFqelELdiISqtjqjBo3Bw96zW4wu2RYlzsCrJsoyxBMpyoTxPpjwfKgrBWMrfkjCVFnTOYOd0ce0ioXO2PlZrxUVQdZFlmYLsUjQmPRWFUFEoX1yDueLydirNxf8nV+v/lZ2L9bHOEZG4CXfMlj8HL+zdTtq+nQR37olP4+ZKhyNUke7du++XZbnV1X5XZxK0/2nVqpW8b98+pcMQ6rBNmzbRrVu3ajte/IG9LP3sfZy9vBn18pu4ePlU27EF21Td52Blki0yBVllZCUVkZlURFZSEdnJRZe6JarUEh4Bjrj76nG9OP7pf+Og7B1FVzpbca1zsKzYQF5aKblpJeSll5CXVkJeeinFeZczN5VGwt3PEZ8QZ7xDnPEJdcEzyBGNVlShFW6eLX8OyhYLCz98k8Qjhxj35gf4R8YoHZJQBSRJumaCJro4CkItdmLrRlZ9+xk+YfUY8dIb6F1clQ5JEG6aocxETmox2SnFZKcWk5NSTM6FEkwV1gld1RoVnoGORLb0uXSh7uHviForpvisqRycdDhE6QiIcvvbzw1lJnLTS8hLKyUvrYSc1GLOH8nm5I40AFQqCfcAR3xCna2JW6gLXoFO4lwQaiRJpaL/Y88y68UnWfrZ+0x6/wscnF2UDkuoRiJBE4Ra6sDKJWz87UeCGzVl2POvoHPQKx2SIFxTebGRzMTCi0sROanFFGaXX/q9nV6DV5ATDTv44xnkhHeIMx4BjtVeiENQhs5Bg1+4K37hl28yybJMcV4FmYmFZCVaW1TPH8rm5PaLSZtawjPQCZ8wF3xCnfENc8Hd31FUkxRqBAcnZwY/9SJ/vvYCK7/5lOEvvIakEp93dYVI0AShlpFlmR1zf2fX/NlEtm7PwCeeF5WgBJtiKDdZuygmFF1Kyq5Mxtx89fiEutCgYwBegU54Bjnh5G4nuicKfyNJEs4e9jh72BPR3Np1W5ZlinLLyUwoIiupkIyEIs7uSef4llQANDoV3iHWZC0wxp3AaHe0dqJrpGCb/CKj6X73VNb/8h17Fs+j7fAxSockVBORoAlCLWKxmNnwy/ccXruSxt370Hvqo6jU4uJDUJbZbCEjvpDkk7kkHc8hM6noUvEOZw97fMKcadQ5EJ9Qa9c0Owfx1STcHkmScPF0wMXTgciWF5M2i0x+ZimZiUVkJlhvCBzdlMqhdcmo1BJ+9VwJbuBBUAN3fEJdRAubYFOa9RlA6ukTbP9rFv5RMYQ0bqZ0SEI1EN+CglBLWCxmVn37OSe3bqT10FF0Hn+3aHEQFFOQVUryiVySTuSScjoPY7kZSQLfcFda9Q/DN9wFn1AX9C6idVeoWpLKWlTE3c+RmLZ+AJgMZtLiCkg+mUvyqVx2L4ln9xJrV9rAGHeCG3gQ2tgTZ49KnlBOEG6RJEn0fuAxMhPiWf7lR0x6/wucPEQl5tpOJGiCUAtYLGZWffMZJ7dtouPYSbQbMVbpkIQ6pqzIQMrpPFJP55F8Ko/CrDLA2kIW1dqXkIYeBMW4Y6fXKhypIIBGpya4oQfBDT2Ai+fvqTyST+WSfDKX+INZAHgGORHWxJOwJl74hrmI8v6CInT2Dgx55j/8/p+nWfbFB4x+9V3UGnEJX5uJ/11BqOGuTM46jZss+qgL1aKizMSFs/mknsoj5XQuOaklAGjt1QRGudGsRzAhDT1w9XEQLbmCzXNw1hHV2peo1r7IskxeeimJR3NIOJrNgdVJ7F+ZiIOzltDG1mQtuKEHOntxCSVUH8+gYHo/8BgrvvqYbbNn0HXifUqHJFQh8ekiCDWYxWJm5defcmr7ZpGcCVVKlmWyk4uJP5xF0vFcshILkWVQa1X4R7jSbpgvgTHu+IQ4oxKVFYUaTJIkPPwd8fB3pHmfEMpLjCQdzyHhaA7nD2dzamc6KrVEQJQboY09CW3siZuvXtyIEKpcg07dSD19kn1LFxAQ04Co1u2VDkmoIiJBE4QaSiRnQlUzmyyknsnj/OFsEo5kU5xXcWkcWcsBYQTFuOMX7irmmhJqNXtHLdFt/Ihu44fFbCHtXAEJR3NIPJbD9nlxbJ8Xh4uXPaGNvQht7ElgtBsanSjOJFSNbpOnkB53htXffo7PB/Vw9fFVOiShCogETRBqIIvZzMpvRHImVL6KUiOJx6wtBYnHczCWm9HoVAQ38KDN4HqENfHEwVkU9hDqJpVaRWC0tTx/x5GRFGaXkXTcmqyd3H6Bo5tSUGtVBMW4E9nSh3qx3uhEVVKhEmm0WgY//SIzXniM1d99zuhX3xHzo9VC4lNDEGqYvyVn4++m7bDRSock1HD5maUkHLG2kl2IK0C2yDi46Ihq6UN4M2+C6ruLFgFBuAoXLwcadw2icdcgTEYzF87kW29wHMlm/fSTbPrjNOFNvYhu40tII0/UGnEhLdw5Vx9fut09lTXff8nB1cto0X+I0iEJlUwkaIJQg4jkTKgMskXmwtl8a1J2NJu89FIAPAKsY27Cm4qKdYJwqzRaNSGNPAlp5EmnMVGkxxdyZk86cfszidufiZ1eQ0RLH2La+OIf4Sb+voQ70rhbb87u3sHWP6YT1qwlHgGBSockVCKRoAlCDSFbLKz67nORnAm3xWQ0k3wyj/gDmZw9IHPCcOBSoYPGXQMJa+KFi5eD0mEKQq0gSRL+Ea74R7jSaUwUySdyObMngzO70zmx9QJOHnbUb+9Pgw7+uHiKvzvh1kmSRJ8HHmf6c4+y6ttPGffmh6hUoqdDbSESNEGoAWRZZv0v33Fy60Y6jp0kkjPhphgrzCQeyyH+YCYJx6zjyez0Gpz8oV2fxoQ09BDjYwShiqnVKsKaeBHWxAtDuYnzh7M5szudfSsS2LcigZCGHjTsFEBYUy/UogKqcAucPDzpcf/DrPjyI/YtXUiboaOUDkmoJOKbWRBsnCzLbPn9Vw6vXUnroaNEQRDhugzlJhKOZHPuQBZJx3MwGS3YO2mJaulDRAsfAmPc2bptC5EtfZQOVRDqHJ29hpi2fsS09aMwu4yTO9I4uSONVT8cw8FZS/32/jTsGICbr17pUIUaon6HLpzdvZ0dc2ZRr3krvELClA5JqAQiQRMEG7drwWz2LV1AbN+BdB5/t5hrR/gXWZbJOF/IiW0XOLsvA5PBgt5VR4MO/tRr4UNApKuYm0wQbIyLlwNth9Sj9cAwko7ncmL7BQ6tS+bgmiQCo90u/f1qRYEe4TokSaLXlEf57eRxVn7zGXe98wlqjbi8r+nE/6Ag2LD9yxezY87vNOzSgx73PCiSM+FvyouNnN6dzontF8i9UILGTk10a1/qt/fHr56rKEIgCDWASq0irKkXYU29KMmv4OTONE5uv8C6306inX2GqJY+1r/pCFfxHSBcld7Fld5TH2XJJ++ye+FfdBg9QemQhDskEjRBsFFHN6xh04xpRLXtQN+HnhTznAiAtQJjypk8Tm67wLlDWVhMMr7hLnSfWJ/IVj7o7MXHuiDUVI5udrTqH0bLvqFciMvn1I40zuzN4MT2NNx89dRvb+0e6eRur3Sogo2JatOBBp27s3vhHCJatsW3XqTSIQl3QHyTC4INOrV9M2t+/Iqw2JYMfOJ5VGrRxaWuK8gq4/SuNE7vTqcwuxw7vYbGnQNp2CkAz0AnpcMTBKESSSrp0oTYncdFc+5AJqd2prNrUTy7F8cT3MCDxt2CCGvsKVrKhUt63PMgyccOs/KbT5n43udodDqlQxJuk0jQBMHGnNu/m5XffEpQ/UYMeeYl1Bqt0iEJCjGUmzh3IItTO9O4cDYfJAiu707bIfWo19wbjVYk7oJQ2+nsNTToEECDDgEUZJVyamc6p3amseLbI7j76YntFUJ0W1/xeSBg7+REn4eeZMF7r7Nj7u90mXCv0iEJt0kkaIJgQ5KOHWbpZ+/jE1aPYS+8htZOdGOpa2SLTOrZfE7tTOPcgUxMBguuPg60HVqPmLZ+OHuIc0IQ6ipXbz1th9Sj1cAwzh3I5OCaJDbOOsWuxedo2j2Ixl2CsHcSN/XqsvDYljTp2Zd9SxcS2bo9AdH1lQ5JuA0iQRMEG5ERH8eij97GzdefES+9gZ1elFmuS4wGM6d3pnFoXTIFWWXo7NVEt/Wjfjt//Oq5iOIAgiBcolariG7tR1QrX1LP5HNobRK7l5xn/8pEGnTwp1mvYFy9xXdIXdVt0v2cP7SftT9+xcT3Pxc9cWogkaAJgg3IS0tl/nuv4+DszKiX38LB2UXpkIRqUlpo4OjmFI5tSqW8xIhPmAu9BoUT0dwbjSivLQjCdUiSRFCMO0Ex7uRcKObQumSOb7vA0S2pRMR607xvKL5h4vukrtE56Ol1/8Ms+vAt9i5ZQLsRY5UOSbhFNTJBkySpHvAy4CrL8ihJkoYBAwEX4GdZltcoGZ8g3Iri3BzmvfMayDIj//MWTh6eSockVIO89BIOrU/m9M50zCYLYU29aN4nBH9RSlsQhNvgGeBEz8kNaDe0Hkc2pnBscyrnDmYRGONGiz6hBDf0EJ8tdUhEy7ZEt+vErgWziW7XCY+AQKVDEm7BTSVokiS5AT8BjQEZuE+W5Z23ejBJkn4BBgGZsiw3/sfv+gFfAGrgJ1mW37/W68iyHA/cL0nSvIvPFwGLJElyBz4GRIIm1AjlJcXMf+91yooKGfPau+IDtJaTZZm0uAIOrUvi/JFs1GoVMe39iO0ZjLufo9LhCYJQCzi62tF+WAQt+4ZyfOsFDq9PYulXh/EKdqJ5nxAiW/iIievriB73PkjikYOsnfYVY159V0zXU4PcbAvaF8Cqi61VOuBvHZslSfIBymRZLrriZ5GyLMf943V+A74GZvxjfzXwDdAbSAH2SpK0BGuy9t4/XuM+WZYzrxHnKxdfRxBsntFQwaIP3yQ3NYURL/4Xv4gopUMSqojJaObs3kyObEwmO7kYe0ctrQaE0aRrEHoXUQZZEITKp3PQ0LxPCE27B3FmbzoH1ySx9ucT7F4cT2yvEBp08BfdqGs5Rzd3uky8l7U/fs2xTeto0qOP0iEJN+mGCZokSa5AF+AeAFmWDYDhH5t1BR6SJGmALMsVkiRNBUYA/a/cSJblLZIkhV3lMG2AuIstY0iSNBsYKsvye1hb3G4UowS8D6yUZfnAjbYXBKVZzGaWff4BqadPMujJFwhtGqt0SEIVKMmv4NiWVI5vTaWsyIhHgCPdJsQQ3dYPrbgwEgShGqi1Khp0CKB+O3/OH8nm4JpEtsw+w76VCbTqH0bDTgGoNaJlpbZq0r0PJ7duYvOsn6nXojWObu5KhyTcBEmW5etvIEmxwI/ACaAZsB94Upblkn9s9wLQAZgLPAb0lmW5+CqvFwYsu7KLoyRJo4B+sixPufh8EtBWluXHrhGTJ/AO1ha3n4AS4G5gL3BIluXvr7LPYGBwYGDg1FmzZl33PQtCVSoqKiJn33ZyTh0juHNPfBo3VzokoZKVZsvknpEpSAZkcA4EjygJR19sYgxIcXExTk5icmtBOeIcVFZJpkzmUZnSLNDqwbuxhFsYdWrS67p0Dpbn5XJi7nTcwiKp12ew0uEIF3Xv3n2/LMutrva7m+niqAFaAI/LsrxbkqQvgBeBV6/cSJblDy+2fH0HRFwtOasssiznAA/948df3mCfpcDSVq1aTe3WrVtVhSYINzTr/TfJOXWM9qPG02H0BKXDESqJxSJz/lAWB9cmkXG+EJ29mmY9AmjSLdDmyl1v2rQJ8TkoKEmcg8qTR8skn8hl95J4LuwpojRRT5vB4US28KkTiVpdOwfdLAa2z5lFsPNYIlq2UToc4QZuJkFLAVJkWd598fk8rAna30iS1BlrEZGFwOtYW9FuVioQfMXzoIs/E4RaZf/yxWQc3EOz3v1pP+oupcMRKoHJYObUFfOXuXg70HlsNPXb+6Gzr5GFcgVBqAMkSSKkkSfBDT04fzib3UviWfPTcfYHJdJ2SD3CmnjaRIu/UDlaDx3JqR1bWP/zdwQ3bIzOwbZuHAp/d8NOx7IspwPJkiTFXPxRT6zdHS+RJKk51m6QQ4F7AU9Jkt6+hTj2AlGSJIVfLEIyDlhyC/sLgs07t383m2b+hFt4FD3ue0h88dVw5cVG9i4/z4yXd7D5zzPYOWrpO7UxE95oR9PuQSI5EwShRpAkiXqx3ox9pQ2972uIqcLMim+PsPCTA2QlFd34BYQaQa3R0ufBxynKzWbbXzOVDke4gZu9gngc+P1i8hSPNQm7kh4YI8vyOQBJkiZzsajIlSRJ+hPoBnhJkpQCvC7L8s+yLJskSXoMWI21cuMvsiwfv433Iwg2KTMhnuVffIRveAQBPQagUokCETVVYXYZh9Ylc3L7BUxGC2FNPK3zl0W6iaRbEIQaS6WSiG7jR0RLH07tSGP3knjmvLeXhh38aTs0QlScrQUCohsQ22cAB1cto0HHbvhHxdx4J0ERN5WgybJ8CLjqILaLv9/+j+dGYNpVtht/nddYAay4mXgEoSYpzstl0YdvYefoyLDnX2XfkaNKhyTchpKCCvYtT+DEtgsgQXRbP5r3CsEjQMxfJghC7aFWq2jUOZDIVr7sW36eIxtSiNufSasB4TTtESQqPtZwncbdTdzeXaz58Ssmvvc5ao3o7WGLxP+KIFQho6GCxR+9RVlxIePe+BAnD0+lQxJuUUWpkQNrkjiyPhmLWaZh5wBa9gvDyd1O6dAEQRCqjJ2Dho6jomjYKYDt8+PYsSCO49tS6TQqilAxPq3GstPr6Xnfwyz++G0OrFxC68EjlA5JuAqRoAlCFZEtFlZ98xnp8XEMefY/+IZHKB2ScAuMBjNHN6ZwYHUiFWUmolv70mZwuM1VZBQEQahK7n6ODHq0GYnHc9g+9yzLvz1CSEMPOo6OwsNf9CCoiSJbtyM8tiW75s+mUZce6F3dlA5J+AfRTi0IVWTHvD84s2sbXe66h6jW7ZUOR7hJZrOFY1tSmfXqTnYuPIdfhCtjX25N7/saieRMEIQ6K7SRJ2NfbUOn0VGkny9k9lt72PrXGcpLjEqHJtyGrpOnYDJUiIIhNkq0oAlCFTi5dSO75s+mcffetBLdB2oE2SJzdl8Ge5aepyCrDP8IV/pOaUxAlJvSoQmCINgEtVpFs57BRLfxZffS8xzdlMKZPRm0GRxOo84BqNTivn9N4RkYTGzfQRxYuYTYPgPxCaundEjCFcRfkiBUstRTJ1j9/RcENWxMrymPiH76Nk6WZeIPZjH77T2s/eUEGp2agY80ZfhzLURyJgiCcBUOzjq63RXDmJfb4BnkyJbZZ/jrnb0kn8pVOjThFrQfOR57J2c2Tv8RWZaVDke4gmhBE4RKVJCZzuJP3sHZy5shz/wHtUardEjCNciyTPKJXHYviSczsQg3Xz19pjQisoUPkkok1YIgCDfiFeTE0KeaE38oi+3z4ljy+SHCm3nRcVSk6BJeA9g7OdFxzETW//wtZ/fsILptR6VDEi4SCZogVBJDWSmLPnwLi9nE8P97HQdnF6VDEq7hwtl8di0+R1pcAc4e9vSYXJ+Ytn6ie44gCMItkiSJiOY+hDb25PD6ZPatTOSPN3bTok8orfqHodaKz1Vb1rRnXw6vWc7mmb9Qr3lrNDox350tEAmaIFQCi8XM8q8+Jic1mZEvvYlHQJDSIQlXkZ1SxM4F50g6kYveVUeXcdE07BQg5vURBEG4Qxqtmpb9wqjfzp8dC+PYtyKBcwez6Dm5Ab7h4oalrVKp1XS7eyrz3n6F/csX0Xb4GKVDEhAJmiBUiu2zZxK/fw897n2Q0KaxSocj/ENRbjm7l8Rzenc6dg4aOoyIpHG3QLQ6tdKhCYIg1CqObnb0vrcR0a392PT7KeZ/uI/YXiG0GRyORnzm2qTQJrFEtm7H7oVzaNS1p5iz1QaI28aCcIdObt3InsXzaNqzH7F9BykdjnCFijITOxee4/fXdxG3L5PmvUKY+FZ7mvcJEcmZIAhCFQpt7Mm419rSoFMAB9cmMfvtPVyIy1c6LOEauk68H4vZxLbZM5QORUC0oAnCHUmLO83qH74kqEFjetz3oKjYaCPMJutcZvuWJ1BeYiS6rS9th9TDxdNB6dAEQRDqDDsHDd0n1CeypQ8bZ55i4ScHaNItiPbDItDaiZtktsTNz58WA4ayd8l8YvsMxC8yWumQ6jTRgiYIt6koN5vFH7+Do5sHg595SVRstAGyLBO3P5M/3tjNtjln8QxyYsx/WtP73kYiORMEQVBIcH0Pxr3ahibdgji6MYXZb+0mRZTktzlth49F7+rGBlF2X3EiQROE22A0VLD4o3cwlJUx7IVX0bu4Kh1SnVeQVcrSrw6zetoxNFoVgx5rxtCnYvEOcVY6NEEQhDpPZ6+hy9hohj/bAkklsfjzQ2z+8zSGcpPSoQkX2en1dBo/mbQzpzi1fbPS4dRpooujINwiWZZZ/d0XZJyPY+hzr+AdEqZ0SHWa2WTh0Lok9i5PQKWW6Dw2msZdA1GJucwEQRBsTkCUG2NfacPuxfEc3pBM0vEcekxqQGCMu9KhCUDjrr04tHo5W/74jchW7dDa2ysdUp0kWtAE4RbtWTSX0zu20GnsJCJbtVU6nDotLS6fOe/uZdeieMIae3LX6+1o2j1IJGeCIAg2TKtT02l0lLU1TZJY9NlBtojWNJsgqVR0v+cBinOyObByidLh1FmiBU0QbkHc3l1smz2D+h270mbYaKXDqbPKS4zsXHSOE1sv4ORhx4BHmhLe1EvpsARBEIRbEBDpxthX27Br0TmObEwh8XgOPSY3IDBatKYpKah+I+q1aM2+pQuI7TsQO72j0iHVOaIFTRBuUn56Giu/+RTfelH0eegJUbFRAbIsc3ZvBn+8sZuT2y4Q2yuY8a+1FcmZIAhCDaXVqek8Jprhz7QASWLRpwfZMvsMxgqz0qHVaR1GT6C8pFi0oilEtKAJwk0wGY0s/fx9JJXE4KdfRKuzUzqkOic/s5Qts8+QfCIXn1BnBj/WTBQAEQRBqCUCotwY98rl1rTkk7n0e6AxnoFOSodWJ/nWiySiVTv2L1tE836DsXcU/w/VSbSgCcJN2DLrFzLPn6Pfw0/j6uOrdDh1itloYd+K88x+cw/p8QV0HhvNyP9rJZIzQRCEWkZrp6bz2GiGPt0cQ5mJee/v4+SONKXDqrM6jL6LitIS9i9frHQodY5oQROEGzizezsHVy2lxYChRLZup3Q4dUrqmTw2/3GavPRSIlr40HlMFI5uovVSUIZsNmMuKMCcX4CluAhLcTHmkhIsJSVYiv+3LsZSWgqApNGARo2k0SJpNEhaDaitzwGwmJEtFjBbQLZceizLFlT2DqhdnFE5u1xcO6N2cbGunZ2R7O1FN2uh1gqKcWfMy61Z+8txNsw4SVpcPl3GRaPRicmtq5NPWD2i2nbgwIpFtBgwBAcncWO0uogETRCuIz8jnTXff4lfRBRdJtyjdDh1RlmxgR3z4ji1Kx1nT3sGPdaM0MaeSocl1BKyLGMpKcGcX4C5IB9zfj6WgoKLyVe+9ef5eZjy8y8+t/7MUlBw4xfXalHp9dbHRiOyyYRsNoO58sfTSDodkp3dxbUOlfbyc5WDAypHx2ssejRe3uiCg9AGB6MSZbQFG+ToaseQJ5uzZ2k8+1cmkplYRL8HGuPmq1c6tDqlw6i7OLtnJ/uXLaTTuMlKh1NniARNEK7BZDSy7PMPABj01P+h/t9db6HKyLLMqZ1pbJ8fh7HMTIt+obQaEIZW3DUVbpKlpARjZiamjExMmRmYMjMxZmRiyrj4ODMDU1Y2GI3XfA1Jr0fj5ob64qILCr70+H+LytkJtZOTNeG5cq3TXfU1ZYsFTCZrwmYygSSBpEJSq0ClQlJZ16isIw/kigrMhYVYioqs6+LiK54XIZeXIRsMWCoMyAYDckWF9bmhArnCgFxWhjEz43LLXkkJcnn5VWPTeHujDQ5GFxx8cR2ENjAQjZ8/Wh9vpGu8J0GoaiqVRLuhEfhHuLH21+PMeW8vPSY1ILKlj9Kh1RleIWHEtOvEgRVLaDFgKHoXV6VDqhNEgiYI17D191/JiD/LkGf/g6uPn9Lh1HolBRVsnHmKxGM5+Ee60vWuGDwDxKBk4TLZbMaQmETFuThM6daEy5SZcUVClomluPhf+6mcnND4+KDx9cGxdRs0Pt6o3T1Qu7qidnO1Jl2urqhdXVG5ul4zyboTkkoFOt1NJzuSvb21Zcun8i5EZZMJS2kplpISTJmZGJKSMaYkY0hOwZiURMnu3ZgW/2OsiSSh9vJE6+uH1t8PzcW1NjAIu6hIdCEhSFpx80qoWqGNPRn7chtWTzvG6mnHSIsLosPISNQaUUqhOrQfdRend21j39IFdJlwr9Lh1AkiQROEqzi7ZwcHVi6hef/BRLXpoHQ4tV78oSw2zjqFscJM57FRNOkahCQmm67TTHl5VJw+Q8WZ05SfPm19fPYsckXF5Y00GjQ+3mh9fLGLjMSxY8eLz33Q+Pqi8fFF4+OD2knM4QPWMXFqFxfULi5o/f1xaNbsX9tYKiowpqRgvJCGKSMdY1o6xox0TGnpVJw/T8mOnVhKSi7voNGgCwvFLiISu8hI7CIj0EVEoAsLq5JEV6i7nD3sGf5sC3YsiOPIhhQyEgrp/1ATHF3FuOSq5hkUTIOOXTm4ehmtBg1H7+qmdEi1nkjQBOEfCjLTWf39F/jWi6LLhPuUDqdWM5Sb2D73LCe2p+EV7ETvexvhESAupusSWZYxpqRQfuIk5SdPUH7yJBUnT2HKzLy0jdrDA/v6MbiPH49dTAx2kZFoA/xRu7tbW6aESqOys8MuIgK7iIhrbmMuKsKQlITh3DkqzsZRce4c5adOUrRmDcjyxRdSoQ0MRBcehi7MuthdXGv8RI8E4faoNSo6j4nGP8KN9dNPMO/9fQx4uKmo6lsN2o0cz6ntW9izZD7dJt2vdDi1nkjQBOEKZpN13JlskRn01P+hEV13qkx6fAHrfj1BQXYZLfqG0mZwuOiuUstZysqoiI+n4sxZyk+eoOLkKcpPncJSVGTdQK3Grl499O3aYh9TH7uYGOxjolF7eYmKhTZE7eyMQ6NGODRq9LefW8rLMZw/T0VcHIbz5zEkJFCRkEDpvv3IFytbAkh2dnh4e3Nh5UrsomPE/7NwyyJb+uDq48CKb4+w4KP99Li7AVGtxBQ4VckjIJAGnbtxePVyWg0ajpO7h9Ih1WoiQROEK2z9Yzrp584y+JmXcPMVd3mrgsVsYd+KBPatTMTJzY7hzzQnIMpd6bCESmQpLaUi/jwVcWf/1spiTEm51MIi2dtjHxODy6CB2NdvgH3DBthFRd24oqDFDIZiMJaBsfTiuvzyY1PZxXU5mAxgrrj82FQOZgOYKsBiAtla3h6LGWTz5bUsg8YOtA6g1V99rXMEO2ewcwGd08XHTqBzBnXd/GpV2dtj36AB9g0a/O3nsixjyszCkJBwaUnbs5uSXbspWLzk0nZqd/dLyZp9w4bo27ZFK1rbhGvwDnZm9EutWfn9Udb8dJzcCyW0GRQuusdXoXYjx3Fy2yb2Lp5H93seUDqcWq1ufosIwlUkHDnI/uWLaNZnINFtOyodTq2Un1HKut9OkHG+kJi2fnQeF42dg/gYqslkWcZ04QKlBw5Qun8/ZfsPUBEXd7mrm1aLXVgYDk0a4zpsKHaRUdZxSoG+SGU5UJINJZlQfAD2rIaSLCjNgYqiy4uhGCqKrY9NZbcfrMYe1Hag0YFKA5LaWjVRUl18rLauJcmaxP0z4bvp4ziAgxs4eICDO+jdretLzz2sj/UeoPe8/PNamthJkoTW1wetrw+ObdsAcHLTJmK7dbOONTxzlorTpyk/Yx1rmPfXnEsVJ3WhoejbtcOxfTv0bdqg8RB37YXL9C46hj3dnE1/nmbfigRy00rodU9DtHai8m9VcPcLoFHXnhxet5JWQ0bg7OGldEi1liT/70u0lpMkaTAwODAwcOqsWbOUDkewMabyMk7MmY5aq6PBqEmoqrBrY3FxMU5Odas6oSzL5J6FjMMyKjX4t5JwDRF3OZVyR+egxYImNRXtuXPo4s6hPXcOdV6e9Vf29pjCQyHIE5W3Axp3FTonI3amAnSGfHSGvEtrjfnqiZZJrceodcGk0WNWO1xa/28xaaxri0qHWW2HRWV3cX35uUWlu7hoLy2ypLEmXrdLtqCyGFCbK1Cbyy8uZajNpWhMZajNZWhMpZfWGlMxGlMRWmMRWuPlxyrZdM1DGDWOF9+7M+X2XpTb+1Hm4E+Zgx9lDn5U2HlaE8ha4Lrn4MVzTHf6DLrTp9GePYvqYsJmDAzEEBODMSYaQ0QEch37LBWuTpZlcs5AxiEZe1cI7iyhc7z+33td/C6uDBWF+Rz78xe8GzYlpHMvpcOp0bp3775fluVWV/tdnUnQ/qdVq1byvn37lA5DsCGyLLPsiw+J27ODu97+BN96kVV6vE2bNtGtW7cqPYYtKcwuY8PMk6Sezie0sSfdJ9bH0U1U3VLSzZ6DsixjTEyk7Ogxyo8do+zYMcpPnEAusyZXGk9X9BFeOPir0bsXYSclIZVl/fuF7FzAyQec/C6ufcDR++LaB5y8rc8dva3dB2srWQZDCZTlQmnu5fWlxzkXn2dDfjLkJ4Hlivna1DpwCwH3cHAPA/dQ69ot1PrYvubMT3Qrn4OyyUT5sWOU7NpNye5dlB04eKmap65ePfQtW+DQvAX6Fs3RhoaKcWx1WOLxHNZMO4Zaq6L/g03wj3S75rZ17bu4Mq398WuOb17HfV9Mw8XLW+lwaixJkq6ZoNXO/hSCcAtObdvEmZ1b6TRucpUnZ3WJLMuc3JHGtrlnAeg+qT4NOviLiycbZqmooHTPXkr37KH8+DHKjh67VMBD0qqx97XDLdKAg1M+eq8KNPoL1kYpRx/wjATPfta1Rzg4+19OwHR6Zd+YrZAk6zg1OydronUjFjMUpkLuecg7//d1yh4oL/j79g7ul5M1zyjwbWRdPCJqdPdJSaPBITYWh9hYvB56EEtFBeVHjlB64CBlBw5QuGYt+XPnAaD29ETfojn6Vq1w6tYNXWiowtEL1Sm0kSejXmzF8m+OsOizg3S9K4aGHQOUDqvWaTtiDMc2rWPf0gX0uPdBpcOplWruJ7YgVILC7EzW//I9AdENaD10pNLh1Bol+RVsnGWddDowxo0ekxrg4lWLW0ZqMGNaGsUb1lK8dhUlB48hVxhBBfbuFlx8yrCvb8TBw4CdhxrJOxK8m1gv/r2iwDPCevHv4Kb026idVGprIucWAnT99+/L8iAvEfITIS/h8uP0Y3BymbXgCVjH3XlHg8/FhM23Ifg2AeeaWfVOZWeHvnVr9K1bAyBbLBjOnbuUsJUeOEDR2nVkvPc+uogInHv0wKlHdxyaNRPTMtQB7n6OjHqxFWt+OsbGmafISS2m48hIVGrxf19ZXLx8aNCpK0c3rqH9qPE4OLsoHVKtIxI0oc6SLRZWffMZFouF/o89i0pVO8Z2KEmWZc7uy2DLn2cwGy1i0mlbI8vIucl47ltK5qLvKD54looMa3dFraMJt5AKnEJU6JtEoQqoD17Rlxe3EGvCINgOh4vFRwJi//07Yzlkn4HME5BxDDJOwPnNcGT25W2cfMG/Gfg1ta79m1pb4GpYK7ekUmEXFYVdVBTuY8cAYEhJpXjDBoo2bCDnl1/ImTYNtZcXTt264tyjJ47t26FyEDeNait7Ry2DHmvGjvnnOLwhmdwLJfSd2hh7RzF1TmVpNWg4xzev5/CaFbQbOU7pcGodkaAJddb+5YtIPnGUPg89IUrqVwJDmYlNf5zm7N4MfMNd6HVPQ9x8Rdc2xcgyFCTDhUNYEvdTsmMnRYcSKE4EjUFNjiSj91fh0zsQpw6t0DXriOTfpEZeoAtXobW3Jlz+Tf/+89JcyDgO6Uch/QikHYa49Zdb2+xdr0jYYq1rz4gal5zrggLxmDwJj8mTMBcUULxlK8UbN1C0ajUF8+Yj2dujb9Map06dcezcCV1YmOh+Xcuo1Co6jYnCM8iRTX+ctk5q/UhTPPwdlQ6tVvAKCSM8tiUHVy+j1eARaHQ6pUOqVUSCJtRJWYnn2TZ7BpGt29G4W2+lw6nxMhIKWfPTMYpyymkzOJyW/cNQiVaz6mUogeQ9kLgDUvZiOn+Y4vgyilLsKUm3RzZLqOztcGoVSVZ4OE0eeg61txibUefoPSC8s3X5H2OZtaUt7TCkXUza9kyzziEHoHUEvyYXk7aLi3cMqGtGa4Ta1RXXwYNwHTwI2WCgZO9eijduomTbNjLefRcAbVAQjp074dS5M45t26JyFBfxtUWDDgG4+Tqy8oejzPtgH33ub0RYE1EevjK0GjySuW/9hxNbNtC0Vz+lw6lVRIIm1Dkmg4EVX3+CnaMTvR94XNw1vQOyRebguiR2L4pH76Zj+LMtrls1S6hE5QWQtBsSt0PiduTUgxgKoDjNnuIsD0ovOIDFHo2XO26je+Pctx/6Vq2QtFrObtokkjPhMq0DBLa0Lv9jNlq7SKYdvrwcnAV7fri4jyMEtYLQDhDSHoJa14hiMJJOh1PHjjh1tM51aUhOpmTbNoq3bKVg8RLy/5wNWi36Fi1w6tYN5+7d0IWFKRqzcOf8I1wZ/WIrVn5/lOXfHqH9sAhkXd2qYl4Vghs1wbdeJPuWLaRJjz5ijGclEgmaUOds+2sm2UkJDH/xdfQuNacsta0pKahg/fSTJJ/IJaK5N90m1hf9+6tSeaG1dSxhq3VJP4rFIFOSpae4IICSlHCMOSUA6CJD8XygF849e2HfuJG4CSHcOrX2chXI2LusP7OYITceLhyClL3W83HT+4BsnfjbP9aasIV2gJB21vFxNk4XHIxu/Hjcx4/HYjBQduAAxVu3UrJlC5kffEDmBx+gCw/HqXt3nLt3w6F5cySNuHSqiZw97Bn+XAs2TD/JzoXncA0DcxcLalE85LZJkkSrwSNY/sWHxO3fTVTr9kqHVGuITxmhTkk6doT9yxfRrPcA6jVvrXQ4NVbS8RzW/XYCQ7mZrnfF0KhzgEgCKpuhFJJ3w/kt1uXCQZDNVJQ4UFwUQXFaLKXnssBkRqWX0bdvj2fnTjh26owuKFDp6IXaSKW2Vu/0ioKmo60/K8u3dq1N2gGJO2H397DjS0CydosM72JdQtqDvW1XelPpdDi2a4dju3bw/PMYUlIo3riJ4o0byZ05k9xffkHl6opT58449+iOU8+eqOzEnI41iVanps+URngGOrJ7yXlW/XCMvlMbodHWrDGWtiS6bUe2evuyb8kCkaBVIpGgCXVGRWkpq777DHe/ALpOuk/pcGoks9nCrkXxHFqbhEeAI0OfboRngJPSYdUOsmwt2nBmDcRvtLZQmA2g0mByj6XQPJCCw9mUn04AcrGLjsbj7gE4de6CvkVzJDFAW1CCgxtE97EuYB3PlrofErZbW3r3/Ag7vwZJDQHNLyZsnVGZjdd9WVugCwrCY9JEPCZNxFxcQsn27RRv3Ejx5s0ULltmHds2YgTu48aK+dZqEEmSaDUgnKTUBBL2Z7P8myP0f6gJOntxSXw7VGo1LQcOY+NvP5B6+iSBMQ2UDqlWkGS5bvXBbdWqlbxv3z6lwxAUsPr7Lzm+aR3j3/oI/6gYxeLYtGkT3bp1U+z4t6u82MiqH4+Seiafxl0C6TgqEo1O3HW8I4YSiN8MZ1dbE7OiC4AE/k2xBHWiOMONgl1nKd6xC0wm7OrXx3XIEFz690Pr73/bh62p56BQAxnLrC1s57dYE7bU/WAxYZG0qMI7QWQv6+IdU2Oqh8pmM6V79pA3+y+K1q8HkwnHDh1wGz8O5+7dRRfIGmLTpk3428ewfvpJfMNdGPRYM+z0opv+7TCWl/Pjo/cS1KARQ597RelwagxJkvbLstzqar8TnyJCnRB/cC/HNq6hzbDRiiZnNVXuhRKWf3uYknwDve5tSExbMS3BbctPgjOrrcv5LdZKeTpniOyBHNGb0iIfCtZtpWjaaizFxWh8fPC4ezKuQ4ZiHxOtdPSCcGu0DlCvq3UBqCiGpJ2kbp5JcNFpWPOydXEJgsge1mQtvKtNT34uqdU4tm+PY/v2GDMzyZ83j/w5c0l9/Ak0vr64jR6N2+jRaH19lA5VuIGYdv5o7NSs+ek4iz47yJAnYnFwFr0RbpXW3p7YPgPYtXAOuRdS8QgQ3ezvlEjQhFqvvLiYtT98hVdwKO1H3aV0ODVO4rEc1vx0DLVOzbBnmuNXTxRWuSUWM6TsgzMrrUlZ5gnrzz3qQespyFG9KS90oXDVGgq//glTZiaSXo9L7964Dh2Cvm1bJLVoqbxVsixTbi6n1FhKqamUUmMpZaYySowllBhLKDIUUWAooLCi8F/rIkMRMtfvXaJRadCqtOjUuktrnUqHVq1Fp9KhVqlRSxeXi49VkgqNSoNaUuOgccBJ64STzunv64uP9Vo9eo0ejaqWfU3bOUFUb86lagnu1g3yk+HceohbB8cXwYEZ1u6QwW0gqjdE9QHfxjbbuqb18cH7kUfweuABijdtIu/P2WR//TXZ332HY6eOuA4ZgnPPnqjs7ZUOVbiGiOY+DHhEzcrvj7LwkwMMebI5Tu5ibOGtiu07iL1LF7B/2UJ6P/CY0uHUeLXsk18Q/m3Dbz9QWljAsBdeQ6MV3RdulizLHF6fzI75cXgGOTHg4aY4e4iLjJtSXmCd/PfMaji7BspyrVXuQtpDn3eQo/pQkStTuHwFhR+/izElBUmrxbFLF1wHDsCpWzdUetsvWa6UUmMp6aXppJekk1GSQXpJ+qXn6SXpZJVmUWwsvmGSBdZEy1XnioudCy46F7z13oS7hl83MZJlGZPFhMFiwGA2YLQYMZgNFJoKMZgNGCwGzBYzZtm6WCwWTLIJi2zBbDFjkk2Um8pvKj6dSoeD1gG9xpqwOWgc0Gv1eDl4EeISQrBzMCHOIQQ5B+Fp71nzivW4BUPLe6yL2Wgde3l2rTVhW/+mdXEOgKhe1mQtvKtNFhuRNBqce/XCuVcvDImJ5M+bR8HSZVx49jlUTk449+2D65Ch6Fu3EqXIbVBoI0+GPNGMZd8cYeEn+xn6VHNcvByUDqtGcXRzp1GXnhzfsp4OYybg6Gb7VVxtmUjQhFrt7N6dnNy6kfajxuNbL1LpcGoMs8nC5j9Oc3JHGvWae9PrnoZo7UQrznWV5cHJpXBsPiRsA4vJWmY8qg9E94WInpjKLOTPm0/Bu89giDsHajWO7drh9cgjOPfqidrF9i48q4MsyxQZi8guyya7NJvssmxyy3MvLTnlOdZ1mXVdZir712t4OXjhp/ejnms92vm3s7ZCafTotXoctY6XEhy91prkuNq54qJzwUHjoEhSY5EtlBpLKTYWU2wotq4vPi4yFlFmLLO2/JlKLz0uM5Vdag08lHmIVQmrsMiWS6+p1+itCZuLNWELcb6cwPk6+qKSbDwxUGsvl+nv9ToUplkTtbi1l1vX/nejI7ofNBxqTfBsjC40FJ9nn8X7qaco3buXgkWLKVq5ioL5C9AE+OM6eAiuQ4dgV6+e0qEKVwiIcmfoU81Z+uUhFny0nyFPNcfDX0xYfitaDhrOkQ2rObR6GR3HTlI6nBpNFAkRaq3SwgKmP/coTu6e3PXOJ6htZOC2rRdoKCsysPKHo6TFFdBqQBhtBoUjqWrYXfnqYiiB0yutSdnZtWAxgns4NBwC0f2t3bRUasqOHSdv1iwKV6xANhhwaNkSl4EDcOnbF42nZ7WHrcQ5WGos5XTeaU7lnuJc/jmyy7LJKssipyyH7LJsKswV/9pHLanxsPe4vDhcfuzn6Ief3g8/Rz989b5o1XWvddxgNpBanEpyUfKlJakwieSiZFKKUzBZTJe21al0BDoHXkraApwCLv3b+ep98XLwQq2qvpswt3wOmo3WaSfOrrH+rf2vq3BQG2g8AhoOA5fbL5xT1SylpRSt30DB4sWU7NgBFgsOLVrgNmY0Ln37onIQrTXV7VrnYE5qMYu/OIRskRn6VCxeQc7VH1wNtvjjt0k5eZwHvvkVrejae12iSIhQJ63/+TvKi4sZ9crbNpOc2bqc1GKWf3uE0kIDfe5vRFRrX6VDsj0mg3XMzNF51uTMWALO/tDmAWgyEgJagCQhG40UrlxF3qzfKTt4EEmvx3XkCDwmTMAusna35uaW53Iq5xQnc09yKvcUp3JPkViYeKlLn7PWGR+9D156L5r7NMfLwevS4u3gjZeDF54OnjjrnG2/1UdBOrWOcNdwwl3D//U7s8VMRmkGSUXWhC258GICV5TEnvQ9/2qFVEtqvBy88HW0JmzBzsHU96hPjEcMoc6h1Zq8XZVaC2GdrEvvNyHnHBxfaG1ZW/UirHrJ2vLWaLi1Zc3Jtgp0qPR6XAcPwnXwIIyZmRQuXUb+3LmkvfgSGe+8i+uQIbiNGSMKAdkAz0AnRjzbgsWfH2TRpwcZ8mQsPqF1s3fD7Wg1eCRxe3dxdONaWvQfrHQ4NZZoQRNqpVM7trD8iw/pNG4ybYePUTqcv7HVFrTzh7NY+8sJtPZqBjzcFN8w8YX0NxnH4cBMOPKXdUyZg4f1QrDJKGuXq4sXsKbsbPLmzCH/z9mYsrLQhoTgMeEuXIcPt5kujJVxDsqyTG55LvEF8ZzLP8e5/HOXHueU51zaLsAxgPoe9anvWZ8GHg2o71EfX71vzRsrVYvIskxBRQEZpRlklFrH8GWUZpBRcvn5lS1w9mp7otyjiPGIob67NWmLdIvESXf7cyBW6udg1pmLydoCyDoFkso631qzu6DBYNDZ5nhOWZYp3buX/DlzKVqzBtlgwL5ZU9zHjMGlf38xDrWK3egcLMwuY9FnB6koMTL4iVhRIOsW/PnaCxTn5nD/Fz+iEkWurul6LWgiQRNqnZL8PH579hHc/PwZ/+ZHNvfhYGsJmizLHFidyK7F8fiEONP/oaaigtX/lBdYuy8emAkXDoBaB/UHWi/8Irpb7+r/b9MTJ8idMZPC5cuRjUYcO3XCfeIEnLp0sbmiALd6DsqyTGpxKkezj3Ik6wgnck4QXxBPfkX+pW2ctE7Uc6tHhGsEEW4R1qTMoz6uduKipiYymo3EF8RzKvcUp/NOczrX2j210FB4aRsvBy9CXUIJcwkj1CX00uMg5yB06uuXKq+yz8HMk3BsARydA3kJYOdibVVrPhGCWttsNUhTXh6FS5aQN2cuhnPnUDk54TZ6NB733CPK9VeRmzkHi3LLWfzZQUoKDQx6tCmB0aLwxc2I27uLxR+/zcAnX6B+hy5Kh2OzRBdHoc6QZZm1077GVFFBv0eetrnkzNaYDGY2zDzF2b0ZRLX2pcek+mLyaVmGxB1wcKa1+5SpDHwaQb/3oelY0Htc3tRspmj9evJmzKR03z4kvR630aNxnzgRu3r/7nZWU5QYSziWfYwjWUc4kn2EI1lHyC3PBaytKfU96tMrtBcRrhGXkjIfvY9oFatFtGotMR4xxHhcnjdSlmXSS9I5lXuK+IJ4EgsTSSxMZGPyxkvnB4BKUhHqEkpL35a09G1JK99W+DlW09yJPg2gx8vQ7SVI2gEHf4ejc+HAdPCMgti7oNl4mxuvpnF3x+Puu3GfPJmygwfJ+/0PcmfMIG/WLFyHDcXz/vvRhYUpHWad4+xhz/DnWrD4s4Ms++owAx5uSnBDjxvvWMdFtGyDm68/h9esEAnabRIJmlCrnNiygXP7dtN10v14BtpedS9bUpJfwYrvjpCZWES7YfVo0Te0bl9gF2XA4T+srWW556yTRzcbCy0mXxpX9j/mwkLy580n7/ffMaamog0IwOeFF3AbNdJmujHerP8V7ziRc4Lj2cc5kXOC84XnL1UHDHMJo1NgJ5p5N6OJVxOi3KNq39xcwk2RJAl/J3/8nfzpTve//a7QUEhSYRIJhQkkFiZyIucEq86vYt6ZeQAEOQVZkzW/VrT0bUmV995RqS6PWRvwofVmy6HfYf0bsOEtiOhp/duO6f+3lnClSZKEvkUL9C1a4P3Uk+T++iv58+aTP28+zn374jl1Cg6NGikdZp3i6GrHsGdasOSLQyz/9gj9HmhMWFMvpcOyaZJKRdNe/djy+6/kpCThGRSidEg1jujiKNQaJfl5/PrMQ3gFhzLm9fdQKT2o/RpsoYtjRkIhK787gqHcTK97G1Iv1lvReBRjNllLeB+YYZ2zTDZDSAdoMck6vkz39xLLhoQEcmfOIn/hQuTSUhxatcRj8mSce/RAqgGFaIxmIydzT7Jw50IMHoZLXRX/l4x5OXjRyLMRjTwb0dS7KY29GosuisJtM1vMnMk7w76MfezP2M/+jP2XusW6q93pEtaFtv5taeffDm99NX0G5ZyDQ39Yl6IL4OhtbVVrPhm8bLN4jyk7m9wZM8n74w8sxcU4duyI5wMPoG/Tum7fVLtDt/pdXF5sZMmXh8hJLabPlEZENBddT6+ntLCAHx++m6a9+9PjngeVDscmiTFoVxAJWu218utPOLVjK5M/+sqmW8+UTtDO7Elnw4xT6F11DHykKZ6Btz/Qv8bKOWftwnjoTyhOB0cfiB0PzSeBV9TfNpVlmZIdO8ibMZPizZtBq8V1QH/cJ0+2+TvZ+eX5HM46zMHMgxzKOsSx7GOXytl7OXjR0LMhDT0b0sizEQ09G+KjFxccQtWxyBbi8+PZl7GP5UeXc958noKKAoBL89e19W9La7/WOOuquLS52WStxnpghrUaq2yG0I7WVrUGQ2yysIi5qIi82bPJnT4Dc3Y29s2a4vXAAzh1725z41xrgtv5Lq4oNbLs68NkJBTR694GRLeupq67NdTyLz/i/MF9PPj9dLR2ouT+P4kE7QoiQaudkk8cZc4bL9F2+Bg6jZusdDjXpVSCJssy+1YksGfpeQKi3Oj3QGMcnK8/kL9WMZvg9ArY8yMkbLVWeovqY70gi+rzr25OlrIyCpYsJW/WTCrOxqH29MR93Djcx41F422bLY5FhiK2pmxld/puDmYe5HzBeQA0koYGng2I9Ykl1juW0rhShvYcKu6+C4rZtGkTXbp24VTuKXan7WZ32m4OZB6gzFSGSlLR0KMhzX2b09yn+aWpGKpMUYa1++OBGZB3HuxcoeloaD0VfOpX3XFvk6WigoKFC8n56WeMKSnYRUXiOWUKLgMGIGltp7umrbvd72JDuYnl3xwhLS6ffg82qbs9UG5Cyslj/PXfF+n70JM07t5b6XBsjkjQriAStNrHbDIy44UnMBkM3PPJNzZ/l0aJBM1ikdn61xmObU6lfjs/uk2sj1pTR+64luZaW8v2TIOCZHANhpb3WLs1uQT8a3Njejp5f/xJ/l9/YS4owK5BAzwmT8Zl4ABUOttLaHPKctiYvJH1SevZlbYLk8WEi86FWJ9Ymvs0J9Y7lkZejXDQXJ4IV+lWXEG42jloMBs4nHWY3Wm72Zu+l+M5xy+1+AY7B19K1lr4tCDcNbzybzBYLJC43ZqonVgM5goI7wptH4Tofpem0rAVsslE4cpV5EybRsWZM2gDAvC4/z7cRo5EJSYIvqE7+Rw0VphZ9NlBclKLGfJELAFRbpUaW20hyzLTn3sUrb09E975VOlwbI6o4ijUavuXLyY3NZlhL7xm88mZEsxGC+t+O0Hc/kya9w6h/YiIutFyknkSdv8Ah2dbKzGGdYZ+70F0f1D/+6PPmJFBzg8/kDd3HpjNOPfsgcfkyTi0amVz/14Xii+wPmk96xLXcSjrEBbZQpBTEBPqT6BXaC+aejcVEzwLNY5OraO1X2ta+7UGrGMmT+Se4GDGQQ5mHmRrylaWnFsCgIe9B92Cu9EjuAftAtphp66EqUFUKgjvbF36vQf7f4N9v8Dsu8AtxNqi1mISONhGqXVJo8F18CBcBg2keNMmcn6cRsZbb5P97Xd4TJ6M+4QJqJ0cb/xCwi3T2qkZ9FhTFnx0gOXfHmHEcy3q5nCBG5Akiaa9+rHxtx/JiI/Dt55tjvO0RaIFTajRCrMy+fXZhwlr2pyhz72idDg3pTpbLwzlJlZ+f5SUU3m0HxFBiz6h1XJcxVgscHYN7P4O4jeBxh6ajLbeAfdrctVdTNnZ5EybRt6fs5EtFtxGjsRz6hR0QUHVG/t1GM1GDmUdYlvqNranbud03mkAotyj6BXSi54hPYl2j77pRFK0oAlKu51zUJZlEgsTOZh5kJ0XdrI1dSvFxmIcNA50CuxEj5AedAnqgouuEiupmk1wapn1Zk/SDtDqoekYaPMg+DasvONUAlmWKdu3j+wfp1GydStqLy98nnoS1+HDkcSUM/9SGZ+DhTllLPjoALIsM/L5lrh4Odx4pzqmvLiYHx6+m4adu9P7gceUDsemiBY0odba8NsPAHS/5wGFI7E9ZcUGln11mKzkYnpMrk+DDv/uzldrmAzWiWm3fwnZp8ElEHq+Di3uBkfPq++Sl0fuzz+T+/sfyAYDrkOH4vXIwzaTmKUUpbDjwg62pW5jd9puSk2laCQNsT6xPN3yaXqF9CLERZQuFuoOSZIIcw0jzDWM4VHDMZqN7Enfw4akDWxM3sjaxLVoJA2t/VrTPaQ7XYK6EOgUeGcHVWug0TDrkn70cqv8/t8gtBO0vh8aDLaJUv2SJKFv3ZqQ1q0pO3KEjPfeJ+2VV8n9/Q98X3wRx7ZtlA6x1nHxdGDw481Y+MkBln51mBHPtahbY7tvgr2TEzEdOnNy2ya6TLwPO73tFeCxRaIFTaix4vbtZvFHb9Flwr20HjJS6XBuWnW0XhTllrPki0MU5ZbTd0ojwpvV0kHM5YXWC6Vd30JRGvg2gY5PWi+mrnHBZC4sJOfXX8mbPgNLWRkugwbh/egjNjEJ7Onc0yyLX8am5E0kFCYAEOAYQKfATnQM7EgbvzY46e68G41oQROUVtnnoEW2cCz7GOuT1rMhacOlv58I1wg6B3WmS1AXYn1i0aoqIZEqzbWOU9v3M+QngZOvdVxry3uuOq5VKbIsU7RyJRkff4zpQhrOvXvh8/zz6ELEjR2o3HPwQlw+S744hGeAI0Ofbo7OXrR/XCkt7jR/vPwsvaY8QrPeA5QOx2aIIiFXEAla7WAsL+e35x5Ba2fPpA++RF0D5qD6n6q+OM69UMKSLw9hrDAz8JGmtXPwclGGtRvj3l+gogDCu0DHpyCix98mlL6SpbycvFmzyP5xGpbCQpz79cP7sUexi1S2T3xWaRYrzq9g6bmlnM47jUbS0Na/7aWkLMwlrNLHwIkETVBaVZ+DCQUJbE3dypaULezL2IfJYsJJ60T7gPZ0DuxM56DOd14Z0mKGuHWw9yc4u9ZaGbb+QGg9xfqZZCNjVy3l5eT+9hvZP04DoxH3yZPweugh1M5VPJWBjavsc/D8kWxWfn+UoPruDHykad0pxHUTZFlm1otPIcsWJn3wpc2N61aK6OIo1Dq7Fv5FYVYmY//7fo1KzqpaenwBy74+jFqjYvizLfAKqmWDlnPPw7bP4PCfYDFZ5yvq+AQEtrzmLrLZTMGixWR99RWm9HScunXD+6knsa+vXPnsMlMZG5I2sPTcUnam7cQiW2ji1YSX2rxE//D+uNvbRhECQaip/tcVclLDSZQYS9iVtoutKVvZmrKVtYlrUUkq2vu3Z1jUMLoHd7+9IiMqNUT3tS65560FRQ7OhJNLwCsaOj0NTcZctShRdVLZ2+P10EO4Dh9B1uefk/vzLxQsXIT344/hNmqUKM1fScKbetFtQgwbZ55i/fST9L63IZJKJCJg7X7brHd/1k77mrSzpwmItr3pK2yNuLIVapyclGT2LV1Io669CGrQWOlwbEbS8RxW/nAUvasdQ5+MrV2DlXPOwZaP4chfoNJA7ATo8Dh4RlxzF1mWKd60iaxPP6XibBz2TZsS8OEHOLZRZhyG0WxkZ9pOViesZl3iOkpNpfg7+nN/4/sZFDGIeq71FIlLEGo7R60jPUN60jOkJ7IsczrvNGsT17Lk3BKe3/w8LjoXBoQPYHjUcBp4NLi9u/se4dDnLej+Hzi+EHZ+C4sehs0fQpfnoOlYxcepaX19CHjvXdwnTCDj/fdIf+NNcqfPwPuZp3Hu3Vu0alSChh0DKCsysGtRPA7OWjqNjhL/rhfV79iFzbN+5si6lSJBuwkiQRNqFFmWWf/zt+js7eky8V6lw7EZZ/dlsO7XE7j7OzLkiVj0LrVkkHLWGdj6MRydC2qdtRpjhyfAxf+6u5UdPkzmRx9Tum8futBQAj//HOe+far9i9JoNrIrbRerE1azIXkDRYYinLXO9Anrw5CIIbT0bSnK4QtCNZIkifoe9anvUZ9Hmj3C7rTdLIpbxIKzC5h9ejbR7tEMixzGwHoD8bD3uPUDaB2scyw2Gw+nV8Cm92Hxo7DlI+j8HDQbp3ii5tC4EaEzZ1K8cSOZn3xK6hNP4hAbi88Lz6Nv0ULR2GqDFn1DKS00cGRDCq7eDjTtHqx0SDZB56CnQafuHN+0jq6Tp+DgVLe72N6ISNCEGuXktk0knzhK76mPoXdxVTocm3BsSyqb/zyNf4QrAx9pip2+FnRXyThhvaA5vtB6wdP+UWj/ODj7Xne3irNnyfrqa4rWrEHt5YXf669Vexceo8XI7rTd1qQsaQOFhkKctE70COlB37C+tPNvh05dSxJoQajB1Co1HQI70CGwAwUVBaw6v4pFcYv4cO+HfLr/U7oHd2d45HA6BHRAfauTVEuSdTxazAA4s8qaqC157GKi9qw1gdMo9zkgSRLOPXrg1KUL+QsXkv3lVyTeNQGnnj3xefYZ7OqJFv3bJUkSHUdFUZhdzrY5Z3H10RPa6OrVhOuapr36cXjtCk5s3kDLgUOVDsemiQRNqDEqSkvYPPNn/CNjaNKjj9LhKE6WZfavTGT3knjCmnjSZ2pjtLoaPtdN1hnY8JZ1DIfOCTo9Be0fA8frD+aviIsj+9tvKVy5CpWDA16PPYbnvfegcqyeSVrNFjP7M/azMmElaxPXUlBRgJPWie7B3ekb1pf2Ae1FUiYINszVzpWx9ccytv5YzuadZVHcIpaeW8raxLX46n0ZGjmU4ZHDCXK+xWk4JAli+kN0P+scjZveh6VPWLtsd3nO2tqmYIuapNHgPno0rgMHkjtjBjnTfiJ+8BDcRo7E+/HH0HjX0grAVUylkuh9X0MWfHyANdOOMfKFVngEiEnDfcLq4R8Vw+F1K2kxYIjo/nkdooqjUGNsmvET+1csZuK7n9Xo2egro3KUbJHZPj+Ow+uTiW7rS4/JDVCra3BXuaJ02PQeHJhpnQi23UPQ7hHQX7+LUcW5c2R/+x2FK1agcnDAfeJEPO69B4171RfZkGWZI9lHWHl+JasTVpNdlo2DxsHaUhbal46BHW02KRNVHAWl1YRz0Gg2sillEwvOLmDHhR1YZAtt/doyPGo4PUN6Yq+xv/UXlWVr5cdN70HqfnAPg67/ZxPFRABMublkf/sdebNno9Lp8Hz4ITzuvhuVzjY/y+5EdU15M/f9fWh1Kka92AoHp9r373irjm9ez6pvP2PMa+8S3Kip0uEoSlRxFGq8nNRkDq5aSpPuvWt0clYZLGYLG2ee4tSudJr2CKLTqKiaWymqosg6ufTOr8FssJan7vrCjVvM4s9bW8yWL0dycMBzyv143HdftSRmZ/POsix+GavOr+JCyQV0Kh1dgrrQL7wfXYK64KCpRcVZBKEO06q19A7tTe/Q3qSXpLM4bjEL4xby4tYXcdY5MyB8ACOiRtxaYRFJgqjeENnL2qK28R1rMZEtH0O3F6HxSGt1SIVoPDzwe+VlPCZOIOPDj8j65FPy587D94XncerZU7R43CJnD3sGPNSERZ8eZNUPxxjyZGydL78f3b4TG6f/yOG1K+t8gnY9NTJBkySpHvAy4CrL8ihJkoYBAwEX4GdZltcoGZ9QuWRZZtP0aWjt7Ok0brLS4SjKZDCz+qfjJBzJps3gcFoNqPw5sqqF2WidYHrT+1CaDY2GQ49Xr1uVEcCYkUHWp59SsHQZkp0dHvfdi+f996PxuI3B/LfoYOZBph2ZxtbUrWgkDe0C2vFo80fpEdyjUiaPFgTBdvk5+vFgsweZ2nQqe9P3suDsAhaeXchfp/8ixj2G4VHDGRg+EDd7t5t7QUmylueP6gOnlltb1BZMtY5R6/YiNBwOKuUu5HVhYQR/+w3F27eT8d57pDz2OPr27fB96SXso6MVi6sm8qvnSo+767P25xNs+uM0PSbVr5nf25VEq7OjUddeHFq9nJL8PBzdxLQyV3PTCZokSWpgH5Aqy/Kg2zmYJEm/AIOATFmWG//jd/2ALwA18JMsy+9f63VkWY4H7pckad7F54uARZIkuQMfAyJBq0XiD+wh4fABuk2eit7VTelwFGMoN7HiuyOknsmn6/hoGne9xbEQtkCW4cRiWP8m5J6D0E7Q+00IuvY8ZgCyyUTeH3+Q9fkXyCYTHvfcg+f996HxrNqB17Iss+PCDqYdncb+jP2427nzePPHGR09WsxVJgh1kEpS0da/LW39214qLLIgbgHv73mfT/Z9Qo+QHgyPHE47/3Y3V1hEkqDBIGsxkZNLrInavPvA52PrTauY/opOeO3UsSOOixaRN/svsr76ivPDhuM+bixejz9eLT0Waovo1n7kpZeyb3kCHn6ONO8TonRIimraqx8HVizm+Ob1tBk6SulwbNKttKA9CZzE2kr1N5Ik+QBlsiwXXfGzSFmW4/6x6W/A18CMf+yvBr4BegMpwF5JkpZgTdbe+8dr3CfLcuY1Ynzl4usItYTJaGTT9J/wCAwmtu9ApcNRjKHMxLKvD5N+vpBe9zQkpq2f0iHdugsHYdVLkLQTvBvAXXOsd49vcPFRdvgwaf99g4qTJ3Hs3Bm/V19BF1K1X24W2cL6pPVMOzKNk7kn8dH78H+t/48RUSPQa/VVemxBEGqGKwuLnM49bS0sEr+U1Qmr8XP0Y3z98YyOHo2z7ibKiatU0GgYNBhsrV678V2YPR5COljnVwu66jCVaiFpNHhMnIDLwAFkf/0NebNnU7BsOT7PPIPb2DF1ujXoVrQZGE5+eik7Fsbh5utAeLO6W4DFMzAY/+j6nNq2SSRo13BT7eeSJAVh7UL40zU26Yq1Bcvu4vZTga/+uZEsy1uA3Kvs3waIk2U5XpZlAzAbGCrL8lFZlgf9Y/lXciZZfQCslGX5wM28J6FmOLBiMfkZaXS/eypqTY3skXvHykuMLP7iEBnnC+lzf6Oal5wVZ8Lix+DH7pB9FgZ/AQ9vt3bvuc4Xu7mggLTX/0vCuPGYc3II/Pxzgn/8oUqTs3JTOYviFjFs8TCe2fQMJcYS3ujwBitHrGRiw4kiORME4apiPGL4vzb/x4bRG/i468eEOIfw2f7P6D2vN5/s+4T0kvSbeyGVGpqMgkd3w8BPICcOfuoJcyZDzrmqfRM3oHF3x+/VV6i3aCH2DRuS/t//kjz1AYwZGYrGVVNIKokedzfAJ8SZNb+cIDul6MY71WL1O3QlKymBnJQkpUOxSTdVxfFiV8L3AGfguat1cZQk6QWgAzAXeAzoLcty8VW2CwOWXdnFUZKkUUA/WZanXHw+CWgry/Jj14jHE3gHa4vbT0AJcDewFzgky/L3V9lnMDA4MDBw6qxZs274ngXlGUqKOf7HzzgHhRDZf7jS4VSa4uJinJxubsySqUImcaNMRSEEd5RwDqw5dyoli5GglKWEJs5BZTGSGjiIhLAxmDU3KDUsy9jv3o3z/PlIxSWU9uhByeBByPa3UTHtJqUb09lRtIPdJbsptZQSoA2gj2sfmuub18qJpG/lHBSEqlAXzsGkiiTWF67nUOkhAFo5tqKnS08CdAE3/RpqUxlBKYsJSVqIJBtJ8+9LQthYjDq3qgn6ZskyDpu34LxgAbJGTdHYsZS3aaNod8xbpdQ5aCyTiV8jI0lQr4+Exr7m/JtVJmNpCUdmfI9/i7YEtOmkdDiK6N69+zWrON4wQZMkaRAwQJblRyRJ6sY1ErSL284GBgARsixnXWObMO4wQbsTosx+zbHy6084vXMr93zyHW5+/kqHU2lutrRvaaGBxZ8fpCCrjP4PNak5E13KMpxeAatfhrzz1vl/+rwDXjeuvll++gwZ77xD6Z49ODRrht9/X8e+QYMqCdNoNrI+aT1zzsxhb/peNJKGnqE9GRM9htZ+rWt1t52aUOJcqN3q0jmYWpzKzBMzWXB2AWWmMjoGduSeRvfQ1q/tzX/OFGXA5g+sxZW0DtDhCejwGOiUnVvLkJjIhRdfouzgQZx798bvjf9WS9GmyqDkOZiVVMSCj/bjHerM0Kea19nKjnPfepnC7Ezu+/zHWv2dey3XK7N/M2dER2CIJEkJWLse9pAk6V9NUJIkdQYaAwuB128xxlQg+IrnQRd/JtRRF86c5MTWjbQcNLxWJWc3qzivgoWfHKAwu4xBjzatOclZ1hmYORxm3wVqHUycD3f9dcPkzJSbS9p//8v54cOpOH0avzfeIPTPP6okOUsuSuaz/Z/Ra14vnt/yPBeKL/BkiydZO3otH3f9mDb+berkF4UgCFUj0CmQF9u8yNpRa3m8+eOcyjnF1DVTmbhyIttTt3NT89E6+8KgT+HRPRDRAza9C1+2sM4daTFX/Zu4Bl1oKKGzZuLz3LMUb9pE/OAhFK1fr1g8NYV3iDPdJ9cnLa6AbXPOKh2OYmI6dCE/PY2M+H+WrBBumKDJsvySLMtBsiyHAeOADbIsT7xyG0mSmgM/AkOBewFPSZLevoU49gJRkiSFS5Kku3icJbewv1CLyBYLG379ESd3D9oOH6N0ONWuMKeMhZ/sp6SggsFPxBJUvwbcjTSUWiszftcBLhyA/h9ax5lF9rrubrLBQM6vv3Gubz/y587DfcIEIlavwn3sGKRKLjF9KPMQT218ioELBvLb8d9o5t2M73p9x4oRK5jSZApeDtefe00QBOFOuNq58kDTB1g9ajWvtnuVrNIsHlr3EBNXTmRb6rabS9S8ImHsTLhvDbiFwJLH4PvOEKdcUiSp1XhOmULYvHlofHxIefQxLvzfi5gLCxWLqSaIbu1H8z4hHNuSyvGtdbNNIrptR1RqDad2bFE6FJtTWVdAemCMLMvnZFm2AJOBxH9uJEnSn8BOIEaSpBRJku4HkGXZhHXc2mqslSLnyLJ8vJJiE2qYY5vXkRF/ls4T7kVnX7cm/S3IKmXhJweoKDUx9MnmBES6KR3SjZ1ZDd+2ha2fWAe3P7Yf2j4Iau01d5FlmaING4kfPITMDz7AITaWeksW4/fyf1C7uVVaaGaLmXWJ65i4YiKTVk5ib/pepjSZwuqRq/myx5d0CuxUK8eYCYJgu+zUdoyJGcPy4ct5rf1rZJdm8/C6h5m4YiJbU7beXKIW0hbuXwOjfwNjCcwaATNHQIZyl072MdGE/zUbr0cepmDZMuIHD6F482bF4qkJ2g2LIKSRB1tmnyEtLl/pcKqdvZMTYbEtOL1zK7LFonQ4NuWWrkxkWd50tfFnsixvl2X56BXPjbIsT7vKduNlWfaXZVl7sVXu5yt+t0KW5WhZliNkWX7nVt+IUDtUlJaw7c8Z+EfXp0GnbkqHU61KCipY/PkhjBVmhj7VHN/wf81oYVsKUmD2BPhjDGgc4J7lMPx7cLp+6eCKs2dJvn8KKY88Amo1wT/+QMi0H7GLuP4k1bei1FjKn6f+ZPCiwTy96Wmyy7IvdTF6osUT+DnWsEqYgiDUOlq1ltHRo1k2fBmvt3+d7LJsHln/CBNWTGBLypYbJ2qSBI2GW7s99n0XUvfD952sVXOLbrJqZCWTdDq8n3iCsNl/onZxJvnBh6ytafn5isRj61Qqid73NcLZw56VPx6jOK9c6ZCqXf0OXSjOySb19AmlQ7Ep4taxYFN2zvuT0sICetzzYJ0aB1RRZmLpV4cpKzYy+PFYvENuYt4cpZiNsP1L+LqNtVtNz9fhoW0Qdv0qTLLBQNaXXxI/bDhlx47h+5//UG/xIpy6dKm00AoNhXx98Gv6zO/Du7vfxd3OnU+6fsLy4cuZ0GCCKJMvCILN0aq1jIoexbLhy/hv+/+SW57Lo+sfZdTSUSw9txSj2Xj9F9DYQftH4YmD0O4RODwbvmxu7dVgMlTPm/gHhyZNCJs/H8+HH6Jg2TLODR5M0bp1isRi6+wdtQx4uCmmCjMrvz+KyaDcmEIlRLRqi0Znx6ntopvjlUSCJtiM/Ix0Dq5aSuNuvfGLiFI6nGpjMppZ+d0R8i6U0P/BxviG2XDLWco++KErrH0VwrtY5+rp/AxodNfdreLsWRLGjSf72+9wHTyYiNWr8Jg8CUl77W6Qt6LMVMYvx36h//z+/HDkB1r6tGRG/xnMGjCLPmF9UKvUlXIcQRCEqqJVaxkZPZKlw5fyVse3sMgW/rPtP/Rb0I9fj/1KkeEG82bpPaDvO/DYXojsaR0X/H0nOL+1et7AP6h0OnyefJLwuXPQeHqR8tjjpD7zLKa8PEXisWUeAY70urchmYlFbPr99M11c60ldPYO1GvZhjO7tmEx163k9HpEgibYjJ1zf0elUtNxzASlQ6k2FovMul9OkHomnx53NyCkoY1WazSWWcvm/9wbyvNh3B9w12xwD73ubrLFQs6vv3F+5CiM6ekEff0VAe+/h8bdvXLCshiZe2YugxYM4rP9n9HMuxnzBs/jix5f0NyneZ1qhRUEoXbQqrQMixzGgiEL+K7Xd4S7hvPp/k/pPa83H+39iLTitOu/gEc4jJ0Fd80FUzlMHwQLHoTiq85+VOXsGzYkfO4cvJ54nMK1a4kfOIjCVasUicWW1Yv1ps3gcE7vTufw+mSlw6lW9Tt2oayokKSjh5QOxWZolA5AEACykxM5sW0TrQYNx8nDRpOUSibLMlv/OsO5g1l0HBVJTFsbHReVuBMWPwq556DlvdD7TbC/cSufISWVtJdeonTvXpx69sT/zTfQeFbO/61FtrAmcQ1fH/yaxMJEYr1j+aDLB7Tyu+p0IoIgCDWOJEl0CuxEp8BOnMw5yfQT0/n95O/8fvJ3+ob15cGmD1LPrd61XyC6D4TtsnZ13P4FnFlp7ZLe8l6o5Cq5NyJptXg/8gjOPXuR9p//kPrU0xQNWIv/22+h0ouu5//Tqn8Y2cnF7Jgfh2egE8ENakAV50oQ3qwlOgc9p3ZsJSy2pdLh2ATRgibYhB1zfkdnb0/rISOVDqXa7FuRwLHNqTTvHUJsrxClw/k3Qwms/D/4tT9YjDB5MQz+/IbJmSzL5M+fz/mhQyk/cQL/d98l6OuvKiU5k2WZHRd2MH75eJ7f/DxalZavenzFjP4zRHImCEKt1cCzAe93fp+VI1YyscFENqdsZsSSEby9621yynKuvaNODz1fhYd3gF9TWP4M/NwL0g5XX/BXsI+JJuyv2Xg/+QSFK1eSMG48huS61Vp0PZJKouc9DXD3d2T1tGMU5pQpHVK10Oh0RLXpwNk9OzAZlBk3aWtEgiYoLj3uDGf37KDlwOHoXVyVDqdaHN+ayp6l54lp50f74ZVXvbDSnN8C37aH3d9Dmwfg4Z1Qr9sNdzPl5pLy6GOkvfwK9o0aUW/JYtxGDK+UroYHMg5w3+r7eHDtg+SX5/NOp3eYN3ge3YK7ia6MgiDUCf5O/jzX+jlWjFjB6OjRzDszj4ELB/LT0Z8oN12nAqB3NNy9FEZMg/wk+LGbtdu6obTaYv8fSaPB6+GHCf7xR4zp6ZwfNZri7durPQ5bpbPX0P+hJlgsMmt/PoHFXDfKz9fv0BlDWSnnD+9XOhSbIBI0QXHb/pqJvbMLLQcOUzqUalGYIrP5j9OENPKk+6T6SCobSi4qimDZ0zB9MKjUcO9KGPAh2DndcNeS3Xs4P3QYJdu24fPi/xHy269oAwPvOKRj2cd4aO1D3L3qbhIKE3ixzYssHb6UIRFDRPEPQRDqJA97D15u9zILhy6ktV9rvjjwBYMXDWbpuaVY5Gtc0EsSNB1jLSLS4m7Y+TV810GxIiJOnTsRPm8uWh8fkqc+QM5PP9Wp4hjX4+ajp9uEGNLjC9i7PEHpcKpFSJNYHJxdRDXHi0SCJigq+cRREo8cpO3QUdjVgX7oF87mk7JDxjvUhX4PNEattqE/wdT98EMX2PcrtH8MHtoOoR1uuJtsNpP11dck3XsvKkdHwub8hec99yDd4RiH07mneWLDE4xfPp7jOcd5puUzrBixggkNJqBTX79qpCAIQl0Q7hrOVz2+4pe+v+Bu585/tv2H8cvHszd977V3cnC3dle/e5n1+fRBsPQpKC+sjpD/RhcSQtjsP3Hu04fMjz/hwrPPYimt/lY9WxTd2o/67f3YtzKB1NO1v/KlSq0mul0n4vfvwVBeN7p2Xo8NXR0KdY0sy2ybPRMndw+a9R2odDhVLie1mOXfHkHrCIMea4rWzkZafywW2PY5/NzHOmfOPcutpZp1N06YjRkZJN1zL9nffIPr4MGEz5+Hff36dxROfEE8z29+nlFLR7E3fS+Pxj7KyhErubfxvThoHO7otQVBEGqj1n6tmT1oNu92epecshzuW30fj61/jNO5p6+9U3hn69i09o/BgenwbTs4s6b6gr5I5ehI4Gef4v3sMxSuXEXC+LswpKRUexy2qPPYaFy9HVj76wnKi28wH14tUL9jF0yGCs7t2610KIoTCZqgmPOH9nHh9AnajRyHVmendDhVqjC7jCVfHkJrpya0m4SDk420ABWmwcxhsO51qD8QHt4GYR1vatfiLVs4P2w4ZceP4//+ewR88D4qR8fbDqXMVMan+z9lxOIRbE7ZzNQmU1k1chUPNXsIJ92Nu1gKgiDUZSpJxeCIwSwbvownWzzJgcwDjF46mhe3vkhy0TUKcej01hty968FO2f4YzQseABKc6s1dkmS8Jo6leAff8CYlkbCyFEUbxPj0nT2GvpOaUxZkYENM0/W+i6ggTENcfL04tQO0c1RJGiCImSLhW2zZ+Lq60fj7r2VDqdKlRUZWPrVYcxGC4Mfb4bO0UbGnJ1eaR1/kLIXhnwFo6dbu77cgGwwkPHhRyQ/8CAaHx/C583FbdiwOwpld9puRi4Zya/HfmVo5FBWjljJEy2ewNWubhSNEQRBqCz2GnumNJnCyhErua/xfaxPXM+QhUN4e9fbZJVeYy60oFbw4Bbo8gIcmw/ftIGTS6s3cMCpc2fC581F4+ND8tSpZH31NXIdn7zYO8SZ9sMjOH84m2ObU5UOp0pJKhUx7TuTcOgAZcU3mJi9lhMJmqCIM7u3k5UQT4fRE1BrtEqHU2UM5SaWfX2YotxyBj7SFM9AG2gJMpbB8ufgz3HgGggPbIYWk60DyG/AkJJCwqRJ5P7yC27jxxH212zs6l1nHp4bKKgo4LXtrzFlzRQkJH7u8zNvdHgDT4e6MReeIAhCVXG1c+Wplk+xYsQKRkaPZP6Z+QxYMIDP939OQUXBv3fQ2EGPl+GBTeASAH9NtM6BWVFcrXHrQkII+2s2rkOGkP3NNyRNmYIpO7taY7A1zXoEE9LIk+3z4shJrd7/j+rWoGNXLGYTcXt2Kh2KokSCJlQ7i9nM9jm/4xkUQv2OXZQOp8qYTRZWfn+UrORi+k1tjH+km9IhQeYpmNYD9k6zjjuYst5afvkmFCxZwvmhwzDEnyfw88/xf/11VPb2txWGLMusSljFkEVDWHJuCfc3vp/5Q+bTxr/Nbb2eIAiCcHXeem9eafcKS4YtoUdID3459gv9F/Tn95O/Y7ZcpXXKrwncvw46PQMHf4fvO0HKvmqNWaXX4//+e/i/8zZlBw5yfvgISvdep/BJLSepJHre3QCdXsPqn45jNNTeVkWf8Ajc/Pw5tX2z0qEoSiRoQrU7sWUDeRdS6DhuEqpaWiZdtsis/+0EKafy6D6xPmFNvZQOCQ7PhmndoSQLJsy3jjvQ3Hjsn7moiNTnnufCC/+HXf361Fu0EJd+fW87jPSSdJ7Y8ATPb34eP0c/Zg+azVMtn8Jec3vJniAIgnBjwS7BfNDlA+YOnksTrya8v+d9Jq2cdPVCIhod9HrdWjTKYrIWkdr8IZhN1RavJEm4jRxJ2Jy/UOn1JN59D9k/TkO21I15wf5J76Kj9z0NyUsrYfvcs0qHU2UkSaJ+x64kHz9KSX7tr155LSJBE6qVyWhkx7w/8IuIIrJVO6XDqRKyLLN17lnO7suk/fAIGnTwVzYgYxkseQIWPggBzeGhbRDV66Z2LT1wgPPDhlO4ciXeTz5B6Izptz23mdFiZPrx6QxbPIxdabt4rtVz/D7gd+p73FnVR0EQBOHmxXjE8H2v7/mg8wekFqcybtk4Pt//+dUnug7raP3OaDwCNr4Dvw2AvIRqjdc+Joaw+fNw6deXrE8/JfnhhzHl1c0L9+CGHjTvE8LxrRc4dyBT6XCqTP0OXZBlC6d3blM6FMWIBE2oVkfXr6IoO4uO4yYj3cSYp5po/6pEjm5MoVmvYJr3CVE2mJxz8HNvawnlTs/A5CXg7HfD3WSTiayvviZx4iSQJMJ+n4XXww8jqW+vxXNX2i5GLRnFx/s+prlPcxYMXcDdje5Go9Lc1usJgiAIt0+SJAbUG8CSYUsYHDGYn4/9zIglI9iVtuvfGzu4wcifYMRP1m7y33WCQ39CNVYUVDs5EfDJJ/i+9iqlO3ZyfsRIyg4dqrbj25K2Q+rhE+rMxlmnKMq9SlJdC3gGheAZFELc3ro7Dk0kaEK1MVaUs2vBXwQ3bEJok1ilw6kSJ7ZfYPfieKLb+tJxRKSySeiJxfBjN8hPhrvmWLurqG+cEBlSUkicNPni3GaDCF+0EIfY2NsK4ULxBZ7Z9AxT10zFYDbwVY+v+LbntwQ7B9/W6wmCIAiVx9XOlTc7vsnPfX5GQmLqmqm8vO1l8svz/71x09HWqVj8m8Kih2D+/VB+lWIjVUSSJDzuuovQP/9EUqtJmDSZ/Pnzq+34tkKtUdFnSiPMZpmNs07V2tL7Ea3aknLyGOXFtbsoyrWIBE2oNkc3rKG0IJ8OYybUytaz1DN5bP79NCENPegxuQGSSqH3aDLAyhdhzmTwioaHtkL0zY0ZK1y1mvPDhlNx9iwBH39MwAcfoHa69cqTFeYKvj/8PUMXDWVrylYeb/44i4Ytoltwt1r5fy8IglCTtfFvw/wh85naZCor4lcwZNEQViWs+veGbiFw91Lo+RocXwQ/dIHU/dUaq0PjRoTPm4tj61akvfwKGe+9h2yqvrFxtsDVW0+H4REkn8jlxLYLSodTJSJatkG2WDh/uHrPL1shEjShWphNRvYuXUBQg8YENWisdDiVrjC7jFU/HMPVx4E+UxujViv0p5WfbB0jsPs7aPsw3LvS+oV6A7LJRMZHH5H61FPoIuoRvmgRroMG3vLhZVlmY9JGhi4ayjeHvqFLUBeWDFvCA00fwE5duycjFwRBqMnsNfY80eIJ/hr8F0HOQTy/+Xle3PoihYbCv2+oUkPnZ63fLxaztYDIjq+gGot3qN3cCP7xR9wnTyJ3+gySH3gQc0H1tebZgsZdAgmq7872eXEUZpcpHU6l84uMxsHFlfj9e5QORREiQROqxfHNGyjOyabt8DFKh1LpDOUmln97BFmWGfBwU+wcFBpXdW6D9W5m5inrpNP937dW4roBU04OSfdPIfdn69xmoTNnogu69UIgacVpPLHhCZ7Y+AT2ant+6vMTn3T7BH8nhYukCIIgCDct2j2aGf1n8EjsI6w6v4qRS0ayJ+0qF8khba09NGL6w5pX4I8xUHyNibCrgKTR4Pef/+D/9luU7N1LwpixVMTHV9vxlSapJLpPshbZ2jDzFLKldnV1VKnU1GvemvOH9mGuYy2kIBI0oRpYzGb2Lp6Hb70oQps2VzqcSiVbZNb9eoK89FL6Tm2Mm6+++oOwWGDLRzBzhLUAyAOboNGwm9q17MgRzo8cRdmhQ/i/9551bjPdjZO6K5ktZmaemMnQxUPZnb6bZ1s+y9whc2nr3/bW34sgCIKgOI1Kw8PNHmZm/5nYqe2YsmYKH+/9mApzxd83dHCHMTNh4Cdwfot1zrT46p2/ym3UKEKn/4a5uJiEMWMp3rKlWo+vJBdPBzqOiiT1dB7HtqQqHU6li2jVhoqSEi6cPqF0KNVOJGhClTu9cyv5GWm0HTGm1o0/2r0knvOHs+k0OpLgBh7VH0BZHsweDxvehiajYMo68Iq84W6yLJP31xwSJ0xEUqsJ+/MP3IYPu+XDn8g5wV0r7uLDvR/S0rclC4cu5J7G96BVaW/jzQiCIAi2pIl3E+YMmsOYmDFMPzGd8cvH/3veNEmC1lNg6gawd4EZQ63fSdU4Z5q+RQvC585BGxxM8oMPkfPzL7W2eMY/NewUQEhDD3YsiKMgq1TpcCpVaNPmqDUazu3frXQo1U4kaEKVki0Wdi+cg2dQCJEta1eLypm96exflUjDTgE06RZU/QGkHbFWaYxbDwM+hhHTQOd4w90sFRWkvfIK6a+/jr5tW8LmzcW+YcNbOnSpsZSP9n7E+OXjySjJ4KMuH/Ftz28JdLq9OdIEQRAE26TX6nml3St82/Nb8srzGL98PL8e+xWzxfz3Df0aW3twxE6w9uqYPggKq6+AhTYggLDfZ+Hcpw+ZH31E2kv/QTYaq+34SpEka1dHlVrF+ukna1VXR529A8GNm3Fu/546k3D/j0jQhCoVt383OSlJtB0+BklVe063zMRCNsw4hX+kK13GRVd/y+DB363zm5kMcO8KaDPVehfzBowXLpB41wQK5i/A8+GHCP7hezTu7rd06C0pWxi2eBgzTsxgRNQIFg9bTL/wfrWudVQQBEG4rHNQZxYMWUCXoC58uv9T7lt9H0mFSX/fSOcIw76x3jBMOwLfd7aOj64mKr2ewM8/w+uxxyhYtIiUx5/AUl475wq7kpO7PZ1GR5EWV8CRjSlKh1OpIlq0IT89jdwLtet93UjtuWIWbI4sy+xe8Bduvv7EtO+sdDiVpqSgghXfHUXvrKP/g01Qa6rxz8hYDkufhMWPQFBreHALBLe5qV1L9uzh/MhRGBITCfrma3yefPKWJp4uM5Xx3x3/5dH1j6LX6Jnebzqvt38dVzvX2303giAIQg3ibu/OZ90+4+2Ob3M27ywjl4xk1olZWOR/VHBsOgYe2AiOXtbx0Rvfs1Z8rAaSJOH92KP4/fd1ijdvJmnKFMxFRdVybCXVb+9HaBNPdi06R35G7enqWK9la4A6V81RJGhClUk8fICM+DhaDx2F6hYSAVtmMppZ8d1RKspMDHikKQ7Ot1ZQ446UZMOMIbD/N+j0NExaBE7eN9xNlmVyZ/1O0n33o3ZzI2zOHJx79rylQ5/LP8ddy+9i/tn53N/4fuYOnksL3xa39z4EQRCEGkuSJIZGDmXh0IW08W/DB3s/4N5V95JYmPj3Db1jrOPSmo6Fze/DrBHVWuXRfdw4Aj/5mLJDh0mcfDem7OxqO7YSJEmi+4T6qLXWro6WWtLV0cXLB+/QcM6JBE0QKseuhXNw8vSiUdceSodSKWRZZtOs02QmFNL7noZ4Bd36BM63Les0TOsBaYdh9G/Q67+gvnE5f4vBQNorr5Dx9ts4de5M2Jy/sKsXfkuHXhS3iPHLx5Nbnsv3vb7nqZZPoVWLIiCCIAh1ma+jL1/3+Jp3O73L2Xxra9qM4zP+PjZN5wjDv4chX0HSLvihMyTuqLYYXQYMIPi7bzGcP0/ihIkYUmpfpcMrObrZ0XlsNOnxBRxel6x0OJUmolVbLpw+SVlR4Y03riVEgiZUiZSTx0g9dZzWg0eg1tSOi/nD65M5vTudNoPDqdf8xi1XlSZ+M/zUG4ylcM9yaDT8pnYzZmSSOGkSBfMX4PXIwwR98zVqZ+ebPmypsZSXt73Mq9tfpbFXY+YOnkvHwI63+y4EQRCEWkaSJAZHDGbR0EW082/HR/s+4p5V95BQkHDlRtBisrXKsFYPvw2CbZ9X28TWTp07E/LLz5jy8kicMIGKuLhqOa5Sotv4Et7Mi91L4slLL1E6nEoR0aINsmzh/MF9SodSbUSCJlSJ3Qvn4ODiSpMefZQOpVIkn8xlx/w46sV606p/WPUd+MBMa7cQF3+Ysh6CWt3UbqUHD3J+1EgqzsYR+OUXeD/xxC0VaTmTd4Zxy8ex9NxSHmr2ENN6T8NH73O770IQBEGoxXz0PnzV4yve7fQu8QXxjFo6it9P/v73ynt+TaxVHhsMhnWvw18ToaJ6xobpW7QgdOYMZLOZxAkTKTtypFqOqwRJkuh6VwxqrYqtf52pFdUPfetF4ujmXqe6OYoETah06efOknD4AC0HDkNrZ690OHesIKuM1T8dw93fkZ73NEBSVUO1QosF1v0XljwGYZ3h/jXgHnpTu+bNnUvi5LtR2TsQNvtPXPrcfJIsyzLzzszjruV3UWQoYlqfaTwa+yhqVe0YQygIgiBUjStb09r7t+f9Pe/zxMYnKKgouLyRvYu1m36/9+HMKvi5D+QlVEt89jExhP3xOypnZxLvuRfdqVPVclwlOLra0WZwOMkn84g/VH3j/qqKpFJRr0VrEg7vx2yq/VMngEjQhCqwe+Ec7Bwdie0zUOlQ7pih3MTK74+ADAMeboLO/sbjvu6YsQzm3QvbPoOW98KEuWB/40qJssVCxgcfkv7qazi2aUP43DnYR0ff9GELKgp4fsvzvLHzDZr7NGfu4Lm09a9dc9cJgiAIVctb782XPb7kxTYvsi11G6OWjuJg5sHLG0gStHsYJs6HwlTr+OqE7dUSmy4khNDff0cXGIjb199QtGlTtRxXCU26BuIZ6Mi2uWcxGqqngmZVqteyLYayMlJOHFc6lGohEjShUmUnJxK3dyfN+w3GTq9XOpw7IssyG2acJPdCCX2mNMLVuxreT3GmtX/+icXQ520Y9BncREEO2WQi7T8vk/vrr7hPmEDwD9+jdnO76cPuTd/LqKWjWJ+4nidbPMkPvX/Ay8HrDt6IIAiCUFdJksSEBhOY1X8WGknDvavu5aejP/29HH9Ed5i6ERw8LlcorgZaXx9CZ87AFBBAyuNPULh2bbUct7qp1Cq6jIumOLeCA6sSb7yDjQtt0gyNVse5/buVDqVaiARNqFR7Fs1Fa2dPi/5DlA7lju1flci5A1m0Hx5JSEPPqj9gbrx18umM4zB2FnR4/KYmn7ZUVJDy5FMULFqE1+OP4fvKy0iam2vpM1qMfHngS+5ffT86lY6ZA2YypckUVJL4aBAEQRDuTCOvRswZPIdeob344sAXPLzuYXLKci5v4BlhLR5Sr5t1js8VL4DZVOVxqd3cyHvqSRwaNiT1qacpXLmyyo+phIAod6Ja+3JwTRIFWTV7bjStnT0hTZpxbv+eWjGu7kbEVZhQaQoy0zm1fQtNe/fHwdlF6XDuSMLRbHYviSe6jS+xvYOr/oBpR+DnvlBeAPcsgwaDbmo3c3ExyVOmUrx+Pb6vvIL3o48i3URSB5BUmMTkFZOZdnQawyKHMXfwXBp7Nb6TdyEIgiAIf+Osc+ajLh/xWvvX2J+xn1FLR7En7YpiDw5ucNccaP8Y7PkBfh8JZXlVHpes1xP88884xMaS+uxzFCxZUuXHVELHkZGo1BLb5pxVOpQ7FtGyLYVZGeQk1/wWwRsRCZpQafavWIykkmg5cKjSodyRvPQS1v58HO9gZ7pPrH/TCc9tS9gGvw20dmW8b/VNV2o05eSQNPluSg8eJOCjj/CYOOGm9pNlmYVnFzJq6SgSixL5uOvHvNnxTfTamt0lVRAEQbBNkiQxOno0vw/4HWedM1PWTOHbQ99enjNNpYa+78DQb6zj0ab1gKwzVR6X2smRkGk/om/dmgv/9yL58+dX+TGrm6ObHa0GhpFwNIeEIzV7su56LVoD1IlqjiJBEypFeXExxzaspX7Hrjh71NyxSxVlJlZ8dxS1VkX/h5qg0VVx9cJTy2HmCHD2s1Zq9I65qd2MqakkTphIRXw8wd98jevgm2txKzQU8tzm53htx2s09mrMgiEL6BvW907egSAIgiDclBiPGGYPnM3giMF8d/g7Hlz7INllVyQNzSdae5FUFFm7/CdV/XgjlV5P8A/f49ixI2kvv0Len39W+TGrW7Mewbj76dk69ywmY80tGOLk4YlvvUjOHRAJmiDclMPrVmKsKKflwGFKh3LbZFlm3a8nKMwqo98DjXH2qOIpAg7MtM4D49fE2nLmGnRTu1WcO0fChImYcnII+fknnLp2van9UotTmbRiEhuSNvBkiyeZ1nsafo5+d/IOBEEQBOGW6LV63un0Dm92eJPDWYcZtWQUu9OuSMRC2lnHpek9rcVDTq2o8phU9vYEffM1Tt26kf7Gm+TOmFHlx/z/9u47Ouqia+D4d3az6b33QEiooVdBECxYedTX3rCBvWPXB0QUFRt2xa5gA8sjip0ivddAgFBCei+kb3bn/SNY0JRNsptN4H7O4RyzO+Uu/gjczMyd9mR0MTD64u6U5Vex5Zd0Z4fTJvGDhpG9dzeVpSXODsWhJEETbWapM7Plx4XE9h1AaJd4Z4fTalt/S+fgtgJGXphAZGKA4ybSur6E/re3Qfw4mPg/8Ay0qWvV9h2kXXEluq6OuLkf4zl4sE39tudv5/LvLye/Kp854+cwqe8kudtMCCGE05yfeD6fnP0Jvm6+3PDLDbyx9Y2/tjwGdKnfVRLaGz6/AjZ+6PB4DG5uRL/8Ej6nnUbuzKcofPddh8/ZnmJ6B9JtYAgbfzhIWWGVs8NptW5DhoPW7N+03tmhOJQkaKLNUlb+TnlxEUPPOd/ZobRaXloZq7/eR9f+wfQbZ9tKVqtYrXTb9379JdRJF8Jln4Gbt01dKzdt5tC112Lw9qbLJ/Nw72Hbdsjf0n7jup+uw8PFg7lnzmVo+NA2fAAhhBDCPhIDEvns7M84q+tZvL7ldW769aa/tjx6BcPVC+t/kLnwDlj2bP0POB1IuboS9cLz+J51FnnPPkfRJ584dL72NvLCBABWLUh1ciStF9olHu+g4GP+HJokaKJNtNZs+O5rgmPiiOs/yNnhtEpNVR0/vb0DTz9XTp7Yy3FFQaxW+PZ2YjL+B8NuhP97G1xcbepauX496ZMm4RIURNzcj3GNjW22j9aaj5I/4u6ld9M9oDvzzppHvH/nXeEUQghx7PE0eTLzxJlMHzmdzXmbuWjhRazPObI64uYNl38O/S6BJU/AovvA6tgzVMpkIvKZp/EeN47cGU9Q+v33Dp2vPfkGeTD4zDj2bc4nfWeRs8NpFaUU3QYNJW3bZupqa50djsNIgibaJG37FgoOHWTwOec7vtqhA2itWTo3hcNFNYy/Pgl3r+YvhW4Vq7X+J4Bb5nIw7hI48xkw2PbHr2LNGg7dcCMu4eHEfvQRpvDmz43VWeuYuXYmz254llNiT+Gd098hyKMd7nITQgghWkgpxf8l/h/zzpqHt8mbST9P4p3t79Tfd2U0wXlv1t8Nuv5tWHAtmKsdG4/JRNSLL+A5eDBZDzxI+fLlDp2vPQ04LRbfEA+Wf7EHS521+Q4dUPzgYZhrqknfud3ZoTiMJGiiTTYs/Aov/wB6jrKtUEVHs3NFFqkb8xj+n65EdPNzzCRWK3x/N2z+GMbcx8Eul9l0ATVA+YqVpN94E67RUcR99CGmsNBm+1SaK7lzyZ18tvszrulzDc+PfR4PF4+2fgohhBDCoXoE9uCzcz5jfNx4Xtr0Eo+veZw6a139DzTHPwHjn4Sd/4N5F9bfG+pABnd3ot94HbfuiWTcfgeVmzY7dL724mIyMvriRIpzKtmxLNPZ4bRKbJ/+uLi5HdPbHCVBE62Wn3aAtG2bGXjGBFxMDlp5cqDCzHKWf7GXmN6BDBof55hJtIZF98LGD+DEe2DcIzYnZ4eXLiXj5ptx7dqV2A8/xCW4+esL8irzuObHa1iRuYJHhz/KlCFTMCj5Yy6EEKJz8DJ5MWvMLCb1ncSCPQu4a8ldVJor698ceVv98YBDq+H9s6E8z6GxGH18iH37bUxhYaTfdBPVux1/N1t7iEsKIrpnABt+OEhtVZ2zw2kxF1dXonslkZ68zdmhOIz8y0202sbvv8HFzY1+p53p7FBazFxj4ae3d+Dm4cKp1/RGGRywPVNr+OEB2PAujLwDTplqe3L2229k3H4Hbt27E/fB+7gENl/lcWv+Vi797lIOlh3klZNf4ZKel7T1EwghhBDtTinFnYPu5NHhj7I8czmTfp5EYVVh/Zv9Lq4/l1aYCu+dASWOLRvvEhREzLvvYvDwIH3SJGrTO3eZeqj//T3h/G5Ul5vZ/MshZ4fTKtG9kijKTD9my+13ygRNKRWvlHpXKbXgyNfnKaXeVkp9rpQa7+z4jgflRYXsWrGMpLGn4eHt4+xwWuz3z/dQnFvJqdf1xtPXtkIdLaI1/PQwrHsLTrgNTnvc5uSs7MefyLjzLtx79yL2/fcw+vs32+frvV9z7Y/X4mZ0Y+5ZcxkTPaaNH0AIIYRwrkt6XsKLY19kb/FervrhKg6VHUkmEk6Fid9ARUF9klbg2KqErtFRxL77Drq2lkPXT6IuP9+h87WH0DhfEgaHsuXXQ1SU1jg7nBaL6Z0EQMauHU6OxDGaTdCUUu5KqXVKqa1KqWSl1PTWTqaUek8plaeU+tfvplLqDKXUbqVUqlLqwabG0Vrv11pf/7evv9FaTwZuAmTZoB1s/uk7tNXK4LPOdXYoLbZ7bQ4pq7IZcmYXYnradv9Yi2gNPz8Ka16H4TfV75u3MTkrXfgdmVOm4NGvH7HvvovR17fJ9marmZlrZzJ11VQGhw3ms3M+o3tAd3t8CiGEEMLpTo49mXdOf4fy2nKuXHQl2/KPbGuLHQHXfAd11fD+GZDt2O1ubgkJxMx5i7qCAg5NvgFLWZlD52sPw/8Tj7VOs2HRQWeH0mJh8Ym4uLmRvvM4TdCAGuBkrXV/YABwhlJqxN8bKKVClVI+/3gtoYGxPgDO+OeLSikj8BpwJtAbuEwp1Vsp1Vcp9d0/fjVVJeHRI+MIB6qtrmLrL4tIGDYC//AIZ4fTIiW5lSz9ZDcRCX4MPbuL/SfQuv6Os9WvwtDJcMbTNidnxZ9/Qdb99+M5aBCxb8/B6N30/WhF1UXc+MuNfJryKRN7T+SNU9/Az81BhU6EEEIIJ+kf0p+Pz/oYL5MX1/90PUvTl9a/EdEPrvsRjK7wwTlwaK1D4/Do35/oV16mZt8+0m+6GWtV573wGcA/zJPeJ0ayc3kWJbmVzg6nRYwuLkR273X8rqDpeuVHvjQd+fXPmwJPAr5RSrkBKKUmA680MNbvQEMXLwwDUo+sjNUCnwHnaq23a63P+cevf50IVfWeAX7QWm9q7jOJttmx5FdqKioY0skuprZYrPz8bjIuLgbGX98Hg9EBO3yXPAkrZ8OQ6+CsZ21Ozgrfe5+cadPwGjOamLfnYPDyarJ9SlEKl313GVvztjLzxJncN/Q+XAwudvgAQgghRMcT5xvH3LPmkuCfwJ1L7uSL3V/UvxGcWJ+keQXDx+fBvsUOjcN71Ciinp1F1ebNZN59D9psduh8jjbk7C4YXBRrv93v7FBaLKZXEgWHDlJ1uPOvZv6T0jbcyn5khWsjkAC8prV+oIE29wMjgfnAbcBpf0vs/t6uC/Cd1jrpb69dCJyhtZ505OurgOFa69saiScIeBI4DXgHqACuBtYDW7TWbzbQZwIwISoqavLcuXOb/cyiYdpqZccn72Ly8qLn+Zc7O5wWyduhyd+hiTlR4Rtt/6IgsWlfEH9gHtnhp7K7x63QSPXE8vJyvP9YHdMar+++w/v7RVQPGkTpddeCS9OJ1saKjcwrnIeXwYvJIZOJdWv+0moh/u6oZ1AIJ5BnULRWjbWG9wveJ7kqmXP8z2G873iUUphqS+i/dRqelRns7H0vBSEnNDlOW59Bj99/x/eTT6kaMZyyiRNtvtu0I8rdZqVgJ8SPV3gEdp47bcuzM9j9zWd0O+Nc/LsmOjucFhs3btxGrfWQht6z6UfuWmsLMEAp5Q98rZRK0lrv+EebWUqpz4A3gG4NJWf2orUupP682d+93EyfhcDCIUOGTB47dqyjQjvm7Vmzgk2HSzlj8q0kDh/p7HBsVpBxmPlfbCBxaBjjr+xj/wlWvQIH5kG/S4k473UiDMZGmy5dupSxY8eitSbv6Wco+n4Rfhf8Hz0ffxxlbLyf1ppXt7zKB2kfMDB0IC+MfYFgj+ZL7wvxT388g0I4izyDoi1Otp7M1JVT+W7/dwRGBnLvkHtRSsHok2DeRSTtnAXnvgYDGv9BcpufwbFjyQ8OpuDlV4jq3Yew++9r/VhOVju8jo8fXU3tIW/O/L+Bzg7HZnVmM/u+/wo/A8fc95MWpfta6xJgCQ2fIxsNJAFfA9NaGEcmEPO3r6OPvCY6EK01GxZ+jX9YBN2GDnd2ODazWKz89uEu3LxNjLnEAQU01r1dXxSk93n1fyE0kZz9QVss5EydStGHHxJw1VVEzJjRZHJWa6nloRUPMWfbHM5POJ93x78ryZkQQojjkslg4skTn+Tynpfz0c6PmLpqav2F1h4BcNU30HUMfHMLbPnEoXEE33wzAVdcQdF771H47rsOncuRXD1cGHJWFzJSiknf2dBJpI7JxWQiontPMo7BQiG2VHEMObJyhlLKg/pthSn/aDMQmAOcC1wLBCmlnmhBHOuBRKVUV6WUK3Ap8G0L+ot2kJO6h+zU3Qw6+1wMNiQhHcWmH9MoSC9n7OU9cPe284Xamz6qv4i6x1lwwTtgtGFR2mIh6777KJm/gOBbbibs4YdQTWyNKK0p5aZfb+L7/d9z+8DbmT5yOiZj57sYXAghhLAXgzLw4LAHubn/zXyT+g33LruXGksNuHnDZZ9B/En1Sdq2+Q6LQSlF2CMP43vWWeQ9+xwlX37lsLkcLWlMFD6B7qz6OhVtbf74U0cR3SuJvLT9VFc4bOOeU9iyghYBLFFKbaM+kfpFa/3dP9p4Ahdrrfdpra3ARCDtnwMppT4FVgM9lFIZSqnrAbTWddSfW/sJ2AV8obVObu2HEo6xffFPuLi50Xv0yc4OxWYFGeVsWHSQxKFhxA8Ise/g276Ab++ov4/log/AhqTJWl2N/5tvUbboB0Lvu5eQO+6o35bRiMzyTCb+MJHNeZt5avRT3NDvhibbCyGEEMcLpRS3DLiFB4c9yG+HfuPWX2+lwlwBJg+49FPociJ8fQPscFzipAwGIp9+Cq9Ro8ieOpXDix1bpMRRjCYDw//TlYL0clI3/qseX4cV0zsJtCYzZaezQ7ErW6o4btNaD9Ra99NaJ2mtH2+gzUqt9fa/fW3WWr/dQLvLtNYRWmuT1jpaa/3u395bpLXurrXuprV+si0fSthfbVUlKSt/p+fIMbh5ejo7HJvUb23ciZuni/23NiZ/A1/fWP/N/5K54OLWbBddW0vGbbfjumMH4Y9NI+j665tsn1yQzBXfX0F+VT5zTpvDOfHn2Cl4IYQQ4thxRa8rmHniTDbkbmDST5MoqS4BV8/6lbSY4fDlJNi10GHzK1dXol9+Cfc+fci8+x4q16932FyOlDgsnKAob9b8bx+WOquzw7FJeGIPjC4ux1y5/c5bcka0q5RVyzHXVNP35PHODsVmf21t7GnfrY27f4Avr4foYfXf/E0ezXbRVitZDz1MxYoVlF15BQGXXtpk+2Xpy7j2p2txM7ox98y5DA0faq/ohRBCiGPOhG4TeHHsi+wp3sPVP15NTkVO/XbHK+ZD1CCYf239398OYvDyIuatNzFFRZF+y61Up6Q036mDMRgUI86Lp6ygmuTlWc4OxyYmVzfCE3qQsXN78407EUnQhE22L/6JoOhYIhJ7OjsUmxy1tXGgHbc2pv4GX0yE8H5wxRf13/ybobUm96mnKfv+e0LuuYfqUaOabP9ZymfcseQOuvp1Zd7Z84j3j7dX9EIIIcQxa1zsON487U1yK3OZ+MNE9pfuBzcfuPJLCO9b//f33l8cNr9LQACx77yNwcuLQ5MnY87sfPXu4pKCiEz0Z8OiA9RW1zk7HJvE9E4id/8+aio712XbTZEETTQrP+0AOal76Hvy6Z3i/NPftzaOvsSO92JkbYbPr4LgHvXf7N39bOpW+NYcij/+mMCrJxI0eVKj7bTWvLzpZZ5c+yRjosbw/unvS6VGIYQQogWGhg/lvdPfo8ZSw8QfJrIlb0v939dXfQWhveCzK+p/2OogpshIYt95G11dQ/pNN2Mp71zFK5RSnPB/3ag6bGbrb+nODscm0b36orWVrN3Hzjk0SdBEs7Yv/hmjiwu9x4xzdig22fzTX1sbPbxd7TNo8UGYdzF4BtUnZ56BtnWbP5/82bPxnTCB0AceaDTB1Vrz4qYXeXv721yQeAGzx83G09Q5zvoJIYQQHUnvoN7MPXMufq5+TP55MksOLfmrBH9wd/jscvyLtzlsfreEBKJfmk3N/v1k3nMPuq5zrET9IbyrH137B7Pll0NUV5idHU6zIrv3xGA0kn4MnUOTBE00yVxbw87li0kYNhIPH19nh9Osgoxy1n9/kMQhofbb2lhZBHMvBEsNXLkAfMJs6nb411/JmfYYXqNHEznzyUZL6WuteWHjC7y/430u6XEJU0+YirETXWMghBBCdDQxvjF8dOZHJPgncNfSu1iwZ0H9D1cnfgMBXem7/QlIW+Ww+b1GjiR82lQqfl9O7lNPO2weRxk2IZ7aGgubfznk7FCaZXJ3J6xb4jF1Dk0SNNGk1LWrqKmooN8ppzs7lGZZLVYWf7SrfmvjpXaq2miuhs8uh5K0+pK9IT1s6laxbh2Z90zBvW8S0S/NRpkaLlKitebZDc/yQfIHXNbzMh4Z/ggGJX8shRBCiLYK8gji3dPfZWTkSKavns7rW15HewbB1d9S4xYM8y6CdMdVXAy4+GICr7uO4nnzKPp4rsPmcYTgaG8SB4eybXE6lWW1zg6nWTG9ksjdn4q5utrZodiF/EtQNGn74p/xCwsnpndfZ4fSrC2/ppN/6DBjLu1hn62NVit8cxMcWg3nvQFdmi7u8YfqlBQybrkVU0wMMW++iaGRawm01sxaP4uPd37MFb2u4KFhD3WKM35CCCFEZ+Fp8uTlk1/m3G7n8sbWN5i+ejp1noFsGTADvEJg7gWQtcVh84dOuQfvU08h96mnOLx0qcPmcYSh53TFYray6ad/XW3c4UT37ovVYiFzzy5nh2IXkqCJRhVnZ5K+czt9x41vdHteR1GSW8m67w4QPyCEhMGh9hn016mQ/DWc9jj0vdCmLrXp6RyaNBmDtzex77yNS0BAg+201jy17inm7prLVb2v4oGhjZ9PE0IIIUTrmQwmZoyaweS+k/ly75fcveRuyk0+cPXC+gIiH58HuckOmVsZjUTNmoV7z55k3TOlU5XfDwj3oscJEexYlkl5ccdemYrq0QtlMJCx89g4h9ax/9UtnGr7kl9QBgN9xp7q7FCapK2aJXNTMLoYGGOvrY1r58CqV2DoZBh5h01d6vLzOXT9JDCbiX3nbUwREQ22s2orT659kk9TPuXq3ldz35D7JDkTQgghHEgpxR2D7uCR4Y+wLGMZr+a9SoVXIFz9Lbh4wIf/gfzdDpnb4OlJ9BtvYPDxIf2mmzHn5TlkHkcYelYXtNZs+KFjr6K5engS1rUbGbuOjXNokqCJBlnq6khe+ivxg4bhHWBbxUJn2bkyi6y9JYy6IAEvf7e2D7jrO/jhfuhxFpz5DNiQPFlKSzk0aTJ1BQXEvPUmbgkJDbazaitfFH3B57s/59qka5kyZIokZ0IIIUQ7ubTnpTx30nOk1aRx++LbqfaNqF9JU4b6JK1wn0PmNYWFEvPmG1jKysi4+RasneTOLt9gD3qfGMmuFVmU5lc5O5wmRffuS07qHsy1Nc4Opc0kQRMN2r9pHZWlJfQ9ebyzQ2lSeXENq75MJaqHP71GNbxi1SLp6+HL6yFqEFzwLthQTdFaWUn6TTdTs38/0a+8jMeAAQ2201rzxJonWFm+kuuTrufuQXdLciaEEEK0s/FdxnNV8FVsyNnAPUvvwRwQV7+SZjXDhxPqr9ZxAPdevYh6/jmqd+0i64EH0FarQ+axtyFndkEZFRu+P+DsUJoU3SsJS10d2XscsxLaniRBEw3avvhnvAOD6DpgsLNDaZTWmt8/243Fohl7Rc+2JzvFafDppeATDpd9Dq7N30Oma2vJuPMuqrZuJerZZ/Ee1XAhEa01z6x/hvl75nOa72ncOehOSc6EEEIIJxniNYSpJ0xleeZyHlj+AHXBiTDxf1BbUb+SVprhkHl9xo0j7IH7OfzLrxS9/75D5rA3L383+p4Uxe61ORTnVDg7nEZF9ewNSh0T2xwlQRP/UlaQz8Etm0gaeyoGY8e9j2vfpnwObC1g2ISu+Ie28VLnmsP1yZnFDFcsAO/m71DTFgtZDz5IxfLlhE9/DN8zGr6KQGvN7E2zmbdrHlf2upIJ/hMkORNCCCGc7MLuF3LfkPv4Je0Xpq2ahjWsD1z1FVQV1ydpFQUOmTdg4kR8xo8n78XZVG1z3IXZ9jTo9DiMrkbWLey4q2juXt6ExsUfE4VCJEET/5K89Fc0mqRxHXd7Y3W5md8/201IrA8DTolp22BWC3w5qf5w8MUfQHBis1201uTMmEHZoh8IvXcKARdd1GjbN7e+yXs73uOSHpdw/9D7JTkTQgghOoiJfSZy64Bb+Xbft8xcOxMdOQiumA9lmfDJJVBr/7NiSikiZjyOS2gImfdMwXL4sN3nsDcPH1f6nxxN6sY8CjI6brzRvZPI3rubOrPZ2aG0iSRo4ihWq4XtS34mru8A/ELDnB1Oo1Yu2Et1RR3jruqJwdjGx/jXx2DPj/UFQbqdbFOX/NkvUfLZ5wRNnkTQpEmNtntvx3u8vvV1zks4j4eHPyzJmRBCCNHB3NjvRq7tcy2f7/6cFze9iI4ZDhe8A5kbYcF1YKmz+5xGPz+innsec3Y2OdOmobW2+xz2NvC0WNw8XVj7bcddRYvunUSduZac1M59Dk0SNHGUQ9u2cLggn74nN7xdryM4tLOQlDU5DBwfS0iMT9sG2zwPVr0MQ66HYZNt6lL43vsUvvUW/hddRMg99zTabt6ueby48UXO7Homj53wGAYlf9yEEEKIjkYpxd2D7+aSHpfw/o73mbNtDvSaAGc9C3t+gEX3ggMSKM9BAwm5/XbKFv1A6Zdf2n18e3PzNDHg1FgObisg50Cps8NpUHTPPgCdfpuj/ItRHGXb4p/w8PGl25Dhzg6lQbXVdSydtxv/ME+Gnt2lbYOlrYaFd0LXk+pXz2xQ8tXX5M2ahc/ppxP+2LRGV8Tm75nP0+ue5pTYU3jyxCcx2lANUgghhBDOoZTi4eEP859u/+HVLa/yUfJH9T+4HXUXbHwflj/vkHmDJk/C84QR5DzxJDX7HFPi3576nRyNu7eJdd/ud3YoDfLw8SU4tgvpuyRBE8eIytIS9m1YS++TTsHFZHJ2OA1a9+0BDhdWM+7KnriY2pD0FKfB51eAfyxc/CEYm/+8lZs2kT1tGp4njCDy2VmoRgqofLvvW2asnsHoqNE8O+ZZTIaO+XsphBBCiL8YlIHpI6dzWtxpPLvhWb7Y/QWcMg36XgyLZ8CWT+0+pzIaiXzmGQyenmTefQ/W6mq7z2FPru4uDD4jjvRdxWTuKXZ2OA2K7pVE1p5dWOrsvzW1vUiCJv60a8UyrBYLfced5uxQGlSQUc62Jen0GRNFZKJ/6wf6o2KjtQ4u/xw8AprtYs7NI+POOzFFRBA9ezYGV9cG2/108Cf+u/K/DI8YzovjXsRkQ+InhBBCiI7BxeDCM6Of4aTok5ixZgZf7/sfnPta/W6bb2+D1N/sPqcpNJTIp5+iZs8e8mbNsvv49pY0JgoPHxNbfk13digNiumdRF1NDbn79zo7lFaTBE38Kfn33wjvlkhQdKyzQ/kXrTUrF+zF1cOFEefGt36gv1dsvOhDmyo2WmtrybzjDqwVlUS/+gpGP78G263PWc9Dyx9iQMgAXhr3Em5Gt9bHKYQQQginMBlNPD/2eUZGjmTaqmksTPsJLvkYQnrCFxMhe6vd5/QeM4bAa6+l+JNPKfv5Z7uPb08urkb6jI7i4PYCSvPtX+WyraJ7JQGQ3onPoUmCJgDITztA/sH99B5jWxXD9nZwWwEZKcUMm9AVd682rEodVbFxnE1dcmc8QdXWrUTOnIl79+4NttlXso87l9xJjE8ML5/8Mp6mNt7LJoQQQgincTO68dK4lxgaPpRHVz7KTzlr6u9JdfeHeRfVH5Wws9C778I9KYnsR/+LOTPT7uPbU9JJURgMim1LHHOhd1t4+vkTGBVDZkqys0NpNUnQBADJvy/GYHSh56iTnB3Kv1jqrKxckEpAuCd9xkS1fqCURUcqNl5nc8XG4s+/oGT+fIImT270Iur8ynxu/vVm3IxuvHHqG/i5NbzCJoQQQojOw93FnVdOfoUBIQN48PcHWVyyC65cAHXVMO/C+gut7Ui5uhL1wvNgsZB5733oDnyGysvPjYTBoexalU1tdceLMyKhB7n7UzvF9QUNkQRNYLVY2LV8CfGDhuLh4+vscP5l+9IMSvOrGHVhIsbW3nlWkg7f3AwR/eGMp23qUrlpMzlPPIHX6NGE3HVnw23Mldz6262U1JTw2imvEekd2br4hBBCCNHheJo8ee2U1+gd1Jspy6bwe20+XPoJFB2A+deAxb4XIrvGxhI+fTpVmzdT8Pobdh3b3vqNi8FcbSFldbazQ/mXsG4JVJaWcLiwwNmhtIokaIKD2zZRWVpC75M63vbGqsO1rP/+ILF9AolLCmrdIBZz/UWTVgtc+D64NH82rL4oyB2YIiKIeu7ZBis21lnrmLJsCnuK9/D8Sc/TO6h36+ITQgghRIfl7erNG6e9QaJ/IncvuZtVrgaY8BLsXwo/3G/3O9L8zjkbv3PPpeDNN6ncuNGuY9tTWFdfwrr6sm1JBtrasVaqwuPrawzk7uuchUIkQRPsXLYYdx9f4gcOcXYo/7J24QHMNRZGXdh8MY9GLX4CMtbBhNkQ1K3Z5tbaWjLvvLPJoiBaa55Y8wQrMlfw6IhHGR09uvXxCSGEEKJD83X1Zc5pc+ji14U7F9/J+oju9XekbXgP1r5l9/nC/vtfTFFRZN53H5ayMruPby/9To6mNK+KtORCZ4dylJC4rhiMRnI6aSVHSdCOc9UV5aRuWEPPkWMwunSskvCFmeXsXJ5J0klRBEZ4tW6Qvb/Cytkw+Broe6FNXXKfeJKqLVuaLAry9va3+XLvl0zuO5kLu9s2rhBCCCE6L393f+acNoco7yhu++029gy6HHqeAz89BHt/setcRm8vop5/jrq8fHIee6zDnqXqNigULz/XDlcsxMXVleCYLuTuT3V2KK0iCdpxbs/qFVjMZvqcdIqzQzmK1poV8+vL6g87u2vrBinLhq9vgNA+Np87K/7iC0q++KLJoiAL9y3klc2vMCF+ArcPvL11sQkhhBCi0wnyCOKt097Cy+TFHUvvpOisZyAsCeZfC7k77TqXR79+hNx2G2WLfqD0m//ZdWx7MRoNJJ0UTfrOIoqyK5wdzlHCuiWQu29vh01umyIJ2nEu+ffFBEXHEhaf4OxQjnJweyEZKcUMPacr7t6tWNmz1NXfd2augos+AJNHs12qU1LIfeJJvE48sdGiIGuy1zB15VSGhw9n+sjpKKVaHpsQQgghOq0wrzBeGvcS+ZX53LPqUcyXfAyuXvDpJVCeb9e5giZPwnPoUHJnzKA2zf6l/e2hz+hIjC4GtnewVbTw+ESqK8opzc1xdigtJgnacaw4J4us3TvpPebkDpVo1JfV30tAuCdJJ7WyrP7vsyBtBZz9AoQ0vE3x76yVlWTefQ9GPz8iZz3TYFGQvcV7uXvJ3XTx68KL417EZOxYW0KFEEII0T76hvTl8VGPszF3IzNTPkRf+kl9cvb5FWCutts8ymgkctYzYDLVl94327dqpD14+LiSOCyMlDXZVFd0nPjCutXXL+iM59AkQTuO7fx9MShFr9FjnR3KUbYvzaA0rw1l9fcvg2WzYMAVMOAym7rkPPkktQcPEvnsLFwCA//1fn5lPrf+divuLu68fsrr+Lj6tDwuIYQQQhwzzo4/m+uTrmfBngV8eng3nP8mpK+FhXfYtbKjKSKCiOnTqd6+nfxXX7PbuPbUb1w0dbVWdq3qOCX3g2NiMZpMnfIcmiRoxylttbLz9yXE9R2AT2Cws8P5U1V5G8vql+fBV5MhOBHOetamLqXffU/pl18RdOMNeI0Y8a/3K82V3Lb4NkpqSnj1lFeJ8I5oeVxCCCGEOObcMegOxkaPZdb6WawJDIeTH4Vtn8Py5+w6j+8Zp+N34QUUzplDxdp1dh3bHkJifIhM9Gf70gysHaTkvtHFREhc105Zal8StONURkoyZfm59BnTse4+W/ftkbL6F7SirL7VCl/fCNWl9efOXJuv/Fh76BA506bhMXAgIbfd9q/3LVYLDyx/gJSiFGaNmUWfoD4tj0sIIYQQxySDMvD0mKfp6teVKUunkNb/Iuh3Sf0VP3au7Bj+0EO4xsWR9cADWEpK7Dq2PfQbF83hwmoObus4l0OHxSeSeyAVbbU6O5QWkQTtOJW87DdM7h4kDDvB2aH8qSirguTlmSSNjiQwshVl9de+CfsWwxlPQVjziZSurSVzyr1gNNZfRu3i8q82z214jqXpS3lg6AOMjRnb8piEEEIIcUzzMnnx8skvY1AGbl9yB4dPfxLC+sJXN0Cp/QpnGLy8iHzuOeoKC8meOq3DVSfs2j8Y70A3ti1Od3YofwrvlkhtVRVF2ZnODqVFJEE7DplrqtmzZiXdR4zC5Obu7HD+tPrrVExuRoZOaEVZ/dyd8Otj0OMsGHytTV3yXnqJ6u3biZgxA1PUv4uRzNs1j7m75nJlryu5vNflLY9JCCGEEMeFGJ8YXhj7Aull6dy/eiqWC98FSy0suA4s9iuc4ZHUh9C77uTwzz9T9v0iu41rDwajgb5jo8ncU0JBRrmzwwEg/EiV8s52Dk0StONQ6rrVmKurOtTdZxkpRRzcXsjgM7vg4e3ass51NfXnztx9YcLLYENFyvLlKyh69z38L70E39PH/+v9JYeW8My6Zzg55mTuHXJvy+IRQgghxHFnaPhQHhr+ECsyVzA77TuY8FJ90ZDFM+w6T+A11+CelETuM09jKSuz69ht1XtUJC4mA9uWdIxVtMCoGFzc3DrdOTRJ0I5Dyb8vxjckjOieHeM8lbZqVn6ZinegG/1Ojm75AItnQO4OOPc18A5ptnldfj5ZDz6IW2IiYQ8++K/3kwuTeWD5A/QJ6sPTY57GaPh3yX0hhBBCiH+6uMfFXNLjEj5I/oCffHxgyHWw8iXY/aPd5lBGI+GPPYalsIj82S/ZbVx7cPcy0WNEOHvW5VJVXuvscDAYjYR26UaOJGiiIztcWEDa9i30HjMOZegY//v3rM+lIL2cEed2w8XUwmTowO+w6lUYcj10P73Z5tpqJeuBB7BWVBD1wvMY3I/e4plVnsVtv91GgFsAr5zyCh4uzV9wLYQQQgjxhweGPkC/4H5MWzWNQyNvgfB+8M1NUGK/VSWPpD4EXH45xZ9+StX2HXYb1x76jovGYrayc0WWs0MB6s+h5R3cj9VicXYoNusY/0IX7WbXiqWgNb07SPXGuloLa77ZR0isD92HhrWsc1UxfH0TBHWD8U/Y1KXw3XepWLWasIcfwi3x6EqRFeYKbv3tVmrqanj91NcJ9ug41w8IIYQQonMwGU08e9KzGJWRe1c+Qs3/zQFLHSy4Furst6oUcucdGIODyHnsMXQHSj6CIr2JTPRn16rsDlHIJDw+gbraGgozO8a2S1tIgnYc0VqTvOw3Irv3IiA80tnhALBtSQblxTWMvCABZWj+7NhRvr8XynPh/94GV89mm1du3kz+7JfwOeMM/C+66Kj3rNrKw8sfZn/pfp4b+xzd/Lu1LBYhhBBCiCMivSN58sQn2VW0i2f3fwnnvgIZ6+G36Xabw+jjQ/hDD1GdnEzxp5/ZbVx76DUygtK8KrL3lTo7FMK61f9AvjOdQ5ME7TiSd2AfRZnpHaY4SNXhWjb+cJAu/YKJ7hHQss7b5sOOBTD2QYga1GxzS2kpmVOmYIqIIGLG46h/FBJ5c+ubLE5fzL1D7mVk5MiWxSKEEEII8Q9jY8ZyTZ9r+Hz35/zo6QFDJ8PqVyHFftUXfc48E6+RI8mfPRtzXp7dxm2rboNCMbkZ2bUq29mhEBAeiauHZ6c6hyYJ2nFk77pVKIOBxOEdIwFZv+gg5lorJ5zfwtWqknT4fgrEDIdRdzfbXGtN1iOPUJdfQNSLL2D08Tnq/V/SfuGNrW9wbrdzubLXlS2LRQghhBCiEXcMuoP+If15bPVjpJ1wI0QMqD+PVpxml/GVUoRP/S+6tpa8p5+xy5j2YHIzkjgklNSNedRW1zk1FmUwEBafQO5+SdBEB5S6fg3RvZLw8PF1diiU5FaSvCyT3idGEhjRgkuprZb6c2faAue/BcZ/Xy79T8Vz51H+62+E3nMPHn37HvXe7qLdPLLiEfqF9GPqCVP/tbImhBBCCNFaJoOJZ8c8i4vBhSkrHqo/j6ax63k01y5dCLrhBsoWLaJ85Uq7jGkPvUZFUldjIXWj81f2wuITyE87gKXOfnfSOZIkaMeJoqxMCjMOkTB0hLNDAWD1N/swmgwMO6eFl1KvfhXSVsCZsyCw+b5VycnkzZqF99ixBF5z9VHvFVcXc+eSO/Ex+TB77GxcjS28f00IIYQQohkR3hHMPHEmu4t380zq53Duq5C5EZbOtNscQZMnYYqLJffxGVhrauw2bluEdfUlINyTXSudv80xvFsilro6Cg7ZZ+XS0SRBO07s27AGgIQhzk/QslJL2L85n0Gnx+Lp24KkKH8PLH4Cek2AAZc329xSXkHmPfdgDAwk4qmZR62Oma1mpiybQn5lPi+d/BIhns3fnyaEEEII0RpjosdwbdK1zN8zn0XuLjDoalgxGw6usMv4Bjc3wqdOpTYtjcK337HLmG2llKLXyEhy9pdSnFPh1FjC4o8UCtmf6tQ4bCUJ2nEidf0aQrt0wzck1KlxaK1Z9WUqXn6u9D811vaOVit8dxeYPOHsF6CZrYhaa3KmTcOcnkHU88/hEnB0EZJZ62axPmc9j418jKTgpFZ8EiGEEEII290+8HYGhAxg+urpHBh5EwTGw1c31l8bZAfeo0bhe9ZZFM6ZQ21ax1gp6jEiHGVQTi8W4hcahru3Dzn79jg1DltJgnYcqCgpJmtvSofY3pi6MY/cA2UMPzcek2sLLqXeMhfSVsL4GeDdfJJZ+uWXlH3/PSG334bnkCFHvbdgzwI+2/0ZV/e+mgndJrT0IwghhBBCtJjJUH8/mqvRlXtX/Zfq816D8hz47h6w031hoQ8+gHJ1JefxGR3iDjJPX1e69A0iZU0OFovVaXEopQiLTyBHVtBER7Fv41rQ2ukJmqXOyppv9hEU5U2PERG2dyzPh5//C3GjYOBVzTav2buXnCeexPOEEQTdcMNR723K3cSTa59kVOQo7h7cfAVIIYQQQgh7CfcKZ+aJM9lTvIcn0xfB2Icg+SvY9rldxjeFhhJy111UrFzJ4R9+sMuYbdVrZARVZbUcSi5yahzh3RIpTE/DXNsxzug1RRK040Dq+jX4hYUTHNvFqXHsWpVNWUE1J5zfDUNLLqX+6SEwV8I5s5vd2mitqiLj7rsxeHkRNWsWyvjXKl1xdTFTlk0hyjuKZ8Y8g9HQghU8IYQQQgg7GB09mhv63cA3qd/wVVgXiB0J398LRQfsMn7AZZfi3qcPuU89jaW83C5jtkVsUhAevq7sWpnl1DjC4hOwWiwUpB10ahy2kATtGFdbVcmh7VtIGDLCqSXk68wWNiw6SHi8H7F9Am3vuPdX2D4fRk+BkO7NNs+dOZPaffuJnPUMLiF/Ff7QWjNjzQxKakp4/qTn8XPza83HEEIIIYRos1v638KIiBE8ue4pdp58HygDfHUDWNp+Z5gyGgl/bBp1BQXkv/SyHaJtG6PRQM/h4aRtL6SyzD5XC7TGH4VCOsM5NEnQjnEHtmzCUlfn9O2NO1dkUVFSw/D/dLU9UaythO/vgeDucGLz2xHLly+nZP4CgiZdj/eoUUe9993+7/gl7RduG3AbPQJ7tOYjCCGEEELYhdFg5JkxzxDgHsA9G2dResaTkLEOlj9vl/E9+vbF/9JLKJ43j+qdO+0yZlv0GhWB1arZvSbHaTH4BAXj6effKSo5SoJ2jEtdvxoPH18ie/RyWgzmWgsbf0gjMtGfqB4BzXf4w7KnoSStfmuji1uTTS3lFWRPm4ZrfDzBt99+1HtZ5VnMXDuTQaGDuKbPNS3/AEIIIYQQdhboHshzJz1HbkUujxatw5p0ESx7BtLX22X80LvvxhgQQPb06Wir8wp0AASEexEe78euVVlOK16ilCK8WyI5+/Y6Zf6WkATtGGapM3Ng8wa6DRmOwYnnrZJ/z6SyrLZlq2fZ22DVqzBoInQZ1Wzz/NmzqcvOIeKJGRhc/7pbzaqtPLryUazaypMnPinnzoQQQgjRYQwIHcC9Q+9lacZS3osfAL5R8NUkqDnc5rGNvr6EPXA/1Vu3UfLF/LYH20a9RkVQnFNJ7oEyp8UQFp9AUWYGtdVVTovBFpKgHcPSd+6gprLCqdsba6vr2PRTGtE9A4hMtHH1zGqBhXeCZyCc9nizzSs3baZ43jwCrrgCz0GDjnrv450fsz5nPQ8Oe5Bon+jWfAQhhBBCCIe5vOflnNHlDF7Z8Tbrxt0DJYfghwfsMrbvhAl4Dh9O3gsvUFdYaJcxWythcCgurgan3okWFp+I1lbyDuxzWgy2kATtGJa6fg0ubm7E9h3gtBi2L82g6rCZ4f+Jt73T+ncgaxOc8TR4NJ3UWWtqyH70UVwiwgm9+66j3ttbvJeXNr3EuJhxnJdwXsuDF0IIIYRwMKUU00dOJ843jvt2f0DuCTfDlnmw81u7jB0+bSrWqiryZj1rh2hbz9XdhYTBoezdkIu5xuKUGMK71RcK6ejn0CRBO0Zpq5V9G9bQtf9gTK5Nn99ylNqqOjb/coi4pCDC422smliaAb89Dt1OgaQLmm1e8Oab1O7fT8T06Ri8vP6a21LLQ8sfwsfVh2knTHNqBUshhBBCiKZ4mjx5ceyLVNVVcV9dOuaIfvDd3fV3wbaRW3w8QdddR+n//kfFunV2iLb1eo2MxFxtYd/mPKfM7+UfgHdQcIc/hyYJ2jEqd38q5UWFTt3euHVxOjUVdQyb0NX2Tovur9/ieM4Lzd55Vr17N4Vvv4PfuefiPXr0Ue+9tuU1dhfvZvrI6QR5BLUmfCGEEEKIdtPNvxuPnfAYm/O38GKPUVBTBt/fDXYoqhF8042YoqLImf44utZ5pe4jEvzwC/Vg10rnbXMMj0+QFTThHKkb1qAMBroOGuqU+WsqzWz5NZ2u/YMJjfO1rdPuH2H39zD2QQjo0mRTXVdH9iOPYvT1JfTBo/dpb8rdxPs73ueCxAsYGzO2dR9ACCGEEKKdnRV/Fpf1vIyP077n92FXwa6FsH1Bm8c1eHgQ9ugj1O7bR+EHH9oh0tZRStFrZARZe0soyat0Sgxh8YkUZ2dSXeH8S7wbIwnaMSp1/Rpieifh4e3jlPm3/JpObVULVs/M1fDjgxDcA064tdnmRR9+RPWOHYT/91FcAv46p1ZeW87DKx4myjuK+4be19rwhRBCCCGc4t4h95Lgn8D0sq0cjh4Mi6ZAWdtXnHzGjcP71FMoeP11ajMy7RBp6/QcEYFSkLLaOatof5xD68iFQiRBOwYVZWVSmHGIbkNOcMr81eVmti5Op9ugEIKjbUwQV70CxQfgzGfAaGqyaW1aGvmvvIL3Kafgc8YZR703a/0ssiuymTl6Jl4mr0ZGEEIIIYTomFyNrswYNYOCqgKei+8PdbWw8A67bHUMf/hhUIrcmTPtEGnrePm7Ed0rkL3rc51yJ1pYfAJAhz6HJgnaMWjfhjUAJAwd7pT5N/9yCHONhaHn2Lh6VnIIlj8Pvc+FbuOabKq1Jvu/U1EmE+FTpx5V/GPJoSV8nfo11yVdx8DQgW35CEIIIYQQTpMUnMQ1fa7hq/RfWXXCdbD3Z9j8cZvHNUVGEnLbrZQvXszhJUvsEGnrJA4Jo6ygmtyD7X8nmoePL36hYeRKgibaU+r6NYR27YZvcGi7z11ZVsu2JekkDgkjKNLbtk4/PVJfEGT8k802LZk/n8p16wi9715MYX99vqLqIh5b/Rg9AnpwS/9bWhu+EEIIIUSHcMuAW+jq15VpResp7zIKfny4/ofabRQ4cSKuXbqQ9+xz6Lo6O0TacvEDQzC6GNi7Ptcp84fEdaUgo+2/l44iCdoxpqKkmKy9KU6r3rj55zQsZitDz+5iW4d9i2HXtzB6CvjHNNnUnJdH3rPP4Tl8OP4XXfTn61prHl/9OIdrDzNz9ExMzWyRFEIIIYTo6NyMbswYNYO8qjxe6NIH0PC/W8FqbdO4ymQiZMo91O7fT8mCL+0TbAu5ebgQlxRE6oY8rNb23+YYGBVDSU42FiclqM2RBO0Ys2/jWtCahKHtf/6ssqyW7csy6T48nIBwG85/1dXWl9UPjIeRtzfbPHfmU+iaGiKmP3bU1saF+xfy26HfuH3g7XQP6N6WjyCEEEII0WH0D+nPVb2uYn7aj6wZeQMc+B3Wv9PmcX1OPRWPwYPJf/VVLOUVdoi05RKHhlFZVkvmnuJ2nzswMhqrpY7SPOes4DVHErRjTOr6NfiFhRMcE9fuc+9ckYnFbGXwGTbOvfYNKNwLZzwDLk1fpn14yRIO//gjwbfcgmuXLn++nl2ezVNrn2JQ6CAm9p7YhuiFEEIIITqe2wbeRhffLjxWuIrK+HHw6zQobFsFQqUUYfffh6WggKL33rNTpC3TpW8QJnejU7Y5BkZFA1CUmd7uc9tCErRjSG1VJYe2byFhyIijVpjag8ViZfuyTGJ7B9q2elaWBctmQfczofv4JptaKyrImTEDt8QEgq679q/XtZX/rvwvFm3hiROfwGgwtvVjCCGEEEJ0KO4u7jw+6nGyyrN5sWvv+mrX39wMVkubxvXo3x+fM8+g8P33Mefm2Sla27m4GonvH8L+zflYzG3bttlSgZFHErSsjHad11aSoB1DDm7bjKWujoQh7X/+bP+mfCpLa+k7Ltq2Dr9MBYsZzniq2ab5L79CXVY24dMfR7m6/vn6pymfsjZnLfcPvZ8Yn6bPrwkhhBBCdFYDQwdyRa8r+Gz/QtafeCukr4X177Z53NB77kHX1ZH/yst2iLLlEoeFUVNZx6Gdhe06r5unF14BgRRlSoJmN0qpeKXUu0qpBUe+Pk8p9bZS6nOlVNPLMcewtK2bcfXwIKJ7z3afe9uSDHxDPIjrE9R844MrYPt8OPEuCGy6FH/VjmSKPv4Y/8suxXPQX6Xz95fu58WNLzImegwXJF7QxuiFEEIIITq2OwbdQYxPDFNzl1LZdQwsngGHc9o0pmtMDIGXX0bpV19TvWePnSK1XXTPANy9TexxxjbHyGiKsjrpFkelVIxSaolSaqdSKlkpdWdrJ1NKvaeUylNK7WjgvTOUUruVUqlKqQebGkdrvV9rff3fvv5Gaz0ZuAm4pLXxdXZp2zcT06cfRheXdp03L62MnP2l9BsbjTI0s7XSUgeL7gO/WBh1V5NNdV0d2VP/i0tQEKH33PPn62armYeXP4yHiwfTR05v9+2cQgghhBDtzcPFg8dHPk5GeQYvd0mCuhr46eE2jxt0000YvLzIe+45O0TZMkajgYRBoRzcWkBtdftWVKxP0DKccll2c2xZQasDpmitewMjgFuVUr3/3kApFaqU8vnHawkNjPUBcMY/X1RKGYHXgDOB3sBlSqneSqm+Sqnv/vGrqcu9Hj0yznGnJCeb0rxc4voOaPe5ty3JwORmpOfIiOYbr38H8nbCGTPB1bPJpkUffUzNzl2EPfooRp+/Hq93tr1DcmEy/x3xX4I9gtsavhBCCCFEpzAkfAiX9byMTw5+z6YhV8COL+uvLGoDl4AAgm+6iYrfl1OxerWdIrVd4tAw6sxWDm4raNd5A6OiqamooLK0pF3ntUWzSy1a62wg+8h/H1ZK7QKigJ1/a3YScJNS6iytdY1SajLwf9QnXH8f63elVJcGphkGpGqt9wMopT4DztVaPwWc01yMqn4J5WngB631pkbaTAAmREVFsXTp0uaG7HTyk7cAkFtlbtfPV1et2bNOE9ANVq9d0WRbU20Zw9c+TlnAALbleEPu0kbbGgoKCZ49m9p+fdnkaoIjn+lQzSHezHmTIV5DcD3oytKDjY/RUZWXlx+Tz6DoPOQZFM4mz6Bwts78DA62DuYn40/cX7SV+R4RuC24lQ1DXsJqdG2+c2NiYwgODGTf1KkUPfQQGNrvFJTWGpMnrP5xJ1mVKe02b1lBEQCLF32HT2THqmXQor1wR5KrgcDav7+utZ6vlOoKfK6Umg9cB5zWgqGjgL9vAs0AhjcRRxDwJDBQKfUQUAGcCvgppRK01m/+s4/WeiGwcMiQIZPHjh3bgtA6h283rsInKITTzzu/Xbf8bVh0AG09wBlXDG++euNPj4C1isDL3mJsaOPn5LTWpN94I5UuLvSZPRtTZCQAZouZFxe+SLBnMLMnzMbPzc+eH6XdLF26lGPxGRSdhzyDwtnkGRTO1tmfQZ9MH2789UY+HnIWdyx/lzHGTTC2yRNCzSqtriHrvvsYUFaG/3nn2SdQG7kVpbL1t3RGDBmFu7epXeYsK8hj73cLiA0Jpn8HexZsTo+VUt7Al8BdWuuyf76vtZ4FVANvAP/RWpfbLcp/z1Wotb5Ja91Na/2U1vplrfXgI6/9Kzk71lmtFg4lbyWu34B2Tc5aVFq/JB3WzYH+l0MTyRnA4R9+oOL35YTedeefyRnAvF3z2F+6n6kjpnba5EwIIYQQoq1GRo3k3G7n8l7mYlJ6nQnLX2jz3Wi+Z5+Fe58+5L/0MtbqajtFapvEoWFYrZp9m9uv3L9PYDAubm4dstS+TQmaUspEfXI2T2v9VSNtRgNJwNfAtBbGkQn8fW0x+shrwga5+1Kpqaho9/NnLSqtv/RpQDX70x1LaSk5M5/CPSmJgCuu+PP1/Mp83tj6BmOix3BSzEltjFwIIYQQonO7b+h9+Lv5M9WthjoXN1h0L7Sh4IUyGAi9/37qsrMp+uhjO0bavOAYb/zDPNv10mplMPxZKKSjsaWKowLeBXZprV9opM1AYA5wLnAtEKSUeqIFcawHEpVSXZVSrsClwLct6H9cS9u2GYDYdk7Qti1Jx8+W0vp5KbD1Exg2Gfyb3uOb9/wLWIqLiXh8Osr418XTszfNptZay/1D77dH6EIIIYQQnZqfmx+PjHiEXaWpfNj/zPpiIclft2lMr+HD8B47lsI5c6grKrJTpM1TStF9WBiZe0soL65pt3kDI6M75F1otqygjQKuAk5WSm058uusf7TxBC7WWu/TWluBiUDaPwdSSn0KrAZ6KKUylFLXA2it64DbgJ+AXcAXWuvkVn+q40za9i2EdInH07f9tv3Vl9Yvo68tpfUXzwCTF5x4T5PNqpKTKfniCwInTsS991+FQrfmb+Xbfd8ysfdE4nzj7BG+EEIIIUSnd1rcaZwaeyqvF27kYGRf+PEhqP7XSaQWCb13CtbKSoree89OUdomcUgYaEjd2H6raIFR0ZQV5GGuad8tnc1pNkHTWq/QWiutdT+t9YAjvxb9o81KrfX2v31t1lq/3cBYl2mtI7TWJq11tNb63b+9t0hr3f3IubIn2/rBjhe11VVk7Ulp9+2NNpfWT18PKd/BqDvAq+mVtvznn8fo70/wLTf/+ZpVW3lq7VOEeIRwQ78b7BG6EEIIIcQx4+HhD+Pm4sa0sDCs5bmwpG3/jHZLSMD3jNMp/vQzLKWldoqyef5hnoTE+rTrNsfAyBjQmuLsrHab0xbtV0NTOETGrh1YLXXE9RvYbnNWltWyd0MuPU+IwM2jiUKgWsOvj4FXCIy4pckxy1espGLVaoJvufmoO8/+l/o/kguTuXvw3XiZmilEIoQQQghxnAnxDOG+IfexqWQP85PG1xdly9rSpjGDbrgBa0UFxZ98Yp8gbZQ4NIy8tMOU5Fa2y3yBUfV1FIoy05tp2b4kQevk0rZtwWgyEdWzd/ON7SR5eSbWOk3fsVFNN9z3G6StgDH3g5t3o8201Urec89hio7G/9JL/3y9rLaM2Ztm0z+kP+fEN3sdnhBCCCHEcem8hPMYETGCF2oOku0dDN/dDVZLq8dz79kTr5PGUPTRx1gr2ydZAkgcEgoK9m5on1W0gPBIUKrDFQqRBK2TS9u2maiefTC5urXLfJY6Kzt+zyS2TzOl9a1W+HU6+MfB4GuaHLNs4UJqUlIIufsuDK5/XbL45tY3Ka4u5qHhD7Xr9QFCCCGEEJ2JUoppJ0xDA4/HJ6GzNsGWeW0aM/jGG7EUF1OyYIF9grSBd4A7kQn+7F2fi25DRUpbubi64hca1uEKhUiC1omVFxVSmHGoXc+f7d98pLT+2GZK6yd/BTnb4ORHwaXxm+2tNTXkvfQS7n364HvmmX++vq9kH5/u+pT/S/w/+gT1sVf4QgghhBDHpGifaO4YeAcrylL5PrYfLH4SaitaPZ7noEF4DBlM4Xvvo2tr7Rhp0xKHhlGcU0lBhsOuVD5KRyy1LwlaJ5a2fQtAu54/s6m0vsUMi5+AsCRIurDJ8YrnzqMuK5vQ++5FGeofR601T697Gg8XD+4YdIc9wxdCCCGEOGZd1vMy+oX04xn3Oooq82DVq20aL/jGG6nLyaF04UI7Rdi8hEGhGAyq3YqFBEZGU5yVibZa22U+W0iC1omlbd+Ch68foXFd22U+m0vrb/oIig/AKVPB0PgjZikpoeCtt/AaMxqvESP+fH1x+mLWZK/h1oG3EugeaM+PIIQQQghxzDIajEw/YTqH66p4PX4ArHwJDrc+0fE68UTcevei8O130JbWn2lrCXdvE5Hd/UnbUdgu8wVGRVNnrqWsIL9d5rOFJGidlNaaQ9u3EJvU/8+VJ0fbviwTl+ZK69dWwLJnIHYkJI5vcryCOW9jPXyY0ClT/nytuq6aZ9c/S4J/Ahf3uNheoQshhBBCHBcSAhK4qPtFLLAWsV9ZYOnMVo+llCL4hhuoPXiQw7/8YscomxaXFERRVgWHixx/P1lg5JFKjh1om6MkaJ1UQXoaFSXF7Xb+rLrczN71ufQYFtZ0af21b0J5Lpw6DZoo7GHOyqJ47lz8zj0X9x49/nz9w+QPySzP5IFhD2AymOz5EYQQQgghjgs3D7gZdxcPZnftW7+zKW9Xq8fyOe00XLt0oWDOnHYp3AEQe+QoTXusogVGxQB0qEIhkqB1UmnbNgMQ129Au8y3a1U2FrOVpJOaKA5SVQwrXoLuZ0LsiMbbAfkvvQxAyB23//ladnk272x/h1NjT2VERNP9hRBCCCFEwwLdA5nUdxJLanNZ7+0Pv0xt9VjKaCRo8iRqdu6iYsUK+wXZhIBwT3yC3DmU7PgEzcPHF3dvH4qyOs5daJKgdVJp27cQEBGFb3Cow+fSVs2O3zOISPAjOLrx+8xY9w7UlMLJjzQ5XnVKCqXffkvgxKswRUb++fqzG54F4L6h99klbiGEEEKI49WVva4k3Cuc56O6YN37M+xf2uqx/CZMwCU8nMK35tgvwCYopYjrE0R6SjEWs2OLdyilCIyKkS2Oom3qzGYydu1ot9WzQzuLKCuopm9Tq2e1FbDmdeh+BoT3bXK8vOeex+DrS9DkyX++tiprFb+k/cKkvpOI9I5sorcQQgghhGiOu4s7dwy8g+SaAn4IiYWfH62/p7YVlKsrQdddS+WGDVRu2mTnSBsWlxREXY2FrH0lDp8rMDJatjiKtsnes4u6mhri+rZPef0dyzLw8HUlfmBI4402fghVRXDiPU2OVbFqFRUrVhB8440Y/fwAMFvMPLX2KWJ8Yrgm6Ro7Ri6EEEIIcfw6O/5segX24qVAP2pyt8O2z1s9lv+FF2IMCGi3VbSoHgEYXFQ7nUOLprK0hOry9rl7rTmSoHVCadu3oAwGYvo0vVJlD2UFVRzcUUifEyMxujTyuNTVwqpXIO5EiB3e6FjaaiXvuecxRUYScMXlf77+8a6POVh2kAeHPYib0c3eH0EIIYQQ4rhkUAamDJlCdm0p86J7wuIZYK5q3ViengROvIryZcuoTkmxc6T/ZnIzEtU9gEPtkaD9WcmxY5xDkwStE0rbtpmIhB64eXo5fK4dv2eilKLP6Ca2HW77DA5nweimV88O//Yb1Tt3EnzH7Rjc6hOxnIoc3tz6JmNjxjImeow9QxdCCCGEOO4NjxjOSdEn8bableLy7PojKa0UcPnlGLy8KJzzth0jbFxcnyCKcyopK2hdUmmrwKgjCVoH2eYoCVonU1V+mJz9qe1y/qzObGHXymy69g/GO8C94UZWC6x4ESIGQLeTGx1La03B62/gGheH3znn/Pn68xuex2K1cP/Q++0cvRBCCCGEALhn8D1UWc282bUfLH8Rylt3KbPRz4+Ayy+j7McfqU1Ls3OU/xaXVF9u39HVHP1CwjC6uHSYQiGSoHUy6Tu2gtbtcv4sdWMe1RVmkk6KarzRzm+gaD+MntLkvWflS5ZQs2sXQTfdhHKpv0dtXfY6fjz4I9f3vZ4Ynxg7Ry+EEEIIIQDi/eO5IPECvtClpOkaWPZMq8cKvPpqlIsLhR98YL8AG+EX6oFvsLvDz6EZjEb8wyMlQROtk7ZtC64eHoQndHf4XNuXZhIQ7kl0j4CGG2gNy1+A4O7Q85yG23Bk9ezV1zDFxOA3ob6d2Wpm5tqZRHlHcV3SdY4IXwghhBBCHHHzgJtxNboxO74fbHgPCva2ahyX4GB8J5xD6Tf/w1JSYt8g/0EpRVxSMBkpxdSZLQ6dKzCq41RylAStk0nbvpno3n0xHlmFcpS8tDLyDpaRdFIUqrGVsb0/Q+4OOPFuMDT+KJUvW1Z/9uymG/9cPftk1yfsK93HA0MfwN2lke2TQgghhBDCLoI9grku6Tp+rc1jk6c3LH2q1WMFTrwaXVVF8fz5doywYbF9AqkzW8naW+LQeQIjYyjJzcZSZ3boPLaQBK0TKcnJpjQvt122N25flomLm5EeIyIabqA1/P4c+MVA34saHUdrTcFrr2OKisLvP/8BIL8ynze2vsHoqNGMjRnrgOiFEEIIIcQ/TewzkVCPUJ6L6oLe8RXk7mzVOO49uuN5wgiK532CNjs2oYnqEYDRZHD4NsfAqGi01UpJTo5D57GFJGidyKEdWwGI6zvAofNUl5vZuz6XHsPCcPNoZKUubSVkrINRd4LR1OhYFStWUL19O0E33oAy1bd7YeML1FpqeXDYg42vzgkhhBBCCLvycPHg9kG3s91czM++AW1cRZtIXU4OZT//bMcI/83kaiSquz+HkoscOk9HKrUvCVonkpGSjKef/5+lQB1l1+psLGYrSSc1Mc/y58ErBAZe2WiTP86euURG4H/eeQBszN3Id/u/45o+1xDrG2vnyIUQQgghRFMmxE8g3i+eN8Ijsez6FrK3tWoc75NOwjUujqKPPrJzhP8WlxRESW4lpfmVDpsjMLK+KF5HOIcmCVonkpmSTFTP3g5dddJWzY7fM4lI8CM42rvhRlmbYd9iOOFWMHk0OlbFqlVUbd1K8A03oFxdsVgtzFw7kwivCCb3m+ygTyCEEEIIIRpjNBi5ecDN7DOX8bN/cKtX0ZTBQMDEq6jeuo3KzZvtHOXRYvvUl9tP2+G4VTRXD0+8A4M6RCVHSdA6ibKCfMry84ju2ceh8xzaWURZfhV9m1w9ewHc/GDI9Y02+ePsmUt4OH7/938AfLvvW/YU72HKkCl4uDSe2AkhhBBCCMcZHzeeBP8E3giNwLJ7EWRuatU4/uedh8HXl6IPHbuK5h/qiV+oRzucQ4uRBE3YLjMlGYAoBydoO5Zl4OHrSvzAkIYb5O+GXQth+A3g7tvoOJVr1lC1aRNBN0zG4OpKdV01r215jb7BfRkfN95B0QshhBBCiOYYlIFbBtzCAXMpPwSEwJKZrRvHy4uAiy/i8M8/Y87MtHOUR4vrE0TmnmLqah1Xbj8wsr7UvtbaYXPYQhK0TiIzJRlXDw9CunR12BxlhVUc3FFInxMjMbo08mismA0u7jD8pibHKnjtdVxCQ/G/4AIAPkv5jNzKXO4efLcUBhFCCCGEcLJTYk+he0B33gwJoy71F0hf16pxAq64ApSiaN4ndo7waHFJQVjMVjL3lDhsjsCoaGqrKqkodmxBkuZIgtZJZOxKJrJ7LwwGo8Pm2LM2FzT0GtVIaf2SdNj+BQy+BryCGx2nYu06KjdsIGjyZAxubpTVlvH29rcZFTWKoeFDHRO8EEIIIYSw2R+raGnmMr4PDIMlT7ZqHFNEBL6nj6dk/nysFRV2jvIvkd39cTEZSEt23DbHvyo5OneboyRonUDV4TIKMw45dHuj1po963KISPDDN6iR82Hr3wZthRNuaXKsgtdfxxgSjP9FFwLw/o73Kast465Bd9k5aiGEEEII0Vonx5xMr8BevBUcgnn/Uji4slXjBE6ciPXwYUq+/sau8f2di8lIVM8Ah55D+6NSurMrOUqC1glk7t4F4NACIQXp5RTnVNJ9WHjDDWorYOOH0PMc8G+8PH7lhg1Url1L8KRJGNzdyavMY+7OuZwdfzY9A3s6KHohhBBCCNFSSiluGXAL6eYyvguOqF9Fa8X5K48BA/Do35+ijz9CW60OiLReXJ8gyvKrKMl1TLl974AgTO4esoImmpeZkozRxYXwhO4Om2PPuhwMBkXCoNCGG2z7AqpLYMTNTY5T8PrrGIOD8b/4YgDe2PoGdbqO2wbcZueIhRBCCCFEW50UfRJ9gvrwVmAg5rSVcGBZq8YJvHoi5rRDlC9tXX9b/FVu3zGraEqp+kIhkqCJ5mTuSiasW3dcXF0dMr7Vqtm7PpfYpCDcvU3/bqA1rH0LwvtC7AmNjlO5eTMVq1YTdO21GDw8OFB6gK/3fs3F3S8m2sexl2sLIYQQQoiWU0px64BbyTQf5n8h0fUVHVuxiuYzfjwuEREUffihA6Ks5xfigX+YJ4cceQ4tKlq2OIqmmauryT2QSnTP3g6bI2tPMRWltXQfFtZwgwPLIH8XDL8ZmqjAWPDGGxgDAgi47FIAXtn8Cm5GN27od4MjwhZCCCGEEHZwYtSJ9Avux5wAP8zpayH1txaPoVxcCLzyCirXrqU6JcUBUdaLSwoic08JZgeV2w+MjOZwYT611VUOGd8WkqB1cNmpu7FaLET1ctz5sz3rcjG5GenSr5HKjGveBM9gSLqg0TGqtm+n4vflBF5zDQZPT7bnb+eXtF+4ps81BHkEOShyIYQQQgjRVn+somWbD/N1aGyrz6L5X3ghysPDoRdXx/UJwlJnJXN3sUPG/6NQSHGWY+91a4okaB1cxq5kUIrI7r0cMn6d2cK+TXnEDwzB5NpACf+i/bDnRxhyLZjcGx2n4I03Mfj5EXDF5Witmb1pNoHugUzsM9EhcQshhBBCCPs5IfIEBoQMYI6/D7VZm2DPTy0ew+jnh//551P23XfUFRQ4IEqITPTHxdXgsHNoHaHUviRoHVxmSjIhsV1w9/J2yPhp2wuprbY0vr1x3dtgMMKQ6xsdozolhfLFiwmceBVGb29WZa1iXc46buh3A14mL4fELYQQQggh7Ecpxa0DbyXXfJgvw2Lh92dbtYoWcNWVaLOZ4s8/d0CUYDQZiEwMcNgKmn94JEoZJEETDbPU1ZG1N8Wh95/tWZeLh68r0T0C/v1mzWHYPBf6nA++jVxezZHVM29vAq+6Cqu2MnvTbKK8o7i4+8UOi1sIIYQQQtjX8PDhDA4bzDu+XlRnbYSDy1s8hlvXrniNHEnJl1+iLY45JxbV3Z/inEoqy2rtPraLyYRfWJhTC4VIgtaB5R3cR11NDdEOOn9WXWHm4I4CEoeEYjA28Chs+QRqymD4TY2OUZOayuGffybgyisw+vryw4EfSClK4faBt2MyNlARUgghhBBCdEh/nEXLq6vgy+AIWP58q8bxv/hi6rKyqVjZuouvmxPZ3R+AzD0OOocWGU1xtpxBEw3I3JUM4LAVtP1b8rHW6YYvp7Za60vrRw2B6CGNjlHw5lsoDw8Cr74as8XMq5tfpWdgT87seqZDYhZCCCGEEI4zNHwoQ8KG8J6fLzUHlkLGxhaP4XPyOIyBgZTMn2//AIGQWB9Mbkay9pY4ZHzvwCDKixxXyr85kqB1YBkpO/EPi8A7INAh4+9Zl4NfqAehcT7/fjP1Vyja1+TF1DUHDlC2aBGBl1+GS0AAPx78kYzyDG4feDsGJY+WEEIIIURndHP/m8mzVPJlQAiseKHF/ZWrK37nn8fhxUsw5+XZPT6j0UBEgh+Ze0rsPjaAT2AwVYfLqKu1/xZKW8i/ojsobbWSuXunw1bPyotryNxTQvdh4aiG7jZb+yZ4h0Ov/zQ6RuFbc1CurgReey1aa95Pfp8E/wRGR412SMxCCCGEEMLxhoYPZVDoIN4NDKRm93eQu7PFY/hfeCFYLJR+/Y39AwSiugdQnF3hkHNo3oH1V0SVFxfZfWxbSILWQRVlZVB9uIyoXo65oHrv+lzQNFy9MX8P7PsNhk4CF9cG+9emp1O6cCEBl1yMS1AQq7NWs7d4L1f3ubrhhE8IIYQQQnQKSiluHnAzeZYqvvILhBUvtngMt65d8Rw2jJL589FWq91j/OMcmiO2OXoH1d8NXF7omKsCmiMJWgeVmVL/k4poB62g7VmfQ2gXX/xDPf/95to3wehWf/dZIwrnvI0yGgm8rr78/vvJ7xPqEcrZXc92SLxCCCGEEKL9DA8fzsDQgbwbFEztjgVQdKDFY/hffDHmjAwq16yxe3x/nENzRKEQnyMraIeLnXMOTRK0DiojJRlPP3/8wyPtPnZRVgUF6eV0H9rA6llVCWz9FPpeCF7BDfY3Z2VR8s03+F94AaawUHYV7mJN9hou73W5VG4UQgghhDgGKKW4qf9N5Fqr+drXB1a+1OIxfE47FaOfH8Vf2L9YiCPPoXkHHllBc1KhEEnQOqjMlGSie/ZxyHbBPetyUAoShoT++83NH4O5Eobf2Gj/wnfeBSBo0iQAPtz5IZ4unlzU4yK7xyqEEEIIIZzjhIgT6B/Sn3eCQ6ndMg/KslvU3+Dmht9553L4t9+oK7L/eS5HnUNz8/TE5O4hWxzFX8oK8inLzyPKAfefaa3Zsz6X6F6BePm5Hf2m1QLr5kDsSIjo32B/c24eJQsW4H/eeZgiI8kuz+bHAz9yQfcL8HX1tXu8QgghhBDCOZRS3NL/FnKsNXzj6QarX23xGP4XXQRms0OKhTjyHJqPE0vtS4LWAWWmOO7+s5x9pRwurG64OMjen6HkUJOrZ0XvvYu2WAi6YTIAc3fNBeCqXlfZPVYhhBBCCOFcJ0SeQL+QfrwTEoZ5w/tQ2bKVMLeEBDwGDaovFqK1XWNz5Dk078AgDhfJCpo4IjMlGVcPT0Liuth97D3rcnExGYgfEPLvNzd9BF6h0LPhQh91RUUUf/4FfhMm4BoTQ1ltGQv2LOD0LqcT4R1h91iFEEIIIYRzKaW4uf/NZOta/udOfTG5FvK/6CJqDx6kcv16u8ZmNBqI6Oaoc2hBlDtgW6YtJEHrgDJ2JRPZoxcGg9Gu41osVlI35tGlfzCu7i5Hv1mWDXt+goFXQCOFPkq/+gpdXU3QpPrKjQv2LKCyrpJr+lxj1ziFEEIIIUTHMSpyFH2D+/JOcDjmtW9CzeEW9fc943QMPj6UOKBYSGR3f4ecQ/MJCqa8uBCr1WLXcW0hCVoHU3W4jMKMQw4pr5++s4jqCjPdh4X/+80t80BbYGDDWxW11Urx51/gOXQobgkJmC1m5u2cx/CI4fQK6mX3WIUQQgghRMfwR0XHTMwsdKmDDe+1qL/BwwO/CRM4/PPP1BXbdztiVPcAwP7n0LwDgtBWK5WlpXYd1xaSoHUwmbt3ARDV0/4XVO/bnI+ru5HYXoFHv2G11m9v7DIagro12Ldi9WrM6en4X3IJAN8f+J68qjyu7dP4XWlCCCGEEOLYMDpqNH2C+jAnJAzzqlfBXN2i/v4XX4SuraXs22/tGldInA8ubkay7HwO7c/Lqp1QKEQStA4mMyUZo4sL4d2623Vci8XKgS35dOkfjNH0j//tB5ZBSRoMvqbR/iWffY4xIACf8aehtebD5A9JDEhkZORIu8YphBBCCCE6nj/OomVSx3eqArZ+0qL+7j174t6vH8V2LhZiNBqI7OZHpp1X0P68rNoJhUIkQetgMnclE57QHRdXV/uOu7uYmso6ug1s4O6zTR+BRwD0PKfBvubcPA4vXoz/Bf+HwdWVFZkrSC1J5Zo+1zjknjYhhBBCCNHxjIkeQ++g3rwdFELd+neghYmW/0UXUpu6j6rNm+0aV2R3f4qy7HsOzftIgiYraMc5c3U1uQdSHVJef9/mfExuRmJ7/2N7Y0UhpHwH/S4Fk3uDfUu+XAAWC/4XXwzAh8kfEuoZypldzrR7nEIIIYQQomNSSnFTv5tIN1j5oeIApK9tUX+/s87C4Olp92IhjjiH5unrh8Ho4pTLqiVB60CyU3djtVjsXiDE+sf2xr5BuLj+ozLkts/AUguDJjbYV9fVUfLFfLxGjcI1NpadhTtZm7OWK3tdiamRao9CCCGEEOLYNDZmLF194/jMzx/Wv9OivgYvL3zPOYeyH3/EUlZmt5gccQ5NGQx4BwbKCtrxLnvvbgAiuve067hZqaVUHTbTbdA/tjdqDRs/hOihENZwUZLy35dTl5OD/6X1xUE+2PEBXiYvLux+oV1jFEIIIYQQHZ9Siot7XMo2Vxd27f0eyvNb1N//4ovR1dWULlxot5gcdQ7NOyCIw5KgHd/yDu7HLywcdy9vu467b1MeLiYDsX2Cjn4jfR0U7IZBVzfat/jzz3AJCcFn7Fiyy7P5Oe1nLky8EB9XH7vGKIQQQgghOof/JPwHd4Mrn3u5w+aPW9TXI6kPbomJlP3wg11jcsg5tKBgp6ygKXtWUekMlFL5QJqz4xDHtWCg/Tc0C/EXeQaFs8kzKJxNnkHhbHFa65CG3jjuEjQhnE0ptUFrPcTZcYjjlzyDwtnkGRTOJs+g6Mhki6MQQgghhBBCdBCSoAkhhBBCCCFEByEJmhDtb46zAxDHPXkGhbPJMyicTZ5B0WHJGTQhhBBCCCGE6CBkBU0IIYQQQgghOghJ0IRwEKXUGUqp3UqpVKXUgw28f49SaqdSaptS6jelVJwz4hTHruaewb+1u0AppZVSUtFM2JUtz6BS6uIj3wuTlVKftHeM4thmw9/FsUqpJUqpzUf+Pj7LGXEK8XeyxVEIB1BKGYE9wGlABrAeuExrvfNvbcYBa7XWlUqpm4GxWutLnBKwOObY8gweaecDfA+4ArdprTe0d6zi2GTj98FE4AvgZK11sVIqVGud55SAxTHHxmdwDrBZa/2GUqo3sEhr3cUZ8QrxB1lBE8IxhgGpWuv9Wuta4DPg3L830Fov0VpXHvlyDRDdzjGKY1uzz+ARM4BngOr2DE4cF2x5BicDr2mtiwEkORN2ZsszqAHfI//tB2S1Y3xCNEgSNCEcIwpI/9vXGUdea8z1wA8OjUgcb5p9BpVSg4AYrfX37RmYOG7Y8n2wO9BdKbVSKbVGKXVGu0Unjge2PIOPAVcqpTKARcDt7ROaEI1zcXYAQhzvlFJXAkOAk5wdizh+KKUMwAvANU4ORRzfXIBEYCz1uwh+V0r11VqXODMocVy5DPhAa/28UuoE4GOlVJLW2urswMTxS1bQhHCMTCDmb19HH3ntKEqpU4FHgP9orWvaKTZxfGjuGfQBkoClSqmDwAjgWykUIuzIlu+DGcC3Wmuz1voA9eeFEtspPnHss+UZvJ76c5BorVcD7kBwu0QnRCMkQRPCMdYDiUqprkopV+BS4Nu/N1BKDQTeoj45k3MXwt6afAa11qVa62CtdZcjB+LXUP8sSpEQYS/Nfh8EvqF+9QylVDD1Wx73t2OM4thmyzN4CDgFQCnVi/oELb9doxTiHyRBE8IBtNZ1wG3AT8Au4AutdbJS6nGl1H+ONHsW8AbmK6W2KKX++ZeGEK1m4zMohMPY+Az+BBQqpXYCS4D7tNaFzolYHGtsfAanAJOVUluBT4FrtJQ4F04mZfaFEEIIIYQQooOQFTQhhBBCCCGE6CAkQRNCCCGEEEKIDkISNCGEEEIIIYToICRBE0IIIYQQQogOQhI0IYQQQgghhOggJEETQgghhBBCiA5CEjQhhBBCCCGE6CAkQRNCCCGEEEKIDuL/AU1Ry1A4e80GAAAAAElFTkSuQmCC",
- "text/plain": [
- "<Figure size 864x864 with 2 Axes>"
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
- "zeros, weights = np.polynomial.laguerre.laggauss(12)\n",
- "targets = np.arange(16, 21)\n",
- "mean_targets = ((16, 17),)\n",
+ "zeros, weights = np.polynomial.laguerre.laggauss(8)\n",
+ "targets = np.arange(9, 14)\n",
+ "mean_targets = ((9, 10),)\n",
"x = np.linspace(EPSILON, 1 - EPSILON, 101)\n",
"_, axs = plt.subplots(\n",
" 2, sharex=True, clear=True, constrained_layout=True, figsize=(12, 12)\n",
@@ -239,7 +229,7 @@
"maxs = []\n",
"for target in targets:\n",
" rel_error = evaluate(x, target)\n",
- " mins.append(np.min(np.abs(rel_error[(0.1 <= x) & (x <= 0.9)])))\n",
+ " mins.append(np.min(np.abs(rel_error[(0.05 <= x) & (x <= 0.95)])))\n",
" maxs.append(np.max(np.abs(rel_error)))\n",
" axs[0].plot(x, rel_error, label=target)\n",
" axs[1].semilogy(x, np.abs(rel_error), label=target)\n",
@@ -254,44 +244,9 @@
},
{
"cell_type": "code",
- "execution_count": 117,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "(-7.5, 25.0)"
- ]
- },
- "execution_count": 117,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAANoCAYAAAC1Fsk9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3gc1dXG39mmXtx7L9i4YhvTwQnN9N5LgBAIgRBSCCUkIQUIJARC7yWEjqm26dhg44Z770WWm2T1unW+P+7OarWamZ1y711J3/k9D49tlT2a0d3hvPc951xFVVUQBEEQBEEQBEEQmceT6R+AIAiCIAiCIAiCYJBAIwiCIAiCIAiCaCeQQCMIgiAIgiAIgmgnkEAjCIIgCIIgCIJoJ5BAIwiCIAiCIAiCaCeQQCMIgiAIgiAIgmgndDiBpijKS4qilCmKspbT632mKEq1oigzUz7+uqIomxRFWRuP6ecRjyAIgiAIgiAIwogOJ9AAvAJgOsfX+yeAq3Q+/jqAUQDGAcgBcD3HmARBEARBEARBEG3ocAJNVdXvAFQmf0xRlGFxJ2yZoijzFEUZZeP1vgZQp/Px2WocAEsA9Hf7sxMEQRAEQRAEQZjR4QSaAc8B+KWqqpMB/A7AU7xeOF7aeBWAz3i9JkEQBEEQBEEQhB6+TP8AblEUJR/A0QDeVRRF+3BW/HPnA/irzrftUVX1VIshngLwnaqq89z+rARBEARBEARBEGZ0eIEG5gJWq6o6MfUTqqq+D+B9py+sKMqfAfQAcKPjn44gCIIgCIIgCMIiHb7EUVXVWgA7FEW5CAAUxgS3r6soyvUATgVwmaqqMbevRxAEQRAEQRAEkQ6FzcDoOCiK8iaAaQC6AzgA4M8AvgHwNIA+APwA3lJVVa+0Ue/15oFNa8wHUAHgp6qqfq4oSgTALrQMEHnf6msSBEEQBEEQBEE4ocMJNIIgCIIgCIIgiM5Khy9xJAiCIAiCIAiC6CyQQCMIgiAIgiAIgmgndKgpjt27d1cHDx6c6R+DIAiCIAiCIAjCMcuWLTuoqmoPvc91KIE2ePBgLF26NNM/BkEQBEEQBEEQhGMURdll9DkqcSQIgiAIgiAIgmgnkEAjCIIgCIIgCIJoJ5BAIwiCIAiCIAiCaCd0qB40giAIgiAIgiAyTzgcRmlpKZqbmzP9o7RrsrOz0b9/f/j9fsvfQwKNIAiCIAiCIAhblJaWoqCgAIMHD4aiKJn+cdolqqqioqICpaWlGDJkiOXvoxJHgiAIgiAIgiBs0dzcjG7dupE4M0FRFHTr1s22y0gCjSAIgiAIgiAI25A4S4+Te0QCjSAIgiAIgiAIop1AAo0gCIIgCIIgiA5HU1MTTjjhBESjUQDA9OnTUVxcjDPPPLPV16mqij/84Q8YOXIkRo8ejcceeyztaxu91nHHHYeJEydi4sSJ6Nu3L84991wAwMyZM/GnP/2Jy3WRQCMIgiAIgiAIosPx0ksv4fzzz4fX6wUA3H777XjttdfafN0rr7yC3bt3Y+PGjdiwYQMuvfTStK9t9Frz5s3DypUrsXLlShx11FE4//zzAQBnnHEGPvnkEzQ2Nrq8KpriSBAEQRAEQRCEC/7yyTqs31vL9TUP7VuIP581xvRrXn/9dbzxxhuJf5944omYO3dum697+umn8cYbb8DjYd5Uz54908Y3ei2N2tpafPPNN3j55ZcBsF6zadOmYebMmbj44ovTvr4Z5KARBEEQBEEQBNGhCIVC2L59OwYPHpz2a7dt24a3334bU6ZMwWmnnYYtW7a4jv/hhx/ixBNPRGFhYeJjU6ZMwbx581y/NjloBEEQBEEQBEE4Jp3TJYKDBw+iuLjY0tcGg0FkZ2dj6dKleP/993Hddde5FlJvvvkmrr/++lYf69mzJ/bu3evqdQFy0AiCIAiCIAiC6GDk5ORYPl+sf//+iV6x8847D6tXr3YV++DBg1iyZAnOOOOMVh9vbm5GTk6Oq9cGSKARBEEQBEEQBNHB6NKlC6LRqCWRdu6552LOnDkAgG+//RYjR44EACxZsgRXX3217djvvfcezjzzTGRnZ7f6+ObNmzF27Fjbr5dK5xdokSBQsS3TP4UYVFVerGA9EA3LixeLdd5YkZC8eBXb5K3/aBhoqJATC5C7/mMxIBaVFy/cJC9WZ6bhoNx1QhAEQUjllFNOwfz58xP/Pu6443DRRRfh66+/Rv/+/fH5558DAO68807MmDED48aNw1133YUXXngBAFBSUmLoeBm9FgC89dZbuOyyy9p8z5w5c9q4ak7o3AKtvgx4Ygrw+CRgzzLx8da8Bzw3Ddj+rfhYpUuBfw4D5twvPgEJ1gGPHQb8awSwe4nYWACw5HngHwOB928QL2Zq9gBPHwU8ewJQuV1sLFUF3rgYuK8XsOBxsbEAYPMXbO0/Nw1orhEbKxoBXr8QeHQssMN9c2xaljwPPNAfWPCE+Fi7fwDu683Wf3252FiqCnx2F3B/P2DF/8TGAoCDW4DnfgR8dLN4URisB/57LvDEVGD/WrGxAGDhk+x39uUfxcciCIIgMsLNN9+MV199NfHvefPmoby8HE1NTSgtLcWpp54KACguLsasWbOwZs0aLFy4EBMmTAAALF68GDfffLPuaxu9FgDMnTsX06dPb/X1Bw4cQFNTE8aNG+f6ujq3QFvwOFBdwv7+9V/FxirfBMz4KXBgPUvCRSZysSjw9lVAqBH49kFgyxfiYgHA8teAhjKgqQr49A6xgjDUAHz5JyC/B7D6bWDNu+JiAcDs25lIq9gKzP2H2Fir3gS2fgmoMWDew0DYWt20I1QV+Ca+5oO1wPfpD2R0xYr/AtvnAv4c4JNbxa6RmlLgiz8CoXrgi3uYyBDJ/EeAaBBorAC+e0hsrJJFwKKngLwewCe/AhorxcWKRYE3LgH2LmdicN0H4mIBwNwHgO1zgIOb2N9FUl/GniNqjP1/oGyD2HgEQRBERpg0aRJ+9KMfJQ6qtss///lPjB8/nsvPUlJSgocffpjLa3VegRZuBpa9Aow5H5h2F3O1RCY7y/8LePzAFe8AkWZgw0fiYu1eAtTtBc76D1A0gCWQIlnxGjDgCOCsx1gyV/qDuFibPwPCjSxWfi9g29fiYgXrgK1fAZOuAsaeD2yYyQSiKNZ/DHQZAlz1ARO7m2aJi7VnObB/DXDGw8CQ44Etn6f/Hjcsfw3oNQ445e/MiSxZJC7W2veBSBPw0y8BX5ZYN7JuP7BpNnDcb4EJlwEr32RuoSjWfwR4s4DzngFiEbY+RVH6A1C5DTjvOaDrMPY7FEUsxp4jYy8Ejv89sHFmy+aZCFa+we7ftZ8CigdYO0NcLIIgCCKjXHfddYmDqjPJ4YcfjokTJ3J5rc4r0PYsY87BuAuBIScAUIFdC8TEUlXm9BwyncXqMYolkaLYOJOJwUNOAw7/KVCykLlAIqgvB8rWAyOnA4eczj6263sxsQBg4ywgrycw6Ghg6DTmyojqEdvyJXNGRp8FjLsICDcA274REysWZetvyPHAkGlAbjcWXxRbvmCJ6dgLWcz9a8RtUBzcwoT7xMuAQ88B/Lli3ZiNs4De44ABU4GRpzJXRhS7FgBQgVFnsFihOmDfSjGxVJW9t4efxJ4jud2BzQKF9cZZ8efIdGD8JUDJAnFrpGw9K7MdfhIw9gL2se1zxcQCgE2fAn0nsefIwKOAjbPFxSIIgiAIznRegVaykP058Cig32TAlwPsnG/+PU6p2gHUHwCG/RhQFJbIlf4grn9qx3fAoKOA7EJg8PHsY6WCesN2xvuJhhzPyg67jQB2LRQTS1XZ72joCYDHywRaYwVQLqg8aed8IKuQuYMDjgC8AXHOz/7VQLAGGHwc4PGw+7n9W3GlgLsXAT3HADnF8Q0KtPwueaMJ9pHTgUAe0GcCu14RNFUDuxe3bBb0n8qcmLoDYuKVLGKCs/d49rsDgB2CekyrdgI1u4HhP2ZrZNiPxf3OAGDr18DgY4DsImDwsexjuxeLiZV4Hh8J9DiEueM7vhMTKxoB9q1isQC2kVW2Dqh1fy4NQRAEQcigEwu0RczJyu0K+AJA/ynikg9tcMaAI9ifvccD0RBwcDP/WNEwUL4R6DMxHmsc4MtmgwxEsGsBEMhviTfoKJb8i3C1KrYxoTvoaPbvvoexP/ev4R8LYK5PnwlMDPqy2DWKKt8sXcr+HBhfI0NOYGWqFVv5x4pG2HrQEtQ+E5lTsncF/1gAu2c5XYCuQ9m/e41lQyBErJED6wCoQP/D2b+1P0X93koWsmeH1w/kdQd6jBa3QaE9nwbEf2/9JrH3Q91+/rFCjWzjo//Ullgef4uQ4s3uxUB+b6DLYLaJNeR4ccNkyjewEti+k9i/tT9lDCYhCIIgCA50ToGmqsCepS3JG8CSxvJNYpLG3UuYE9NjFPt373izoQhhcXAzE3+94xNifIG4sBDkoJWtZ/fO62P/7jeZlSpV7+IfqyRegjoovpvfbQTrxxFxHyNBlrD1m9TysQFTgb0rxTifB9Yxp6JoAPu3Jp5EiKbyDaxcU9sw8AWA7iPj4kYApcvYe01R2L97j2OlgCLWSNl69mfPQ9mffSYwYbFnKf9Y0TCL129yy8f6jBd3H0sWsedIz9HxWGzCFPat4h+rbD0boKHF8OewDZESQZtYB9azWNoa6TcZqN/PhnnwZs/yeIz4e7tXfK2UCfq9EQRBEBnjuuuuQ8+ePVudPXbJJZdg4sSJmDhxIgYPHsytL0wmnVOg1e1nQxg0EQOwpCfcANQIaEzft6rFiQGAbsNYSaUIYaHtAidfW9+JLGkUIT7LN7KSJI1e8TeAlijz5MA65tZ1H8H+7fWx5ErEfTywDoiFW1w6gP09GmRT5kTE6zW2JUHtOgxQvGzTgHus+O8meY30GiNGWIQa2BpJFjFaXFG/t+wioLAv+7c/Oy4+BazHyu1s0ESP0S0f6zWGOZ8ierX2Lmf3UXuO9B4HQBEj0LQ+uj5Jk6t6j2XinnfZbTTMNpZ6jmr5mCZCRTxH9q9hQldzdHO6AAV9xawRgiAIIqNcc801+Oyzz1p97O2338bKlSuxcuVKXHDBBTj//PMz9NM5p3MKNG2nVNtlB5ISAs79TKrKko8eScmHx8viidixPbCWuUrdRrR8rPtINvmwtpRvrIaDrAcs+dq0v4tI9ss3MXGmiRiAJan71/BPGss3sj97JYkYTRjyPtg5FmPrrteYlo/5AkzIaz8HT8o3MFep27CWj/UaA9TuYRsXPKnYBkDVXyNCxGeK0AVY4i+iT1H73fQYmRQr/jvkLSxUld3L5PuYVcB+h0I2etYA2cUtji4AdBvO3HHe4rNyO9sMafU81lwtAb+3g5vYMzF5jfQaI0YMEgRBEBnl+OOPR9euXXU/p6oq3nnnHd0Dpds7vkz/AELQdkqTE+JkYXHIafxi1e1n0yK7j2z98e4jxEyNrNwOdB3SUnIIJCXEm4HigfxiJRLUJActK5/1kYgQaAe3sKEFyXQ/BGj6LxMWufpvQEdUbmcOVvL90nbcKzkLtJoSVvKXnKAC7L6WCRBoZRtZsu31t3xMey+UbWjp8eOB1kPXbXjLxwK5QGF/oELA+WQHN7MjEZLpMZqNUQ/Ws/XJi/J4D2nye1u7jwfWtQzW4EHdPnauW7KoBpjTWrmDXxyNim1tRYz2O6zYCuR14xdLE2HJ4jO/J5tSKWqjZ/hJrT/WcxQb7hKLtjiUBEEQBD8+vZP/hmLvccBpzs+onTdvHnr16oURI0ak/+J2Rid10NazhvTkhD67kJW58HZHtEEgPVIEWteh7EBd3ocRV+1iAikZTUDxLs3TE2gAcxF473wH65kDmCp0tWut4pykVm4HivozJ0sjq4BNl6vYzjlW/GdPFjEAE5+V2/n3vJVvaF1OBrQk/rzXv/Z6mrjV6D6c/wHSTVVAczU7Sy4Z7VpFrP+igWwypUZBbyCriP8AIE3odk/5n0jXoWzt83aQq3ayjZ5kkgUaTw7qCF2AVRnwdpCbqtlgldRnVtdhrHe3hnOVAUEQBNFuefPNNzukewZ0VgetYlvbRAdgyT7vwQVGyUfXYQBUllz1HN3m2xyhqiyxSnWZ8roDOV35JzuVO9iEyIK+rT/edQg7QFpVW+/Au0FzW9rcxyEtP0tyn5NbKne0FRVA3LHgLGK0NddlUOuPdx8BqFH2O00V+E4JNzMRPyHlgVQ0EPD4BAjdbUBhP+aaJdNtOLD6Xb5rpEq7j4Nbf1zrESvfxHeNVGxlQjMZRQG6DubvamliNlXEdx3CnLWGcuY68SASFyqp97E4vkZ4C7SqXUBBn7ZrpOsQdl4ZTxLP4xSBpt3Xym1t34cEQRCEe1w4XSKIRCJ4//33sWzZskz/KI7onA5a9S79/wl3GcSSYZ5UbAP8eSwBSabb0JbP86KxkpXKpSZWAEtAeF9b1U6geBA7kymZLoOBSDPbqeZFwmVKKfES6aClOggA+73xdpmqS1g5ZarQ1Zwgnr+32j0AVPZ7S8brYwl4JWd3sGKrvtDtNoKd+9ZQzi9WtYFAK473UVXv5hdLi6f3XusyhP96rNjGzltrsxmild1yjFddAkBt60R6/WLWSPUu/dLrLoPZ+gjW84ulV3ILiHOQCYIgiHbJV199hVGjRqF///6Z/lEc0fkEWriJCYfiwW0/12UwO6w0EuQXr7aUlcqlugRd4wkBTzdGS+T1ksai/vzLd/TKKYGW5J+nsKiJJ9fJQwsAVl6W3wuo5BhLK5XTExZdBgMNZWwd8aJqF/v9eFMM64T43MkvVnV8SmnxgLaf6zqUf/KtVyoHiEmIE+s/RXz6slhJczXHCa3NtWydpApdgN3H6hJ23hwvDDdDNAeZ4+/N7DlSPLDlvciL6l3691GLz7OqQRPpRSn/Qy7owwQw7/VPEARBZJTLLrsMRx11FDZt2oT+/fvjxRdfBAC89dZbHba8EeiMJY5akqbroA0GoLL/iaeWLjmldm/LyO9kcorZlLQqjsmHtmtvJNA2zmITA1OTPCdo5ZR6AyUSwmJXy3lebqnezcanZxfqxOPsWCREjM4a0QRizR5+a6S6RH895vdkSSPPazMSugATFruX8Cs7jASZA1KoszulJci1e9zH0ajaxUamZxe1/VzxAL5HaBi5dQATpLEI25zR+7wTakr0XabigQAUvmvE9DkyANj8Ob9Y0Qh7L40zcNAA9pxJHujkhpoStqHjz279cUVh61/EwfAEQRBExnjzzTd1P/7KK6/I/UE40/kcNE0Qme3YcnV+9gBF/fQ/V9SfCThusUyS76IB7AyvxoN8YmnllHruiJZI8tz5rtmtf11aPJ67+jVx0aD3e0sINM7Jvt56VBS2Jrk6aLsBxaO/adBlCJs4ymuMet0+9qderML4veXp6hrdR4D93niWOBq5dYAYV6t6t77r6Qsw96eGo9Ct2Q14A0zIpFI8MO4gcxpuVLeX9VnqljgKKPGtNnuODOJfBksQBEEQAuh8As1s5zshLHbyiRUNs3LKQgOBVtiXr4NQs4e5B3qjxDXHgpeQ0ZImvYTYn81KyrgK3VLjxKqoH1C7j99B3NrvxMz54SUsIkG2Royurctgvv1FNbtZH1PyiH2NhKvF6dq0zQc9oZtdyA4L5rn+6/Ybv9eKB7LfGa81YrrRE/8YrzXSXMtKbg3Xf3++Gwa1e5no03PaExsUnK4tMdhF5z7mdAECBfxLpfWELhDfMOO4HgmCIAhCEJ1QoJWwg5z1Jp7l92LDGmr38YlVtx+AmkagcXTQavfoiwqAv7DQknijZKd4AGd3xCSxKuzHDrptKOMTq6aUHeSc10MnVl/mQPG6Ns1lMnJZebuD6e4jwG9Naq9juP778XV+6vYBBTquD8CuORYG6vfziVVdwgRmTpe2n8vvzf7kdR+137+ZsOD5XqvZ07ZHS6OYs4NsthmiKPHNF073MRaLX5vJRk+wlgligiAIgmjHdD6BVrefnVWk12Pj8bLPcUtQteTDKEHtz0oOeZUL1ZSal1MC/BLidMl3QZ8W8eGW5ho28c8oaeR+bXuAQgMHwetn18arFCpxH3XKAAG2aRCqB0INfOLV7Da5j5zLDhPr3+Daivrxc+siQaCxou201EQszs5P7Z64WNd5jvgCQF5Pfm5MYrCFwSHzRf3Z2ufpIBv+zjhPxEy3Rng+RxrKWZm3kUBLbFCQi0YQBMELlfc5nZ0QJ/eoEwq0fcZJHMAShTreAs0g+dA+zjOekWDK6QL4cvglH7V72Bloeg4C0OKO8Hhj1sVdj9QR48mxAH7Jfo2JEwnEE2LeAs3g96b1AdVzcAdVNb5BYbD+83qwc664OT97mMuUVaD/eU1Y8EA70qGgt/7ntWuu4+SgWXmOSHPQOPaXxmLxwUYmrj/ATzTV7mPDklLPQEuOx6uiQXv2pd3EosOqCYIgeJCdnY2KigoSaSaoqoqKigpkZ2en/+IkOt8Ux7r95hPBCvrwO9C5Lk3SqCU7tXv1R7rbIdzEHASj5ENRWPkXrwRVm05pNO2vsC8QbmAlQ3pT9eygiROjg3i5l+btAQZMNf58QW+gbAO/WIC5gwawe6A3kMUOTVUskTeK5YmfxcZTxJuKmCQHOXWqnl0SIt4gHm+BVrsPGDbK+POFfflNaK3bz8pq9UpugaSyw93uD6tuPMhKQY0EmtfPDr3nsWEAMKFntB4B9l6rPwDEomx9uoqVZo2QQCMIguBK//79UVpaivJyjmeedkKys7Ntn8fWOQXa8JOMP1/YD9j2DZ9YDWWslym72DgWwEdYJJwYk19wQR++As3I0QKSxOc+9wKtIY1Ay+3K3DweiZWqpk8a83oC9d+6jwWw+2jmMuXHk3Ie/XXaGpHl/NSXGW9OAC39YvUH9IdE2EFzdIzi5XZj7iAP5ycWZT9zuvu4a4H7WACLldfTWKAkJmLuAfpNdhdLew8ZbfQA7H3Iq98znYgv6MOmPDaUm68lKyTWiEG8/N5MCFOJI0EQBBf8fj+GDHG5uUzo0rlKHIP1bDS82f/oC/uynh8ejeL15fGyMYPbqCWoPERTQqCZJTu9+Q1JMDrfTSMh0DgkO/XxnZc8A4GmKPx6VZprgGjIOBbAEtTmaj4HmqdLUPOTRIxb0iWoAEvMeTkI9Qf0R7VraMM0uFzbgdavmYrHwz7H471WX8ZEg9l7rbAvWyM8egfrD5g7Y9rneIimhMtk8ozM68HPQatNsxmSXGXglrp95k6k18fWK6/yTYIgCIIQRLsQaIqieBVFWaEoykxXL5ToU0mTWAF8EoKGshYHRI+sQtYXxiNBbUgjYgB+CWoslt5l4nkf6w+w6ZpG/W5AfFefg4XecLDl9cxiAXzi1e4zT/RzuwNQ+CTEiXPJ0jgWvPrd6svM7yPPDYq6fcwhy+1mEq83n+Rb6xk1c5ALkhxkt9QfMBdM2jU3cOhB055FpsK6F581kjiGJE2JI8BvjeT1ZELMiPye/MQnQRAEQQiiXQg0AL8C4L7pJ10ZVPLneDhN9WXmgolnX5gmFkwT4t7MHQzWuYvVVMlcpnSlSQCfhLghnugbOZEA2xXnkaBqLkRed5NY8XvMI5GrP2Ds+gAsmczrzkfEa2LBLF5ej3jvYL27WME6INIk0UHbz17PbI0UcNqgqLUgdBOlqRxEfF0aB41nX1hio8dkY4nXZkj9AQBqmucIx0FK2gRfM/J78VmPBEEQBCGQjAs0RVH6AzgDwAuuX8xK+Y6WNNZx+J90fZl5gqrF4+WgKR5zl6mA07VZEYO+LOYQctnVLzdPGIG4QOPhoFlMUAH3CXHCZUpzbfm9Wso83VC3lzlyvoB5LMD9mkwMdjFZ/3nd2Zrl5Y6kS755lcFaKRXNjQt8t5MVY9H4BkU6YcGpL6y+jPWM+rKMvyavB5+jH6w8R7SNEh7PEbMJphrkoBEEQRAdgIwLNACPAvg9AN1DfhRFuUFRlKWKoixNOyXGVvLtMkFVVRYvXfLNy0GrL2NJodmks4RAc5mkWrmPACu94jH6uyFNqZz2szRWsITWDVpyZuZ85nEa3BGsZVMVzWIB8aSR04ZBWgeBU/lmolTO5No83vjAFR4CzYI7UtCL9YW5PXew4SAApUWE6cFLWDRWAGos/UYPTwfZynoE3AuZhgr2p9lzxOtngpGLQLMg4rXyTV5nyhEEQRCEADIq0BRFORNAmaqqy4y+RlXV51RVnaKq6pQePdIIhoZy1qdiNFURYNP0ePSFNVWxcdVpk53enEqTDqYXTLzdkbSuVneODpoFgabGgMZKd7ESybdJLxOvBLXegoMAxEUMp/I1s9LN5J/F9RqJi650wqKgFx+32krynXC1KtzFaihnk0PNepl4OWgJ19+CQONScltuwfWPf96tiNe+3+y9BrB76fZ3Fo2w17BybWqUlXETBEEQRDsl0w7aMQDOVhRlJ4C3APxYUZT/OX61hMtkcllaX5jr3WGLyXdBLyBYw84xcxXPQqkctwQ1nnSmddA4JFaqas1B49Xz01CWPvn258TLNzklqGmFddxBc3vQoy0R71Z8WihxBOIbFC4dtHAzc8bSCrS4EHC9/svS30d/NhAoaHGJ3MQCrLlaXEp8LTxHtGt3K+I18Zpu0yCvu3uh21RlLRavzReCIAiCEEhGBZqqqnepqtpfVdXBAC4F8I2qqlc6fkErCSoQL3NxmTRaKfECknreXMZrsNCnldMFgMLHQUjX7wYAed3cO2jN1WwgiZUSR8B92aGV+6jFc5ugpjvfTSO/FyuFDLo8+sHK+s/txn63PARausmbABMDbvvrtPdquv6iPE6ultXnSF43DiJeKwO0IGKCte7LN6241dxKHA8C3gDb7DAjt7t7oas983K7mn8dz2MtCIIgCEIQmXbQ+GKlJwzg0yhupZdJiwW4FzJWEiuvD8gpdh+roTy9Ewm0OGhunJ90Z6BpJAQaj/toVcS7FRZW1wgHVyvczM4ATFdO5vGy35trd6Qifjh0ujXSjZWTuVkj2uZGukEaCQfNbRmsxTWSy8H5SQiLNL+3PA69g+Fm5uZbddBci8+D7B4pivnX5XaVdx9JoBEEQRAdgHYj0FRVnauq6pmuXsRqYsVjsqLVEkdtR9eNqxVqYKPR0+2yA3zKDhsOpr8ugP08sTA7/NlxLIsuE7ek0eoa6cHHrUvX7wbw6QtrtFiWCvA550oTaOnI7cYc0pCLsf6JqYppyilzOQ3usCri83g4PweZE2nWNwvwcZCtrhFeY/0bDzKXMR15HDZ6tGtL2+/GqQyWIAiCIATSbgQaFywn371Yz0Ik5DxWfRng8adPrHgkBFbFoBaPR4mjVTEIuItntVQ0u5gNgOFRdmVJfHKYrFhfxn4fZv1uAB+Bluh3s/J76+p+jTRWWhdogMv1rx0unkag5RTDdYlvJMhcJqsCjUc5pRUnkocTn3CZLKwRHpNFrZaK5nYHYhFW7uwUqw5adhETxG5dVoIgCIIQSOcRaKEGINxoPUEF3E3yqo8PErBS4gXwSVAtJ40cBhdYSeJ4jBq3WuLo8cR7VTiUeFlZI/m9mDMYCTqP13jQmohJlF25uDY7ayS3q/spdo0V1twRnus/Xb+bx+u+XC4hBi0Ki4aDLp2fCmvrMTG4w42DZlHEaPF4uNW2niMu1oh2bTlpetAUha0jmuJIEARBtGM6j0CzOjEPSCo7dPE/aSvT0AAgkM8a5V25TBbH3gPs2lyfzVRpUehqybebhNjisAnA/VlQtsoAOZRUNlalH1oAxN1Bv7vBNQmBZuH3ltPVvYNgp8QRcBevsYLdI6/fWjw3ayQxGt6isHBd4mtRxHMpcYz/DqysSV5lsLaceDfv7Ur2rPVnW4jHwUEmCIIgCIF0HoFmZ3dYEwOuHTQLpXKK4r7s0Jb4dNnPEQ2zaXGWBBMPBy0+Yj+dEwm47wuzOrQj+WvclHk1VaXf0Qfi7iCnNWJFWOR2ZeVkTg/rjcXYe0dWiaNVMQjE179LMQhYvDYOJb5WRUwglwkQLiWOVlxdl4OUwk2s79CS+Ix/jdtrsyI8AT4bFARBEAQhkM4j0LRzcKwkxNrXaN/jhAYLB74mx3Pr1gHWSxzVqPNd/aZq9qeV+8hj51srFbWC27IrO2WAib4wF/GaKoFcC0IXiO/qu1gjTZXMhcsqSP+1OV3Zod9Oe36aq9n3WxIxHIbkNB60JmIAluy7WY+J54hFRxdw7+paEdVaPNcljkr6vlktVriBlY47wVbJLSeha1nEd3X37CcIgiAIwXQegdZoI7FyW+KoqnHnx6KwcNvz03CQnSVkqXzHpWNhJ0EN5AL+XPe9I5aTb5cljomJkTYEmlPHTlXZ+rIidIF4X0y1s1hA3K3rkn6kOZDUg+kwSU2UyllIiLO0oQxu1ohFt077mdzEsiXQXJb4RiMsnq3177LEMac4/dAaIGn9O9ygsHpIdfLXuCpxtCHQyEEjCIIg2jmdR6DZSawSDprD/0kHa1nvidWdb7dJox2Xye1utHZPLDs/LifZWS0DBOK7+o1A0OHIdluloi6FbriRHT5tuezK5eACTaBZiuVyg8LqocBAvHzTZc+P1T4toKXE0Wn5ZsJBtrLR47LEV3tmWb22/J4cygBtiBjA+RrRNm2sPCP9OYA/z/1Gj+U1QkNCCIIgiPbN/0+BFsgFfNnOkw87sQA+/UWWBVo8sXKbNFq9tjyXQxnsCAu3Z6HVl7NEMJCX/mv9uYA3y73LZFV8ui1xbKy0sR5dblDY6WXSvs7p+ldVm8l3t3iJb7WzeE1VrNfLF0j/tYkeTIfr0fZ7jUOJo537CLgQaDaOfQDcl6Y2VlrfMMvpCkSagVCj83gEQRAEIZBOJNAqWRmglfIdwJ1jYWcaGsCSnaYqIBZ1Fq/BTg+OSwfNtrBw4aDF4n1QtgWaw3h2EtTEOG6HAq3J5hrRYjkd7tJUbcNBi3+dawfNjkBz6VbLWv92Ngw058dpLE1E5hRb+/rcbmxdOXUH7ZTcar9bx89IGyWOQMuRBU4IN8cHkti8NprkSBAEQbRTOpFAq7Ke6ADxPgSnybcDB02NOR/c4WjnW5aD1t15aVKwlt0XO24d4PzamqttrhEXAs2u0M3pykoiww539e0IC+kOmosSRyexkr/PLnafI3kuhIXd91pOMXu/hOqcxbM7SEP7Hic0HIwPrSm09vVuDv1ObIbYvDYqcyQIgiDaKZ1HoNnZHQbcTfKyMzEScLdjq6r2hEUgD/DluOtBU7xAdpG1r8+NlyY5cX60BMlqgqpNn3M6TMO2iHcxuMOJgwa4W5NWY2UVAYrHnYPmy2ZloFZwU+LYaPe95rYvzEapKOBSWNgUaG7Wv6rGp4pavI/Z2hpxIdDyelgbWgPEz6+TJOLd9tcRBEEQhGA6j0Cz4yAA7kocbTtoWkmZgwQk3AREQ/auzU2yo4kYq4lVXvd4P4eDcdy2HYT41znuL6p2sEZkuawuksZIkI1Etyo+PR73Jb653Wwk3y4GdzQ7cKsBOSWOgLvSPJnrP9zI3qdWRYwnfni8YxF/sMXxtoKbjR6nLis5aARBEEQ7pXMJNKu7w4C7oQyNNp0fN0mjloxZObtII8+NY2HXiXTR82PbQShq/X1O4tm5j65KHG06P24mi9qZPJgcz42DZuu9Fh/cEXRQ4pu4tmJrX+92ZLvtjZ5idwNJoDBH02qsxPfZxK6IAeJrxIWrZSeWm40ectAIgiCITkYnEmg2S5M0B8FRaV6VvYEkbgRaQsQUW/8ebTfaCU4SVMBZkmpXWHjipZdOS7zsDCQB2LW5GRJidRog4K7E0a7QBdydzWc3+XYzEdDuBkVicIeDWKrq0Il3eih83K32WHwMuylxdCLQtKEkTrB9H12czWfnXD7AfTkxQRAEQQimcwi0WMxB+VpXIBYBgg4a7u2KQVcCrZr9acf5ye3urgfNjjviJmlMnANlM56TxCrcGC8VLbb+PTld2PeFm+3Hc9ITqX2fXZwINDdDchwLNBfr3+4GhZOyw1A9eybY+b1lFzNn0MmEVidiEHC2GWLn7DoNN9M3bT+Pi9mfbq7NajxfAAgUkINGEARBtFs6h0AL1gBQnSXEjkrKbCZWfu3cNRcljrYTVKcCrVqigxYXCLbKDovluHVA0hpx4mpVWj/sG0ja1XeyHm2W3AKSHTQXEwGbq9nQG1+W9e9x6nw6ErrF7E8nE1qdutWOHDSbLhPA1q/TwUZOyokB5+5gdrH1igbA+bURBEEQhAQ6h0Cz2xMGuC+psbMTrSjOd6OdOGg5Xdgo7mjYfjy7zo9bB81OqSjgfLKik14+N6VQdu+jL4uV5rlxIu26MU7WYzTC7qVMB83O5gTgQsQ7uI+J9e9QENrd6PH45ZQBAs7fa6F61nNo5/fm5j7aOaRdI8fFBgVBEARBCKZzCDQ37ojTkjI7ib4WT5aDltjVr7UXKzENUFZpUqX95NtpiaOTXj5XfWE2RTzgfHCN0x60SBObEuokliyB1lxt/72WXezM0XK00VPM/nQqCO3EUhTn4rOxgo3Nt3p8BsC+NtLEngt2cLSpFP9aJ9fWXGP/OeJmSBRBEARBCKaTCDSbZ04B7pJvJwmB06l5TdWwNekNaEmM7CY7ieTbRtIYyGfnpjl1fmzvfHeRV+Io00ED3JXmKV7rhwIDzifZ2e33AdjZfB6/8/VvW8Q7HCTjykFzGM/J+ndaBpjThQ3asUriOWJT7Dp1dAHn7rhdEU8OGkEQBNGO6SQCzeGQBMB+0qiqLGGxsxMNuHPQsousT3oDksbRV9uL5eQ+Jnb1JfTgAC0ixu70TUf9bg4FWizK7oddB81p0mj37DrAeQ+m9nu2I5q0NRK06egCDpPvYnkljk6dH22wkRN30OmYfbsbBk7FpxPXX9voceqgOXoe0xRHgiAIon3y/1igORzKEG4EYmEHiVWRswTVaQ8OYD/ZSZR42U3kiuSUeAHs62MR++clJZJGCQ5asza0xsG1OS1xtO3WOdygSPTy2bw2x66WA7c6u5idqWV3+qaTMlinIibodI0UO3yvOSi5dToAxUmJoybiHTnI1Q5KHLux34GTPl2CIAiCEEznEGhakmknIfD6WNmg7QQ1nqzY3bHNLnLmMjnqwSlq+V47OBG6QHxX32YsLZ6TWICza1O8QFaB9e8J5AMen/2k0anQze0qZ9iEFgtw7qC15/XvdIOiqYpNjPTnyIkFyCtxbK5x8RxxWuJoN16xi2uzux6L49/rYNOMIAiCIATTOQRaUxUTW3amAQKs18qROwJnCWo05GxX30miAzgocXQwJAFwtqufOBTY7q6+Q1dL22W3UwaoKPGE2G4sBz2RQLzE0WH5ppNEH3BQviZRoMWizHV2uv6dOD92f2f+HHaEhoxyYiBDIsZmPCdutfb1dmOFm4Fo0Nl6BJy5kQRBEAQhmE4i0BxMAwSc9XM46cEBXOxGV7twEBzufNtNUp0kjcG6+ChuB2IQcJYQ272PQItoshsLcJagqlH7v7dGJ06kw/WYKHG0MZBEi2c7liYGi23Gin+9kw0Ku/dRiydtjRQ7OxjbkUBz6sRXM7c6kG/v+5yUODo5PkOLBThzdQmCIAhCMJ1EoFXZFxWAs76wRH+FzWQny0VCbFcM+rIBb8BZD5rH5yyxsp3EOXTrnJ6X1FztLPnO6eKgDDC+ppwMLgCcJft2r82fy37XTta/3YOjAWcCzWmpnJuyQ0drpNiZiAGcO5927qWqsjXpRFQDzoaE2HWrAWcbPW4c3eTvJwiCIIh2ROcRaE7cEam7+g4SAlV15qApirOzoLQ+FaeJlZ3SPDcuE+AsIXbisjopcUzs6ttMGp0MromG2aHkdu+jojhf/47c6vggGTtrxKk74thBc1BOrMWTWeII2Fv/oQbmzNpdj/5sttnj6DliMxbgrMQxIXSL7X0fCTSCIAiiHdNJBFq1w9KkQvtN4jJ3bLWJkY6uzcHUvKCDXXaAJUdqFAjVW/8eNyVeyd9vJ55jB63a3vdorpSdc8mApDViY006dWIA9vPJSr6zi1kPZsRGD6bT5Nuxg1btUFgUuxgSUmw/VvL3W8HpM0v7Hts9aLX21z7QclxHLGYjlsQNM4IgCIKQROcQaE6FhSOXqTr+vQ4FWtBGPKcJqvY9thMrp8m3g1IopwItMVnRRizA2TRAwKGDVgN4s5gDYQcnSaOTM6eS40kTaC6uTVbyHax16MQXs+MA7NBUBQQKAK/f3vc5Ge7idMMAcOHEOxTxasxe2S2VOBIEQRCdkM4h0JprnCUfWYVAuAGIRuzF8ufZT6xkJqja99hOrBzufDuZmufUQUiUb1Zb/x7tUGCnJY6heiASsv49UkVM/Gsd/d6cCLRqedfmdIPC62fvUTsiJhpmjrW00jyHjq6TEke3Dpo0J95B+bLTZ2QgH1A8JNAIgiCIdknHF2jhZlY65SZptLVjW93+E1QtnpOGe6clXoDNxMrFrr5dVytYC0eHAgPOpr05GcgAtNwLGQ6C9j1O+xRtxypu+X7Lsapbf68d7DrIrtZjMfud2Zms2FQN5Lh4rzkqcSx2Fs/JGslyc23VNmLFv9bu+81pDyZBEARBSKDjC7Sgw4l5yd9j17FwIpj8OYDH78xlkpGgAu5KRQH7ZVcen71DgTVyip2VUzq5j05Fk5P16GRXP7H+ZTloEt3Bpmo2pMJuqShgf3CHVnrsZv3bFZ9uhK4tEeN2jdiIpcVzWuII2BefTqaKAiTQCIIgiHZLxxdorhyEwtavYQWngwQUJT6URHJ/ka2pebXudr7tOhZZhfYnRgL2z51yenAu4GyNOC259XiArAJ7Q0LcOD92E1RVldun6FTEaPFklQE6crUclhP7s5kgcVQGKMFljUZY2bjTYUOAvWtzWroMOBOfBEEQBCGBTiDQXCaogP3k20mio8VzMqHP6U67GmMHQlshGo4nVm52vqutf49Ttw6w3/Pj9Ow6wJmDFnToIAD2E2JXGxTFrO8qGrb29cE6tqZklcG6Sb7tlua5eo4Usz+lrf9im0LXTZ9isb3Jim4qGpwMQHH9PCYHjSAIgmh/dAKBVs3+lJV8y0wImmsAKM77YgDrCbEm5Bz3TinOHDQn2E1Q3VxbwkGTtEaybB6eHqwFoNg/XBywP9bfjRjMcuJEVrtw0IqdiRhX4tOmg+Z4jRTaf2Y5mSoKsJ9RjVk/QsOtGATsu4OuXFYSaARBEET7o+MLNLc9OIADB63Yfiwtnt3+oqxCVvrmJBZgPZ4boevxsPtv20FwmqAWxN0ci+WbbsaMZxW0fg0rOB0SAjgQ8W7WiCaaqi3Giv9cjnowHRx67NpBq7b+9a6eI8XsT6vrPxZreW87we75jW7ea3aH5Li5j/4cwBuw34PmeMOsmAQaQRAE0S7p+AKNS4mjxWQnFpPsoLlJ9IvZn1aTRjf3UYtn10Fz4yCoUSDcZO3rNQdNE1t2YwHW10gkCESaXKwRm8m32/WovYbVWMnf5ySetHLiYub6WC3fTAzSkFC+GaoHoDp/bztx0FyvkWrrsZK/zw6KYv9geCpxJAiCIDohnUCguSm7Kmj9GukI1YElVpISAle77JKTb9tlhy6uLeFqWeyvcyM+7ZbBJmJJXCNu3DpAjsuqfZ8tV6vOmajWYgH217+McwDdOLqAg0EyNe43eizfR8kbPa6GhBSzHkw7ZxwSBEEQhAQ6vkBz04Pj8bJEwm4S5zQhsLvzHax1nqDa7kFzUZoE2C8XcuMO2hVNwdr44eI++7G8Pva9VhNiN0MSgPgacVDi6IT27KCpalyguehTBOyJpkABeybYxZfFjtCwu2Hg+L1m10FzObQGsL754vo5YuP8Rq1U1O212bmXBEEQBCGBji/QtN1hJz04gD3R5GYaIGB/x1ZqiaPb5NvGfXTbg2O3L8yN0AXi1ybTZaq1MTUvEyWOxQ7jFVuPFWkGYmEXDlox+9PO+nf6XkscoWFTxDte/x2hDLbYYbxC60I3pE0VdRrLQQ8yQRAEQUigEwg0h2d3adjZ1efhIAA2hYUbl0mRV5qUZSexctmDo32fHcfCaSzA3rUl1ogbV0u1NzXPbYmj5fJNF2WAWjzLjpaLyZuA/cmKbkQMYG+jx02/m/Z9kSYb/XUOz+UD7DvxieeIQ2GtDQCyFIvT85jOQiMIgiDaGZ1AoLlMrDIh0OwkqU4TVG2yot3mfhm7+jx6cAAb8Vz0MgH23BHXybfNcfRuShwD+YDisR6rqZqVATopFQVsvtc4bBgkv0463GyGAPaEBQ8HDbB3bW5KbgF7z0h/LuD1O48nXaCRg0YQBEG0Lzq+QHMzJAGIJ9+yynfslgu5Lc2z41jUsoTdcfJdyEqOYtH0X+u2B8fukBDXybcdd4SDy5T8OmaoqrvkW1Hsb1Dw2AyxcjwCLxFvJ9l39RyxcQh9ogzWrYNs4fcWbmblok5/bx4vq1Cw3IPm1okskFhyTgKNIAiCaJ90fIHmxkEAbCao1S3f4zQWYC1eJAhEgxyEhZ0yQJeJFWCtNI+XgyCrxNFJf5Fbx8JKkhqqj/fgyFr/HARaLAKEGtJ/bWKNuCiVA+Suf9uTPiU4aG7XI8CuzXLJLYfNkHAjEI2k/9pEGSwJNIIgCKJz0QkEWgZ6RxwPLrBRLuQ2+QBsCrRq94kVYC1pdFsGaHtIiMsSR9sOmsOpooC9pNFtoq99rx2B5nSCKWDv2tycXZf8fXYcNFkua7AW8PjYwcxOyLYh4t2+1wCb4pODgwbEjzRJg1sRTwKNIAiCaKd0fIEW5FSaZKnsqo4l3k5GcWuxAIvJt1Yq50ZY2EiseJSKaq9jJRbgPCH2+gFfjs1hK26cHzs9aC6nito5PJ2HO2LXQXPrVmuvkzaWyzJYj5e9V60INLelooD9PsXsIlZi6gQ7DrLbklsAyLJ4HwF+zxFL618T8U57MPOYUCaBRhAEQbQzOrZAi8XclyZlFwFq1FrZVcjtsAk7DgIPd8TmRDQeO992kka3iZyVWLEoK89yNcXRxtQ8HusRkCNitHh2+hTdbhgAFstgXSbfWjwrIj7cyEovXa2R+HvNan+dK6Frx62ujn+PWwfNRqmo298ZYC2eWwfNbg8mQRAEQUiiYws0bVw7l2THYtmV09I1IP69isXkw+WYcUByYuXA+XGbyNnaZXc5xRGwmBDXuHPrEu6IHZfVjSAstp6ghuqZm+IUO6WpPH5vVtc/lzLAQrbRE260Fs/thgFgz612LdDsHPsgaaMnWAd4A4A/23k8EmgEQRBEO6RjCzS3Y5aTv9dSslPvLmFUFPtJo4wEFeAwAMJmX4ybHhzA+rVxEYM2RZOb++gLsPJNOy6r6xJHq6WiLtd/Ivm24qDVsPvgdFy7Fk/aGrFx9INUB42DW233CAFp4tNlRQNgrweTIAiCICTRsQVaIkHlMdzCooPmxkEA4hPRJAqLSDMQCZl/XaIHh0dpko0E1WkPDmB9AIpsB83tfQSsiyZepaKhuvRT8yIhNlU0wEOgWfy9ub2PljdDXB6fASRt9FjcfHEjqhM9mFaeWXEx7HpIjoXrCjcD0ZC8Eke3x5Bo8ay6gwRBEAQhiY4t0HhMsdOSMssCTVLSyGWKo8Wen0QPDofSPKtTHLkk33am2EkSn24dNMD62XxcBkDEvzfdGglxSPS18mCpybedEkceLqsEBw2wPpREu343pdnaplIsZv51PCoa7JbB8nDQrLqDBEEQBCGJDi7QeOx82xAWboeEANYny/EocbTaX8dD6AbyAMVjvaTMtdC166BJFJ+uk+8i64m+x++yVNSiaEo4uhx60KwOCZG1RngN0gCsD3dxvUFhcax/qB7w5zqfPAu0iLt0vzcuJbc2pzhy2TCzWOJLEARBEJLo2AKNS4mjnXN3XA4J0eLJ7MEB0iepPHa+E/11Vh00Di6TrZH+HIRuuniqykfEW+2L0RJ9V6WiFtcIj1I5O8cjuJ0YCVhfjzzKiRNrJM19jMXkO2g87qP2WmbwGLbiz7W50SPJZSUIgiAIiXRsgca1pCbN/6RV1f2QBC2ezB4c7bXSxQI47EZb7J3i4qBZHGvOZUiCxf6icCOgxtyvEauT5dyeSwZYd7V4lMoBsHymFs8etLSleZymOALpBaE2eVaWg8ZrUwmwsEY4nN1oZ5ASz5JzK8cjEARBEIQkOrZA4+GOWN2xjQSBWFhuX4ysnW/NPZR5bTySbzWW/vw6mUNCErFkuawcnEhbwgKS1z8P8akC4XRrpBZQvO6nigIW1ggHtw6w7qC5PRoBSFojElxWgG2ISOtBK2DP9UjQ3esQBEEQBEc6uECrY+PafS7OwVEUNpkuXULMI9HXvt/qFEcePTiADQfNrfNjdVefh/Nj9dq05DvXeSyrU/MSCaqs6YOchC4gb41YFp+cSkW117ISS0apKA9HF7DnoPFyWdPF47pGJJY4AlTmSBAEQbQrOrhAq2flO24SK8BaQsDLZdKGhKQtzeOZfMtyfiz0Tqmq/PJNt31agDXHgoejq31/uAGIRdPE45B8W52syKvEMWDhvcarT8tOf53bWB5v/L2dZo3wGMgDWD+KQXtGusGuiHdzFIMWL919jATjI/15iXgaFEIQBEG0Hzq2QAtxSKwAawkBtx6ceGleuDF9PFm7wzKdn1A9nz4tq4kVj1JRLZ4sB8Hq1LwQx/4iK7+35K93Ey9tL18DAFWig1brfnNCi2dVxLuZPKvFCjekP7+Oy9AaiyI+xGujp8BGObEkEU8QBEEQEunYAo3HwdGAtaSRW3+FVdFUC1ej4YF4f51XnjtipcSR1320OlmRx33U4qVLGjURw000pSu75TS0xlIsjhsU6Up8E2cASnKQQxzuI2Bx/XMsJwasxZPWg1YHeLMAX5a7eNkWjkfg6VYDJNAIgiCIdkUnEGg83BELk+V49lcA6RNiHiWOVieihbTEKuAunuYgmJVvJkSMLKHLaY0E8q1POpTlWPBIvj1ewJ9nLdH35wJen7t4VtYjjzMAk7/fyn10Kzy1eFY2DJJ/NsexrAo0DiWOiTJYC+ufy/PYyoYZ7+cxCTSCIAii/dCxBVqIQ/IBxHf1JQ4JAcwTq1iMT2kSAEuH9fJMrNJNRON9H9O5Ws017oWuFs/yIBlOA1DM1qQ2VZSbsLBQ4sgllp3NELcTKu30oMl6r2kOMge3GjBf/5EQEA26X4++ABvEZEUMcqtosNjLJ6uXlSAIgiAk0rEFmswSR56j6AHzeCFOib4WT1ZipY18N4vHcyBJ8uuZxeNxHwP51kvz3F5bwrEwu4+c+gYB644FLxEfDaUR8RzO00r+fhlOpBbPahmsP89lLAsOWoiTGAQkr5EiINLMBKZZLO3nchXLYhksQRAEQUikgws0mTvfvKbYWRgAwWt3GLA+AIXXfdRezwjufVqyku98aw6a22MfAGtlsIlSOVmuFi93RFsjZtfGuwfNgjvIQ+ha7cEM5AMel4/eLAtlh7yeWYANgcbpmQWYPyNpSAhBEATRiengAq3OfS8T0JJ8xGLmsaAAAbc73xYSAl67w9prWOrB4RQLMB+1z2tIiJ3eKZk9aG7P0wKs9aDxErqA3DVixR3k1YOWOL/OJJZ27AOX+2hho4fH5E2g5XdhScRw+r3JujZLzxFOa8SXzTZVSKARBEEQ7YiOK9BUld/0tUA+ADU+3tsA7awk18m3HZdJkkDj1e9mZbIcr1JRLZ5ZrGiY9eBwuY/58dI8k7KrUD2nWBZ60Hj1MmnxrIz057VhAFjcoODkxpiVHYY4jfQH2M8bbmTrzgiefVqAxBJHib2s2RaekbzEpzZIKd36JwiCIAiJdFyBlkiseCY7aXajeZWTaa9nFiv5a91gaWS1xBJHmWVXPO+jVceC24YBLPbyySyD5fhes+L8uHWrtXgy32vJr6kHz2ErQJpnFuc+RSs9mDJFPI9yYi0eOWgEQRBEO6LjCjTeiX7ya+rBy0GwUlIjvXyN866+mWMRrAcUD+DP4RPP1B3hfB+BNEkjp0OxfQF27IFZ8h2SKHQBvv2eQPr1789jZayu46W5thBHEROwsvnC6T5qQ0ZMhW5t65/LDZl4jphuUNTyqWgArLmDBEEQBCGRjivQeCZWVp0fHomOlbPJeJevhRuBaMQknuQhIQEOfVqA5PsoMfnW4km7tvh9THd+HVfnR4LQBdI7yFxFjIUBQLz6tDwe9j6yJD4lCLRoGIg0yX0ec3uvWXCQCYIgCEIiHVeg8SxNsrRjyzEhCKTpeeDdgwYYlydFIyyx4tWnZRYL4LfLDqTf+eY9JAGwUOLI69rSrBHe1xaLsNHmekTD7HM8J/SlFbqy1ginoTVAy3soXdkht2uzKuIl9LKKeK+lFWgc1iNAJY4EQRBEu6MTCDSOwkKaOyKxLyZdQsxzaIcvC/D44/2BBvAqFQXiybeFgSQ8hW7aPkWOIl5mGSxgfG0y1yPAz63T4kl7r1nYoOB5bekmiwZ5rv988/PrQjzFoNXNEEnPY4IgCIKQTMcVaCISVKkJQZreKY+fCR4esQDjXi2eQhdggx3SiRhpyTfHEq+AxeRb1q5+sA7w53Lq00ozfZPnGtF6p6RuhpiMa+cpLBLOTzsRFqE61vPq9XGIleb8Op49wYk1kqa/jgQaQRAE0UnpuAKNq4NmpXeKZ2KV5tBjrmVQaRwLniJGi5duPDyvWFp/kdH5dVxFfJrkOxbl7PykKV/jdcQEYMFl5Xgftd4pGX1aQPz8rnrj/jreLhNgfG3ReBmp1OcI7zUiQcR7POndwWYSaARBEETnJaMCTVGUAYqizFEUZb2iKOsURfmV5W8W0vNgkHzwPMwWsDZZjkfCCKQXn9wdNAvCgud9hGqcyHHtL0qTfPN0YrTXSefocr2PsLBGeK7/NJM+efZpqVHj0jyuz5E0paI8J28C1nowpa0RjkObAGvlmzxLpdMNUiIIgiAIiWTaQYsA+K2qqocCOBLAzYqiHGrpO3nu6vsCrBTIKPkINwJqTG4PGq8ENV1pXqIHjVdpXr55D5p24DeXWBb766T0aXEWaOmELm8RA8hLvtMOt+DZy5dGWCfO0+JRTpzmvcbbrQ7kWyi5lSXQ4oKb27WlKZUONfC/tnTnvBEEQRCEJDIq0FRV3aeq6vL43+sAbADQz9I3B+sAxcvnPC3APCHmnnxLdEe0w36NRBPP3hEtXrqzmXhO6APMnR9vFhPgbvH62WsZJt8iXKY0kz65CaY095G782PFQea8QWFWvpnF6dgHbUiOoYPGcVMJsFDiyHHSYcCqy8qxfNPoORKLxifPShKfBEEQBCGZTDtoCRRFGQzgMACLUz5+g6IoSxVFWVpeXt7yCc1B4JFYAeYJMffkIy7QYlH9z3Pd+U7TOyXE+TGIpaqcSxzTCTSO9xEwT4iDvJ3IAiDcYLxGgrX8E9S04pOngyyxTwswd9B4lRNr8WSU3Gqv015KHHmX+AZM1gh3oUsCjSAIgmhftAuBpihKPoAZAG5TVbVVc4qqqs+pqjpFVdUpPXr0aPkETwcBME92eI6iT34ds0SOm4OQLpYA58fIrYsE2Xlb3MuuDKb08RSDWjzDHrQMrJGOPEhGlluXbrIiz3JKII2wEHBtsbD56Hvu6zGNiOfpDhqWZcefL1p1gOtYJNAIgiCI9kXGBZqiKH4wcfa6qqrvW/5Gng4CYN5wLyL5AMx3iHklVl6feX8dzyl2QLzEMd0uOydhnW3FQeOdfEsctpL8uqnwXCO+bNaHJW2NmN1HAWIQMN+g4O2ypnXQeAtrCddmZZCMP4/PsQ9AvL/OYKMnIdAkOfEEQRAEIZlMT3FUALwIYIOqqv+29c3cy9dMJsuJKPFKft028Tg7P2YT0ULx87R4nJWkxTJMGGtbvoYH6c5443k0AmA+3IK7iLeQfPOKpSjpXS1fDr81klUgz4lJ9GBK2AwBzHtZhZXmGT23eDrxeQAU8/XP9T6aDAlJrBFODlq6Kb4EQRAEIZlMO2jHALgKwI8VRVkZ/+90S9/JOyEwTb55946Y7NiqqiBhISHR12LFwkAkpBOL9xQ7CwNQZAldEf1FgP4a4d2nBaR3tbiux3gsvbPJeLusVkocea9/WWvEbEJlNMIGafC6j4qSvsqA9xoxFNXx9zvvPl2z6bMEQRAEIRFOW+LOUFV1PgBnUz5C9UBhX34/jFlCkBghzTux0kl2wk3xkf48hYXZtQlwEAAWz9e19ed4Owhp++vqgS6D+cQC2O+kaqdBLFE9aDprhHe/G5DeHeRdBqjG2PEVqS6IiJ5IQO76r9mj/znu0zBNymBDnO+j9lqy1kggn62PWLRt2STvHrR0Gz0EQRAEIZlMO2jO4XmeFsCSNMNSOYnuCG8RA8hPrLTXbROL833U+uvMytekOWi17Gfx+vnFAgzuI+dEX3stw54fAcNWAH1Xi7uIlzwkxHSjp57fmWtAkhOvEy8o4jliUgbOu1TUbPqm7DVCEARBEJLpwAJNgLCIBllpkF4sT1wM8MBMoPF2YoA0woLjWUlAmsRKxLWZ9aqIKM0zKbuSJWJ4l4oC8eEuJqWiXNeISYkv72vzBQBvQN+JjMUE9aCl2TDgdTSImRPPe1NJey1ToctxjZiJJt4CLXHGIQk0giAIon3QMQWa1qfF20EA9P8nrfWp8DxzDZCTfADmPWjc76NWUqaT7AtzfnSuTVTyHao37p3iPbQGMHdZeQtdWZMOzYYy8J4YqcXTW4/hBgCqgB40g/467hsGFlxWEb2DenCfqmvyHOFd4qi9Fgk0giAIop3QMQVaok+Lc4IKGAg0zuWUlsoAZbkjvEVM/D7Kujajc9dEJd9QjZNGIQ6a3n3UpmHKKs0TUAYIpHFZOQtCUyeSsxhUY+wZlQrvzRBTl1WyQAs18H9mAQbuIOcx+9prUQ8aQRAE0U7omAKN9yCB5NfSdX5q+cbyBeJnk+k4CAkHjfOEPrOJaDx3omX2jgDxEkdZQjfNtfG8j2ZlV6JEfLrSPF6Yis96wOPn16cFGE9WFOJWm4hP3keDyO5TTCfQuDpaJiWOwbp4vyfHGVdm0zcJgiAIQjIdU6AJETFpkm+eO9FaPNPSJAGjv3VL8wQlVkYljjwPs9XimSbfPB0Ek94p3vcRMHY+hZQ4mjgIInr5AOPyTVnvtZBAEW8Uj6dg8njZGYZm65/3NFizYx+4u9UwuDZB7zUaEkIQBEG0EzqoQBPUgwAY79jyThqNSspE9WlpY82TicVYKaCIXj7D+8gxFhAXnyb9biJcVmkCzejaRDiR2pCccOuPJ87TkiTQeLtMgImDJuA5YurEi7g2A9GUcFk5T7oN1bHnRjJhEc9jsz5die81giAIgsgAJNA00jk/PJNhwDixErHznWUgmjTBJiRBleAgAMb9RULKKdOVOIoQFpKOYjDqwRRy5loaB42n6wmYrBGRzxGjNSLZiRfhaoVTnpFCha6k9xoNCSEIgiDaER1coIlIvo12vgU4aGY730ImK6Ym3wISK182oHiNB2nwdhACBiJGxAAII6ELSC5xbIj3aQX4xTJyfkQk+r5sdmyF0QAUES6TzKmigEQH2cCJD9Wx4wV4rhGjaxPyPDYZ2iRqo4cEGkEQBNFO6KACTRMxAkocdZN9QSWORg6CP5dvn5ZRaZ4IJ0ZRzKfm8XYQtBLH1P46IefJmU0flNyDJiIW0Pb3JmIgSWKNGAhrIe6IpGmARg6yqgpyWQ3OJhO1qQTobPQIeB77TUrORbzXjEqlCYIgCCIDdFCBJrF3RGhiZSAGRewOA3IcNMB8ap4IYRGLAJFgSiyBJV6pvzcRQxIA89I87oM0DM6dEjGQBGC9UYZDQgTdx1QRL7LEMfX3Fg2xdSqid0r2c6TNRo+A++jxmAwAoiEhBEEQROemgws0jgmI0Y5tuAnsPC1JiZWIBNWoNE+UQJOaWBns6sscsy9iSIIWT6bQ1V47GREHR2vxUnuZAEHOTz6gRpmITkZm75SIklvt9YyO6xBxH7XXbhVL4Po3HCQjYINCb0gOQRAEQWSADirQtKSR846tX6dRXLbLJKTEK11iJUAQyixNAvTLrhQPKxflRSAPgCJR6Jr0oMkSaCKG1mjxDMs3BbmDbX5v9eysOa9fTixA0CAZg/46EccVAMYuq5Bry/AGBUEQBEFkgA4q0BrYkAGeh9kC+kmjqOQjUMB29KORtvFEJVaGPWgihIXE6WuAvmjy57F+J15ovVOyhK7hfRQhdI1KHCWKT1UVdxQDoP97431dXh8bgpLagyZbxAstcZTpxMveoKA+NIIgCCLzdFyBFuCcfAP6CbHIxApoW+YlZKS/0c63qGvTGVyg9fKJ6C8C9J0f3rEA/d5BYUI331jEixK60lxWnTUSagArJ5Z4bbxjAfq9g8JEfD47py4WTYknsFRamvjUuY/RMCtFFDFsCCCBRhAEQbQLOqhAE5CgAvrlQqIFml48mSIGENOrkhor0swOyxbm/EhwR4B4+aakBNXo3KmgiBIvI3dEossqrJzS5NpErREZkw6TX0/vOSLNQYv/2y9g/bcRgwI3QwAaFEIQBEG0CzqoQBOUfOuWrwmYBpj8erqJFedr83hZL1YmSxxFlgEC+uPhRbkjsl1WGcm31qunF0vxsLI9nuiWEwt06wB5Il7PQe5MAk3vPvI+c02LJ7PfE6AeNIIgCKJdQAItGb1Ry1pCIGJIAiC37EovlsfHkivesdoIJgGDXbRYgLz7qDcAJZF8i+odlCAszIbkBPIFlRPL6vc0GQ8vzUET9RzR2ehJHA0iao1I2FQCzO+jrOcIQRAEQWSADizQRIkYSSWOeqPvVZWVswkrzTNI9Hkn31k6I6uFuyM6yb4od8RohLqMXf1YLL5GRJX4SioD1OudEv1ey+hmiCjxqbNGRJUTa/F0ha6k57Go4wqMKhoIgiAIIgN0UIEmMGmUXZqXnBAITayMkm8RiZVO0ii6NEmmOyKrB00vaQw3iomlvaZeQiwqFtA6nshBGqmxAIHPEbPyTQnOj6j7CMgX8eHGFBEvaDPESMQTBEEQRAbooAJNZkmN4KZ0aYmVwdQ8UYkV0DqeKAfBlwV4/BL7izLRgyZB6ALGPT+i3BEg5dokD4AQukb0BJoC+HL4x0q8vhZL0H3U4sm6j3qiSfhGDwk0giAIIvOQQEtG2/lW1daxRA1J0F4/EUubhsbxcOVEPL2JaKITKz13RJSwljAkQYsl48BjIE3yLbFPUahAk7BGfAHWZylr/esNydGcSA/nR65sEZ+lU+KbkY0eziWOfp3nMUEQBEFkiI4p0IRN6MsDYhEgEmz5mMghCdrrJ8dK/hzveNLcEZ2peTJ39UUNSQDYten110lzEASNogf0hYXIMkDt9ROxtPJNCWeTiezl095rrTZ6RJcTSygV1V5TVqm03vRNUc8RoyE5BEEQBJEBOp5AE518A20dC5G7w52yd0SnLywxxY7zzjfQ1h2MBAE1KlY0pV6b9ORbphMpqwdNS74FOMip619kL19WPlt/bTZ6ZN9HmRs9shw0wZtYJNAIgiCIdkDHE2jhJgCqvOEWooYkeP2sLE6ayySxB83M+ZEhLET38gFtr03EdWllV7oJqigHTZZAMyhxFFFODLRd/6J7+ZJjaH+XvtEjcfR9R+9B0+JRiSNBEATRDuh4Ak30DirQNiEQEUuLJ9MdCTew0q7keJ0i+c4z6FMRuauf6qCJEPE+dr8yVSoKSHAHU99rAsqJgbbCQmgvn961CSoD9AXiQ3JklUobbfTI2jCrYz26Hq+YeDQkhCAIgmgHdECBJjCxMhpuwbshXSN12puMXf1w6rUJHACRLGK0vkERyXdqX4wUd6SxdTxhIl7yGgkl9U6JLCfWOwdQVCygbfmalI0eCaXSWjxZg2RSN3piMYEbPfHnbqrzKfS9RgKNIAiCyDwdUKBJSL5buSMyk0YJ4lNLdmQk3zIcBKDtZDnRZYCAvvMjgtQ1EhTs/KhRdh4fED+XT1Avn1F/ncjkW3qJY0o8EYNdgLZHaMjc6IloJecinyMS+j0BEmgEQRBEu4EEWjIye0eAtiPbRZcmAS0JSLgpfii2gGTHnwtAkZh8SyxxNBSfshw0kSI+ZUiOSKGrN9Zc6HtNpog3EGiy3UEhx3Wk9EVK2TCTtNGj14NJEARBEBmgAwo0Gb0jEoWFXvmaiMQqdfqgyMRKUfQdi05RBpiJNZJyHz1+1nskIhbQEk/kSP/E2WQpkxVFuiPS+hSNShwlCYtQAxPAvM9cA9oOyRH5PNbd6JG4GUIQBEEQGaIDCrQMlCYJLamRlFilXpvIxAqID2VILRUVGCsaBCKheKxMrBGJLqtIMQjIcUe015WVfGtDQrT+OpkiXlUlb/TUiyunTC0DDwoUuh6P/gaFrPcaQRAEQWQIEmjJpJaviezTAvR70DpN8q1TmicyFtDSFyPTZRV54LEWr41bJzj5blPiKNH5FBkrub9OZoljJAjEIp3jPqY+I2WskdSJqcLEZ15rEU8QBEEQGaIDCjSBybcvm42C15IOkQceAwbJt8AeHEBeYqXn/IhMrLQYyX+KuDZfDlqVXYk88BjIjNDVnE/RLqve9E2/4GsLpjrIAh20NpshoqbBSnSZDEW8SCc+9VxKgesxWcQTBEEQRIbowAJNQu9UJhJU0e5IMIPJt2h3MDVpFNHLlyi7SoklsqQs1WUVNg1QtoMm0UFOnQgYagAUL+DL4h8rtXdK5DNLe11p/W4Sha4WT9pRDDpDogiCIAgiA3RAgRY/8NifI+b1kxNiGclHpBmIRuLxOllpkmzxmfx7E9XLB7QWFsKFrkx3JEXoiuwv0l5XWp9WqrCIr0cR5/IZifhOVeIoYdgQEJ++KavEV+cIDYIgCILIAB1ToIlKrICU5FuCgwAk9U4JTKy00jFZPWjJJY4yevmA1gmxqFhaPGnuSD4QDSUNQMmEOyJhSE40JLZPq80GhcD1CEgW8SmHR8sWuskfFxFPE4ORIBALi18jNCiEIAiCyDAdUKAJTqyy8tvufMvsnRJ1bR5P64RYivOj9WkJPHNNiwW0vjbRybfMSYeAHBHfxomUWOIoPNHXOeOt04h4vTUi0a1O/hm4x9NzIiU9RwiCIAgiQ3RAgSY6sZIpYnR6fkTF0uLJKk0K6AhdmYMLRIlqgCX7soRF6q6+yPXvy2J9Wa1+b4qYXj5Achmg5iAnrX/hz5GUNSJto0fgBoXHw9z45N+b4mEDlkSgJ3RFHyGQfDwIQRAEQWQAEmipBPLkHOYM6BweLcEdbOX8KAJ7+fJayq5kuHVASvmaSIGWAXdEhohXlNZT80SXE+u51TJ7MIVvhmRwg0LmM1JoyXnSfRTeE0lDQgiCIIj2QQcVaJ0lsZLdO5XfVsSI7OUD2Bj6jIgYWeVrEpNvTewKX/+y+rTy2fqIReX0MgGt++s6TQ9a0gZFJMT6+YSXgUu6j5qIj8WoxJEgCIL4f0MHFGgyEiuJfVoAixcNA9Gg2OQ7q0BigpokLESXePkzIXRl98XUiz9zTXttGeWUWiwtjoxhK4CcXj6g9XNExjRMgMULC16P2mtLXSMqEGkSv0a0syJpSAhBEASRYTqgQMtA74iMoQyiY2mvHZLYgwPEr02w0PX6WA+MtPI1PXeks6yRfIlCN1mgadcmqN/NFwA8/gyKeJG9fDqbIUJdrZQeTBlrJJi8/mnMPkEQBNG56XgCLSixpCZYD0ABfAL7tAB5iVXqzrfQQRpJyY408SlximNy8u3xAd6AoFjJybdgoQvo3EfBTgyQsv5lXZtgEZ/a7ymjnFiqiJfYywekbPSIGpKTzQaekEAjCIIgMkzHE2gy3BGo8d6p+O6wsAOPJbsjegMgRCFdfKYm34JjxcKs30eL1VmS76yCJJdVgtDV4ohOvoG4sGiMn8tXJ6cHTfQZgEDrSZ+yRLzMXj5AzgaFooBNaKUeNIIgCCKzdECBJrN3KhPJhywHTeJ9DMpIGvPlDUlI3dUX7cQAKSVenUXoSi7NC+TG10hz/Fw+wfdRjbLDlTvbfWyz0SO5DFa0808OGkEQBJFhOpZAU1WW9EgrqRHsMnn9gDdLrjsSaQKiEYmJlcRdfVlDErJS14jA+6j1LSWLeG2YgQjaDAmRVOKoDUDxSxCfUsopM7HRI0vEF0gcEpK60SOw5BxoXZpKEARBEBmigwm0KPtTSmmehORbiyezBw2Qc22pO9+Klx2ELDKezHJKoCWeyFgeLxNpUssAk3rQpPQp1rFYvmw28EVYvHyJbnXqc0TkRk+A9UHKEp9Z+UlnHMoqlU56ZokqOdfiUYkjQRAEkWE6mECLsT9l9HMkdr4FJh+ATtIow/mRcG2pZVcihyRo8aQL3QbxCSogX8S3Sr47idDV4skcpAEklcEKjKUoSWtEkogH5Fxbahm4lOcxOWgEQRBEZulYAi0mQaC1Sb4FJ41Z+UCwrhM7aPXiBzIAOi6TrF19wQkq0JI0ypp0CABNVUAs0gkFWiZKHAVPTNXiyexBA4DGinjJeSd6Hif36RIEQRBEhuhYAk1miaMmmmQljTIOIdZ6lxorxCffvixW1igtQc1kiaNsl1VC8l2/vyW2KGQOWwHYfQs3ZqjEUbI7KLSXT1sjB1r/W0gs2ZsheS19rARBEASRITqYQJPtoElKGpOTb9FDEgCgTkLyrSitd/U7ZS9fg/hz+YDWybfIM9cAneRbpIhPOjw61CDuIGcNqWWwSSI+KLlUWkYvH5D0HBG5RrSzySSXExMEQRBEBiGBlkpGytfiyYc3wJJWkbEAOcm39voyhiQA8d6pRqC5tuXfwmJJHAChxQvWtyT6Qnv54tdWX9b636LIkijitTLYoEQHLSjR+ZHl1mVJfI602ugRPLQGYFUGVOJIEARBZJgOJtC0EsdO0qcFSE6s4iWOMna+tdcPNbByURmxAKChvPW/RcYK1slJvluJGAliEJBTvqa9frAeCDXKuTY1xkp8tdiiSC4nFt2nBbTuU5QRC5C4RvJahLWsEket35kgCIIgMkDHEmiJISECEwJfgDlZjRKGJAApiZWEZBiQU+IItC47lCXQZOzqa2WoDQcBqBJdVkmOLiDPQUtsUMi8NglrpM16FHh2nRZPVll2YqNHphMv+Tmi9QQTBEEQRAboWAJNRomj9vpSd4clJd9tBkBILN+UJT41YSGyl8/jYa8vVcRIHFoDZGD9y7w2bY0I7Hnz5QBQJK8R2fcxExs9EoQuQKP2CYIgiIzSwQRavMRRxjABLUGVMR470gw018jpwVE8STvfkkqTpJbm7Rc/JEGLJ7MMUJqDJtGJ1F5ftrBoKGMCW+SBxx5PfI1kYjNEkhMpzUHLl+iyxgUgDQohCIIgMkgHE2gx9j9rkYkVEE+sJO58A0B9ufhYWsO9tKQxT+6QBID93kTH0uLJXCOxCDubTLYTKaUHrY71/ci8NulrRJLLFKyTeB9lOWj5Env5yEEjCIIgMk8HFGiyEiuJLhPA4omOBbAYTVUtfxcaK09unxYQv48y1ki+RJcpqXdQxnlyWqzkfwuLly9nsEvy68tcIzIH8kBl7zfRsbQS34aDSbEFEshruY9ZskocyUEjCIIgMkfHEmgxiQKtubrl7yJJTHuTkFgBrRN8Gcl3sKZtXCGx4tfSWCFJ6Oax3xkgT8Q3V4v/nXkD7Kw1bf0LLyfOYyWH2t+FxopfS8NBeWukqZL9Xfh4+PjrN0hyB7PyAajs7zLWiOznMY3aJwiCIDJIxxJoMkpcgNbJm6xdfRmxgNbXJiOxSsSSeR8lJd96fxdBcnKfVSg2lqK0XI/oPi1A7n1MrAsJjm6reJB4bRJiJceQskYy8DymEkeCIAgig3QwgRbLQPItyR2RESs5nuzkO6dYcCzJCWpyqZXM5Fu0QEuO1+lEjOzNkM78HJG5RpJiUIkjQRAE8f+ADijQZCdWnSxp1BIc2SImp6vYWLLvY263pHgSk+9sGQItr21c0bFkxMuoQOtk1ybzOZIcI7e74Fjx9zI5aARBEEQG6VgCLSa7xFFpnYgLjQW51yY9sRIs0HxZgOKNx5XgILQSaBKTbykOWjye6L4pAMguSoorOF5ySa+MNaLdP3+enKNBEn+X+RyR6NYB4p8jJNAIgiCIdkDHEmiySxzzewFev+BYskvzZCZWySWOghMr7QiB1LiiSBZo/hyxsZJ/V1IctHg8GWKwqH9SXNHTB70tQkmmiCnsy9an0FiSSxyzMrTRI/o54gsAHj+VOBIEQRAZRfBpvpyRXeKY00V8rPxeSXE7ce+I6B40gE3pC0o48BtoLdCEJ9/JPWiCe3AAdtA3APQaKz5W0YCWv8tak+FGueu/sK/4WMkxZF6b9FJRwU6kFs9AoIUiMawoqcKGfbXYdKAOjaEozhjXByeN7gWPh+9zIBZT8fXGMizdWQmvR0HA50FewIfjRnbHqN78N08O1gfx3wU7sXZvLYpy/Dj50F44YWQP5GWJSRO2ltXjvWWl2HGwHkU5fhwzvDvOGNcHPi//feO1e2qw42ADtpTVQ1VVKACOHNYNRw3tBoXz87u6MYQv1x/A8pJq9C7MRp/ibBw1tBsGdBWzdvfVNOHtH3Zja1k9+nXJwZFDu2HayB7crwsAItEY5m05iG3l9diwrw7dCwI45dDemDyIf64Ui6lYVVqNVbursauyEf275CLgVXDRlAHI9nu5x9teXo+3ftiNbWX1GN2nEOP7F+HYEd2RGxCz/rccqMMrC3aiqjGEngXZuOTwARjdh//7WlVVlFQ2YldFI3ZXsT/zAj5cMLkf+nfhvyb3VDdhxrJSHKhtxqjeBfB4FBzapxDj+hUJeW/XNIbx4vc78MOOSozuU4jLpg7A0B758HJ+HgNsTX6wYg8+XrUXMVXFtEN64sojByLLx389Ah1OoMkqcdQEWrH4WF4fkNeDnQXV6XpHkoSFR8wCbkWkmf3ZZZD4WLkSxLuG7BLHmlL2Z7/J4mO1ctAkuboN5XId5DzBfVNA680kKe/tDD1HZBDI1x2z/9na/fjLJ+uwr4Y9Z7rk+uH1KPho5V4c0qsAv/jRMG4Co6I+iJteX44lOyrh9ypQVSASix9rMBs4e0Jf3HfeWBRk86nwWLDtIG57ayUO1gcxslcBVpRU4YMVe5Dl8+C4Ed1x7mH9cMa4PlyS/uUlVXjim634ZmMZfB4Fg7vnoaohhHeWluLhLzbj1hNH4LzD+nFJsOqaw7jz/TWYtXpf4mMeBYipwGPfbMXp43rj7tNHc0tUl+2qxE9fXYrqxjAKsnyoC0YSnxvQNQfXHzsUVx05iIuYbwpF8fy87XhyzlaEozH065KDz9ftx7PfbsfIXvk4c3xfXHXkIHTJC7iOpaoqnpq7DS/M246qxjAAoHt+Fmqbwnj22+24aHJ/3HbySPQr5lNNUlLRiFveXI7VpeyYnoDXg1A0BgB46PNN+PkJw/CLacO4rEdVVfHp2v24473VCEZiGNQtF99sKoOqArkBL04+tBd+dtxQjO1XlP7FLLC6tBovzt+Bj1ftRZbPg37FOZizsRyvLtyJ08b2xpVHDuK2cbCrogG/eH051u2tTXws4PMgEo3hyblb8duTR+L644ZyEzNvLC7BHz9ai2hMRW7Ai8ZQNPG5XoVZeOmawzGmL5/7WNscxsvzd+KF+dtR1xzB+P5F+O/CnXjp+x3I8Xtx4eT+uH36ISjk8IzcW92Ef3y6EatLq7GzohFDu+ch4PPgbzPX4+Xvd+CXPx6OqUO6YUh3vv8/7GACTdJ4bG0kfHax+FgAcyq2z2E9dqLJlIMmg3OfZuegjb9UfCzRvYnJJPcvyShxLN/I/pQh0JIdEZnvbRmxNCdS1nOk2wigYgs7x040mSqVlkFWfpsetMe+3oJ/f7kZY/oW4s9nHYrDBnZBz4IsRGMqPlm9F0/N2YZfvbUSL3+/E49fdpgrt+RgfRBXPL8Yuyob8OAF43DBpP7weT2IxlRUNoTw2qJdeHLOViwvqcKDF4zHMcOdbwBEYyr+8/UWPP7NFgzpnodXrp2KQ/sWIhKNYemuKny+bj++WHcAX21YgRmHlOLxyych34WjNnP1Xtz21koU5fhx20kjcOWRg9A9PwuxmIovNxzA499swe/eXYWn527F3aePxomje6V/UQOqG0O4/PnF2HSgDr89eSR+PLonRvYqgN/rQXM4ihfn78B/vtqCrzeU4e7TR+PyIwbC70Jcf7n+AG55Yzn6Fufg5WsOx8QBxQhHVeysaMDCbRWYtWYf/vzxOqwqrcb9541z5QItL6nCza8vx76aZpw+rjfuOm00BnTNRTgaw/vLSzFj2R488tVmvPT9Dtw5fRQunTrQcaxQJIY7ZqzGByv24MRRPXHJ4QMweVAXdMvPQmMogoe/2Iz/LdqF2Wv24aIpA/Drk0eiKMd5Ury9vB6XPb8IzeEYHrxgHKYd0hPd87NwoLYZuyoa8eL87fjn55uwZEclfnfKIRjX33nCH4rE8LeZ6/Haol04tE8hnv/JFPQrzkFdcxhrSmvwyep9mL2G/ffA+eNx4eT+6V/UAFVV8eBnm/DMt9uQ4/fixuOH4Ybjh6JrXgDVjSE89932+H3cj6mDu+Lxyw9Dr8Jsx/H21zTjyhcXo645gr+cPQajehegf9dc9CnMxv7aZvzlk3V44NONeGNJCX5+wjBcMmWAq42Dp+duw4OfbcS0Q3rgb+eMRa/CbNQ0hRGKsqqD+2dtwPlPLcBvTxmJ644Z4moj650fduO+2RtQ0xTGqWN64baTRmJ0n0Lsr2nGt5vLsHRnFd5YUoLvtpTjlWunuhJOmw/U4fLnF6ExFMXUIV3x65NH4qzxfeHxKJi3pRwPzN6IO2asAQBcMmUA/nLOGH4Or6qqHea/yX08qrrwaVU4y15V1T8Xqur7N4qPpaqqunE2i7d3lfhYiWv7ufhYFdtYrD8Xio8lm6pdcq/tvr4sVn25+Fgf3MRiRaPiY6lqy32MxcTHev4kFmvpK+JjzfkHi/XlveJjqaqqrn2fxasqER9r/n9YrJm/FR9r7yq577XnfqSq/z0v8c83F+9SB90xU/312yvUYFj/PRGNxtQPV5SqY//8mTr2z5+ps1bvdRS6rLZZPenhueoh98xWv99i/F5fsqNC/fG/5qhD75ql3vHeKvVgXbPtWLFYTP3F68vUQXfMVH/z9kq1vjms+3XRaEx9af52dehds9RTH/lWLa1qtB1LVVX10zX71CF3zlQvfPp7taYpZPgzfbpmr3riw3PVQXfMVP/x6QY15uC5EIpE1YufWaCOuHu2OmfjAcOv21PVqF75wiJ10B0z1TMfm+f42t5YvEsdcudM9ezH5xn+LmKxmPqfrzarg+6YqZ76yLfq5v21jmJtL69XJ/7lc/W4B79RF247aPh1G/fVqpc8u0AddMdM9Z+fbXR0H1VVVf/04Rp10B0z1ce+2mz4GiUVDeqtby5Xh901Sz36ga/VpTsrHMXacqBWnfL3L9VJf/1C3bCvRvdrotGY+uy3W9UJf/lcHXLnTPXl+dsdxaptCqnTH/1OHXTHTPW+WevVcET/vV3VEFQvf36hOuiOmeoDszeoDUH990k6np67VR10x0z1zhmrDdd/UyiivrZwp3roHz9VT33kW3VfdZOjWJX1QfWkh+eqY/70mbqypEr3a2KxmDp79V71vCfnq4PumKne+N+lalMoYjtWLBZT75+9Xh10x0z1l28sN3xGHqhpUq9/9Qd10B0z1bMen+d4/X+2dp86+M6Z6iXPLlDXlFYbft2SHRXqxL98rh721y/UBVuN3ydm1DeH1Wn/nKMe/vcv1S0H9H/eaDSmrimtVu+bxe7BNS8tViNR6+81AEtVA83TsYaEAHJ2U5vjdrCsne9DTgP+sB/oM158rEydcdXZkOmgAUmTFSU4aGc9Bty1R/w5eamI7uUD5PZONbPynFaTKkUy5jzgT1VA8YD0X+uWTA0JkUFSD9oPOyvxx4/W4viRPfDQBeMR8Om/JzweBedM7IfZtx6HYT3y8YvXl+PZb7fZChuMRHH9qz+gtKoJL18zFUebOGOHD+6KD28+BhdPGYD3V+zB2U98j7V7amzFe37edsxavQ+3n3oIHr54gmGvmcej4NpjhuDlaw7HnqomnPnYPLy/vBQst7BGeV0Qd72/GuP6FeHV66Yalh0pioLpY/tg9q3H4bKpA/H03G24Y8ZqNIftVZfcN2sDFu+oxIMXMgfGiL7FOfjvdVPx1BWTsPNgA856fL7t+/jJqr246/01OH5kD7x5w5Holp9leG23njgCr1x7OA7WB3HWE/PxxuISW/exMRTBtS8vgaIo+O91U3HkUOP/Dx3SuwCvX38kLj18AJ6YsxU//98ylFY12rq2Wav34dWFu3D9sUPwyxNHGJbdDeiai/9cehjeu+loeD0KrnpxCRZvr7AVq6I+iMufXwwAeOuGIw37LD0eBTccPwzf/f5HOHF0L9z7yXrc+/E6ROIlkFZQVRW3v7samw/U4ZkrJ+Pu00cbOjrFuQG8+JPDcenhA/DMt9tw6qPfYcO+Wt2vNWJ1aTX++fkmnDGuD+4/b6zh+s/2e3HlkYPw9JWTsauiESc/8i3eXbrb1hqJxVTc/MZylFQ24oWfTMGEAcW6X6coCk4b1wczbjoa95wxGp+v349b3lhu+7320Oeb8Oy323HlkQPx6CUTDZ+RPQuz8dxVk/HE5YehtKoJZz7O1r8dNh+ow6/fXonx/YrwyrVTTctODx/cFe//4hgU5/hx+QuLcP/sDQhG7F3b32aux86KBjx22WEY3lO//9/jUTC2XxHuPn00/nbuWMzZVI7rX/0BNfFSYDeQQNNj4uXAqDOB434rPpaG6EmAGokJfZ2wNEkmosempxLIYyVzPvf9BGnx+uSsD43jfgf0GC0nVkKgSbi+yT8B8noC4y4UH0tDlqjOxJh9GaWbAOuvC9WjpjGMW99cgX7FOXj80sMsleQM6JqLd248CmdN6IsHPt2IO2esRmVDyFLYv36yHqtKa/DIJRNx1LD0G0AF2X48cP44zPj50VBVFZc+twirdldbirVydzUe/GwTThvbG7+YNszS9xw/sgc+uuUYDOmeh9+8swr3fLgWYYtJ8Z8/XouGUBQPXzzB0tCFgM+D+84di1t+NBzvLC3Fxc8utCwu3lm6G68s2Inrjx2C8w5LX5KmKApOH9cHH95yDHL8Xlzz8hLM21JuKVZZbTPuen8NJg0sxvNXT7F0bdMO6YnZvzoOhw/uirs/WINfvL4cTSFrieNz323HzopGPHn5JAy2ULbl9Sh44Pxx+N0pIzF/y0Gc88T3+GFnpaVYpVWNuPP91Zg4oBh3nDbK0vdMHFCM9246Cr0Ls3HFC4vx/HfbLYkLVVVxx4zVqG4K49Vrp2JEr/TDsAqz/Xjmysm4/tgheGXBTlz7ivWk+NUFO/HZuv24c/ooTB/bO+3XZ/u9+McF4/H2DUciFInhgqcX4LO1+9J+HwA0h6P47Tur0D0/gPvPH2ept+z4kT3w2W3HYXSfQtz+3mrc8Noy1DRZu7an5m7Fgm0V+PNZY0wFvIaiKLj+uKH42zlj8dWGMlz2/CKU1wUtxfpm4wE8PXcbLps6EH87Z2zaEklFUXDm+L747LbjcMTQbrj7gzV4b1mppViqquLu99cg2+/F81dPsVRGOKR7HmbeeiwunzoQz323Hec+uQC7KqxN6P1s7X689cNu3HTCMEv3EQCuOnIQ/nrOGHy/tQLnPf19q95XJ3RAgSbjjKuuwKWvA/k9xMeSjcydb9kiRiYy3J5kAvlyJjhmghP/CNy8SE4smQ5yj0OA27e0HoTSWchEL2tXa0KCRzw1VI8/fLgG5XVBPHbZYSjKtd5TE/B58OglE3Hj8UPx7rJSnPaf77Bkh3lS/MW6/Xh9cQluPGGopYQxmXH9izDjF0ejKMePi55ZiGe+3YZozDgpjsVU/PnjdeiWF8BDF463NYxgaI98vPfzo3HTtGF4fXEJrn5xCarSCNBZq/dh9pr9uO2kEYa70Hp4PAp+d+oheO6qydhRztyt+VsOmn5PSUUj7vlwLY4Z3g13WhQVGsN65DN3L8ePq15cgjtnrEZts3lS/PAXmxGMRPHviyfa6l/rWZCNV6+dirtOG4XP1u3H1S8txt7qJtPv2XKgDk/P3YYzxvWxJOA1FEXBLT8egY9/eSyKcvy4/PlFeHXBTlPhFInG8Ku3VgIq8Phlh9m+tg9uPgYnje6F+2ZvwPWvLsWB2mbT73l9cQm+2lCGO6ePwqF9rVeJeD0K7jnzUDx0wXgs2l6Bc5/6HitKqky/p7IhhIe/2IwTRvbA9ccNsRwLAI4Y2g0f33IsRvQqwM//txyPfrUZMZP3GgD85+st2FJWjwcvGG+rN29Qtzy89bMj8cczD8WcjWU4+4n5aZ27j1buwb++2IyzJvTFZVPtVVJceeQgPH3FJKzfW4sf/WsuXpi33fQ50hCM4O731+KQXgW49+xDbT1HehZk44Wrp+Cood3wu3dX4ck5W9PexxnL92DprircOX0UetrozcsN+HDfeePw4k+mYG91Ey56ZiF2HjQXaQdqm3Fn3PG/7aSRlmMBwNVHDcYr1x4OqMDNbyzHHz5Yg4akYUF2yLhAUxRluqIomxRF2aooyp1pv6EzuzIykLnzrSjAKfcBN84THysTXPwacP03cmIF8uWUN3Z2ZJY4dmZkbvRk5QPnPQtc/aH4WAAQyEOosQ4zV+/Dr08eifH9i22/hNej4K7TR+PjuCtz2fOL8NRc/SSkORzFXz5Zj1G9C3D7KYc4+pH7FOXg41uOwY9H9cQ/Pt2Ii59diDWl+qV6H67cg1W7q/H76aMcTYH0eBTcMX0U/n3xBCzbVYVznvweM1fv1b22ivog/vTRWozvX4QbjhtqOxYAnDKmNz665Rj0KMjC1S8tNryPAPDXmevh8yh4+KKJjoYQDO+Zj9m3HocbTxiKd5buxqmPfIelBo7Tur01eGfZblxz9GBLblYqHo+CG08YhscuPQxr99Ri2r/m4tGvNuuW6qmqit/PWI28LB/+fPahtmMBTIB+8ItjcPyIHvjzx+vwyzdXoLpRX1w/PXcblu2qwt/PG+to4E1Rjh9PXzkJ9551KOZvPYgzHpuPHQZJ8bbyevx91nocN6I7rjl6sO1YAHDx4QPwxs+ORHM4ivOfXoB7P16HeoOk+F9fbEJjOIp7zhjtaFJir8JsvH3DkTj/sH549KstuOG1pdh8oE73a1ftrsaz327DxVP6m5baGuHxKPjpsUPw9o3s2s576nu8v1zfcWoKRfGPTzdibL9CPHrJREfXdtq4Pph167GYOqQr/j5rAy59bqGhm/b64l3YX9uM+88f62jMfMDnwcvXHo5zJvbFPz/fhMP+9iVeXbBT971d0xTGA7M3YNLAYseDWk4c3Qvv/vwohKIxnPHYPLy2cKduOaeqqrj9vdUIhmN49FLjkk0zjh7eHV/8+njccPxQvLGkBJc+twj7asw3YPTIqEBTFMUL4EkApwE4FMBliqKYP30osXKHNo5bVn/d0bfI6a3LBIeeDfSXMOkQAIr6yekt6uzILHHszMh00ABgwqVyzpMDEPPnQQ3WYUTPfNx4vDNRoTGmbxE++eWxmD62Nx76bBMufW4R3l9eij1Jbsm7S3djT3UT7jnjUFeTzbrlZ+HpKyfh0UsmYsfBBpz1xHzc+uYK7K5sKQ1sCEbw4GcbMaF/Ec4/rJ+razt/Un+8deORUBTgljdW4Jwnv8dHK/cknJlYTMXdH6xBbXMYD1043tW1DY2Li9PH9cFDn23CSY98i3s/XoeN+1schTkby/DVhgO49cQR6F3kfPpdtt+Lu04bjfd/cQyy/V5c/sJiPPjZRqzdU4NQhIknVVVx36wNKM7x45Yfj3AcCwDOmtAXX/z6eJw6pjce/WoLTvjnXHy/tbVTOGP5Hqwoqcadp41CzwLn11aU68fzV0/BHdNHYfaafZh639e49+N1rcTT7spGPDmXHUFwzkTna0RRFFxzzBB8fMuxiKkqzn5iPh79ajNWl1a3EqH//mIzfB4PHr5ogqspgocP7oovfn08rj5yEF5duBOn/PtbfLKq9cbBipIqvLmkBNccPdhSGaUR2X4vHr54Au45YzS+31qBUx75Dr99Z1UrwdsUiuL291ahR0EW/nCGM1GtMXlQV3zyy2MxoX8xfvPOKvz8tWX4ZNVe1CU5vM/P2459Nc3405ljXI3NH96zAC/+ZAr+ddEErNlTg7OfmI8PVpSivC6YuJcNwQien7cDxwzvhsmDujqOle334tFLJuKpKyZhXL8i/Pnjdbj0+UVYt7emlcP74GcbUdUYwl8tlFGaMbJXAWb+8lhMGtQFf/xoHabe9xUe/3pLKzH/+boD+G5zOX4//RAM6+E8T/B5Pbj79NF48SdTsKWsDj/+17d4+ItNWLm72nK/pGKn+ZA3iqIcBeBeVVVPjf/7LgBQVfUBva+f0ter/vPd79Bj8FgM75kv5LBCjaqGEGYsL0VzOIqjh3fH2L5FjpS0FVRVxeIdlThYH8SQ7nkY1kPste1d8iG25k1Cty5F6JoXQNe8gLCD9hpDkUSN8RFDumFkr3whB2hqrNtbg23lDahvjuDE0T1djalNx46DDdi4rxahaAyDu+WhR0EW+nI6ByaVuppKfL+lDEFfAXoXZqN/11xuZ87osfNgA37YWYlITMWkgV2E/t6CkSgWba/EtrJ65Gf7cMLIHsJ+b+qcB6B8+w8sPm8e1IJ+6FmQhSHd84RdW11zGD/srESX3ADG9ityNcY7HaqqYuH2Cmwtq0f/Ljk4fkQPIQeDAgAiQYQ+/QN2jrkZu4O5yM/yYfKgLsLiaQdEK4qCrnkBDOmeJ+QgUgDYNeNPGLTmP5h13jqcMYFPeaqqqnjrh934z1dbsD9e7tW/Sw4m9C/GvC3lGNGrAO/9/Chu67CumZ1P9cJ8VqbUrzgHuQEfdhxsQFM4ihk3HeUqsUomFlMxY3kpnvtuO7aU1WNcvyL0K87B+n21KKlsxD1njMb1Dt2zVFRVxSer9+HtH0rww84qhCIxTB7UBYO75eGztfvQpzgHs289jtv/qysbQvjTR2sxa80+qCpQkOXDwG65mFRQjeat32HcmTfj6qMGc4mlqiq+2ViG+2dvwLbyBkzoX4Rehdmobgpj5e5qjO9XhLdvPIrbut+wrxavLtiJd5exgS8nH9oLA7rkYtaafahrjuDTXx3H7XDtXRUN+NNH6/DtZtbbV5zrx9TBXZHl92Lm6r34xbRhuP1UeyWpZizbVYU/fLAGG/fXoV9xDvuvSw4+XbsPRTl+fPWbE7idIVjVEMKz323Hc99tg8/rwfQxvVGU48cPOyux+UAdXrrmcEfumR6RaAyPfrUFbywpQWVDCFk+D86a0BcxVcXMVftw4uieePpKfpvGq3ZX4w8frsHaPWwjpDDbhwkDinGwPoQN+2ox46ajuR1Srqoq3l1air/NWo+65gj6FeegRwEbuLNydzWuP3YI7jnTndBNjjV/60G8umAXvtpwAF1y/ZgyuCt6FGRhxrJSDO6Wh1m3Hsvt/2e7Kxtx36wN+GzdfgBAfpYPZ03og6nhZTj/0uuWqao6Re/7Mi3QLgQwXVXV6+P/vgrAEaqq3pL0NTcAuAEAJvfxTvZc/QrK0AVej4JRvQtw6eEDcNnUgVwTg10VDTjvqQWtmrt7FGThqiMH4fIjBqK7wZQmp/z7i0147JutiX97FGBcvyLcfuooHDuC7yG3i7ZX4LLnFyH51+7zKLj6qMH4/fRDuArD5nAU5zzxPTYl2f9dcv340aieuOKIgZg0sAvXxPiLdftx4/+Wtbq2SQOLccPxw/DjUT25CuzdlY049dHvWh3EqCjAGeP64KZpw7gdxgiwBOj8pxdgZcoAgGE98vCLacNx/qR+XO/jsl1VuPrFxWhIurZhPfJwxvi+uGhyf27/0wbYg/Knry7FNxvLEh/zehRcMKkffvnjEVxjAcAX/70fJ2x7GIcFn0MjmAg8tE8hbpo2DGeO53MQr8buykZc+tyihFuSG/Cia14AJx/aC9cePQQDu/G9tke/2oxHv9qS+HePgixcMKk/Ljl8APcDNFeUVOHy5xejKalEZEj3PPz2lJE4fWwfLgfxatQ2h3HW4/Oxq6LFCcoNeHHS6F749ckjuV/bzGfuxpn7n0Tz73YiO5/vgfTRmIpN++uweEcFluyoxLq9tRjULRd/PWcs9+sA2FlIL3+/A/tqmtEQjGBfTTOOGtYNf+SU6CQTjal4beFOzF67H2W1zTikdwGOH9kDl08dKGQDpKohhPeWleL9FXtQ3RjCiF4F+OeF44Vs7uyvacaSnZVYtL0CJRWNmLbnWVyvzkD47gPwB/jGawhG8NYPu/F+fIO4e34W+hRl409njUFXDodOp3KgthlPz92GOZvKsLe6CYf2LcJ9547ldjBzMmW1zVi0oxJfbziAjfvqUB+MYOqQrvjLOWO4HCicTDSmYubqvZi9Zh/21zTjYD3L5+49ewxOPtT5+XpGbNpfh9cW7cSna/ajKRzF8J75uPaYwZYG1dglGlOxooSd9fXlugNoCkcxtl8RXr7mcC4HkycTi6n4emMZ9lQ1YnNZPVaWVGN/bTOuPHIQfnOyvf4sK1TUB/HF+gOYv+UgapvDCEZibFDN9FFCNuVW7a7Gs99tw+YD9SipaMTJh/bCvWePSYhDnpTVNWPJjkrM2ViOj1ftwd3KK7juvnc7rkBLZuJhk9U3Zn6DnZWNWL+3FvO2lGNVaQ3G9SvCgxeMt9VcasZv3lmJ2Wv2YcZNR6N7fhaW7arCO0t3Y+6mcgR8Hlx95CDcdfpoLotleUkVzn9qAc6f1A/XHzsU2w/WY9N+1v+w42ADJg0sxp/OGoOJBqNS7RCKxHD6Y/NQ1xzGvy+eiNqmMKoaw1hRUoV3l5Wid2E2Hr54gquDT5N57rttuH/2Rjx9xSSM61+EeVsOYunOKsxesw9N4SjOHN8HD5w/jstOVnldED9+eC4GdcvF/eeNQ5bPi682HMB/F+7EgdogDulVgH9cMA6HDXSfcKmqiqtfWoKlO6vw+GWHoX/XHOyqaMSKkmq8tnAnGkJRXHHEQPzprEO5OJMfrdyDX721En85ewyOHtYN+2ubsa2sHjOW78GaPTU4fmQPPHD+OC6OWiQaw/T/zENzOIoXfjIFuX4fvt1Sjlmr92Lxjkpk+7y458zR3JKuD1aU4tdvr8KvTxqJy48YiKrGEN5cUoLXF5cgFlPjB5+OcFXWo7GtvB5nP/o1LhmuYvq04xGJxrCtvB6vLtyFrWX1OHZ4d/z1nDEY6qKsIZmfv7YM320pxxOXH4amUAw/7KzE3uomfLOxDF6PgvvPG8dNXK8urcY5T36Pcyb0xd2nj8aq0hq8/UMJ5mwqRzSm4pjh3XDPGYdidB/3z8hgJIozH5uP+mAE95xxKPoUZ2NPVROe+GYrNh2ow7h+RbhjOr/NJW0D698XT0CvwmzsrW7Cit3V+HjlXoSiMdw8bTh+Pm0ol/daZUMIjz14F+71vAD8ZiNQ2IfDFbQjVr0NeLxyJ4t2Rj69E1j8NPD7HWyoWCdBVVWhFS5taKgA3rsWOP85oMDecJz2CjvDClw3qdIRisTg9yryfncr32BHDY08VU48Schc/+FoDJ6Pb4Hv/KfbrUCzV+I4ZYq6dOnSxL9VVcXsNfvx54/XoroxjBtPGIpbTxzh6n/Uq3ZX4/ynF+Caowe32WXcWlaPZ7/dhneXleLwwV1w/3njXNUxR6IxXPjMQuypbsLc301rdQ5NYyiCNxaX4Pl521FWF8Qvpg3D7045xNXieXLOVvzz8014+ZrD8aNRrS33xdsr8IcP12JrWT3OHN8H958/ztWOVnVjCMc/NAeTBnXBK9dObfW5uuYwXvl+Jx79egv6FefgicsPc9SIn8yv3lqBT9fsx6e3HdeqbjgcjeGr9Qfw15nrsb+2GT89Zgh+P32UKzft3aW7cft7q/HXc8a0KW+paQrj8a+34IX5OzChfxGevGIS+ndx7pQ0h6M48eFvUZzrxye3HNvqoR+Lqfjf4l34x6cboQC46/TRuOIId8Lple934N5P1uOZKydh+tjWyWlpVSPunLEG87cexJnj++ChC8dbGittRFldM0595DsM6Z6Hd39+dKsNj301TXhyzla8/cNuFOX48eglh7lK+FVVxU9e/gErdlXhm99Na7U7FoupeH1JCR78dCMaQxFcd8wQ3D79EFfPkcXbK3DJc4vw25NH4pcntu5R2V/TjF+9tQKLd1Ti9HG98fdzx7naGY/GVFz87ELsqmjAnN9Na7XhUVbbjHeXleLF+TvQGIrgicsm4SSXu8ePfLkZ//l6S5vnSDSm4sMVe/DvLzdjT3UTTh3TC/+6aIKrDZjSqkac/O/v8OPRPfHk5ZNafa6sthl/nbkeM1fvw9AeeXjogvGYMthdsvzXT9ajctH/8Kj/SeCWpUB3d/1F7Y57467IvfbO+iJS+PiXwPL/Aretpd5gN2ybA7x2LnDZW+w8WMI5+1YBRQPkbBjQc4QP714D5eJXDQVapqc4/gBghKIoQxRFCQC4FMDHVr9ZURScMb4PvvrNCTj3sH54cs42XP78YpTVmY90NaIxFMGv316JXgVZuPXEtv9jHt4zH/+8aALuP28ctpc34IoXFmPhNnuHMSbz2DdbsXJ3Ne45Y3SbQ0JzAz5cf9xQfPWbE3DhpP54cs423P7ealuHMSazu7IRj3+zBdPH9G4jzgBtfOwx+PVJI/Hp2v048eFv2zQqW0VVVdw/ewPqgxHcdVrb860Ksv345Ykj8PYNRyISZWeKvDDP2nkpeny7uRwfrdyLm6YNa9PU6fd6cNq4Pvji18fjiiMG4oX5O3DZ84vSjv01oqyuGX+buR6HD+6CK48Y1ObzRTl+3HPmoXjmysnYXt6AMx+fn6i7d8LL3+/Enuom/OGM0W125Dzx0tTPbzsehw3sgns+XIsbX1vmeKTrjoMNePCzTThhZA+cOqbtbmb/Lrn473VT8fvph2DWmn04/6kFKKmwd/CpRiQawy/+txzN4RgevGB8Gze6T1EO/n7uOMy69Th0yQ3gqpcW45XvdziKBQBfrmeNv7edPLJN6YLHo+CqIwdhzu+m4dKpbI1c+PRCx8+RSDSGv81ajz5F2bq9N72LsvHGz47E76cfgi/XH8Apj3yHBducvdcA4Kk5W7FsVxXuPG10GzHUszAbN/9oOD6/7XiM7FWAG15bajgpzgob99fiqblbcd5h/do8R7weBRdM7o9vfncC7pg+Cl9tKMN5Ty3A9vJ6x9f2l0/WAwDuPr3tc6RnYTaeuHwSXrn2cISjMVz2/CK888Nux7FW7a7GKwt2YNLweMIdcv5z2+LeIuCDn8uJRfAhfpB54k/CGdp7TMZ9jIaBNy4F9iwTH0s2qgo8ezzw37Mz/ZMQdkiz7jMq0FRVjQC4BcDnADYAeEdV1XV2X6c4N4B/XTQBT17OznA4+/Hvsbq02vbPc//sDdhR0YB/XTzB9LyKy48YiDd+diQ8ioLLnl+En7y0pNU0HSss3FaBx7/Zggsm9TedlFSQ7cdDF47HbSeNwHvLSvGz/y7F/hp7iaOqqrj343XwKAr+dJZx70FuwIdfnTQC7990NLrk+nHtyz/gs7X7bcUCmKh4Z2kpfn7CMBzS29hhnDK4K2b/6jhMO6Qn/j6LnZdi9z7urW7CbW+twIie+bjJ5MDVgmw//n7uODxx+WHYsK8WZzw2H4u32xfXf/pwHZojMfzjgvGmJQzTx/bGx788Fr0Ls3HNy0vwn6+2pD3nI5WSikY8NWcrThrdE0cPM3aPBnRlwumeM0bjqw0HcNEzC22PdA1HY/jdu6vg9yp48ALjs5E8HgW/mDYcL19zOPZWN+HUR7/Dawt32ooFAK8t2oWlu6rwwPnmLvTIXgX46JZjcOKoXrj3k/W49+N1uqNxzahuDOEvn6zHyF75uPqotqJao0dBFu4/bxyevWoytpXX45JnF6U9m0iP5+Ztx9o9tfjDGaORE9B34bzx+/jxLceiKMeHq15cgv8uND+bSI9F2yvwyFebcc7EvrhgkvFzpEdBFt664UicNaEvHv1qC654YbHlw0g1ItEY7nhvNQqz/aY9TFk+L26aNgz/++kRqGwI4Zwnv8ecTWWGX2/El+sP4Mv1B/Crk0aYlu9OO6QnZv7yOBw5tBt+P2M17p+9wfZ7rayuGTf9bxl6FWbj/KPifRUykkbt973qTfGxOjsbZwMLn5QTKxTfmJKxRkKNwJr3gAxWOwkjqAk0CZshVTuBzZ8CM34mPpZstPu3f01mf47OwJYvgbUz5MRqzwINAFRVna2q6khVVYepqnqfm9c6Y3wfvHcTm3J00TML8eGKPZa/94t1+/G/RSW4/tghpsmwxiG9CzD39mnxMasHcc3LP1gWF5UNIdz29goM6ZaHv54zJu3XK4qC204aifvOG4vvt1bg5H9/a/kUewB464fd+HpjGX5z8khLUwYnDCjGOzcehTH9CnHT68vwj083JsYLp+ObjQfw91nrceqYXvidhTN9inMDeO6qybj3rEPx7eZyXPniEtQ0WbuPsZiKO2asRjASw3MWT5Y/c3xffHjzMSjM9uHyFxbjxfk7LCfFn67Zh8/W7cevTxppafzqkO55+OAXx+C8if3wyFebcd2rP6Q91FVjV0UDLn1uIbxexdKIXo9HwfXHDcVL1xyOkspGnPvk91ie5sBODVVV8ccP12LZrir87dyxlkZUTzukJ2bdehyOGNoVf/xoHe79eJ3poZbJbD5Qh4c+24TjR/bAORPTj07PDfjwzJWTcM3Rg/HKgp04/T/zsG6vtdKKWEzFr99eibK6Zjx04QRLUxRPHdMbr/10Kg7WBXH2E/Px1foDlmIBwFfrD+Bfn2/C6eN644xx6fuXRvcpxIc3H4NpI3vgTx+twz0frrXsbh2sD+LWN1dgcLc83HfeuLSlrbkBH/5z6WH498UTsKq0Gmc9Ph9r91gvUXnsm61YVVqDe8+2NqzgqGHMlR/QJRfXvfIDHv1qs2Vxvae6CXfMWI1RvQtw3THpD5MtyvHj5WsOx9VHDcJz323HzW8st/xeaw5HceNry1DZGMLzV09Bfn4x+0RQQtIoy6X7/8BblwGf3y0nVsL50T//iitz7gNm/BTYPkd8LNlo91HGe02NP1cjzioj2jVN1v5fT1jg9QuB966TEyvN8z/jAo03Y/oW4eNbjsHEAcW47e2VuH/2hrQlX/O2lOOXb67AuH5F+N2p1g8KzfZ7cf1xQ/H4ZYdh1e5qXPb8olbn2+gRi6m4/d1VqGoI4/HLD2tT2mjGFUcMwpe/OR5De+bj5/9bjgc+Tb9T/NL8Hbjr/TW2D4Eszg3g9euPwKWHD8Az327DuU9+n7ZUaeP+WvzyjRU4tG8hHrlkouUmWe28lKeumIT1e2tw7pPf4+sN5kmxqqq4b/YGzNtyEHedPtrWBLSRvQrw4S3H4MRRPfG3mevxq7dWojFkvkaW7arE3R+swdh+hfjZcekTRo2cADsv5b7zxmLB1gqc+fj8NtMYU9l5sAGXPrcITeEo3rj+SFvXNu2QnnjvpqPg93pw8TML8dTcrabXFoup+PeXm/HWD7tx84+G2Tr3ZkDXXLz4k8Nx3TFD8MqCnbjxtaUoS1M6WlrViGtf/gF5WT7860Jjpy4Vn9eDe88eg//99Ag0hqK45NlF+HydubsbjERxz0drMWdTOf505qG2Bu1MHtQVM35xNHoUZOP6/y7FHe+tNjz4VEN7jozpW4R/XTTB8rUVZPvx3NVT8PMThuH1xSW45LlF2LCv1vR7GoIR/PTVpahpCuOJyych38Zz5PxJ/THjpqPhUYCLnlloySV/b1kpHvt6Cy6c3B9njrc+OKN/l1zMuOlonBN37i55dmFa4bT5QB2ueH4RwpEYnrh8kuV+UZ/Xg7+eMxZ/OH00vlh/ACc/8h3mpnHuovFNnhUl1Xjk4olscp12CLcM8dSofwiycGLOSlxtse5D4PM/iI+TCcISHTRtjdToH1DMnf1rgDcvAyL2HHZHyCxx1GJ1RoEm8zkSsbbxxY2d85mD3Blp7w6aCLrlZ+F/1x+R2E094v6v8cK87W12plVVxazV+/DTV5ZiSPc8vHrdVEeDAU4b1wfPXz0FO8obcOoj3+GB2RtaHQ4KsER4wdaD+MnLS/D1xjL84YzRjkaxD+qWh3dvPApXHDEQz367HTe8tkzXTdhX04Rb31yBv85kbtYLP5li+yiC3IAPD5w/Hs9fPQX7a5tx3lML8NqiXbo7/Au2HcRVLy5BfrYPL1x9uKPhEaeM6Y1Xr50Kn0fBT19digueXoD5W9r25uypbsIfP1qLF+fvwDVHD8aVRwy0Hasw249nrpyM2089BDNX78XJ//4On6za2+baahrD+M9XW3DZc4tRlOPHE5dNsn0fFUXBFUcMwrs/PwoAcN5T3+Mvn6xDMNLWTVi7pwaXPrcIwUgMb/zsSEeTSUf1LsSsXx6HH4/qiYc+24Rp/5yLj1ftbeMUqqqKP3+8Do9/sxUXTu6P355sfXNCw+thZbOaA3rCP+fi319u1t0U+Wr9AZz1+HzUNofx8jWHo6eDcdjHjuiOD24+GkN75OHG15bh7g/W6PYT7qpowIVPL8Qbi0tw4/FDceWRxqWNRozsVYAPbz4aN00bhneX7cZp//kOC7Ye1L2PL83fgateXIJ+XXLw4jVTbK9/r0fBnaeNwr8vnoDt5fU48/H5+PvM9bqisLSqETe8thRrSqvx+GWHOVojY/oW4cNbjsHI3gX4+f+W4cbXluqKwpqmMO79eB3umLEaxw7vjvstOHWp5AS8ePTSw/DMlZOwYV8dTnn0O3y2dl+b+xiLqXj5+x048/H5qGuO4JXrpmJ4T/sTNX92/FB8csux6JYXwDUv/4A/f7S21ZEpGs3hKG55Yzk+WrkXt596CE7THE/t8G0ZSWNThhIrGc7Puz8BFj4BBCXEko3MHrScYvZnU7X4WADw5uXAptlAxdb0X+uWoEQnUvtdyRCeGjF75fiO0Rw0L//R8G1I3riSsdHzyhnMQZZR4iu7jDjN8yOjUxztkjrF0QrLdlXi8W+2Yu6mcgzrkYdLDh+AvCwfFm+vxLJdVdhT3YSJA4rxyrWHozjX3fkRJRWN+MdnG/D5ugNQVRUnju6F6WN6Y0tZPT5duw+7KhpRmO3D7acegiuPHORq2p6qqnhlwU7cN2sDIjEVY/sVYly/IozsVYCyuiBe/n4HYjHg5h8Nxy0/Hu76SICSikb86u0VWFFSjZG98jHtkJ7IDXhRVhfE7spGzN96EEO65+GZKydjpIvJlgBzPp6asw0frdyDnRWNOHJoV5xyaG9k+T34YUclPlu3H6FIDJdNHYi/uTxZHmAT9+79ZD027KtF17wALpjUD0N75GPV7mp8s7EMZXVBnDiqJx6+eILrNVLTFMa/v9iEVxfuQkG2D0cP64aeBdkY1acAy3ZW4YOVe9AtLwv/u34qRvV2NxJdVVUs3VWFv36yHmv21OCood1w+OAuCEZiqG4M45tNZSivC+KG44firtNGuR4vu6uiAQ99tgmz1uxD9/wAjhjaDaN7F0BRFHy94QCWl1Tj0D6FeOLyw1yPsg9Gonjos014ZcFOeD0KpgzqgqE92CHv28rr8d6yUmT5vPjXRRO4nHmzdGclfvPOKpRUNmJcvyKM7VeI/l1y4fWwa/thZxVOObQX/nPpYYZ9Z1apagjhoc834s0lu9El148LJ/fHsB75qGuOYOmuSnyzsQwKFNx//jhcONndGTvN4Sie+GYr/rtwJ2qbIxjVuwCnj+uDcf2LsKKkGq98vwP1wQguP2Ig7jxttC2nTo+1e2rw+/dWY/2+WgzpnocTRvbAmL6FKMrx49WFO/H91gqcOKon/nHBeNfn0DSH2Rp56fsdyPF7cdGU/uiaF0C234uDdUHMXL0P+2ub2x6k3FQFPDgYOPUB4KhfuPoZ0rL1K+B/F7C/i56I1lgJPBR3/3+9Dijifz5TK/7eG4g0AVd9AAz7sdhY4Wbgvvj7/J5ywMf/vLBWPDIWqNkNnPkIMEVwOdQ3fwe++ydw7K+Bk+4VGwtomdB3w7dA34liY316B7D4GXYPz3xEbKxNnwJvXgp4/MCfnA9lsswblwCbPwOunAEMP0lsrLUzWFleoAC4W7DTWr0beHQs+/udJUA2//PyWqGtx1uWAd2Hi41VXw78Kx5DxoTKBwZAubu0fY7Zt4sTgQawRPWL9Qfw2NdbsG4v2yXuXZiNsf0KccqY3jhrfF/XSVUye6ub8PriXXhzyW5UNoTg8yiYOqQrLp4yANPH9uZ6GHRlQwgzlpXim41l2LC/FtWNrH/rrAl98ftTD+F+0O+s1fvwwvztWLenFqFoDN3yAuhdlI1jhnfHbSeNcDV2PZWmUBSvLtyJ1xbuSpSOds0L4OTRvfDLE4e7Gl+fSjSm4sv1B/Du0t2Yu5mdHVWQ5cPkwV3wm5NHuj4GIJUFWw/iveWlWL6rCmV1QTSGosj2e3DFEYNw64kjTIfU2CUaU/H64l14cs5WHKgNIsvnQV6WD1MGdcGpY3rjvMP6cT2zZUVJFZ6euw3r9tYmfm9DuuclDnrnuf5LKhrx0vc7sKq0GlvL6lHXHEHA58F5E/vh1jTDJezSFIri/RWleHNJSauDT0f0zMdlUwfiJ0cP5nqQ5oqSKjz33XZ8sf5Aor+vf5ccnDiqJ248YZilflKrVDWE8P6KPfhs7T4s3VWV2Eg85dBeuO2kkdzOmATYQJoPVuzBJ6v24oedlWgOs13YvIAX95x5KC49fADXs2i2HKjDv7/cjK83liV6ab0eBSeM7IGfHD0YJ4zs0fobomHgb92BH/0BOOH33H4OXVa/C7x/Pfu76IQgObG6aSHQi/9h1a147kfA3uXACXcCP7pLbKzKHcBjE9nfZZxN9uAQ5n6e/DfgmFvFxvr8D8yJnHAZcN4zYmNFI8DfurG/XzMLGHys2Hgf3Qys+B8w7mLggufFxpL5XgNahMVpDwFH3Cg21g8vALN+C+R0Be5wPu3YEuWbgCfjRyfJOGbi/n7MtTv3aWDi5WJj7V0JPHcC+/sfKwAvv3y2DaoK/LUrlHurDQWawOjtB0VRcOqY3jh1TG+U1wVR0xTGsB55wg6k61ucg9tPHYVfnzQSmw7UYVC3PNc7z0Z0zQvgZ8cPxc+OHwpVVXGwPoSYqqKXg/IxK5wxvg/OGN8nkei4OU8sHTkBL35+wjDccNxQVDWG0BSOok9RjpDT5L0eBdPH9sb0sb0Rjsawr7oZPQqyuAr3ZI4e3h1Hxw8Ebw5HUdUYQo/8LNvlk1bwxsfxX33UYMRiqvADNA8b2AXPXc2eN9pQiCyfR8j7bWC3XNx7Nhu0o6oqyuuDyPJ6UZTLT+Bq5AS8uOKIQbgifrxCfTCC5nAU3fPFlJUcNrALnr5yMmqawmgIRpDt97o6L82MLnkB/PTYIfjpsUNQUR/EjoMN6FOcw1Xgavi9Hlw8ZQAunjIAoUgM+2qacLA+hFG9C2z15FplRK8CPH3lZABssyIYicLv9RgPjPH6WamQjB40mSWOyeU0QfMeRy4o8fu7b5X4WHVJQ7NCDeIFmswSRy1GrfWhZ46p2NI2rkiCGehBk0E0qTRdSi+rVuIo2DkGWl+PjPLlwn7AwU1A6VLxAq12b8vfww2AV6A7GGluGVxjwP8LgZZMj4Is16UzVvF5PY76zJyiKIq0axMpzFLxeBR0E5QE6+H3ejCwG1/n0Yxsvxd9ivgnwnqIFmep8HTL0qEoCnoWiNmY0CM/yyds4yWZohw/V0c1Hd3ys6S93wI+DwZ1y8OgbtYH4bjB61GsufyBPLkDIBQJ75Pk62mWINC0eDLEYHJiJfr3Fo0A0Xgfk4zkW7ueGgkCLXnYhJRrkzhmP3ldRMNsI0YU4aRYUnpZ4wItKmGAh+yNnnB88F699WnKjkneBAk1iC3ftLAuOuWQEIIgCIJwTCBfzuhvzUFTo+Kno7Xa+ZYo0GQk33VJk0hFx2uVfEsUFskiVBThpOFmUh00yQJN9NTDkOT7qD1HZJ3LpyFlo0fiGkl14kVi4XpIoBEEQRBEMln58sfsi44ne+db5gj15OsRfh8lJ9+J8fBNzPmREQuQew6g7BLHxgrBsSSL+ISDFpS8RmRu9EjcMADEl2+Sg0YQBEEQNpFV4pjcgyZ8xzZTJY6S3RGZ91FmD5qMeNKvTeJB1cnXI7r3M1nEyCxxTI0tApkbPdFwSzlxZ36OGEACjSAIgiCSkSXQghITOZk738mJlWx3ROZ9lOGOtCo7lJh8y7i2TJU4djahm+z2dKaNnkxtGMiIRyWOBEEQBGGTgKQSx1BDy+GyspJvxSOvfEe7j6KP8wk1AH7tgHHRPWhxweTxyysD9MQHWshKGv15koeESEq+Pb7WcUWhrRFftsRrk7RGwhIdNO1aPH55z+NA/IxWmZshBpBAIwiCIIhkpAm0eiC/V8vfhcaKJwT5veTtsuf3BKC2TGITGS+/J/u7aNEk8z5q8Qp6x/8uob9O8QK53eRMw4w0sw2KWBiIBMXGCzW0vNeEr5H46+f3lDOKPvnaZDxHvAEgq0jec6SgtzyBpj1HqMSRIAiCINoZskocQw1AgcSk0ZfNRkfLctASSaME50daYpWUfMtaIzLFZyBPzpAc7fULZK4RWbEyIeJlPUcysEbye7IjBGRMus2XtRlCJY4EQRAEYQ+ZAk1m0hjIi7uDksqgEqJJRtKYL6c0T+auvuYyyRS6gTw56z8h0PqwP2VsGkgT8fESRxkCTfoaiZcTB/LkutVA6/JKUfHye7SOLTJWGkigEQRBEEQyWQUs6YlGxMWIRdno9ERiJSFBlZZ8y3bQMnRtovvrwhm8j6KTb+31ZYrP7GJWUin8vSbRZW2zGSJLxEvY6El9jsgQhIk1Qj1oBEEQBNG+CEgYOJGJMsBAvpz+ulBq0ijJQZMh0DSnp6A3EIuw0itRtFkjgoVFuFFi8q05aFpJmSTxmSVJWCieeC+fYBGf7NYBct5rWdp7TVaJYyfd6NEGkhhAAo0gCIIgkkkINIH/k9ZeO687+7NT9o5ITBqlXVsDmyqX06Xl38Jiacm3xMEF0kR86hrpZA6ydh9FD8lpsxkieoMi7qBlFWRgo0fgtalqizsoRcTXt/x/xgASaARBEASRjIxRy1oCkFUor1xIVvlaxkocJQkL7T5q/xYZC5A4JKQe8OdKciIlOmhan5YmmkT3u4UbUtaISBGfCZepIEPPEYHxwk0A1JbniIyeSBJoBEEQBGEDKQIt/tqJXX1ZZYAye0ck7Hxrh2LLKnEMNTD3QEuuRCapCRFfwISTLCdSZvmaJtBE3ketTytL4vr358rf6PHlyOmvy1QPmoz7KPM5QgKNIAiCIGwgs8RRuvOTz4aTiByAInNXv9V9lNSDFshjLkJyfBFITxobWSwZQ3I0h0LGWPM2a0Si0E2OLyoWIHGN1MsV8d6ApHLi1A0zST3BJpBAIwiCIIhkOmVildSnBYgdWd2mT0tW8i2rVDRfboljpso3ha4RiSWOGXmv5Ut6jsgWFvEhIVkFbKhMLCo2lrRy4kw8R8hBIwiCIAjrZMXdEaHla0mJVVaBvCEhssRnII8djK145TqRwntHZPagZShplLVGFA+Q0xWAIvY+amtC5nAL7XcGyFsjWQVif2exaHzSpyTxqcXSNpVklBNL2wwhgUYQBEEQ9pDujgguF9LOXEtMloP4ZCeQDyhKXDTJvI+SetC0pFGW8yN6QmUkBMTCQCBXzhoJxku8PB7x4jO1xFHKZkhuBkqlBT9HWjmRkvp0A3msny85vqhYQJLLKqkn2AQSaARBEASRTGfrQUuNBYiPp91DaUljPEGNhZnYEEWiBy0Dg2SkCF1Z5Zt1LfcwkCfW+ZTdp5jJEkdpmyGSNij8uYDHK35IjvQ1QmP2CYIgCMIefpkOmoS+mNTkIzm+qHiB3JaYMoUuIEd8yirxUrxsUILo+xiOn7kmK/kO1re4kKLPnWr1XitgUz+jYXHxEmP2Ja1Hj0/OGkmeKpooOxQsrDOy0ZMvfkgOlTgSBEEQhE28vvjIatGJlR/wBcT3oKWWyiV/TFS8ZHdEqLBIGQABSBBo+fGyK0Viqajg/iJdES+hT1GL2ek2KCTH0sqJZbp1WnyR8RLPEZkiXvCQnEgIiIZIoBEEQRCEbWQkja1cpnpAVQXFkl2alFS+I7O/SLT4jEZaevlkJcStRIxItyK+RvwSyzcTybfgwR1S10iYJd/+PMCfAzYARXQZYPJ7TXDfIJChUulO9BxJ3lQygQQaQRAEQaQiWqAF65E4SyuQD0BtKTPjjZ6D0FlLk5I/xpvkA4+1mFJ7+RoEinjJLlOwvmVaqtThFoKdn+T7KEXE16WsR1nHFchy4mU+RxRWOSF6SE7yGjGBBBpBEARBpCJj+mByYgVISBozlVhJKE3ySxAWyQ6C9qes+5iVD8QizJ0REiupB01KGWzqkBDB7zVvFuD1y0++pYj4pDJAkf11yWWA0nrQkvoUhZcT58Wnigp+jpBAIwiCIAiHiB5rnloGqH1MVCxAcl9M8gAIwbG8AdbLJ1PoAvKTb0CgsEhKvrWSOdEJsbQhIQ0S32t6Ak3iZggg/jmSJcGJjMXkb/S0uY+iniNJ7zUTSKARBEEQRCpSEqukBBWQs6svemS1qsrvQUtNvoXdR+3AY+33Jnpwh17SKGGNeH3skHHRJY6t1oisfjdZybckYZFaKgqIiyezBy3SBEDN0HNEYhmsCSTQCIIgCCIV0e5IUGbSqOf8iOrTSk2sRA9A0XGZRIuYjPSgCS47TKwRCccjJIatJPVghhqYayICmW518nEFgFwRL7o0VXtdf3yjR+Sk2zZOZD7EDslJfq/F1yWVOBIEQRBEO0P4WPPkHjTRCYHOrr5wty5JxKgxdq6QkHgSS5P0etCElgE2Jgkm0cIiKfnW4ol2mVr1YKpx10REvAYdEdNZetBklkrXMVHm9bF/i+wLSy0DFD4kJ4MbZgaQQCMIgiCIVKQmVhLK17TDbAGx4jOss/Ot/QwiCDXEzyRDy5/SnEgZZVepSaPANaL18gFiyw71km9A7KZBpvqLZJZKy7yPWjxZZYCBPMFDcjLQy0cOGkEQBEHYpLP1oGljvwEIPVMrUQaVVCoHCEx2GltieDzMARLpIAByBFpqL5+M8rU2ybcklylLQkmZ9jsTPQBFm4bpl1AqGouykkqZzk9Wkusj8vw6vRJHoJOIeCpxJAiCIAhnBPLZbm1EwI5tNMJK/tr0TolMvpMSK5FT8/RKHJM/zj1evc61SS5fE1F2FQkCarRt0ig0QU1OvgUKC+0a2gy3EOhYaMJCuIjX652S1RMp+DkSrNdZI5JcVhmlqVosr58dyyD69+YngUYQBEEQ9hCZELTpwdFiiXK16tHGHRHeO5KBnW8trsweNDUqpr+ujdCV0KeouT6AYBGv40QCkt1BySWOIkS8kcskco2kbobIPE8u+ePc46U8I4Wu/3o2JVXr5TOABBpBEARBpCIyIUgVMb4A4PFLTFAF9qBJTxolJ9/+XDbBDkgqzZOwRoQnqI0p91Fg8h002qDoJOWbHl9SL1+8dyoSFBDLoJdPloiR2oPWmUR8SiwDSKARBEEQRCoiy670pniJ3o2WVpoke+c79doEl5Sl3kdA8BqJx/DnAIpHstCVNOkz0YMpwEFO7dPS4gkbktPYunRNpLAwFGiy1oiMHjQJVQaREBAL62xQCOzTJYFGEARBEA4ICHRHgimJlfZ3qTvfgnqnZO7qpw7S0OLJvI+AmHiJ87Ti91FRJKwRST1obUocRbrVOgMZRCbfwfqUQRoSRbzos8mSD8UGBPd7SnSQU59ZWjxZ7zUDSKARBEEQRCpCE6uUEi9AgvOT0l8hamS1zBLH1EOxtXginUi95FtEPO1+JfeFiXa1AsmxCoBoEIiG+ccyLHGUIGK0eDKFbvLPwRPdjR7JGxRBURs9DQAU5hxrsRIfFxELEtcIOWgEQRAE4QyZPWja36WVJgkc3GE4Zr8TJFbBupRkWODgDt1rEzzcRVr5Zj0r1/RLOIRbr5xYtIhJ3XhJ/jl4xwJaxxM9oTXV9Vejgvrr4rESR4MILIM1eq+RQCMIgiCIdoYMERNIKhcSnhDoJY2Crs2fx8aZA/EdcKWTCl0Z4lNSGWxq+Zroa0tOvkUOydFdIwLd6qBRGWwHdwcjQf0+LUDctaW6/trHRcQCMtfLagAJNIIgCIJIReSYfW0XuFUCUiBGDBr1aQECk++kWCJ7p7T7mCosOkP5mkxhEYsBYaMBKIJ+b6kOgqghOUYDeYQm37KErkGJo0iXKbUHDRAXL3mN+DrTRk992/WvAwk0giAIgkhFhjuS2s8ks08LELjzndv6Y1n5YqavGSWosbDYsiuNrAyUOMrqidSuTVR/XaqDIErEm5U4CumdqjN4r8kq8RW0QaG3qSRzo8fjEbj+qcSRIAiCIDoGfgk736njuGWO9E/+OXjHa5N8i0oaNWGRvKsvePpmpib0AeL6i4yEbvLneJJ6H7V4QkV8SvIt6mwymWskWAd4swCvPymeaKEra6NHx2WS+owsYAfQRyNi4pFAIwiCIAgHeDxMQMno0wLEiRijBBUQ6I6kJlairi1lXLsWS/s5eKJXKurLjp9NJuj35stpORQbEDckRE/oii7Nk+6gpZzflfw53vGklcE26Ahd0SI+eY1I7EEDMvOMDHOOF4u1PSvPABJoBEEQBKGHqJIa3R4cQTu2pjvfEkqTtHhCHTQJCXGkmU2sS06+tf46IUK3sW2pqLDkW0/oClwjqQNJAIHJt0H5GsD/vR2NAJGm1vdRqBNvJGIElsHqDe4Q1TsoTaCZrRHO8fTKiQ0ggUYQBEEQeohMCPRKvAD+yZXRsAkRsYAMJY0ShIVeGZT2b2n3MR6Ld++UrtDV7qOIssO6tvdR1JAcmeWbmtuSfB+FOvH1rR0tQHyflozNEO01pa0R7WgQCUeR6K1HA0igEQRBEIQewtwRvT4tUcJCpzSps/Wg6SXfvCfLGe18iyy70ruPUFmJFO9YgLzSPMMeNEEixuNno/w1RI1s11uPgNhr0xPx0RAQ4XwIfVBvo0fkkByjUmlBsXzZgNfXOpb2OZ7olRMbQAKNIAiCIPQQNY7bMPmGuIRAZu+UzB40X05KYiU6+ZZYdqU3il77HE/aRQ+aQOdHT8RoPwfXWJLXSOqZa0DLGuHdOyV7kIzsEkfDNcL7PuqUExtAAo0gCIIg9BDpjqQ6CKJGtus5P0J7p/SSHUGlSUZOjPZz8ESvTwWQX+IICFgjOkmjx8vEr5A+rWadHjSBQ0L0+t0AceVrUq9N1vrXEWi+LMDj438fI6G2h2IDkkW8oPuoV05sAAk0giAIgtBD5s63qKQx4fzoJY28k+8wEA0auyO8e6eMpgFqn+MaSxMxKfdRmMva0HbSm+g10mbTQICIN3IQAvmChuQYlAECkl1WieXE2ud4x1I8gD+n5WOKIuYZadSnFSiQ6OiKdllJoBEEQRCEM4S6I5J70GT0/Bi6THlsAiLvc6eMpgEm/yy8MLs2UeWbeiPUk38WbrHq48l36tRIAddmJga1n4UnGSlxlNWnqDMNVtS1BeMiRlFS4hXIfY4I2egxc9CoB40gCIIg2hfCBJrkHVuPD/AGWn9cxKHHiWloOuPhkz/Pi2Bd20RHiy0ssZI4AEWWiDdMvkWsERMRA4hZk7KS78SkQ51NA2nDhgSWb+odrixko8fEiVRjQLiJczyJJY7Ug0YQBEEQLtGSb547ttqBx7LG7MtMvrXJiYauloByudREx+MRJCxMxuyLGg9vuEZ4T6jUuY9aPFkOgsgNitRr8+eIGZKjrX+9Mw65n8sXYtMapTnxOmIQEFMGa1SWnSXogHGZFQ3Ug0YQBEEQLgnkAbEI39K8cBPbBTaaviZi51uvnCaQJ3AUfWHbWMmf54XekBAtnoxBGtq/eZddJZJvnX43QEzSqHsfBTjIZvcRkFPiKGpIjqmIl3Xsg8AyWEMHTZDLJG2DQufavD427VbEhoFeObEOJNAIgiAIQg8RO7ZGSZxfVEmNjoOgxeee6NeyP40mVAopuzISaCKGJHjZ5LrUWFD5ll2ZTQMEOvZ9NCsVTf48L/QEGiBIfMZfLzX5zipgooKniDfr00r+WXjG010jAnrQjM6TE/YcMVojgta/XkWDDiTQCIIgCEIPEcmOkYPg8TCRJqTEUVLviFH5WiKx4rzzrTckBBCXWGXplYoKWCNBIwdBc0dE3EdJIt6oB02kOyhTfAby2Xs5mayCeO8UxwPGzfq0AEH9nrLc6jTuIHc30kSgiZhiaqH/DCCBRhAEQRD6iEh2EoMEJCY7erFE9MUEDcRnQqDV8osVi7HDeI129YUkcQb3EeAs4g1EjC8AeLMEOWhGQld2DxrHNWm6RgS914z6tAC+azLhoMnq9zQQMVJ70OKl0zyvLRYFIk0mVQaSyrJ1IIFGEARBEHqI6IsxOisJEDdZ0cxBiMU4xjLoQRMpYgyFroC+GKNddoBvPCMHTfsYdyfSwB2Reg6agP4izbHSfa8JODzdqE9Lez/wjGc0kMTjZSWWssSnzB40EULXaFNJ+5isknMdSKARBEEQhB4iBJrRzjcgpqTGsMQrH6x3iqewSNeDxtNBMDnwVVQPmlEs7fO8MHIQgLjzKTH5joXZ0BJeBOPHPrTp5RPgoBn1aQFxgSbAZTVyqwG+DrJRnyIgef0XMAeK5wHjwfp4v2d264+LfI7ILpW2AAk0giAIgtBDSImjwc43IKbhXu/AY0BMw32wnp23ZpR8c935NkusRDmRBsMmkn8eLrFMHDQR5ZtmPWgAf+dT99gHAUNCzER8VgFfwQSk2QyBGOdHhoMci5lPcQT4rxHdfs8Ofh8B43JiHUigEQRBEIQeQpJGyT1oRkmjiN3ooEEDvMfLBqBw3fk2K03KEzRIw0AMJv88vGIlv3YyvJ2faBiIBo0dXYB/ia/efRRRmpfOQZNxLp8WCxBTKp1aTgzw36DQSkWNymAB/g6y7noUWHJueB8llRPrQAKNIAiCIPQQmVgZDRPgmehEQqxEzdRB41wupJd8a/FkOWjafeQ61tyov0iAE2lWdsW7B83UQRBRdmgyxY63Y2Em0IScTZauxJHn7y3u/hltUAgZSGLiIPOedKt3H7VD6GXdRyE9wdSDRhAEQRDuEFLimKZ3SmaJF8DZ+amTKNDSlCbFIuywZ17InNAn00EzXY+C3BEjB4G3g2x05iDA7mM0xPcQeqMjLURthnj8bcuJAf4OWmKNSHS1jESMqPVPPWgEQRAE0UHw5QBQ+Cc7Hj8bmZ5KgPPoe7MJZaJKHA0FGuedb9nCwrAHTcSEyrp4L5/eGuE8+tvo4GhAXH+RoYPGef0bnRUGiJmsaNRfJPK9pnfgMXeha3IfRfUOGop4yQ5ypJnfABSzcmIdSKARBEEQhB4ej5hdfVMHoY5faZ7pKHpBDfeydr4TiZVJ7xSveLEo68PRi+X1MSHP20GT7SCY9aDxHiRjtv6FXJvBkRYAv0EhsZjxe9uXzSZXchdoRmukkP/vDJDcg2ay/qX1oMXXDa9Jt2ZiUAcSaARBEARhhAjHwqwHR42xXVsemI30F+UgGDpohYJ29SU4aGY9OIAYd9Aw+S5gYjEW5RPL9Mw1zR3k7GoZOQi8e37MRDzv/tJwIwBVf40oigDnp15fVAACRLxJqaioSZ+ynPh056Alf41bzJ5ZOpBAIwiCIAgjuA8uSLM7DPATTUaH2QL8HQQtnmlpEs9Y9YDiAfw5bT/Hu6TMzIkBBIl4k14+QE7SKOLwaNM1wvm9ZjpIhvd9NBExAP8NimBtGpe1lqMTb3Y0iIgeNDMnnrM7GKoDvFn65cS814iZE6kDCTSCIAiCMEKIQDNK9Dn3/JiVOPqyWGLSYXf14yJGrwcn4Q7yTr7NBqBImGIH8E+ITcvXOG8YqGqaHjTeQreWlRd6/TqxJApdQMz6N3OZoApwkE1EPO81YnRtInrQjN5r2byfIyblxDpkTKApivJPRVE2KoqyWlGUDxRFKc7Uz0IQBEEQuogoF0qbfEtIrAC+5UKxKOvVSJeg8trVN+tlSggLTo6dmROpxZPZg5b8M7nFLGn05zKXklesSJBN1zRb/9JK5Xi7I2n6i7J4O8hmPWii3EGzg6o5PbPSrRHeB4wbncsHJG30cH6OdAAH7UsAY1VVHQ9gM4C7MvizEARBEERbRCQEZj1oAH93REbDvdm4au3jsQi/seZm52mJSlBNhYWsHjTOvYNmSaOi8BWf6RwE7ZgJbiI+zbEP2tfwwJKDJuHAb6Bljch4jvA+YDyxGWLWp8h5jaQrJ27m9PzvKD1oqqp+oaqqNrtyEYD+mfpZCIIgCEKXrEIBpXlphAU30ZRuV59j8p2uv0JEP4c0ByFND5qI5NssQQX4bRqYnacF8F3/VlwmNcpPxJv2MnEeAGHW76Z9nPvE1HTik+MaMTr2AeDrfFp5ZsUiHAcpWXHQ/n/3oF0H4FO9TyiKcoOiKEsVRVlaXl4u+cciCIIg/l+TVcBvBxWw1oPGzR2pBxQv68PRjcdToJlMzEv+OM+k0ayXKflnch0rXQ+a5CmO2tfwIN3BuTwd5HQOAu8SX7OeSH8e2BmHvJ1Ig3g8e6e0cmKZ7qDRMwtocT55kNb15+0g12Zgo6cd9KApivKVoihrdf47J+lr/gAgAuB1vddQVfU5VVWnqKo6pUePHiJ/XIIgCIJoTXYh394p2T1oWfn6gzQAQcm3xJ4fowTV4+GbEMuc4mhlkAbAOfk2SRhluqy8p0YGa+WtEe19ZObG8F6P0gRaQ5o1wvF4BLPBRkDS+ufVF5ZmIAmUjPWg+fhE1UdV1ZPMPq8oyjUAzgRwoqry+r8fQRAEQXAiqwCIhVlJjd5IdztE46U5aR0Ejn1hZv0OWQVAxVY+sdIlqCKmDxrF0n4OnkkcYN4Xpp1N5vG6ixVuZGfhSSsVNRk2ocVrrOQTK20PGm8HzcK1cU++TURTuIHPGkmX6PMW8cG6NA4axw2KoMWNHhnPSI+Hfw+mWTlxang+Ue2jKMp0AL8HcLaqqo2Z+jkIgiAIwhCefQihdEkcbxFj0oOj/RwdtQfNbEiIFo93iaPf5KBqgE88K4Ndkr/OLVZEvKwetISw4HhtaUU8x/ea4jXexOH53k7b7ybgmAkzocvVrbbQpwjIceIB/hs9Ft0zILM9aE8AKADwpaIoKxVFeSaDPwtBEARBtIVnspNul90bADw+zgmqWfLNs8QrnfgU0HCf1h3hmDT6sgGvQdERT3cwXfma189+FllJo5ApjmmSb54bFKbJN+cSxyyDc/kAvhsUViYdaj8TD0IN5g4az2mwMjcoYlHmWKcTaDynOFrsPwMElziaoarq8EzFJgiCIAhLJEYt17h/rXQiRlHi5UIce9BM3ZFCINLESi+NxIflWBJ70CJBVnaazvnhVgaV7j5yTBoTyXcax4JniVdhX5NYmehB47D+o/Gy5HT9dVzFoMGAEC0WwGeNpHPieR9CH6oH8nsaf563iAFM1ogAoWsq0DhPMe0gDhpBEARBtG+yJTpoAF+BZnbmWvLPwWMoQ6IHTUJpUroSL+1zsnpweIrPdAmqFo+rE5nmPmq9U26x3IPGUejKXCOm72sRwkKi82n2HMnmKWKs9qBxfK9JK5VOcx9TIIFGEARBEEbwHA+fbhQ3wIQAryl2IQtDEpJ/LjcEtbOSDBrg/bmA4uHby5fOHeSZfGeb/c40YcGzBy1daR7Hc6csuYOchIVZqaiIMsB0ool3iaMRXJ8jVjcoOJYdmm5QaE582H2sdOXEXDd6rIr4/389aARBEATRvuHag5Zm0qH2OWm7+pyTHbNYisLv2qwc+BrI5zuhL6vI+PNcy9esOGicxKeqWutBA/i5g1bEII9yOdkuk5VhEwBfd1DG8Qiqav3aeL23zdaIdn4dl3JiC0KXpztIDhpBEARBcELmkBDtc7wSq+ZaiX0xFpKPrEK+gzSslCbxOMEnrTsiYFc/bQ8aj16+ZkCNSnTQ0ojBRO8UB4GWbtiK9jlua8TCQBLt69ySbtIhwO85ovV7mjnIvEW82XXxPL/O0oYZ5/JNs1gpkEAjCIIgCCOE7Oqn2bHlESvcxJLvdMlH8s/lhnRDEgB+rpbVEi81xqa0uY5nsb+I6xRHCcm3pfvI85gJC1PssgvllRNn5bP3SLiJTzyZ7zWzcmKAX2mepfvIuXwz3RrJKpDbgxaq59SDmaacOAUSaARBEARhhC/Ab6x5sA6AYnyeFsAx+Y7/vJZ2vjldW7r+Cl7Xlm6KXfLnZJRv8nRHNHGetgdNVi8f7/towWXluf4tDcnhVHZoqZxYQiyA/3NEpohPu0Z4OWgWpzgmf61TrJQTp0ACjSAIgiDM4LkbnVXAynQMYxXJdRCSv9ZtPGlJo8UhIclf65REqajJtfmymKPB69oC6dYIpwEQVnr5eE/NS1sGy2lku0x3MBqJn6dl8l7jutFjoVSOu0Aze45wdgetrBFZPWi8NiislBOnQAKNIAiCIMzguaufLrHKLuRTUtNsJbHiXJqXNrHiNH3QjrBwmxBb6cEB+J1NFqy1EKug5fw6N1gt8QLk9KAB/IYyWD3SAnC/Rqw4ulo8niLeDF4CrdmKg8ZzjVhZ/5wdNEvr3+UasSIGUyCBRhAEQRBm8HR+rOwOa1/rKpaFEkeZUxwBjiWOVkbR87qPFpxILR4P8dlcYy0W4N7VkukgANYHyfB0kGUcMG5FDGqf57UZYiVWNMg2GNygXZusUul0g420eFzuYx0bSuMLGH8Nr3MwrZQTp0ACjSAIgiDM4DW4w5KI0RICtzu2Fna+PV7WD8fNHbFwbTLO0wL4C12Z5ZvpHASZ18bdQZO0RjQxaFoqymmDwo5A4+bEWxC6gBzxqa1XLs9ICw4az/ea5ecxr80QEmgEQRAEwQeewsJKiSPgPtmxUuII8Omvi0WBcINFB6EOiMXcxbNaTgnIc0d4jb63UgbL7dosrBFeIl5VJfegWbmPvJJv2QLNgtDldXi6lTXC6xD6cDMQDcl5ZgHWSm4TU3xr3MWyUk6cAgk0giAIgjCD95CQdLG0r3UbK/n1zOK5TfStJh/a58MN7uI1W9ll55V8S3bQrJZ4AZLXiNs+rQYAqsUetFr3Z5PZKSd2LWLslMF20FJpszXC6xD6RDmlyaHwQLwHrZ7DGrHyXuPtoFEPGkEQBEHwgWdfTNqEIJ6ccCtxlJA0Wk0+eAoLyyLG7X20KmJ4DUCxOCQEcC8smmsBxQsETI59APisEasiPqsQgOq+x8iOy9TRRLzsjR5vlvmZawCfKgM795HH+XXNtenFIK/7SD1oBEEQBMEZLbHisasvq8QxWMdKj8z6tABwOVMoIWIk7uqnu4+8Rt9bdUe4TXG0Iz453UdFSR9Ptojnsf7TrUf//7H33XGSHNX9356ZzfH2dvdyjro76SSdcs4SCIFEMDmDjDFgDBjb2D/ANhhswGAbMIgsRBZBOYdTOp0u6XLOu3ebc57Qvz9e10zPTPdMV3VV3d1S389Hn9Xtzsybrn796r3vC1VBAaquTKSM6YPJBE3w1FW+GSRbDcjJsrIywsBDciSU+BZ9rquc8k1ZUxxNgGZgYGBgYCAH5bWAnXLKtASRSnEy3xKcnWLOByCH+WaOkq7AIgjzzeRpm+IoYR0TE3ReUlFZEodbBNIRGesY0PmWNTUvyLWlS/POoCmOQUf6S81WByjLk5lB0zkkp9i1ySrfND1oBgYGBgYGkiHDIYizHhxdUxwDTAMEMoM7Qslyvqu2vhidgUXAsqvyOnLCwpxNxu2ghnT2ubIjEoJqgKN3UMLZZIECC1lBvBWsfDMxRoG4sCzecmIJpdKBnzWNg40AjdlBGcGnKXE0MDAwMDCQCxlOY1CWvaQCiMQklHgFYIfZ9znjetD69TrfkZLiPTjlMnQkoINaKjODoMtBDep8SyQogjjDUggKJxgsNNIfyGQ+w2TRgjr6TJaUUlFdz1rAIF5G76Bt8xE9Yac4jg3Q9y5Wcu6CCdAMDAwMDAwKQUY/R9AATeZEtCDOB+uLCdNfp7MHjTlWQZjvUkmZnyB9WqzkMowjFzTLFI0BsQo5mc/Azrek7EjQ7GCYwCLtfGsMLILKAsLJC1pOXFotZ/S91mw1xzRMIFygGx+hQSPayjcDlpy7YAI0AwMDAwODQpBxFk5Q54O9RoZDHNRpTCWAxLi4rMBOoyQH1U4FW8fy2kzvkyh4enAASRm0IPIkDJzgLXEMFcQHzKDJ6EFLjJFOB1lHGYM7eIJB9nphWWwdi5AhlkVrLSPzE0RHyiUEMTpLHIMSBkxe6GvrD9Y364IJ0AwMDAwMDApBhtPI43yX18opcQzqfAByri1o2VWYzE/QTCTgOKiaevlkZtACZyw0TLFjssIOyRkLqP8yAt208x10kIyEISFBg0H2emFZHOdplUsgegJnB2spKxW2BzPQ5FmZga7G/rogdsQFE6AZGBgYGBgUghSHIGAZIACU1ektTQJCZn6GaKR9rLTw62JldKaSLua7vC58BiHoOsoI0NIH9XKUpoZB0MBCVn9daQ0QiRZ+XWk1ACukjjj3QOekT54sq44eNCC8/vP2aQEhA+uAZYAyAl2eIF5GdjAoGeKCCdAMDAwMDAwKQUr5GgfzXVYTrjQvlSQnkMuxCslGB3U+wjrEaeY7iGNVR68PW5rHE8SEydjxXFtZbcgenDEgOcGZHQzpfAeRFYk4QxlCygJOwwBNZql0EHl14daRq09Lkh0JRE5UAbBCBro85cSmxNHAwMDAwOD0g9QMWsB+jlCOPo8TJ6Hhnsf5KKuWFMQECZrqnNK8kI5cUFmApBLHoD1oGiZGApmAMdS1cQxJCOsQ8wZoE0N0TqGwvIFMf2UhsO8T5r5N8JQ4hsygidiRsDYyiI7IGKTEpf+sfDMuLs+UOBoYGBgYGEhGJEplNTKCpkCjv0P2jgQdVw3Ia7gP6nyUhyzf5CpxZFmtkE6qtiEh/UCsvHipKCDBQeUhDGSUbwY8XJx9pzAZ5KCHYgPO82g75xSKygt4bbLWMVYOREsCyAtpR7h6+ST06fLYkbD9pVxDQkJem22bEkcDAwMDAwMlCNsozhwrHudbtDSPx/mWMVmRJ4MWmtXnYL5l9YUFkRWJ0lrqkAVIzDJxrGNYZz+w8625xBEQX8tkgrJaQWSlzzgMoyNDwQgDQHMGTdIgpaD6r9OOhNWRBCsnNiWOBgYGBgYGciEjYxHYsaqlMeHxUTFZXKVyMoaEcGRHdDqNYXunEuPkWPHct7AljjyZyLH+EEE8T6DLMpF9YrKYvMDOd8ihDDoDtHGOLJNlydH/IFl4AOnzu0TLN4WCmJBBvNbg0wp+mDkgfm082ToXTIBmYGBgYGBQDKHLDjkdK0BcHo/TmHY+Qvag6WK+xwYQ2LEKm0HjyUQyeWFZfR4HNZWg3hghWSKBrqbgM+yzNjYAREooY1UMYYN4nkwkkxcmOzjBmUGDHd6OTEaihwWDkQBhkKwgPsjwHxdMgGZgYGBgYFAMMkrKeHpwgBAOAYfzLaPsiuvaZAQxtcEcq/J6+ikqj71PJ6vPEwwCIa6Ng9WPldMxCmGHu+gs3yyvpYxVMaR1pE9cFsD3bIcOLDh1RDhA4wniQ04xTcaJbOC5tlB9ipwZXUBcJ3l1xIEJ0AwMDAwMDIoh7GTFsT6goj64LCA8qx90IlqYwII5VjzMd3xYfCIaT6kou/7QGTQOebr6tMIGnzzZQcsKF1jwjPQHJDxrnD2RADDaJy7L/TlB5IUK0PoE7IiGIL6kkrKWooEuzxmAgIR17BewI5qyrA5MgGZgYGBgYFAMYVn90b6MU11UFmNsNQUW5fUhMggc5ZTu14Vho3kcfUDjOsrIDmoKLHjK15i80KVyHCWOidEQQTxHqRwLdoQDC85rC7OOgFjwKRpYpCfPBtARRvSE1kfOUlHh/rpBvqE1gD79d2ACNAMDAwMDg2IoCzsenqcMkB1oG8IhsCLOga4BUFEfwrHiyNYBLqdRVB5HaVKsDIhVhMgg9NHPwA6xjPI1jqAaCFe+WVIZbFw7EC74FMkyud8nIk+XPnJfW0gdESF6hLOsA0BJFRCNBXt9Rb0EoofnvtnARIi+MB7CADAljgYGBgYGBqcdymrIGUgl+d9r25ylSRIc1PK6YD04TJ42B1XC4I6gQQyTJyqLBa08921sQGyyYipF+hXUQU1nfnStY4jAYow3O1LvvC+k/gcBC+K1lTjWhywnHtYb6PKU5YW5NpEMGhBOJ4NeW0kFYEXNFEcDAwMDA4PTDsyZnRCYdhgfdXpw6oO9PmzZFQ/LDoRzrISYb+hxrJi80Bm0+mCvL6sF7CQwIXDo8YTAxEggnEPMU3IVZvogy7LyBp/CQRNHiSOTFzr45CgVjY+IlW8yWbxEj3Bg0cdnR8Jk4kXWEQip/wFlWVa4vsh0RUPAKb4OTIBmYGBgYGBQDGEGd/Cy7KXVxNiGYfV5HVRtGQQJZVdcgUUIx2q0D4ClJ2jiDXTT5Wt9/LKYPG2BLm+fYr3zvl5BeZz6H6oH0ymnjEQDygrRF8Zbchu2xHG0L3gwCIRbR56jQdyvC5VB5tD/MAOAmI4ErWhwYAI0AwMDAwODYgjTKM6clqDOjmWF7OfoE3OsRErzToljpanEcayP3h9kpD+TBYTTkaAZi1gp9ZDpWscwUxxFy9dESAPeMkAmLwxBwevoA2LPtoiOhOnB5M7EhxkSojGDnJgAEmN6CQrO8kbABGgGBgYGBgbFEYb5Zk4Lb9lhqAwajyzn0GOR0jyekf5MFiC2jrodK+4MQoiMRVpHNGV+uDOR9TRZMTHBL4s3OximxDc9rl1TiSPPxEggXBAvpCMhCQoe/WfrKEL08F5bmABN5ODoUCW+HNNZXTABmoGBgYGBQTGEOdCWN4PGXhuqB43TQQUEr60fXGWApTX0eq2OVZgMWj2HLOe1YcrXuAJCjax+mMBifACAFWxcOxBuSAhbR97gM0yJo0iAJnRtAtMAy0OU5on0stpJsT7dsT7KCMdKA8qSEaDpysRz6ogDE6AZGBgYGBgUQ3pwgUBfTNqxqg/+HtEMGu/ESCYLEO+dKqsJXgYYiYhPBBRxrFjviCirz7OOYXp+hLKsIUvKeHv5AD06UlIOxMrFrk0oiKkDRsME8brW0XmPjiA+maDBNbykEiB233iDwTDPmshUxTDn15kSRwMDAwMDA0VgzoOo8+H+jCAQzaAlxpyJkQIZNFGHmJcdFnUaRR2rpFMayS2vjz9gYu8TkQVocr7jzkh/TlmAeGDNeUiv8NEPvANJAFrzccFDj3knRuocEgI4vYNhBhvVB39PWP3n0f1ojDKyoYgezt5B4TJYzj5FByZAMzAwMDAwKIbyOlBpXh//e0UcK9EMmmgmBhDs+RF1vkNkEHjHw7vfyytPpAdNtL/IigQvAwTEe6fSmZgpwd8Tdh15Mwii+p8OLDhLHGFnjgPglaezxDFSQqWAPPLClIqKZOJ1ZNCA8HZEJIMmcg6mKXE0MDAwMDBQhEiUNnRRp7G0hljfoBBtuBcq8aqnn7oyaGWC5UKsvLSyIfh7RB1i2+Z3GmPlQLRU3CHmmRgJiDuobB15ArSyEMEn76RDIHzwKRI08ep/KsVPUITpwWS9pTzj2kV70ESz/oC4/vMEg4AE/eexI0z/B/lk2Ta9x5Q4GhgYGBgYKILoMAHeoR1Mlp3kdwhEB5IAIbIjmkocR3voJ5djVU8/ecu84iNAKs63jpYl3hfGO3kTcLH6nKV5IgFa2BJHkQya8NAaCA7J4by2iSHATvHJikTEz9TizegCIbJMTEc45IUZpKQzg6ZT/5mOmBJHAwMDAwMDRaioFxwS0sfvWIlOVkw7qDzZkTDlmyLla2Edq3oOWYLDBEQyCAA5faIOKrfzXU/O3wRnEM+ujbffDRDP/PA4w4D44em8EyMB8cCC9wzAtLwQZYcispITQJyzBzNMBk2UoBAKPgVkjfYBkRhQWhX8PaIZZJFySgcmQDMwMDAwMAiCMH0x3Oyw83peeSJnJTFW/3QfEjLaSwfvllTwyQIEAl3n9dyBdQMw0sP3HiZPJIMACASfAhmE0mpQEC9YmsqT9QRCDAlxyil5S0UBfv0Xdb7D9E5xlxMLHowtov/p8k1OWWxipM4MWsUUzlJR0Wetj37yEhQwAZqBgYGBgUEwhMmO8DpWYTNo3IGFgENs2+JDQkQa7pljxSsL0JtBEx2SIJJBAPQEaKLHIyTjdK+571s9BYO85ZsiQYxoiaNIOSXgrKNgiaOIPrL38kBE/yMRsRJfUZsVNkDjlQUIrKNAWbYDE6AZGBgYGBgEgWjZlVADvPN6bmfHeb1IzxuvLJEeHCDzet5yIZFSOe0ZtCniZbC6M2g6Mp9Mp3gGuwDOuttiOiKqj9w6ornEUYjocZ4X3qzuWB8NvSkp55RXLxDo9tFPoQyaYA8mtx0RLJVm624yaAYGBgYGBopQXk+bO+9kRZEGeNEM2mgfUFIFREv45XE7VgLnkgEuh5jX+RZwrEoqgGhZiFLRer73VTbwB2jpiZGCmR+RIL6sjiaT8qBMJEATdFBF+8JGe4FKTlml1YAVFc/8lGkI0GxbrE+LrTuvTorYLEBsuItITyTgPC82fw+mCBkivI6O/vMSFDABmoGBgYGBQTBU1NNkv/hI8Pck40B8WGMGTezMHSHHSuRcMiAcG83rfANih34LZ9Dq6X4nxoO/R2RiJBAug8YrCxAbkiNSTgmI94WN9vDLsixBgkKwxLGslv/MNaYjohm0UYEMmoiOCJU4hsjoAoL6z6kjZXUUxPNmIkVG+jswAZqBgYGBgUEQiARNwk5cDTkEIoGFNsfKeb22fg4BxwoQ6wsb7QNg8WdHRJh20Wyd7nWsbOB39EVLvEQzyCM9Qs6w0FASFmTxZpAr6p3SPI4ezLQdqeeTxTI3Ihk0oWetXjyDpk3/+/ivLRKh94x0871vpIcOFuctFYUJ0AwMDAwMDIIh3XDfF/w9os6H6JlaIoMEADHHStT5Tge6HE6jbYsHFkLZwT5yvHmmAQKZ4IDn2kSzdWWCmUjhQFdgQqVoiVe6xJHj2piOCJSTCfVgjvbRVNFYGd/7KhoA2HzXFiZbZ0X5AzSRMkBAbB3DZKsBvmsTHVoDAJVT+QkK0WcNJkAzMDAwMDAIBhGHQHRCGXuPCBstWuKYGOM7L4mtA/cACIEsU3wUSI6Ls/q6enBEhjKIBvGRKGX4hLIjnLKATH8dTw+maImXSH/d+AAd7i6c+REpuZ0qICtElpX3vlmWk/nhDSwE+t0AsXUU7vd01p7n2sLY40oBgkI0owsToBkYGBgYGASDUIkj66+oF5MnkkETdazY+4NCdACESNmVaC8T4KyjwGQ5oXUUcL5FMwiA4zRyll2FyaDZST4dGemhQ4HLOA6OBsQmK4bo96EyWF7nu1ssWycSxItm0Jg8nRm05DgRKjyyRCZGpgM0Dv0PcS4ZKqeKPWsifbMwAZqBgYGBgUEwiPTFiDLf7D1CpXmCGTSAz0kd7QUiJc4hxhwoqQSipfyyAL19MSIOqlDw2Uc/ReRVNfI5jWFKRdPXxnnfeA8FBsQmK44IllMCjvMtUL4pJCtEGaxoVpdHVirplAGKyHLew6v/QtflrCNXgBbGjohkIk0GzcDAwMDAQC3S2ZG+4O9hzkNlI7883gwac6xEHX2AzwEZ6RFzvi2LnBYuJ078PCFUTKF1SSaCvyd0Bo0nO9LnvFdAHi+rPz4YogyQOcSc901ElshkxTA6UjmV7gOPjox0hyxx5HnWmB0RDAi59FFwIAkgWHbYJ6b7sVLqsdMVoLFnjafEd0RQ/2ECNAMDAwMDg2AorQGsCF82ZqQbgKUngxaqv4I5Vl3B3yM6kAHg7+cIU74mMnBClNUvraaSPu4+RYGJkQB/gDYaouRWOIMmqCO8w13S2WrBDBrAHzTp6kEb7iK9Es6g9QV/ffpZE5AlWnYocl1Mnjb9n0pHHUwMBXt9mKE1MAGagYGBgYFBMEQizmRFDsdqpJscJN5DgYFMBi0oYxumT0XIsRKfUCbuNAqWOALBnX3bFne+hbKDfWITI4FMD1pgHemjn6EyaDxBTEgd4c3oAuHKDoPqfzLh9HsKjvSHxWlHukgfebPVAP/0zTAltyJ2RDSDxuTxygLClfgGlZceWmMCNAMDAwMDA7XgLTsUdfQBcghsp2wxCMKWeAGaAzRNPWi8w13G+mjdqwTKUgH+wEJ0IANApbOJseCHp4cq8RLJoAn2aTF5IjqiI7BITzAVeLYjUQrSeINPUTtSMYXv8HTRoxEAQTsieDQIkyeUQQtDYgW8b2EIA5gAzcDAwMDAIDh4yw7DBGi8GYthpzxRpN8tVkYlnMMczk6IEdLcgwtGe4FoGVBSwS+LN7BIO1YhHGLeDFqYDALAH1gIBbpO5oe3NFU4iG/g73crqwOiMX5Z7JkJvI7hnO/0kQVBMdwVgujh7J1N25EQ5Zu8EyrD6D+PzRrtFdcRXnschjCDCdAMDAwMDAyCg7c0LwzzzRtYMMeqKoQ87gxafQhZPcFL80QHkgCZ9R8O2F8XZrAL4DjffcFfP9obLoMABL+2MP1FkahzplxAfYw7mT3RAI33YOCRHuGR5tyBbpihHQB/BnmkK1xGF+AgKJgdEZAXLaEAKOg6ppLAeJgMmojNEsieAfx9imH6ZmECNAMDAwMDg+DgdqwEz0oC+KfmpR2rJjF5VY3Bh4TER4HEaLhr4zkvKUwmhq1H0GtLZxA0ZQdDlcFyll2FOQcK4OtnEj3InKFyCg1kCFyaF0JHePuLQmdZOQOL4S5xwoB3KMlINx2fUVYrJo8naArTNwvQ+idGgYmgJb59GnUknP6bAM3AwMDAwCAoKhuDl9SEGTYB8LP6w11UBsh7LplbXlBZQx30s6pZUBanszPaJ+7ol9XQuWvDncFen86OhClx5AziRbMjVbyleb3OocACpaIAX19YyBIvoZIy0ZJbVuIbuL/IWW9ReVVNwe1IMk5l1TpLpUUHkgB8mU+2jjr1X1Qfy+toii9vGazJoBkYGBgYGChGdROV5MTHir92YghITugrcWSOvrBj1cjf7yacrXPeFzRoCuNYWRafQxymxAtwhjKMBNORZCKc880d6IqfywSAL4M2Es5BFeodFA3imTzuMljB+1bdBAx3BCvxZZmv0CWOHBk0UVkAH9ETpt/N/T4dAVokSqWYvBlkweygCdAMDAwMDAyCgqdcLqwTxzuUIcwgAYDPQR12MmjVmgK0kW7xfjfAGSbAIStWDpRUisliDmCQYTJhpgEC1O9jRYOXbw51hnS+OYZbhBlIAgiUb4Zwvpk8nkA3VgGUCupIVRORN0HO5gsdxLBAN+B9G+4KGehO5c9Ehg7QOHowRfvdmDyeMthywYEkMAGagYGBgYFBcLCSPlbiVwhhnQ/eoQxhBgkAfP0cLNgJm0ELso6plHNtguWUTF5QJ26kh7KJoplInkl2YYdNRCJ8PT/DHeHWkasHLeSkwwqODFoqKX4uGQOv8x0miGH3IAghEjajmz48nSNoEu13A/j0Mey18QTxyYSTHRS0WQB/iW8IfTQBmoGBgYGBQVCkMz8BHKvhkAEawOcQhxkkAPD1c6R70ASdnWrmoAYI0Mb6gFQi8x4RVDUGz6CFziBwBBbMQQ3lEPP0DnaGW8dKjjO1ZJU4BtH/sX4AtoQMmqZySpZ5DqL/YTNolsU3uCY00dNAJb6BiJ6Q+s9T4jjSDcAOqf/6dMQEaAYGBgYGBkHB41iFzY4A/P0cYTNoQLBM03AXDVUQHTZRUuGcuxZAVthgkL03cA9aiMEuQMbZDJQdkRDEBx1cY9tOBi3EOvIMnBjpBkqqxMsA07KCON8hs3WAM8WUQ0fCZOt4Mshhj30AghM9yTgFu6H0kWMc/Ug3ZfhKysVkldcHH9wx1E4/q6eJyQI4ezDD6YgJ0AwMDAwMDIKCp3dKivMd0CGIj1JmQ4ZjFcTZGe4Q7z9jqGoM5qCGLacE6Nriw8DEcPHXhs0gpDORugK0gCVlY/3U9xQqg8ARNA2H7HcrKadR70EC3ZAT8wA4mZ/hYEc/jIY43xBwlTjy2JEQ1xY0gxb2+AD3e4NmtcLIikSCH1mQ7psNqf8j3cGGuwyHy1abAM3AwMDAwCAoSqtoeETQ7IgVFT/jBwh+NtlwyF4OwJX5Cep8hwzQqpsDlnhJyqABAe9bSOc7fXh00LIr6MmypgPdkD1oQLDsSNgADSAdYZmPQkiXU4YscXR/VkF5YbOsUwFYwQK04S7KFEVLxOUFzQ6G7QkDOImekIONmDyeTHzYEsfkOE3oLQTbJnkmQDMwMDAwMNCEqqbgpUlhzhNisoY7aVBGQVkyepk4siNDEgK0qib6nGJgzlfYHjSgeLCbGAfGB8KtY7SEgvJAgXU3lXrGysTlsXOniunIUMjJmwBfX5iUIH5asAAtHXxqKPFNJcOdywfQZL/KhoB2JGRGFwhus8L2u7nfGyjQlXBtQfvCmB6FIShqptPPwSI6OdoLpOKhZJkAzcDAwMDAgAcsaCqGsCw7QBt8KlF8ZDvL1oRxdsrrnZHtp1kGbaiD+kxk9PwUY9pl9DIxeYGyI+FYdpLVCNipADoiIYPG+neCZn5CZ9CCBmiSsiNAcf0f7QNgy3m2g65jaFlNdF3JROHXyeh34wnQhkNOjASCl/gOdVJPZFm1uCym/0NthV/H7qvJoBkYGBgYGGhCdUDHKmypHJMFFJcnI4OWHtleJIhh46pDBxZNtEbFnMbhTrquSAiXJV12WCxAk9ATBjiDOwKWXYUZWgAEDywkOI10/EAUGDhR+HW2LTGDFiSI7ww3tAYIHliwdQ5DGADOYdVBiR4JpaKwi5emjkgietyf5QemI6F7WZsCEj3t4W1WOoNWJEBLDyQ5gwM0y7I+bVmWbVlWSO0zMDAwMDDQgKAj20e6JWRiWF9YEXnpHjQJ/RxFMwg9AGw5JY6wgwUWMoJB9lmFIKMHh70/CKs/2Bb+2lhgUSyQYZnIsEMZaqYXd1DZ0QgysqzjA8VHtstw9IMG8YMn6Sdz1kVR1Ry8VDrscx10aiS79jC9fNEYBWnF9H+sn/q5whIUNdNJVmKi8OtkZKvTGbQiWd305NkzNECzLGsOgJsAHDuV38PAwMDAwCAwqprJkSnaFyapxBEo7liNdNFhtIy9FkWQke0yxt4Dwc9CG+oIHzCVVgGx8uLZQWkZNI7BBTIcVKD4Og530PeKREPKm5EJUnxlsUBXQgYNCHZtYWVVTHFGtgcM0GpnhpNX1VRcR2xbTgYtMEHRHX4gCRCM6JEQxADI6H+QoClsgFYxBYiWBcighS+5PdUZtG8C+CyAAPMqDQwMDAwMTgNUNQF2svDY6lSSMk0yptgBwTJolY3hBpIAwbKDMsbeA8GDz+HO8E6cZQVziIcl9OAAmQxaoSA+PgqM9wM1IQM0FsQUG1wwJGEdASeDVixAkzC0A3BlLIoF8RLKKSNRuu/FHH1W3hk2g1bdBEwMFh7rP9IjLxMJBMsgh71ngBOgFXnWJJQBAiDCwP15heSFJUMsK1hf5HAHECkJlYk8ZQGaZVlvANBq2/bWIq+707KsjZZlbezsDFBSYmBgYGBgoBLVAdjo4U4a3BDWIWCsfpAATYZjFcj5kNDLBARn9WWUOALBslrp/qIQJV4ABULFgngZB+cC1AsViQVzGsOWAQLBMmjpiXmSAotiGQsZ5WuAo/9F9HHwJFBWR1nZMAhCULBhFGGDeJ5S6bDZY4C+bzHCID3YRRZBUUAnExP0LEojKAJk0KqbQxFmSgM0y7KetCxrh8d/bwDwOQCfL/YZtm3fZdv2BbZtX9DUJMGwGBgYGBgYhEE6sCjkWDnOSViWPc3qByhxlOFYBen5kZYdCRCgTQwD8RE5wWeQyYrDHU4ZUyycrHTZVQFHbkiSgxqJBOtnGuqQ46DWzqD+oUI6wpxzlt0QRZCen2SCMk0yri3IuWuDJ2kNwiLIZNF0EB/SjpTXU0anqB3pCZ89BpwgXn0ZYFoWUFieLFIJoOAzSDllSHJCaYBm2/YNtm2vyv0PwCEACwBstSzrCIDZADZblhVSAw0MDAwMDBQjSOZnUFJ2hH1GUadRwoQyIFg/05BTvhO2362slvo5CmYQJPWpAE75ZrH+ojagJmRvEeByGguw+syhlKIjzcFGf0vREVZSVij4bKOsXthJh1WNlEEupCMjXQBsOdnB6gCB7sDJ8IEn4CIoCsgblET0BC3NG2qXQ4bUTKfy3UJB/FC7HDtS5UwWLRSgySqnBChYDjLFMaSsU1LiaNv2dtu2m23bnm/b9nwALQDOt227yBUbGBgYGBicYqRLkwoEaLLK1wBi6wuNNU+lgMETQO2s8LKC9PwMd1GQGrbfzbKKH1kga9gEQE7jUHvhvrDBtvDOMJPFPs8PMnWEXZsfxoecTKSkdQQoUPHDoNPvE+ZoBIAyyFVNha+NBcFhs0xA5mw+u8BohEFJARpPiaMMHambBQy0+v89MU7BbtjhJ0DmXhTLIFc3y9GR6uaAGTQZz9o0mlIaHyss70wM0AwMDAwMDM5YVExxen6KZBAASQHazMKZmOFOGiRQNzu8LOZUFHKIhySMhmeoKlK+me5TkRBY1M4CUvEimc82Oc53OkArcN8GTpAeyQiaimV+ZBzkzMAyjIWubahNju4Dxa+NBYoyyg6rpwHJCf9Dv1NJ0hEpsgI8a4PtQGl1uMOVGWpnAv0FAjQW4EjV/yIEhQzdZ/IK2mPJGTT3Z+YilZIy2Oi0CNCcTFqAebQGBgYGBganGJEIOamFnJ2hDqC8DigpDy+vZiZt+H7n/DBWXArzzRruCzg7/a1ygkGgeK+KrJH+QCbDONDi/fdUkpwuGRm0WBmV9xW6toETdG/DZhAAum/Dnf6HfrNsr6whCUDhaxuUtI5A8dK8QSe7rCODPNxJw19kBDGxMtLrQlktmYFurZNB88sOyjo+AAjWF9bfcgrsiET999PJ0V4izELet9MiQDMwMDAwMDijUKxcaFCmY1Wk50dmgFbVVLznZ0BSOSVADlq/T8AEyC1xrGMBmk+56HCX43xLCiyKOY0DrXLuGZNlp/z7mdI6IiGwKK8DYhUaM2hFArSBE9SDJENH0gc6+8iTGcSwzylUviwz0K2dBSTG/CeLpo8P0JBBs20nQJsTXhZAOlJQH9tp8qYMwqzY1EhJWX8ToBkYGBgYGPCiWGAh48wdBlZS5tfzwxyrWglsdHpqpI9jNT5Izf/SHNRZ9Hnjg95/H2il6ZSxMjmyAP/MJ3O4pAVoRc4LGzghbx1ZJsLv2piuyshYWBYFen7Xlpig4wqkZdCcEke/3sGBkyQr7AHcQOZ++D5rTEckBDGAk9UqFKCdlGdHGEHhZ7dkBp/pA519rm20F5gYAuolBWg1M0jn/KoM+lsz1x9aFgs+fYJ4Sb2lJkAzMDAwMDDgBXOs/JxGmeU7LOvhl7EbaAWipXLG7APkyPg5cQMSy8mAAIHFcXnrWDmVnEa/dZTZgwMUHu5i23IDtHRg4XffWmlqZnmdHHmFsoPps7tkBWjTqXfQry9sUEWge8xfFiBRR2b662MqRToizY44n+OnkwMn6PkIewYgQEF83Wyg77j33/ud30srcSxSdijVjjhTI/1ILEnlxCZAMzAwMDAw4EXdbP+BE8k4sdGyyneKjWzvb6XXyOhlAuh7+wZojjMpi41OO8Q+8mSWQVlWYYeYBTeynO+6ORTEJMbz/zbaCyRG5WYiAX/nu79FXlANFM4OMqdc1n1jBEW/j7M/cELePSupIAfcL7AYOEnOuawhObUznWySxzj6kS4gOS5vHdMZNJ9rY+e7hZ3OyjBlHtB31Ptv6YyuLBtZpKRSJmEWiTgllUXKYEMeLm4CNAMDAwMDA14UGjgx0Er9QLLKdyqmAKU1QK+Ps9N3lJwhWaibQw6q1zCBfon9bkDhdbRt+h6ynDigMKvfe4QyCLKc/fq5AGzv4DOdiZS0jhVTgJJKPZlIgNZo4KS3jvQ52ad6STrZsIh+dh/M/5vsTCRAz22hMsDqaXLKKYGM/nsFu+kgRlJgXdVM+u0XNMl+1urnZnTBSxZ7jQwUOhh+YhgY7ZGr/7Uz/ImevqOUqQ6ZrTYBmoGBgYGBAS8KZX5kZxAsC2iYD/Qe9v577xF5zjBADmpiFBjpyf/bQCsAS14QUzODhpJ4BRajvUB8WF6gCwANC/zXsecwBboyM5GAd8aCOa51khzUYtlBmRkEgK4tMep98Lfs8rWGhfTTK0Ab6aZepinz5cgCnP7SIlkmWWCBpZc8mX2DAOn1lHn6iJ76eXR/xoc8ZB2jQTOyyrILTY1ktkXWswZQYOmnI71HpdhjE6AZGBgYGBjwgjkyvUfy/5bOIEh0CKYsAHoO5f9+YpjKLGVn0ADvPpzeo+QMyRjaAQDRGA1B8WLaZTv6AK3jcKf3UJLeI/R3WWD33+vaWJDYIFFerc9k0fgoOcqyMjFA5nt7Bbt9R6lvTMbEPAAoraT+qe4D+X/rceTLvG91cyk48swgt0jO1hXQEdllgAAFDl42a2KE+rfq58uTxWySn/5PmS+vnLKykc4U9CrxZXZMph2pn0tEnFcPsqRA1wRoBgYGBgYGvCivo7IyL2dHRWDRsICCo1Qy+/fpYHC+PFkFs4OSWXaAHDXPQFdyJhJwBRY58mybfic1YJpJ2UEvB7XnMI39ljGQgaF+jo8z7GRMZGZZWUDU4xWgHZOb9QSAqYt8AjSHtGBZNhmomw3ER/IzyKmkoyMSZdXOpp42r6zWQCtlmWTqyJT53rKY3sjMRDJ98yqp7Dks91mLRCho8iQMmB2RSFDUz6X+wNxjLWzb0X8ToBkYGBgYGJwaTFngHVjIzjIxWal4foaEOVtSHau52Z+dJe+IXEcfcMo3j+T/vscpaZPpyLF1yg0shrvkl8pFSyir5ZdBaJgvL4MAUOAw1J5fUsbWVnp20PLPIMvMHgMUoPV4lDj2HqbvIZM0YPqWK6//OJCcyPTEyUA0RoGDVxDTd5SCRZk6MmUeHWuRexYaky9zHdNBfE7mP5WSH+gC9HleZbA9h2jKrcwhOfU+2cGhdjprToIdMQGagYGBgYGBCPwyP117gcYlcmU1+Dg7KhyrygagogHo3p/9+8Q4lRDJDGIA+ryhtvxJdl376eBgqRkEn9K8dDAo22lc4F+aJ3sd2XfPvTYV5ZQl5ZQhzJUVH6OMhcxgEACmLqagIjer1XOYHG+ZZMhU59nNvW/M+Z8qMUADnLJDjwCt6wBdt0z4ERQqsqxVU8mOdO3L/v1QG/UvStf/RXRduaWpPYdIH2UNdgEyWf3cAE3iOpoAzcDAwMDAQART5tMGnUxkfmfbQOc+oGm5XFmNy+hnZ46z07mXSuWqmiTLW0oBkhv9LQBsBSWOjjOfm0XoPpBxlmWhop4GE+ReW8du+in7vjWvADr2ZPeqpJKkN7KDGBag5QbxPYdpCqisgQwMU+bnO/rd+wE7CUxbIVcWC1Ryg6aeg3IDT8AZFBPL15F0OaWCAC1X91NJktcoOUBjz1PutXUfAEqr5R0fwNC0zGMdFRAGAOn/xGD+0Sc9h+QTL6yEN5egYMGohCDeBGgGBgYGBgYiaFgApBLZ07wGTpCT0LhUrqya6UB5PdCxM/v3HbuB5rPklkEBlAHMZb6ZMyK7xJEx6bnZyK798h1UgIKmzj3Zv+vYDZRUye13Y7Liw0Dfkczveo9Quar07IhPllVFOSVA379rX3bGon0X/WxeKV8WkB2gpVIkr1lyMBgtobXMzSB3HyAdkXUAN8OUeVQaFx/N/K7vGPU4ybYjUxdR8Nm5O/v3bduAaav02BF2D2UHTSwocut/KkUBoeysZ2kV9Q/mEmZde+koA1PiaGBgYGBgcIrAHMN2V9DEHH/ZmRjLAqatzGR6AHKMO3ZRgCYbjUuJiXaXlDHnW/a1MUfN7ciN9tJBvbIzaICT1dqdndXq3A00L5c3Yp9hmhOosLUDMvdQ9n0rr6VMam4fTs9h+dk6gPRgtCc7Y9GxC4iUKCgDnEuBhTtA6z1Mwe/0VXJlAU5gkZOt69xDhIGKIIZ9PgO7Ttn6Hy2hYLfDJSuVAtp2ANPPlisL8LEjOyhbJ3OwEZAJ4t02cvAklVPKDgYBshe5gW7nXrpmCeWUJkAzMDAwMDAQQfMKmtLXti3zuw5FQQxADn3H7kzGYrANGOuTn0EAMsy9O2hq20b9PlWSS+UqGyhzdXJr5ncnnTVVcW3NZ9FAEHfms2MP0KQg0G1aDsAip5QhHcQvUyOvbXvm3xPDVAaoRB+dz3Q7xB27SHeiJXJlRUsoK+EO0NiaTlMQoDUtI1nxMZe8XcA0BUHM9HPop/u+sedOdi8rQLrgDgZ7D1PWf8Y5amQB2STWSSdbJ5sMmTKfet5aNmZ+x65TdrYacNZxX/Zk3c490p5rE6AZGBgYGBiIoLSSGO6TrgDt+HoqAayW3BMGUDZmfCBTCsjKHZsVON+zzqefx17O/O7ktowzKRszVmcHaMfWAbCAORfKl8WCPhZMD5ygcdnTJJflAUBZNTlsuU5j3RygrEa+vFlrKHBhgcXJrYCdAmZfIF8WC2iZE5xKAS0bgFnnyZcFUB9mmyvQbdtBBImKDPLsi6gM9cQW+vdQhzodmbKAMkruAO3EFjofsKpRvrzms8iGTAzTv0++Sj9VZNBmraGfLa/Qz1SK9FOFLMsCZl9IOshwYjP9nHmufHnNK6gMlfXUjQ/SgBwToBkYGBgYGJxizDgnk0GzbeDYemDuJWpkzbmYfrKgqWUTAAuYca58WdXN5BAffZH+PTFCPTkqWHaAArTuA8DYAP376EtUulZeJ1/WtJV09lTrpowsQOF9u4icRlZS2bFbTUYLoEAslcjoJLvGmefLl1Uzne4PC3S791Np6txL5csCgHmXUTaQHUZ8bB05ySUV8mXNuYh+Hl9PP1kGSEWAFolQRslN9LRsUBNUA44u2BndOPIiBYgqMpGVDWRHjjnr2HuYstcqAjSACJ2uvZljBFo3E4mmwo4wYqDNIZYOPw/AztjpkDABmoGBgYGBgSjmXExnk3UfJOdjuEPaBp2HprNoUAgLmlpeISehvFaNvPlXAEfX0ZTKYy9RJmaWKqfRybq0bqRhCS0bgLmXqZFVVk2B5tF19O9j62j4g6rs4JyLqRS1ez+dt9a+k5h+FWD3hwUWx9dT/5aKjK5l0bUdfo7+zYiDOYoC3QVX0s/DzxNhcHw9sOhaNbKqGqks7pijIyzLpCJAAyjTdPJVysIMdVKGS5WOsKw0C5qOPE/Br+yyVIa5F9O9SqWAIy84v1OkI/OuoJ8HnybCrHVTphpANqafTdNRDz9P/z7wBAW6kggKE6AZGBgYGBiIYvH19PPg08Ceh+j/F16jRlYkQo7UkeedcrKN6lh2AFh8A/WmHHgC2PsoEKvIOMmyMe9yoKSS1nDfY0B8BFj+WjWyAAr+WjbQ2W6HnyOnNRpTJMtx2PY9Chx4EoANLL1JjazaGZQJ2fF7Gsyw73FgiSJZALD4Rpqa132Q7lv1dPkDQhimnU1n4h18ikiK5ASwUFGABtC1HXya1nHvo+SQqyg5BICzbqMDjvc9RjIBdQFaxRTKPB5bRyV5XfuA+YqeawBYcDURFC0bgEPPADUz5E+nZJhzEVDVDOy6n0oph9rVEWbREiKxDq8lO7L3EbrWWKmUjzcBmoGBgYGBgSgaFtJ/W+4BNv+cmHBVDioALL2F2PVn/52cnnmXq5O15Eagehrw0reB3Q9QtkJFORlA/XyLbyA5G35ITpZSp/FK6h954vPkoK64XZ2sqYsoINzwI2D7vXRt01erk3feu6iH6YFP0DVe8AF1spbcQD/XfYcC0HPfLn/KIUMkAix/HQXxr/yAytbmKcqyAsC576AgcO1/UAZo+W3qZM25mAKX574OrP0qBVCqAguAAokjzwOP/SOV+654gzpZS26kyZ7bfwscWksEljIdiVKwu/cR4JF/AKKlwMo71MgC6Fp6DgE/v4MmRl70IWkfbQI0AwMDAwODMLjib6k8qWsvsOb9amWtehOV1Tz3NZpatvKN6mRFS4DLPg4cfQEY6wcu+4Q6WQBw0Yepd+TI87SmEkZV+2LJTVTSuP57VN549pvVyQKASz9KhxEfeIKuU/YEOzdWv410Y/cDwOp3qCvLA4icWHIzsPFHdED1+e9VJwsAzn4L9TDtf4wCT1WEAUBlsItvJB2JldGzpwqRCHD9F2hse88h+n+VOnLJX1HwufsBYPXb5R8+70Z5HZE7G35IxzKc9251sgDgyk/TAJ6jL1BwVtmgTta576Az/46+SLoiMaNr2e4DBk9zXHDBBfbGjRuLv9DAwMDAwEAndt1PToFKdphh893AgacoeFJZ4shwdB31balq7HejfScdH8BKR1WibQew6afA8lvV9TK58dK3qXztbb9QG1gA1Me0/3HgnLeqK91k6DkM3P9x4PJPZjJqqpBKAo/9E52t9Zr/UFdyyJAYBzb9DFh0nZpD03Ox634KlmYozLAybPoZnTV48Ufo4GWV6G8FnvwCXddlH1crC6BjM7r3U9BUUq5W1nA3TdSddzk3qWRZ1ibbtj2NuAnQDAwMDAwMDAwMDAwMNKJQgGZKHA0MDAwMDAwMDAwMDE4TmADNwMDAwMDAwMDAwMDgNIEJ0AwMDAwMDAwMDAwMDE4TmADNwMDAwMDAwMDAwMDgNIEJ0AwMDAwMDAwMDAwMDE4TmADNwMDAwMDAwMDAwMDgNIEJ0AwMDAwMDAwMDAwMDE4TmADNwMDAwMDAwMDAwMDgNIEJ0AwMDAwMDAwMDAwMDE4TmADNwMDAwMDAwMDAwMDgNIEJ0AwMDAwMDAwMDAwMDE4TmADNwMDAwMDAwMDAwMDgNIEJ0AwMDAwMDAwMDAwMDE4TmADNwMDAwMDAwMDAwMDgNIEJ0AwMDAwMDAwMDAwMDE4TmADNwMDAwMDAwMDAwMDgNIEJ0AwMDAwMDAwMDAwMDE4TWLZtn+rvEBiWZXUCOHqqv4fBaY1GAF2n+ksYnNYwOmJQDEZHDIrB6IhBMRgdMSiGebZtN3n94YwK0AwMisGyrI22bV9wqr+HwekLoyMGxWB0xKAYjI4YFIPREYMwMCWOBgYGBgYGBgYGBgYGpwlMgGZgYGBgYGBgYGBgYHCawARoBpMNd53qL2Bw2sPoiEExGB0xKAajIwbFYHTEQBimB83AwMDAwMDAwMDAwOA0gcmgGRgYGBgYGBgYGBgYnCYwAZqBgYGBgYGBgYGBgcFpAhOgGRgYGBgYGBgYGBgYnCYwAZqBgYGBgYGBgYGBgcFpAhOgGRgYGBgYGBgYGBgYnCYwAZqBgYGBgYGBgYGBgcFpgtip/gI8aGxstOfPn3+qv4aBgYGBgYGBgYGBgYEwNm3a1GXbdpPX386oAG3+/PnYuHHjqf4aBgYGBgYGBgYGBgYGwrAs66jf30yJo4GBgYGBgYGBgYGBwWkCE6AZGBgYGBgYGBgYGBicJjgjAjTLsm6zLOuu/v7+U/1VDAwMDAwMDAwMDAwMlOGMCNBs237Atu076+rqTvVXMTAwMDAwMDAwMDAwUIYzIkAzMDAwMDAwMDAwMDD4c4AJ0AwMDAwMDAwMDAwMDE4TmADNwMDAwMDAwMDAwMDgNMEZEaCZISEGBgYGBgYGBgYGBn8OOCMCNDMkxMDAwMDAwMDAwMDgzwFnRIBmYGBgYGBgYGBgYGDw5wAToBkYGBgYGBgYGBgYGJwmMAGagYGBgYGBgYGBgYHBaQIToBkYGBgYGBgYGBgYGJwmMAGagYGBgYGBgYGBgYHBaYIzIkAzY/YNDAwMDAwMDAwMDP4ccEYEaMJj9m0b6NwHtGwCUkk1X86NsX6gYw8wMaJeVmICaNsODHerlwUAXfuBE68CyYR6WWP9QOtmYOCEelmpFNC5l/5LpdTLGzgBHN8AjA+ql5WYIFkdu+lZUI3+FrpviXH1ssaHgBNbgNFe9bJSKdL9jj161nGoE2jdpEdHkgm6rv4W9bJsG+g5BLTv0vOsjfaR/uvSka799J8OHRk4ARx5ARjpUS8rlQS6DpCOqL422wb6jtM6atmzB4Bj64GBk+pl2TbtMy0b9VzbaC89azrscXwUOPqSHjsC0HUdW6/HH5kYIV9Ll450HQB6j+ixI71HaR/VoSMTw8DRdUD3QfWyANpH23cC8TH1shT5/jGpn3Y6ofco8PsPAi0b6N9TlwBv/TnQfJZ8WckE8OQXgPXfB1JxoKQKuPZzwGUfky8LAPY+Atz/cWC4E4AFnPU64PX/C1RMkS9rpAf400eBfY/Qv2tmAm+8C1hwpXxZALDlHuDRzwHjTrZ0zfuB134NiJbIl9W+E/j9h4GOnfTv6ecAb/oh0LRMvqz4GPDwp+n6AKC8Drj5K8B575QvCwAOPg3c9zFgoJX+veRmum8V9fJlDXWQPu57lP5dPY30cenN8mXZNvDCN4G1/wEkxoBoKXDxXwI3/AsQicqX17Eb+O17gK599O9ZFwBv/jEwZZ58WckE8NQXgXXfBewk2ZHXfk2djux5GHjgb4DhDvr3ijfQfStXcN7kYBvw2/cCx1+mf09dDNzxfWD2BfJlAcBL3wae+TIQHwEiJcAVnwSu+RwQUcBJdh0A7n0fOXEAMPN8siNTF8mXlUoBa78KPP9ftNdES4Eb/w245CPyZQHA4edJR3ocp2rRdXTfqpvlyxruAv5wJ3DwKfr31MXA678NzLtUviwA2PgT4NF/IDsSiQGXfRy47v+psSO9R4DffyjjjzQuJTsy/Wz5shLjdF2bfkZ2pLyOdF+Vjux+ELj/Yxki5Oy/AG77FlBaJV/WaC9w/yeA3ffTv6fMB+64C5h7sXxZtg1s+CHw1L/l+CNfB6IKXOeWjeRrde2lf09bRXZEhc+amCB/ZPPd9O+qJtprVt4hXxYAHFoL/PEvgUEnyF3xBuAN3wXKquXLGukBHvwksOs++nf1dOD27wCLb5AvK5UCnvkS8MK36FkrrQYu/ghw9d8DsdLQH39GZNC40d8K/PgWcqpe8zV6gMcHgJ/dBvQdkyvLtoE/fBhY921g9VuBN/4AWHAV8Pg/Aeu+I1cWQI73b94F1MwA3vhD4MpPAfseA372evmZu/gY8Is304Z53f8D3vQjeqDueSOxZbLx0v8C9/01MOMc4K33AJd8FNj0EzLIstmkrv3AT28FRrqB2/4beN03yXj8+GbaTGUilSLjtOUe4NKPAW/7JRnf+z5KG4BsHHwa+MVbgLJa4C0/BW74Iv3uV2+Tz5SN9QM/eQ0Z4Gv/CXjzT8h5+827iC2Tjee+Djz1L8CSG4G3/Aw4+y2kNw99Sr6O9B6haxsbAG7/P9qYu/YDP30dMNguV5ZtA7//AF3Lee8i/Z91PukIC+plYveDwG/eCdTOAG7/Hm0oex4C7r6dNm+ZGBsA7n4DBTA3f4Wc7uQEreOJLXJlAbRZPv5PwMJrgLf+Alj1RuC5r5HeyEZ/C/Cz11FG69ZvkI70HgF+dCPQc1i+vMf/iciJVW8E3vV7YNH1wKN/D2z4kXxZB56i+2ZZwG3/A1z/eXqm775dfnZ3YoQ+9+iLJOe2/6Es089uI9slG1vuISdu3mXA238DnPM2In4e+rR8O9J33PFH9rv8kUHg52+Un3GybeB37wM2/hi48IPkj8y+kHTkxf+WKwsgu//b9wBTFtC+dsWngB330rXJzlwk48A9byKC+rp/Jn8EAO5+PXDsZbmyANprHv4MMHsN7WvMH3n4M/Jlte8Efn4HZSJf9y3Sk+Eu4CevJf2RCdumgHrz3eSPvPknQP080hsWsMnEwWfovpXVkj2+5nO0//z6HXRPZWKkh561vY8CV36afOTKqcAv36bGH3nmS8Dz3yA/5I0/AJbcBDz/dSK1ZNgR27bPmP/WrFljF0Uyads/utm2vzzLtk9uy/y+Y49t//ts2/7xa2w7lSr+OUHxyg9t+wu1tv3c17O/w6/fadv/0mDbrVvkyRrtt+2vL7Ptb19M/8+w5xHb/kKdbT/wSXmybNu2H/snurad92V+N9xt2/+zxrb/c7Ftj/TKk9Wy0ba/OMW2f/0u207EM79/+t/pO2z7nTxZyYRt33WdbX91nm13H8r8vusA6ciPbparI5t+Rtfwwreyv8M9byEdadshT9ZQF13Xdy6x7dG+zO+3/Y6+wxNfkCfLtm37D39J9+3Qc5nfDXfb9n+fa9vfOEuyjmyy7S/W2/a9H8q+P49/nq5t62/kyWI68pU5pBcMrZtt+0vTbfvuOyTbkR/QNTz/X5nfxcdt+6e3kbzug/JkDXaQjnz/atseH8r8fscf6Ts8+a/yZNm2bf/pr0lHDj7r+g7ttv1fq2z7m6uyv0NYHF1HOvLb95Edtm26Tw98kq5t3+PyZKVSpAdfnmnbbTszv+/cT3rzvatIj2SB3Z+HP5vRvUTctu95s2NHdhZ8OxeGu237PxY6dsS11+x/kvaaR/5Bnizbzuw17vsz0kN73X8uIrsmCx17bftfm2z7Z6+37cRE5vfMjrz6a3mykgnb/v41tv3vc7LtfMce0pufvV6uHdnwY7qGdd91fYck7av/MlWujoz2kT/yvxdm68j2e+k7PPQZebJsm+zSF2pte8cfMr8b6rLt/z7Ptr++PHu/C4uj60jP7/1Qxo7YdkZHdv5JniymI/+52Lb7WjK/79xPfqxsn3XzPXQNz3w187v4ONky2XZkqNO2/2MBPcduX2Dzz+k7rP1PebJs27bv/SBdg9sfGemx7W+dY9vfPNu2x4flyTq2nq7hvo9l3x9OnxXARtsn5jnlQRfPf4ECtFd/RYuz6e78v238qVxHbmyQNo+f3Jr/AA130wMn8+F6/PNkNI5vzP/bw39Pjomsh6ttJzlV9308/2+tm0nWw38vR1YqZds/vInWK9fIJhO2fde1tv21JfIeri2/9N+ImY5sv1eOrLEBMlBeQd9wN/3thzfK05EHP0X3rX1X/t/+9FG6bx175cg68arj0P9L/t9aNjoB4RflyEqlbPsHN9j215Z66EiSNrivL5Pn7G/8ib+OrL/L0ZHfy5E13E0OvZez1t9Km/Qv3y5Hlm3b9v1/Q85ax578v/3+Ttv+18Zs4iIMWjbRWj32z/l/O/yC3IAwmaSg6BtnkW12Y2LUtr99EQWE8TE58nY/SN//5e/l/2377+lvG34sR9bYINnH712ZTWDZdoaU+fFr5dkRtp+c3J7/twc+SX/r3C9HVtcBZ6/5WP7f2nbQ3x76OzmyUinar78yl0gCN5IJsjFfnS+PWNp0t+Nz/Db/b4yUkWVHxgYpqPbSg6Euuua775Ajy7Zt+5F/JD1o2ZT/t4c+4/gjksjH4xvp8/740fy/tWwiHZHlj6TtyIp8O5KYoGfwGyvk2RHmj3jpyIYf0d92PSBH1kgv6fcPb8oOPG07Y0d+cqscWbZNPse/NHj7I799L+01PUfkyGI+x1Nfyv/b4eedgPBrcmSlUuSXfn1Zvo4kE0R+fm1pIJ+1UIA2uUocUylKS08/BzjXo2/jvHdTadna/5TTpLvlHuoDu/7zVAbiRmUDcNVnqGTj8HPhZQ11UI/b2W+mlHsurv4s1b8+//XwsgAqoymppPK4XMw8j9Z344/lNM4eXku9Kdf8Q37/SyQK3PQlYKgd2CihjCeVpB6OGaspLZ2L894FNK8EnvmKnEEGr9xFZZQ3fdlbR677Z+D4etKTsOhvpb6DNe/1rlu/4V+AWAVdvww89zW6X5f/Tf7fZq0BVr0ZWP89OYMMDj4NtLwCXPP3HjoSAW7+MpWoyigHTEwAa78GzL4IOOcv8v9+wQeBpuWOHZGgI+u+Q2WAt3w1X0dqZ1L/1N6HaOBFWPQeBbb8nHTEq9fyhi8CVgR48VvhZQFkRyqmkH3KxfzLgRW30zMyJmFC796HgZOvkj3O7W0oKadnsO+YnDKeVAp4+kvUJ3XBB/P/vvIOYM7FVP4iY5DBpp9Qr6BX/0vVVCovPvoC2dKwGO4i237uO4Dpq/L/fs0/ArFyurcy8OxXgVgZcO0/5/9t2krg/PeQ7R9sCy/r8FrgyPPUI57bRxeJArd+HRjtoesPi2SC9uNZa2jfzsWa9wONy2gdZdiRDT8ERrqAG/8l345UTSV/5OBTckq9Btvonqx+O5Vi5+Kaf6Qe2he+GV4W4Ow19cBrPPauWecD576dnhEZpecHniQ7ct0/59uRaAnZyIEWsqNhkUoCz/0n9SJ66ch576H5CWv/Q07J3MvfJf1+7X/m9+NWTaVS9yPPy2lh6TkEbPkFcNFfevsjN30ZsKLUKywDz32d9prLP5H/t/lXAMtupTJfGeXZB5+mQV7X/EO+jkSi1Bc81Abs+lMoMZMrQNv/ONC9nxxGr2bwSISMVPd+qmMOA9sGNv+MGsLnXOT9mvPfS82XL/9fOFkAyUqMAld5ODoAOftr3gvs/FP4muXeI9RgefGd9LleuPLTQCpBzlVYvPw9oLLRO6gGqE9g/pUkK2xgvf9xur4rP+2jI1F6wLv3A4efDScrmaCgetH13kE1QBtc5VQ5OvLydwE7BVz+Se+/VzUCF36AdCTshMz+FupZuuAD/kMlrvw0DWnY/LNwsgAKYmpmFNaRORfTcIiwOrLzj7QBX/V3+Y4OQHpz5aeBzt3AoWfCyYqPkWOx7LX+zeCX/BVQVkfBblhs+gnpyBV/6/332hkUlG79TfjAunMvDY655KNAWY33a678FPUHywiaXvpfoH4uEQNeWHw9DXlZ//3wzs7htUDHLtIRr4EBlkVDJ/qPU+AYBqkkDY6Zf2WBveY9NMBJhkO8+W4gOQ5c+nHvv1c3U3Cx8w/hHeLBdnre1rwPqJnm/ZrLPk57jSwdqZlBe7MXZqymQSjrvx8+sN7zIO01V/ytjx2Jkj/SuSd8n10qSX2I86/0H7xzwQcpyHnl++FkARQMJsbp+3uhsgE4/92OLQ2513QfpCFlF33Y345c8Sn6Ppt+Gk4WQIFX5VRg1Zu8/77wWrIj674bPrDe/zgFMld+xltHojHg0o8CbduAYyED6/go+VrLX0d67oXz30vXLmN+wsvfywzf8ULdLPIfdvyeEhBh0HuEfPoLC+gI22te/WU4WQDNnKiZSf6bF+ZfQYOANv4klJgzIkALfA7aq/dQQLTiDf6vWX4bUDsrfDamdRNt0Gt8DD1ArO2a95OT0ntUXFYqSZmRBVcDTUv9X3fRneR8bf2VuCwA2Ppr+rnm/f6vaVhADs/WX4dziAfbgP2P0TqWlPu/7sIPEvsddiPb8CPahSCmiQABAABJREFUoJfd6v+alXdQwBiWRd3/OGX+LvyQ/2tKKihrt/eRcEYqGad7sfzWwhMGL/gATRvaHJL92/xzcnIL6ci0FeQwbPxxOIe45xAxv2veR0y7Hy7+S6D/GI0fD4MtP6em9yU3+r9mxRuIrXv1F+Fk7X2YMqwXFdCR0irKZuy6j7IbokjGidFccjNQN9v/dRfdSWTQ9nvFZQG0jpEY3Tc/zFhNGYZXfxlORzr3Uhb+ojv9J6xZFtmR7v3hdWTjj8mRKTT1bOlraK8JqyMHnwYGT5CD6odYGdnQQ2vDDcKybbpv864Ampf7v+6CD1DQFDaLsOVumkbplYVkmLqInOLNd4dziPuO0eCT899TeK+54APEfocl6Lb+iu7/stf6v2bF7eSzhB0WdeBJsn2FdKS0kvaaXfeH22tYILT0FqBhof/rLvwQ6ci234jLAkjHrCjdFz9MXQQsvJp8wDA6MtxNe/E5b/OfwmdZRJr1HAzvj2z8MU0ZXF7AHznnbUTQhSUodj9I0ygv/kv/15RWUtCx77FwBF0yAWz/HbDi9UT6+eGC98uxI5t+SpUfhfaa2RdQYL3hR+H2mt4jdN/XvNffH7Es+i4tr9AAGEGcEQGaHeQctJEemtxy9l8UHskejZGBPvh0OGZn008phe/HsjCc9y4ANrGNoji2jpjY899T+HX1c4F5lwPbfiuugLZNBnXBVUD9nMKvXf12chzClHBuv5eCSj8mgmHZrUBFQzhjP9xF93312wqPyY2VURZh32PhzlDa+kugqpkm+xTC6ndQ0LT9d+KyDj1L5S2r31b4dQ0L6d5u+004Hdn+Wzpqodi4+XPfSY5Ry0YxWQCw7XcArOL6v/Q1VOYbZh37jlOJx7nv9GY0GWJlVCK7+8FwJRM7fk/HEiy4uvDrzn83ObJhSiYOr6UyufPeVfh1088Gpp0NbPu1uKxUkuzQkpuLj2Rf/XYiu9iYehFs/x1t0F5ly26svIPs9o4Qwedon8uJK0AYRGO0Pxx4Mpyzs/VXZPuWvqbw61a/HYBN2U9RtG4iQuTcIva4cbGz14S0I9t+S5/TuLjwa1e/nfbAllfEZAEkC7Z/Fp5hyU1UFbDtt+KyRnrovq96U+Gx/bFSeh73Px5OR7bfS4RRMR0579201+z8o7isg89Qa8cFBcg5gIKm2ReRPorqSCpFxOPiG4Ca6YVfe967aa8Jk2na/juys8WONjnr9aQjYezIYDvpyHnvLOyzllYCK99AgfXEsLi8rb9yfMQrCr/unLfSGoTRkWPrqJSyULIEABqXAHMvBbb/XlxWKkX6v/h6ysoVwnnvomMMTr4qLu/VXwGwiu+jq98ORMtCZXXPiAAtEPY/QUp1dpGACciwnnseEpMVHwN2/IE+xy+dyjBlHo25DaOAO35P/WDLihhfgOqYu/cD7TvEZHXsog161RuLv3bZa+h77XlQTBZA1zbjXHpQCyFWCpx1GzlG8VExWbvvp81pZYBrO+etNAp81/1isiZGgP1PEoNU7MyU5uXkFO9+QEwWQI57WW2wsz5W3E7sX+ceMVknX3V0xKeUzI3lr6WzmsIQFLvuIyNeO7Pw60orqXxj9wPi5UnMJgTR/5V3UCnY/ifEZI0P0XtX3F787KXmFdT3FsqO/DG4jpzzF46zLjgq/vgrlD0Oao+tSDj93/lHytYWc+JKKoClN9F9Fs38732Y9ppi5BxA9jiVEL+2xASw73Fi2IudqzNlHjnEe0KuY7SMbG0xnP1mOspGdK9p207v9+q9ycXy11L/7I4Q+r/7AWLQi5FKMef69z4qfuTE3ofpvgfRkRW3074k7I+MkryzXl9cR5qXE/kShsTa8wDZkYXXFn/tOX9BpeBd+8VktW6i3uJixAtAGb1omfg6AkSqzjiXeh8LIVZK1Vh7HhI/TmDXn4icPtujzzkX57wViA9nzhrlxWgfEXQr7yh+FuT0s6m3Noxft+dB6lMNstesvIPOou3cKyarZQORN0H8kZV3kI5sC6H/O/9IpFKhKhSAynyX3UL+i2BWd/IEaPseJSZ6xnnFX9u4NJwCHn2BHpaVtwd7/YrbgfbtYmWOtk0s/ZKbgh38uPxWAJZ4j93uB+n9xZg4gJydxdfTgbciCjjYDpzYTAdtB8HK24GJIWLwRLDnYcogBTkcdMZqoG4uMZsiOPg0lYkFcXQAyhAeXy9WwpZKkRO3+IbCjD4D0xFRp3HvI+RQB7m28jrq6dj7sBiL2n2QjPeK1wd7/fJbgbE+cRZ13yOOfQhwyPCci6k8SXQdD6+lAC/IOloWbS7H1okx7ckE2btlrylc3sXAnklRh2DPgxSYLy5QJspQ1UgBuGivVvdBoPtA4TIhN856PWUAjgtmY3Y/ANTN8R6OkIvp5wC1s8XtyNEXgYnBwmVybiy/FTi5VbwP+cBTNLwlyGHlZ72BSs/YgbC82POQY0eKsOwAEaGLriV9FLEj/S1ELAXda5a9lsrBjgkOS9j7CN13v14fN2aspsyGqD9yaC3ti8WyFQwr3kBOrUiZYypJ++jSm4MdxLv0Fvopakf2PUI6tiSAo19WTWWOex8S05GhDnp2gu41K95APU2iA7523U/EW6FSYoa5l1Lbhahfd+BJIgyWB9B/yyL9P/y82PAm5rMuui6Yz3qWs96igfXu+2mvCZLAqKinyp/9j4nJ6thNGbigvv+yW4moPCl23ufkCNCSCdpYltxYnB0ASAGX3kKTakQOdz7wFLED84ukihlYidvBp/hldeyisqRC/TBuVDdTra3og7z/cXq/X8N2LpbdSmWOIiwqc1qYES+GeZdTeZJI3Xd8jPpOFt9QuHSNwbJoUzj0rBiLeuBJoLSGvnMQLLuF2DSRbMyJLaQjQQwUQFmGGavF6+f3P0FZYb8BMrlYciPVbYuwqOw7FisTZVh0HTFkIs7++BBw5EVyPoIgEqUSvoNPi2Vj9j1GOjL3kmCvX3Q9AJt0khcnNlPgGvRZa1gINJ0lHjTtf5xKactrg71+2WvJhogEFgeepJ9BbeSiaykwENH/ZJwcFy47cmM4OxIto0O3g4AFcgcE7MjACcp2LLou2OurptJecUBgXwPo2matoc8JgiU3UgmbiB055Ey3XBLw2V54De3xewUCi/gYkYhLbw6uI4tvpP1J5ODe/Y/RvhjYH3GCHZH7dvJVKl0Lakfq59Dk7H2CDvG+xyk4qZgS7PVLb6a9pucQvyymI0EygwCtd7RMzI6MD1LPbNB9LRKlNd//uKCOPE4B3iyfATK5WH4rVQmIkOEnttCQrSDBIEA9as0rxFtl9j9BflbQvWbxjUToiegI81mDkoFLbqS9RsSOYLIEaCe3EtsVdGMByAAnJ+gh4cXBp2lqXElFsNc3LnGyMU/yy2LOWNANGqBN6MRmfqZ9fJAermL9MG4suIp+HnmeTxZA61gzgwx4EMTKyCiKGMTjL1NGa9H1wd+z+EZiJo+v55d36FliogvVlrsxfTUNHRAZk83ew6P/i64lFpW3f2q4i3QrSGaEgW1CIlmEQ88Su1yoGd2Nsmp6Ng8JrOPx9bQp8TxrC6+mwIe3f8q2yUFadE1wHZl5HmU2RPT/wJO0UfBc29KbaCQ3L4k12Ealazx2hOmuiP4ffIb0I6iOVEyhwEBkAmfrZspocdljx46I9E8dWgvMvZjKd4OgcQkNHTgiwOozZyyogwqQPT2xhYYr8GCkh8rXgpRAMTCbIxJ8HltHEwybAmQrAGL+514i5jS2bqQKG55rW3AV6cgJTqbdtslBXXRtsOoJgPaaquYMscEDpiM8z/biG8i28vZPjfRQ5dGia4K/Z4HzWhES69AzZBuCZD0BeibnXSa2joefp4zWYg5/ZOlNlNFq3cwny7Yp+F9wZbAEBkD2sbRazK878CSoCitgEA+Q/h97mQbQ8KD3CGW0gga6QIbIEyEoDj5DNqRYuwVDZQNNehfRR0yWAO2IY0TnXxn8PXMvpQljvAs31Em9OywwCQLLIiNz9EX+UsDDz1E5ZrF6VzcYk8Zb5nXsZaqFD8rEAdSU2bCQfyqabVMGc97lwVhGhkXXUv9UfwufvMPPU6kEz7XNuwyAxV/C0HcM6D3Mt4lFIvTdDj/PX55x9CUyGlWNwd+z8BraIHjPO2FrweOgsgCLV1YqSeux8Bo+HZl/BZVF8jqNR18kHZkTMKMFZGwOb2DRd4xYRh4dicZInsgEwkPP0kYRNOsJkKxUnD+wYN+P51lrPoucRl57nEpRGRqPLICCkNZNdP4cDw6vBWDx2f95l9N7eIOm4W5yUHn3mvmXky7z2pGDT9M9KNZ/48aiawHY/I7c0RfpfVx2ZI7YXgPQ3jb3kuAOKkD6L2JHjrwIwHL2Dw5ZgIAdOUr9NzzrGImQTonoyKFnqYetuin4exZcRXbkGCcZzvYaHr9u6iKanMm7jrZNzveCq4v3A7ux8BryB3lbEw6vpf79ORcHfw+rxuEtu+09DAy08tnIaAn5yCIExdEXyYYEzYwDpCOJUf5hYocdu8NDTjcspMQAr38cH6P38BBYAJG4rZuEholNjgDt8PNUjlNsWpgbZdXEEvAaDXZTg5auMcy5mJj2bo7yDNsm5iloCRTDrPMp9c7rEBx5AYiU8BkNgB583uCz5xCNMubZxAAyGgB/Vuv4euo9yz1UsBAq6oEZ5/A7BOwg0AUcGwtARmqghS/1nkqSDvOu4+yLKKPCaxCPrqNm/aAsI8OcS+ge8DgEnXsoMz6X89rYRsQbWB95kZ4dHh2pnUEHifIGn8yOMH0OirmX0IbL0z+SGCdmfh6nrDkXk47w2pGjL9IQAR4dsZygh5eg6NhFrDKvjsy7lEqKWzfxve/4egomeQLdinqyPdxBDAt0OQI0gPamwZOkJ0GRSlEGYdF1fGTIjHNpr2nhPET9+Hp638wAPeNuzLuMnjWevWa4i/Zd3n2UBQZHee3/C3TAd0V98PdUTSWS7Rjnvsb2Gu599BLSEZ4jGZIJel547cjcS8iv4HX2j7xIe83MAL2eDJbl+CPr+OxI135q1eAJdIHMuYQi+j9rTfCsJ0AEbOMyAVLVeX2x6Y25WHAlVULwnHWYjFNvL7d/7Dyb3H7dy5T1bCxw/FQuLIv2XV4dObkVSIzxk4ELrqLEh8Dh32d+gJZKkZPJa3wBqsc9uZWvpvfoS46Dei6fLBb08Chg9wEa884bMMXKqEeIl2lp2UiORNByGoY5F5OTxBN8iga601YR88SzkbGNhXcdATJqLRv4Uu8tG6gnoHkFnyzmrPMETR27qOSK19EvrSSHgHfc7LGXqO8kSIO4G3MvoWMAug8Gfw9bB7/Def0w83zqH+EhXxITFMSI6Mici+ie8xj7oy/R2Ta8OiJiR05uo3Lu2ZzrWF5LQy54mcbWTRTo8jDRAOnIUBtfdjxtRzj1f9YFACy+QSGpFHB8A78+ArSpt2zg60Nr2UDN7zPP5ZPFdKSFI/js2Enn8S3iZIdjpRSI8wa6x9ZTcMbjoAJkj8f6yO4FlsXIEM4gZuZ5FETy6EgyQXaLd18DaM9u2cAXfB57ySnd9Dnk3g9sv+CxkZ27gfhI8D4mhtIqWkteMrzlFSeI4dxrZl9IPdn9HP2sLHPPq/8zz6NKLB4dmRgmmyxiR+ZdSuvIoyMtG6k0nieIATJBUyuHP3JyG+kIrz2umkqVYryB7rH1ZO94MuMAERqDJ/gIihNOaemsNXyyZl9ElTm814bJEKD1HCKWPchErVzMXkMRMc9Bcq2bnI2F02hMXUxn2fA4Vuy1vI4VQNfWtiN4YJFKkoM6m9P4AhmDzRNYtG4mlp3XaERj9IDw9A627yCjIWIQ51xIOtKxO/h7WjeKOahNyymwY4YgCFjPAq/RAEiPT2wJHlhMjFCvlQgZknYaOTaylg3EjgXtLWKIlRLRwLOOHbtooqKQHbmQnFuezGfrJnrWeDeWGasdp1HAjojo/6w1RGIFdQjijj3lYb0ZmO3h2chaN9Mkzfoio9NzUV5LwTHPOnbto71GyB5f4NgRjsCiZRMFyLxBTNNyIrF4gibW1zL7Qj5ZAF3biS3Bic7EOBFDIvo417EjPNd27GUnW3cunywWfPISZvERsXWccxEFnz2cJNaci/jtSPNZNKCIyx476yDkI6wB2rYFP/4kMU57zWyBfY3thTz3rWUDlb1Nmc8nq6SC9hoem3ViC2VURMjAWRfQ5EjevWbm+QJ7zTmU+eSyx4xUFbi22RfxVdmM9FBSQMSOMB3m6fls3Uw6UujgbS+UVtJew0ti4QwJ0CzLus2yrLv6+z1GfjInTMQhYA9yUIYglSSjwWvoAUqrzjyXGIagOLGFjChvEAPQeqTiwacrduymxmZedgyg71dWy8e0nNhCmx+v0QDo4WrfFZyNPrmVfoo439PPyf6MYoiPORuLwDpGoqQjvI5VeR1/EANQgDbcSfXpQdC+k8rCeLPHAA0vKKkKvo4AXdusNXwlVwwssAjqEDBDLWJHeMtc4qP0vPGWdwHkrE9bybeOJ1+lvoxiZ4R5Yea5fA5B23bqbRQhDKatoswnj2N18lVaRxEdmX0BPWtBHQK214g82+xeB3UIkgm6NhFZ0Rg9ozx25OSrlNEVsSOz1vCRWJ17KKMrov9TFtD35NH/Y+v4y8kYZq2htQkafLI1FyV6gOB2ZGKE1lLEHkeiFFi0cUxfbt0kRpgBdK/jIzTQIQjadpCOiNqRaBmn/m8VW0eAru3kNg47EpJUdX9GMcRHad8WkVVSQaW6XMT7JhpSFHSIhhuzLyCisy/gcVRtji8tsmc3r6DMZxuPP75ZbB0BYNZ55M9w9nyeEQGabdsP2LZ9Z12dx9ksJ7ZQyWHQ6Uxu1M8jgxM0aOraT42MvP03DNPPJoMaNLBo30nOmEgQw/sghzEakQjJCzpdKDFBgaPIBg2QAU7FidEOgrbtFOjWz+eXNWUBBZ9BH+SOXeSghjX2QR2CE1vEHVT2HYPqSJvjFInoP3MIgjpWiQnazFmAzIuZ55NDEPQw7hObKcPNy6ACmYxF0Gtr20EMqgjRAziO1fbgxr5tR7Cz/7zAdCRoKWw60BV4tqMlpFtBM58Tw3R/Re3IjHMoYxG0FKptO+01Uxfzy5qygErRgj5rXXudcjJRh+B8foJi5moxO8J0KygZyCaeijzblkX3LeizlkyIZ2IA/sxn6ybHjizgl9W4lAiKoEFTxy6HMAvhj7TvCJ4db9tO90yIMHOc6KD6nw50Be5brJQCi6A6Mj5EvkQYezzeH7xcrn0nBTE8Q70YmpaTjgTes9leI2gjZznZ8aA60rpJ3GYxexBU/8PYkViZ0+IR0K8bH6KWI9FnbdYaJzvON9r/jAjQCqJtOwUx0Rj/ey2LnP2gGwt74EWdxunnECsUhEWybXqQpwccQZ+L+rk0tj3og9yxm5yPBoGNBcgEn0HOg+rc7TCo54rJYmP5g5amtm2ndRQJdCMRvsCCbeTCDvFqKrXrPlD8tck4yRPeoFdRbfSJV4O9/uQ2IjR4Joq6MWM1fUYQY9+1jwJdnolybjDdCjr+ngUxIs5HJEolQ0FlsWAnTGAx2hss85kYp7UMepRFLprPIjY6aIDWvoN0RIRBBeh+t+8KFny27RDP6AI0bhzg0BFnr+EtXQYyFRQ8jhUgbkemrSI7EqRcLhknWyq6jg2L+AKLth1EaIjuNTNWk54FCT67D9BeMy2EPQaC7zUnt9J9DmNHeP2RGaL+yCoa7R9kmEwyQT6CqD42LHIqKAI6xO3byX+pnSUmj/l1gezIdgB2CDvCAouAdqR9h7hfF405/sirwWUBIezIStKRICTW2AA9b8LE+woAFof+byP94JkW6cb0s4MT74zoFfVH2PrzlLjjTA/QbJsueBpno70b01aR4QkSWLTvoKZtkZJDwFUuF0Ap+o9TaZGoQlgWpXE7A5YUdOykE+1FnA+AZCXGgjEEHY6yNwte29TFdB/aAxjEVMoxiIKbGOAY+4BOY/tOCnRFMjFAZmhEEIeg5xA5H7yDJhhKKui9gZ3GEAwqQI5EfDiYjrDrF9X/hoVUPx8kg5ZK0etEZQH8DkHFFHHng8eOdO4hBlXYISghe9cRMBPZsZuea1EdaV5BbHSQ4DNNhgheG3MIgqyjbTv6L+joAKQjXfv49hqRbB2Q2RODOATMjojqfzRG9y2IPQbCBboArWPQvYY5e6LXNmUB3Ycg65hK0v0VtceAQ1BwEI/l9UDdHDFZPJnP7gMU8IvqfyQCNC0LXtHQvpPWUdSOTD/bIbFOFH9th7PeonakeQVNuw0SoCXj5JOF2Wuaz+Jbx9IaIuxFwL5nEP0PG8SUVtG+zUOYhbHH088GhtqDHZHAnhHRZ5tV+PHMMsCZHqANd1LNahiDOH0VlZL0BGCRuvY7wYFAtg6gMzqiZZRBKoa0gypoNADHIO4N5jR27A65sXAEFl17KXMjUssO0Po3LQ8mq/84MUBhgvjm5RRYBJku176TDKio89G4lGqjgxhE9rCLlPcyzFwdbFCIbZPzEUYWmzQWJIPcsZMCLFEHNVpCfW9BNrK+I2QDmjknobnB4xB07ad1DBPEABnHohDaHT0Ka0eCZv07dockzJzNvT2gQ1BSBdQKZnRLq0hHgjgEA61UoiLqxAG0jomxYKVQ7Tvp9UEPMc9F4zJyGoOsoww7Mn1V8AxaZ8i9pskhSINMDW7fSfZUlFSNxmgtgxAUvUfo/oaxI9NW0bTbIMdoMHssakcal9HPICRuOtANof/NZwWTlUrReoclzIBgPkLnXgpiRAmz0kryZYLY43RGN8Q6Ni4jvzfI+XwsgSGqI+nAgiNAaw5pR4IQBsk4Pf9h7AiX/u+ig7t5h1ExlFYRaf9nlUFjD18og8gYgoCBhaihB8hpn7oI6ApQvsb6q5qWictrWk5ZuMGThV833E1MQph1bFpODkGgB3kvGTTeSZi58roCbNBsE5+6RFwWz4McNqMbK6XvGtixssLp5LSzgdEeIjsKYfAkBbqNYdbRCbaC9A52Os+aqIMKkI4ECdDYWodlvoFg+h/WjpRVU1ASVP8jMbGeGIamZRRUTAwXfl3fMTryIcw6MhsUxB537iFnXaR0maFxaTBHn+lsYwh7zOUQ7BQvywOAknIqKwtqj8PakablZEdGegq/bribnMsw+xqz5UHsSMcup7crxF7TfFYw5jsd6IbYR5s5Mp9d+zM2VQSllUDd3ID2eA+RqqF0ZBkdozHaW/h1fUeIEA0VoDHCOICz37mHvptoEAPQs83j14VdR/dn+cG26frD2OPyWtKRQP7IHqoeEg1iAHp2eo/SsLVC6D1KLRBh/BFG9AQijHc5xHuIvaZ5RfBKFAdndoCWjthDKCAz9sV6fhLjxJCFebAAyggEMYhd+4CqZprQJ4qmgA4BU9AwDGqJU9YXxPno2hdugwboPvQfL+40MqMZ6kF21qWYsz/WT4FOmGAQcJjGAA5B525ac95z69xgGapi+s+CgTDrWF5HzdGBAosD4ZwPgO5b71GadlYInRIyCGk7UqTnhzmoYe1I09Jgz1r3AadMSzDrDwR3CNKkUoh1rJhCOhKkB7NzbzhnGCB97jlcfCiPFDvi3PMgdmSoLbyNDFoK1bkbmDJPjx2RQZiV1wa3I137wz9rzcuBgRbqsSmEdIAWJohnwWeRaxvto7O+wu41TUuD+SPdB0hHwpKqANBZRF6HBL+uvA6onhbs3M3OveFsFuDYkYPF+yLZfRWtDAEy+lwssBjqIFsShngHgldQdO6hdRCtHgIc/beL984yOxNmHWtnUy9sMX0E5NiRpuVk/zjOXT6zA7TugzRhr6pJ/DPKqh2HoIhC9ByihvSwN6lxqVMKUWSSoyyFAIo7cuzapy4KJ2/q4uIPVjJOaxl6HQM6xN37aSxzGB2pmgpUNhY3UqwnIvQ6LqJsRFEdORDeiWPftWiAJoH5A+i+FXMIknF6RsIYXyYLdvFele5DQM1MsgWiqGokW1RM/9NkiASComt/8dLU7oPh9TGoY5XW/5D3rWFh8ZLzsX7K6jaFJcyW0ETY3iKjnbv3UxlU9TRxWSz4LKb/Mu1I75HiTmPnvnCZQYCD6GF2JGRg0bikeBAjy46w9xcbptG9n5y+MHakZgaVUhUNdBlhIMEf6dpffHBT1wEJ9pgFFpr0v2FRcXs82kvVQzLscXKi+Ij47gPh95q6OZSpKmaP00GMBDvSc7j4XhO2BQIITlB0Swh0IxHHjhTx68aHiDATbclhmLqIsn4cB6if2QFa72HKIIRJTQN0k4s5+jIyCOz9dpI2jmLywmYQqprI2BfbWHoOUhlUnWAjKUPDInJ2Cz3I/cdJScMajcaAZS5d+0lWWB1pXFq8hIHpUEPYjWUhkQGFHmTbJh0KU7oGUPNwtDRYBq20mhyIMGhcShtLIR3pO0Y6EnodnbUpqv+HxCfKMVgWfUZRwkAC8wfQOsaHCw/TSKWcAC2krCnzAVgBHNSDFMSIjI92o2Fh8aCaBXBSgngUL3Nk9jisHQkSfEqzI8whKNDzxuxIWOejfi7tIcUcq6591IctOrSAIQjR03uU9trQ+u/YhmL3reewHDsydVGAdZToj8RHituRnoPhs3V1s6lMslgQ03OIyIyKKeHkTQ1gR7olkUrp4DPAfQvr+0QipGdB/DpADmE2MVS4LzIxTj36Mkh+INg6VjQAlQ3h5AUpTZW1jsyOFPP9XTizAzQZBhEgpSrmoLJFFZ3Ol5YVoKRyuJvq+cMaRMui71tMIboP0uvClEEBtI7xYWCwzf81staxYREAKwDTIsFBBai8I8jGAki4toXZn+eF4U5a67D6H3GGtRQLLHqPyCFDGhbSlL5CfQiygpigjlWvJDsShLHtPUpOiujkNYbGAHZk8ASd2xh204yVUQN9UQfVCXRD68gCp+exQPmyNHsc0CHoPhDeHgN67Ug6O17IjnSRHQkrK1pCz1vRzM9Bur9hyqAA+r5jfZRJ9ZUlKYPA1qaYQ8wI47CYuqQ4YdB7GIAVrt8HyJAAha5t8AQFcWHXMVpCQVoxf6TnUHjiEaBrG2oHxgf9X8OexSkh1zFIf7Vt030NG1QDAf26A0S+ht1rgvgjfccA2OH1v7SKvm+QLKsUv24+lS8XKjuUVWGWtiNHAr/lzA3QUklSChkP8tTFNDlptM//NX1Hqa65oj6cLHaTCm3SzFiGZTWZvCAGMSxbCwQrl5PlWJWUFzf2iQnaXGRsmvXzaEJfYtz/Nd0HyZEN08sBBAss2N9kXFvDouIBWt+x8M4AkNkIC+m/LINYUU8sbCEdmRimTVyKHQlQmtp3FKibFZ4MYfeiUGle2tGXcG2B7YgEm8U+o5A89rewOlnZQKPKC+ljYoLYYRlB/JT5+uwIs+mFSANZDioQLDvYd0yePQYK678soqe8ls7kKnRt44NEmsnQkcYlQN/xwoMSeo+SjoTpCQMymcxCk0Vl2WOA9EyXHWHft2Bg4ehP2IxuxRTyDwutIyMUZFxb/TwnQ1ygEqX7INn+sGRIOkArYEdk+XWAkx08Uvg1fUflyJoyr3i1ErvusPetZgYFzEEmxjs4cwO0/hbqHZDCfAdIPfYeDf8QA+QQlFQV3liYstSHZD6AjGPlV2NuOz06MoxvEIeg9wgpadhSOYDuRyGDONBKD5+M+zZlHgC78Kh9GSWHAFDdTDpSaGNJG0QJ8urnks75GXvbdgI0CesYxLHqO0bllJWCB1C6MWV+YXaYGUspdiRAaWrvUTmBbu0sp1yogP4zXZVx3xrmF7aPyQRtmlLsiLMRFiINeo9QiUt5bXh5Re1ICwBbzn2rd+xIXyGHQJKDWt3s9DNpcqzq5xYvp5RlR4IQPb1HqP84bBkUQHa2kB2RbY9hFy477JPkj9TOounLhfSf/U0KQTe/OKnaf1wu0VPIIe47RnakrCa8PLaP+so6nnldWEyZR5nvkQKj9mX0HwP0fa2oPjtSV2Qdkwmgv1WfP9JzmHqHS6vCyYpEnMD6SPC3hJN4CiHTINY55+gUNYgSDJRlFS9zYQ9y2NQ0QA9MYoyyBF4Y6aHyBWlOY6R4EFM/NzyrA9D6FDSIbGOR+SAf8X9Nf4ucoJr1MxUkDFiJi4xrm0M15n5lh6O9tBnocqz6jzv9CiFL5QCyD4U26FNhR2RkK6IxysQVdKycZ0P0fB83psynRmm/iZiDJ6jfSUoQ4+hZUTJkfnhZTF6hgEmmHUnr/xH/1/S3yJFlOSVwBQkD53tIsSNzKUPgV3Y41kfHvuhyrGTZY4Dscc8R/7/LJHrYvl9Q/yXZkVgpDa0oSPQcB2DJsyPDnTR4wU+WnZLk6Aewx7KId4B0MkigK8uvA/x9BNumtZRxbdESuvcF1/EIECsPN0SJoW42tcn4VaIMtFJvqRR7PJ9+FvTHJZFKTF6xUmkXztwAjSkLewjDoJhBZMyfNIegyIPcf5wmwoUtpwSKZwfZOtbODC8rGiOmob/IgyxtHedQuZDflLJ+yYwV4P8gJxPkpMrQR6C4Qew7BtRMp1LPsEjrv48jJ6sMBHDKhKcUzyDL2MQAum/9Lf4ZZLbGsthowN+OxEeJKJERxACOHSmyjtXT5OgIC2D95LFnvk6CE1cxhaaUFXMIpAZox/wzyEqIHj87Eqf+OxnOMED3o1igW9UUnh0GMsGQX7Arcx0rptAeWVD/W+Ta48ET/nYkvddIeLbZd/a7b4lx0hFpdqRIBrnvGPkHYcspgcx39pM3cIJ+yrhv5fWUQS6k/zKd72J2RKY/UowwHusn0lWWHamdmbk3Xug9Qt9JBqlaPwcFM8gy7UjtTCBSUtwfkUX01M0uvI45OPMDNBmBReVUiv79HNShDspCyTKIU4rUD/e3yHNQa4uwSOl1lOgQFHKs+lvlbZr1c4lJKfQgWxE511Yzgx5kv41l8CQxf9IcgpmF13GgVY7uAxnj47eRyTSIQIDAQrJjlYpTj6kXBlqp5FZGOWU6QPPTR4lOHPucYkSPrHVMB/HF7IgEeZZVOLCwnc1bRjAI0LXFh/0zyH3HqMRHmh2J+V/b4EkAtrxrq51V2CEYkGyPAX+dlGlHWHawKNEj044kCtiREzSdMuzkQcCx65a/jvQ7JbcyMmhAgABNImHG9qxBH52U6Y9YFt1/P79OZpYJoM8pVInSd4zO3ZKx19QXIVVlJjAAoHZGcX9E2l7DCAoNRE8kWniWQSrl+Kyy9H8WlaUWO4ibfT05UtXCsqzbLMu6q7/fVToxcJJqh0sqZAhwHmQfgzggkR0GaGOZGCzwIEvcWGqm00+/yYoyA12gcOYnMUEbnIz+MyBA5ucYlW/IYP4iUfreAye9/y7TQQWKP8gDJ+Wvoy/zzUpuZTlyc/xlTTh19bIYK6bXvgTFCXqNDOavpJwOl/fTR+aUSAus55JD76cjUokeR9f81pHZTqmBhY+s0V46c6hG4joC/qRB3zH6PmEHuwDUh1A93b/kvF+FHekqYkckrSM7psXXHksmKOpm+Tv644NUUinTQQX8g93Bk/QaGXYkVkaZb79+Pra+sp7t+rn0rPlWohyTZ4/ZnlV0H5W0t9UWIHpGe4l4l0ZOs320gB2pmyNHR8pq6EgTP7+uX3aANovumV9SYbBNgV9XiDC25Ol/3WyHGPPAUDsRvLL9ET+7lYMzIkCzbfsB27bvrKury/xy4IS8Bwugm+TnNLKHgAU7YZF2Gn1uksyUankdsTZ+Cjhwghjd6mY58upmk3HwepCZUyJrHYsxtv0t8hxGgDYNvwcr7aDKYpGc7+0nb/CkPEe/ciqVlPkGFicpwyyDHQbIkA8V21hkB2h+961Vvh3xzY5I1n+mI15radtyM5HVjOgp4FiV1clptgcydsQL7DtIsyMBCApZ9hig711oHQGJ2cFiduSEPGe4qpHsiG/5Wiv9XZodmR7AQdVkR2QGukARO8L8EVlBzAyq/hj2OOcqlaRrlrWO7DsX8kfK6+WU3AJ67Ug68+NHYum0I47uyCxxTIx6JxWSCfLtZAbVgL89Hmglf1UG8Q44xHsBXxwIf0YwQ9qO+Ny3HJwRAZonBlrlKQRQ2CAOSTaIzCB4OVbxUWL+ZMmyrCIP8gmn7EbC0A6AHi6/B1n2xpI29j6b9FC7nKZVtzy/Byv9IEs0iIC34RgfomZ7mTpSUP+ddZTB/AGkj2P9pOu56Jecrasp5lhJLBUFCpfmseddlk6mgyaPbIxsdjhWSr1KBQNdietYO5PWy4vVTztWku2IX1ZrqE2eEwcUCSwUOFaAt9M4MULPoUw7UjvTf68ZPEnXLsuOVE+nc9y8zjCSTZjVFGG+ZQa6QMAATZIdKRQ0DbVTaaesdSwpp8onPx2R2QIBUGA53OGdQZZuR5hf52NHZGaZAKfssMA6WlF5diud+fTQ/+FOCvBlySopByobC2e1pPp1jj32SiqkB7tIbF0BAvehncEB2gnJDsEsuvGeDkEbAIvKl2SAKZeXY8VOa5eqgDMLlxTIdqwA781FNmNVWkmN4n4n3A+1S3asZhQOdGVmEAr1M7HvIPO+VU8jQ+uFQdkOaoHAWnaWtaqJMsReBjGVkpuJBAr3/Ay2UzZblo4wB82L6Emvo2SCohBjKzVbPYs2fa9rk13RUDmVelV97UiHfKKnYCayVs7xAYCrB9lDJ5XYkWb/dRxsl+ug1kwHYHvLY4GULHnVzeTweu2jti235Byga/NdxzYafiHNjhQgemTbY8Dpr9bsj3gF1syOyAqsKxsBWN4BWipJ+6t0f6RA64ps4h3wtluyA12A7G0h/Ze9jslxn6SCZBtZrOUiB2dmgBYfo7p6maVJVU0AbO9zJQZPkoGW0YMAFM6gKQnQCmTQZCs7U0DPTVNyBg1wHAKvTOQYscOySjcBMuQTQ8DYQP7fhjuB6iaJsgo8yAOSnQ+AvrtvBkEyY5UmKArovywyJBJxCAqPDXqkm3qZZNuRiUHv7OBQm9xMZKEMmux1BDJ9CF4YbFPjWHnJk030RKJ037z0f3yInnmZdqRmunN0hQerL5tUYs6np4OqwrEqFKCdlEwYaNxHI1H/fXS0lxw8mfpf1URVEp460ibZHhcoX1ZhR2oKtAqwih5ZYM/tsMdwF3a91ZKet2iM7pvXvsayTCqIHq/Mj3S/rkAPshI70uRdcgvI90fSNtJH/6Nl1CokA2U1RMD5+eM5ODMDNLaRyrxJVY5z7aUUg5INYkkFZVsKMVayHQK/FO5wp1zjW9WY+dxcDJ4kFrKyUZ686une6zisItBlbJzHwzXcldEhGSitIpbUbx0B+Rm0Ib8MmoJMJOBvEEsqgbJqefL8JmLKLjkEijgEktexciplB3URPX6TvFIpR/9l2hHnWfKamjfYRn0qMgZEMfgFFkrsCCup9HLkFNiRkkpvfRxQ4VhNK0z0SM+gwd8hLquVc8SEW54X0aOEMGN2xMsfkbyOVU2UQS5EmMkmOr2Il6QzJVO2jQT89b9iimQd8cn8yM76A6QDqbh3UmG4U+49S/vHBQJdHXZEVSYS8PHrnHWURaoyeZO6xJEppMyNjCmz58MluXwBcB5kr41FhUF0GjzH+rJ/n4wT+1clMWBKP8hegYXD6kQkql2Nz4M8qCCILzTJa7hL7joCtLl4GUQVm2ZVEzDen8/Yxkfp97IzuoD3fRvukHtdgMPGeegjW1sl+u9hR2Qz35EIBUXaiJ6ZwGgPncPkxlgfHXeh047IJCcAf4dgUBFhBvgEFirsSGNhx0pm71RVM+lDro6MDzqZSBWZH5/AQvY6VjX5O8OAZMK4mD8iUVY05tgRnx40QLL+z6A1y20nGe2hnzIJ3KL+iGS/rtrHr1NFmAH+gYVM/S+poKmRnnakjQJ82f74UEd+UkFJJrKYHZF4XQDdFy874oEzO0CTcZ4EQ1Uh5ltyuhjwr7FNlxRIVIq0kcpRihFmECWuY2k1TfzzdIgVKLufY6Uiy1pomMBwp6IH2UMfR7rpTLYySX0qQGadcgMLFcxfxRQqG/DLoMnMxAD+DmrajqhwCDRk0AB/omeoXW5pBpDZ8HM3F/asS7VZBTLxKpxvX3vM7IjE+1aoxHe4U64+AkDVVG87MtxJOiLVjrB9NOe+pSeYasr8yK4MAei+eDlWKvwRVi6fq5O27ZR4ybYj0/33tbJaudnqykYAdj5hnCbMZPp1zGZ5EZ2SCTPAv6JHSbUG60HOkaeiogEoYEe6aPCLrBYggK4tMUbEjhsq/TqvrK4KwtiPePfAmRmgqWC+q32Y71SKDLCKwMJvSELlVCBaIk8W2zhyHy4VjpVl0ef5OcQqHKuJIeoVcUPFg1zZQD9ZYMuQStK1yXasCgUWlVPlpt39MsgqHFTLcvTfp3dKtkGsaiR2NpXK/n06E68gQMtdx/go9aZJtyN+DkGH/NIMv3KhtB3RxNiqeNaqm0nXcxlbFcw3W8fRHDuSTNDvZOuIrx3pUWBHfJzGdBmU5MxP5VSfbHWH3J5ggOz/cJcHq6/CH/EhzMYHgfiI3HUE/PvrhtoVOKhsH80ljJ11lPlsl1Q4rQI+gYXsZ61mGt2z3L1GRUUPW6dcf2S016lokE0Y+1SiMH9EJtJ2JJcwVjC0JuaQVJ5BvORMJGAyaEIoqyU2MVchxvoopcqMiiwUyqBJZ/58HKsRBRsL+zztD3KOQzDUAZq8KfHayuqohy5vY+kBYKvJoBVyrKTK8gksVDgfAD1PuQ4qoIixaqRnOHdK03AXAEveuUyAf0lNOlst2474NFOrWEedGTQmz8tGjvaoscepeL6ODLU7fbMS5fkRPex50OUQKLHHzI7k6L8Kwgyg75+7joCaDFpVIw0DmcghA0e6ocyO5K6jiqw/+zyvdVThj6Sz47lEj2Z/ZLRXkR1J5O9tQ6xvVmK/m1+gm26TURGg6fZHcv06BSW3AD27ecR7SlEmfqo3YeyBMzRA66LmeJnlO+nMT86DzDbsCskPcuUUID6cX6uvgvnzdayYQdTFtPSqcwi8gs+KermZyEiEHuRc46sigwA4zocHYzvSrWZjAfIN4qiiwKKyId8gJuP0O1UOQS5DNtJN91PWKGKAjn7wGu7C1lG2HalocBhTj8yPCmcY8Lcj0kvzPOxIKgmM9qlzCHLlDXc6w1gk6kisjHQkV/9VBbqspMbLjsgsJwMK2BFF+yjTfzeScXreVBA9gPdeU9kgX0fK6/LJFxVtCQDtlV5jxlVUNPjZEZXBZ+49S0zQlEzpfh3LjueSgQpaIMrrqcRXF2HmV5qn1Y4o0n8vwphlInURxh44QwM0BSVegDNq3M8gKthYgPybNKqAjfAtcVTpWOUaxHEq8ZK+QTusZW49+2ivXEaTwSuwGFEY6CYn8uuwRxQMEvDrnRpRGFh4btC2mtIkwMexkvysAd6MrTI7MoV0JD6SI09BEF9ZhOhRETTl3rPRPgC2Ggc1/flueQpYdsCxI36OlYJnOzEKTAxn/16F/qf3tVxnp8/5u2Sb7LmOquxxAf1XYkea9RJm8ZH8IVEqAoui/ojka/O0I71qZKXtSK5fp8CORCLe+6iKoxEAZ0iOH2GsIGAC8tdxpIf670slTnkGnHXMJcwUzIMACvdF5uDMDNCGFSgEkFFAN5Qxf1OyPz8tr4+YEZkoqQBKqrwDCysif9NkDqr7QVbloLK18jKIsu8Z4GS1NJZ4Ad6ZH9n6HyulcdxegW6khMZ1y4QXY6UqGKz0WcdhBT2RgE8mXlWg62dHFBAUFfUALO8eNNlN4oBPoOs8e7LXsbwA0SPbHgNO5ifXIVAdWGiwIyUVQLTUI9DtcQZIlcqVV5AwU5CJAbxJLNkkJ0DXNtafI0tBewfgbUdSKZLPgg5Z8M2gddGzJrPqBfAetqUq0C0v4NepIIy92iBUVkalEtk20rbV2BFmc73scWWD/ORMpUcmXll7R4GjH3JwZgZoqpjv8vp8g6iSsQKyNxfbmWwk2yAC3unpdPmOZDWodGr13ZkfVanp9MbSl/17VRk0r5KadGAhmx1mDoFrI0sm1JR4AaT/Xo6VEoM4lZ4196hl9uzJ1n8/5lvFxgI4ZbB9ObIUZtCAbJ2Mj9EELNn6GIn6Z35UBbojXdm1+qrssR/zPdanKBPvRfQoqmjwtCNxet5ky7IsZx/ty/69sooGZx3dZGDajsgmHn0yPyNd8ku8ACpxzAvQNNqR8QEAtnyCIlZGA4C8SnxlBxWAt44oC3Tr6aeuAM2rB1Ml8Q5k+5Fj/VQGKJ3oKadp4F7+uDK/LmcdldmRyZ5BUzENECCD6OdYSWejPUpBJoaJoVDB2FZ5OAQjPWqyTMxIuR+utEGUzVg5fYg6MggA9Q7mrqOywMLDIRjrg5ISL4C+f65jpUxHnM90y2P/L7O3FHAxVh6MrZJA18OxUpVB8yoFSa9jvVxZQKYv0g1V2eqKKVSrP+EielTZEV+ip09hqXSuHXFkq9J/916jqsQLcPqZ+rJ/p5IwS8WzyUD27KlaR88SR0X+iFcGzYrQwCqZ8PJHmD4qIYwbfDKRiuxxcoJIK7cs4MyuaAB87MgAUFajgHj3GEqiKtAFfPxxVZVRDR6EcV/me0iV5ZOJ98CZG6CpCizGB/IZWysi39nxepCVGkQPx2p8QL7yAZnP9AzQJD/IkShtVroYW1arnMvYxiqIGZSJdPlmX+Z3Sg1ivbeDqqoHB8hm/9KOVb1cWV5jdG3bcQgUXFu5lz72UZmxzClegLcdSZdl18uVBXhPexsfAMolnqXFwD5zbCDzO1X6n7ZZfdm/V5r5yc3WDVAZoOxS0fQ6uuyxqr5BwDuDNqKI+fYKPlUFaKXVNOnZ7VilUs7RCJoCtFGHMJPtfHvakT7ne9TLlQV4TxZVRYZ4+SOqKnrK6wBY2ftoMu7032vKxI8PyA/gAVfZodseK1pHJs+vxFE2PAljRf5ImujxmJqagzMvQLNtUhBVgYWdyh6jO9JDN0gZG+FmNfuc71EvVxbgTDLyYVpkgx18Oq7pQa7IYVpSSad2XpFBTI5nD2UY61ekj/X0c9zDQVUSfNZ7GERVJQXOZ7o3F1WDBID84DM+QqUZqu7bWH9+D6aSjaWAY6WKsc1l/sYG5B52zOBJ9CiyI5EoXUOeYzWkjjAb7ycZDKrsiKc9Vkj0eE0EVDlsBci2I0xfZOukZVGw687WjQ+Qz6Biz2YBWm5pnop7VigTry2w6FdE9BQijGUP7og6mR9d9thZR3dSYUzROha0I4oSJp4ERb18Wb6EsSXfjsRKidAf7y/60jMvQIuPkmOlIrDwY1pUKF9JpdNMrSmDVjElX9mVMd8FHCtVpVBZ66iodhjwdwiUOPoeGQTmHChxCOq9S3x1M99KnP1cx8r5f1V2JJfoUR7oepSvKRluUX+K7Ug3ZTFKKuXLyw0sVDpWXvdtvF+d7gPZ66jS+fbqwVSZiQSys5Eq7UhZbbaDmrbHivQ/lcgmA1UTPV6EsQp/JHcdAYVET73z+Tn+SEklDbWRjTw7wioaFOm/ncx29pUlMDzsiMpryy1xZFUvqnxIIKcMvI+uWXZyBqDPHRso+rIzL0BjD7VSh6Av8ztVCmFZ+Y2JKjNoZdUO2+cuzdPIfI+zMkDJU7yA/FS4SqPhWZqqKECLltCaua9NZWCR63zbtjqCwpOx6qPmcdklXkC+Q8CMo5JSEB+CQgnRU0HN1LqY77KcQJdVNGizI47zIXtoDaDXjnhlx1XZkZJKOmx7zEP/leyj9fmT3pT1KfoQZsrsSI0P0aOR6FSRQStEGCvxR2ry7cj4oD6iRxVhAOQTxipLzpkfMO4iA1URPWUeAVpa/1VVovRl/h0fpeolnS0XKuwx4E1QeOAMDNBUGsR6+pnFNParebAAj8xPn/N7BfLKagDY2WfhKGe+c5hGFUEFUMAgqnBQPQyiyge5vC6HsWWBhYrMTz3VyrNG2fgINVcrZaxyMhbKDGKN98aiUv/d7N9YnxpHB9DvEEwMZkpqEmM0pEGXYzU+RGSTCuQOt1DtoAJ6ArR0aZ5H5kfFPlpRT7af6cj4ALH8KvuLdKwjkM98K7XHfoFFvXxZhQhjVXbEHaBNDDuVURqJHhWyAL3+CDsPLGtIjiK/rqQCiMR8/BEFNjmXMFY1aAvwLt9UuWdP2gxamvnW9CBPDMk/FI+hsiG7NENpBo05BM6DnHCmGqlgPjyZFo2OlY4AbUJXgFabQxgodAhyp2+m9VEFq++cq+YmDFSSIXkOKiuD0rCOgGL9z3UI+kC18yqebWe94s59U2qP6x0Zmuyxzgwa04UsokeRYwXQ/fEqlVaxluX1AOzMM6ZlHXOmOCplvk9hBm1iiLKDKpA7lGSsj87AVFFOXFZL/kdigv6tuzJqfEgtYazNjjjrpcMfsSxvOxItlT8gDcjoIyN6tBDvuuxIzWTNoOl4kDU5VqXV2SOkVTUlAi6GwJGnch1ZE2RuaZ4qg8gcK1a+qTKDUKr7QfZyrCz5B0cDLoe4j36y4EnFfYtEKEjL2lj61DFWk9mxyr22sT76Dipq53M3srQdURgM5mZ+lDlW9T49aPXyZel2CPIIigEqjVVRcp4+C6rPkaUwWx0rpynLuUSPrtIknf6IbZMdUeWPlFVnr+NoH91LFeXEuUSnbuJ9fFDdOpbXa6zoySEoWKmoquygVyZepV/nPmZFpR1hRFVW33ifOsI416/zgdYAzbKshZZl/ciyrHtdv7vdsqwfWJb1G8uybir6ITpKCtzZGJWOVWlVzsbSp96xYsquspEayC/NU838JSeoRpnJAtSww7lOo21rLnF0jK+KTTPXsUqvo4JgkH2u1kykqwdTZSZSt2OVa0dU9lfkBhYqHatoCQXxeY6VQocgq8TRkatCJ3MdAttWd+wJ4BxF4mFHVMCP6FFhRyyL9pU8okcT863UjtQ7Mhw9jI+Qw6oqg+zpj9SrkZW7j6YDXQXySsppsJAuO1JaBUy4BruoJANz7QgrFdWViZ9QmInM3UfTdkSB/pdUENGjrXVFcg+aZVk/tiyrw7KsHTm/v8WyrL2WZR2wLOsfCn2GbduHbNv+YM7v/mTb9ocBfATAW4t+EZ3MdyqlwbFyj2tXWeLix3wrZFryar5VGUTn/rBpV2xNVTgEuaVJ8VGnB0dTiaNqBxUAxhzGT6VBBPwZWyWyaug+scNKlfag1dNP5qAqd6wqc3pLFepIXiaeBTEKiR53Jl5liWNZDTWhsx5MlQRFrj2Oj9DEvknBfOdMn1VJmAHOACydjtVghuhRPQ0W8HBQVRFm1fkZBJWBLpBP9Ci1I5oqGkqrgMQoHffDZMXKaQS/bORm0MYVEmaAN2GskngH9BDGlpWv/0oJihzCzAc8qZqfArjF/QvLsqIAvgPgNQBWAHi7ZVkrLMs627KsB3P+ay7y+f/sfFZhqGSs2Fk4acZKsYNamuOgqnQ+cptJVQa6gGMQ3Q+y4kAXyKylyo2spAqA5dpYFLLsgEeJo8IgXuc6ss/Nmj6lsHG7LMdpTPfgKDwHkOkGu0alpdJuOzKs7p7lMt8qM2hAvmOl0o6wXhtm9+MjACxyrmTD10HVaEdUBWhsdHm6okGDHdGViS+rccqunGtKl5yrqNZwnqncUlGlmR+XHYmPKCynzCWMNVT06CI603ZkJPNTmT1mhBkrFVXsj+T5dYozkUBmHcdVV/S4ArTEBMlVOSQkPpwhA30QeA6tbdvPWZY1P+fXFwE4YNv2IQCwLOvXAN5g2/ZXALwuyOdalmUB+CqAR2zb3uzx9zsB3AkAc+fOVR9YuAM05Y6Vs7HYNkXw8RE1DbnAqWGsss74UfkgO2vGNpf4MJU0qGCsIpHsB1mHQdTFfKfXkWUiFTPf7nW0bbWBRXra2yBQM43WtKRKzSjuaIyuLc18s3VUuJHFcxwrVRtLHtGjmfkeH1SbiQRI/8vr6GdplZpy4lg5jb7PsyMqM2i6HNQcx0pn5ocd+6CyxAtwAtzqDKmkREdKaQADe7Z1lJy7CbOJETUj/YH8TLzODFq6T0vDPlpWQ/pfolD3AVfriuJ1dPvHAOl/9XQ1snIDNB0VPUz/JxT7/l5TIz0QttlpFoDjrn+3OL/zhGVZUy3L+h6A8yzL+kfn1x8HcAOAN1uW9ZHc99i2fZdt2xfYtn1BU1OTWscKoIcr4TB/Kll2gBTQTgKJcfp3fDTzcMuG35AQHYEuoCc76C5xVLWJAdl9CMozkWza1XhG3qRyrBwZyTg9CyoODgVcBAUjXxQ6cUA2G522IyozCO4M2ohCO5LLfGvQf5ZBSCbINqsulXYTParumWVlOwQ6MvG5pXmq7llpTgZBp2OVGANga8ggu/RfpR0pqfDIRGrKxMeH1RHG5br9kRpXye0wAFthJp7to65KFFX2mAXxTP/T66hr2JBKf8TxBfIIYw1ED3vmlOt/4QBNUZTjDdu2u0G9Zu7f/Q+A/wn8ISpLM4Acg8icD8WBxcQwNbJODAO1M9XIStcq55QmKXMIXMqedHp/VBlf9hC5G2WVB2iu3hFAXWCR7mcaAKqbSO6UeWpkpUuTdAVoVUDf0WyZyjLIOSWOYzrtCJuGqdAhSIxRABONOY6VJgdVZck5QDYynrNBKy9NcjlWqvQRyJ6+OaGYDCyvdUrzhjIEk+p11OlYjTg8sWrHKs+O9Cu2I5X5JV5Kn7Vh6r2PRBQTxh6l0lZUnY6UVALDnY5M1aWiufqv2B8prfYgzBRmfsYHMzqi8rgCL8I4UqJmpD+QTfTotiM+CJtBawUwx/Xv2c7v1EE5Y+VhEJWX1DClUFjiGCujsr9ch0DlJh3PGcigLNDNMYgqmT/A50FW0KcCeEy70lDzPXEKMmjpdVQV6OYytgozCEC2HdFR4gi4AguNGbSJIdpIVZQTA846apjOCng4Vooz8e5jVlTrf/q+MaZdYw/OxDBNSFPRywdkryOzJ7qYb5XrCNB1pPVRQyYeyK5E0dVywQgDFaWiAO3Pab9OQ2UU4NrbFK4j4JRRujPIUGhHqgHYmb1G5XEFua0rOgJdty8OaPBH1AZoGwAssSxrgWVZpQDeBuD+kJ+ZB8uybrMs667+/n49zHcu86dtuIVCxwpwmFNXYGFFaZS1CpRU5BtEXaVJOjNoCcVMS25WS2VgEYlSEO8OLKJl6nQkK9DVlEFzj3XWlUFTTlDkBNbxUXXrGC2hMw7ZOibG1JETgONYsXXUMGwFyC5xVE70sACNOVaqCDrHjiRG1ffgsEDMHaCVVqtzvj0JM9WBrjtAU0306Cpx1BhYlFRS0M4yCCoHaQCOPXaeMeXkdC5hprC9A8jx65xnLqZI/9Pky5hTGTWqvjIq146ogjsTqdyOSM6gWZb1KwDrACyzLKvFsqwP2radAPAxAI8B2A3gt7Zt7xT8yr6wbfsB27bvrKur0/AgV+Y7BMqYFi+HQGVgkeMQqFI+gAxEKk5lV6qZ77zSJB3MNzOIjtFXxQ4zQxsfo7G98WENgYUrQFO6jq4hOUymKoIiPdzC5cgptyMah60AZEfYWqpmbN12RJXuA96Brip77GlHNBFmCcWZePa58THnaJCEukqUSCRf/5XbEffkTajT/1wyRGUGAcghOnURFEPkfKfi6tbRsvTakVhF/mwBbSWOiu1IaXWGMIgrzqCxe5QY1TNVFHDZkUHFxLtXBk0x8c4ynj7gmeL4dp/fPwzg4eDfLCQSYxodVE3Mt1aHwJX5URmglbgYW10PsjvQVTVZCMjuHVGdCi/xMIhKWSTX2XzKGSvXkBzVjBVbx6QzbCUxpq6WHSDDPtRG/698PLCrVDo+ChqSoNiOMOYvMarHsbJtDfY4t1R6BKhqUiMLoGdr4IQjy9F/Vcx3TKM9BnIqUVSXJtXQdSUT6u2Iex0BJ1utOvOjq8SX7aND6gkzgO5b2h85BUSP8iEhmvS/rBoY6XZkqt5HXYQxGzikyo5ES4BITG8vn66Wi3SgWzhAC1viqB9aGVtdBnHYxVhpzPyocgaA7LNwlDc3e/ROqTaI7hIvQINDMJ6Z5Ki0pEwn812TkaOasYo6wRhjGHXov3bHati1jirvm6vKQHUm3s00KrfHrgwC+6mLMNNFUMTHMoSgyixrSVX2PqraHgN67Egsx47oIHp0lZy77ciEYuIRIJ1khFl8VPG+VkH3KpXS4I/kHvszorgyKicTH4mp0xF3Bk318B/AsSO6/LqazLAt5XZksgZoypmW3KZ0S+2QBMAxiKy+XOGmGSvLOPkJ1QaRlQuNqm9ujpbknBejqTTJXZqnrOabOVajmYdZOUGhi7FyM7aKHdRojDauhCbHyp2JHB8k/VB2NIhuO1Kek4nUZUcUl3jl9TxoKJXO7Z1SXSqdGKVDWFXKAhw74u4JVpyJB/TYkdzSpIQGgsId6Kosp3TbER1ET6zc5Y9oIowTY/pKpVnJua5WAUAD8ejhj6gkekorXbMFFPfyuc+U00mYFcAZEaBlDQlRzljl1HyrbG52j4dXXSoHOAbRnUFQ3NwPOA/yeEa+MnmuB1l1L1+sgkrzUglaRyuikLFybSw61tHdz6EtQBtWz1gBTrkcc6zG9Qa6Sh0rV6m0jnWMlmU7VqpZdoDsiOrRx7nj4VUz3yUue8xKRSOKtmR35kcH0VOaQ3SqDnQBPXYkWgrA0kf05BLG2ggzDf5ItDQn0FVcKs3kqL42d+9UYpyOt1BNmKXP0h3Rs45uvy5aqk5eVgZZ0z46PqR+r5lMGbSsISHKHYJKZ7hFnBwepTXYbgeVKYTKwCI3g6Z4HZmcdGChKWOhOrCIOQYpMe7oY6Xa8cAA6UdSwzrmnt+ldPqUa3CHasYKcPRfl2NVoc+xcjO27BlQqv+udYyPqndQmZykk/lR5RCw4RZscI3KA2YBCnST404mXkPpPpBD9Ch2rHT2jgCOHVHsfFsW3ae40/OWSmgolXYTZgr7BsvcmXgNPWhZgYUuwngkY0dU2S1W0ZNV0aBwH42WZa5JF2GW0ET05E4x1UFQxEfU25HJFKBlITGu3rECHAMcz/SuqEBWzbfm0qS44ub+rHVkjpXqAG2IyndSCfWOFUDXFR9RPyQByHasVK5jbs+D0gll7syPYsYKyDgEqaTT76lyI6siciKVcmyWQllZGQTWX6Q6E+9yCJTqv6vnQQfRw/Q/MQbAVqyPOXZE9T0DNDtWmgmz5ETGjqi0/yXlGXIOUEw8uvs9FZOqnoGu6paLnAyyKrjHwyfGAVhU8q5SXnxET79nzJWJjI+o3Wu8Mmiq9Z/5xuOKSxyz7LHiknPLcipRJluAFh/VN9wiMa6WZYxE6Vp0NDcD2Rk01cY+/SCP6GNsswyipgxafExxs71XD5rqQNfF2KreWABy9ic0BBbsTC0d6+ieYpqcUFcCC/j04CjWf3cGTUcmXhvR42R+VB/SDmT0L52J17ivAZp7WRVnEIBMoAtoKJV29+Ao1n823CI5ob6cDNDoj+S0XCgtzXMRPUmnvF1V1QuQqejRYkfKiZROpfQObdJJ9KRSTkWbwnWMuvwRFuiqKjkHsjPIPjgjArR0D1pfHwBbsWPlSnOqNoiAXofAHbHrGGsLZPc8KHWsqnMykYrXESBDr6vmW5tBdJXmJSbUPmtRD+ZbKfvHmG9NPZFAJrBQuY6xMjp0XmcmPl0qraGXD8gE1lZE3bAVIDPpdkID8x3NYWxV6z7gTCnTVHLOnHzV2cG0HYnTOloRtfs2IzpPBdGjkuRka5ZyH1egmjBmmXjVxLvLHicUryOTNzGkp+Q8rf/j6p81T6JHQ+tKUsOezUhUZo9V+nVAhjAugDMiQMv0oDn117oUUEeAFi3VyPy5M2gaevmAbOZbRypcVw8OQIZedaAbcZwNtrG45auAe6yt6syPV6moUsbKISjSwaCOUukRum8q7YhlZZ5tXXYkPcVRdQYtZ9iQSpIHcGXiddgRxtiOachEugkzTRm0iRHqr0vF1ep/2rEad9ZRYU8wkCGx4poyCIBL/1VW9ESo7C85oZHocQ1tUjpVOqeXW7UdKXXsiI5R9LmZeC0l5zozaMN6fMhcwljlHgpk++M+OCMCtDTYwXg6m9KVB2glxPxpCSwcg2jbGmq+XU25bGNRumk6ARo7QFQp0+JmrHQ8yBU5BlFDoGvb6vU/j7HSvY4q+zkmsR1xZ+LjGqbYAZmKBtXMt1aihzk74+oDtGgJZVndpXnKp685fdxMviq4HauJYbXrCGT2UV0VDYCj/4oDXQCIlGRXNCjvnWJDcnS2riiuaACQPgdQx17jDtBU76OnolR6YsRlR1T6I4wwjqvPRAKZUukCOMMCtBT91GUQdTzI6QyapuZ+O5UZD69liuOY46AqXseYM8komaB/q3QI3Bk0nalwLUMSKgA4G6adVF8qBOjZWJi8rCl2GgKLiWGHsdWQiU/FNTWll2UcK9WlSVmMreJySiATWGgleibUE2aAk/nR3DuievKm+7NZiaOWAG1cb4DGyry0VPTosiPlGf9AdeuK+xxALesYo3VM67+OSpRx9f6I+5gJXT3x7ioslYNd8jLxqu3IpMug6QjQdDPfzLHSVPMNOJuL6gxazpAQ1cx3pMRplHWYFqUPsiuDptpBBTQ7BE7GYKyffmphvjUxViUV+h2r9DRYhesIuIgeDYFFbi+flgPvR/QQPZEY2REdmZ8sgkIxYQY4901X70glABsYH6B/KyV63KVJI+qJntxhQ1r1X2Mm3oqo751l5Bygt3dKNfEeKckc1wToI4xVDxuyrEyJr65e7vhwRpYWoschzJTbEVe/vw/OsACNlTjqKinQwbSU5DAtKjcyZ90mhskJ0THWmfU8qHas8hgrnZkfHYGFu5dPg/6nAzQdBlEjY6VtiiMbNqTJIUjbkTgFGUp7+UpBzveg828dPWhjeogeto4pJxMf0RWg6SQoNDhW7LOZjuggzLRl4p1SaS09aLmleTr03zW0RmVbAjv2RzdhprqXD9BrR3KHhOggjNNDm6Jqhzaxqi8dZdnpMfu6MvGTJIPGpjgODTpsnFLGKqfmW7lBdJjvlMbSvLE+598K19GyyFCwQHcyMVZZwy00Md9Z0zA1BE2sxEUXY6WD+c7NRGphbIf19o6kEmqdYSBjN9J2RGdPsG47ojKwcJUmqWa+AZdjpSGDxnSQMcRaSxx1lUprHhKiM4OW0pD1j5WR882CeF3nAGrxR3Iz8YqDGCBDGmghejSVnEei9JMNbVLq17l74nX4I5OkB41NcayuclhpLQZxRA/TEmHMtxOgWVF1sphRGu2jnzoeZK0ZhIQm5tvF2KqeYgdkMmg6mG/mWE3oMIiuc0cSiodNAK7mfl29fNDfO5JKqNV9wBWgOVlW1cMtIrGM/mvJILhLpTX2sqpmvktcwy1UD23SGqDlOlY69rVTNSREQ098yrEjysuyGWHs2BFdw4Z0zhbQYkdOgT/CMmg6/DpAL9GjqzJqsmTQ0tDRg8YULj6mySC6mG8ron7MOKAngwaQUUxoYv7YeGCdzDd7kFWvYzqDNq6+pCCq0bFyj3XW4RDonL6WLpeY0Mx8JzKsoyrkEj3K9b9C33hsZo+1Th/U0NwPZNZRC/PN7AjLxGuqaNBC9ORk0JQPZYCT1R1XbyMjLv3XlYlP2xHFRI8Vcfw6XXZEc0XPmFNhpsMea8ug5RLGmjLxOtpyWEVDAZxZARo0BGhMIeykHoPoZlomE/MNZE8f1MG0pHT1oGnunUpn0MZOgWOlOrAo01iaV5bTO6KhxCuV0MvYahlIkkP0aGFsGfOtY9iQu3dEQ2nSxDDJ1DHcQleJVx7zrak0SQvRw3rQNAzkYRU1yQSUH3gPuIiepAZ/JNeOKG65SE9o1bCO6aFlGu1Ieh11DcnRVCoKaCpxdLVcpBJqiXDAsceTKoOmYUiI27HSYhBLnZKapB4HFdDHfLNUuI7ekWgpZVjT41g1MFbjg6DxwKoZqzJ9QxIiOY6Vap1MZ5CTast7AdLHVCJzeKhKxjZN9Dg6qTxocmfQNNkRbZl4V1O6FuY7oWc8NnuW0yVeOjLxujNoGjLxlpXdg6ncjuT28qn0R5xrSfcf6ySMVWfic3tZNU0x1TpmX8cUR+da0q0rGuwIyyBrsyM6M2jj+nq52XPtgzMsQHMyaCoVMB2gJYlp0eJYMeZbc3O/6geZ9dfpKDvJcwhUMlbOtUxoKN8BkHXA8mQyiECmDltnaZ6Ongd2LemGe42l0roz8ap1kvXX6SDMIrHsISE6iB5dgW6WYzWJmG/A1YOpg+gspwqbNNGjwR9J72s6CGNNPWh5PfEa9jZdFQ3pTLxGOzKuqcRR92wBQFOAxjLxuojOyRqg6WCsWAZNi0HUWOIFAKO9zr8VM1aRKG1kWkq8cjM/GlLhTJYuxlZLRldjzTf7fJ2OFaDHIT4lDuqEpkBXM2NrMTui8biC9FRdHceeMB1RXVLjcqx0nCcH6LHHQHYmXmfvlBVR+2xrLzl3ZX60ZeI1ET2RKJBKaTw+KZEZ/qYjg8YIY12BhU7CWMfQsqxMvIaKnskSoLEx+6Ojzk1SPR7eitImZic1OqgaetDypiZpcKxSST0GMV2apyGrlR4kw5wP1Q/yqcigaegdARz911hSAOjR/9x11FEqzcY66xi2ArjWUQPRk0rqG7NvJ10ljioz8ZqJnlOaQZtEmXjWcznaS2uqdRqmLqJHY8uFrgxymjDWpP/pDJqlVifTZ84yO6LYrU8PydHZg6ZJ/2NlLsJYA/FeBGdEgMbG7FeUOcqgw0lNO1Y6GCvNzF+aaVGsgMyx0poK1/AgR2IArIzzodyxcjZNXcc+ABoZW50OgYv5jpaqnZiq20HNKnHU5FixEi/lk+XcdkTDOgKaMvGM6NHEfLMgXkcPms5psOzzdU8xHevTE1QAmQyCFqKHEcaTiDADHMLYKXHUpY9ahjYxosfREdX6b0Uzh0dPtpaLaImL6NGk/wVwRgRoGdjqx4wDToCm2UHV0oPGxsM7aVUdARpjo3WM2Qf0OFaW5QzuYAZR8WOk0yDqdqxipbRhphLq19FdUqPDGQD0bSw6D6qO5mSQVTO2rMRR13hsQO/BqBO6HKuIPsJMZ08wkCEobB1ED8ug9ekL0LTZkZj+HrS0/qv261wVPcr3UVcmXtc0TF2EcSRKA/smG/EOaG45mmwBmp1S/2AB2Rk0rcyfJoVIP8gaHKtUUlNgodGxAshRjGvaWNKOlaYhCYCemm9Ar0FkpUljfRrWMQLAOgW9fJPQjqQzaJrG7AN6pphaVmayIqDRsdJR4qWxuZ99vvbSvH49gy0A1xRHXYSxTjuiqVWAnblpp/SW+ConJ3IDXdVEj6XPr9Peg1nqIno0ZeIL4AwL0Gz1yg7QjdHmWLmm/ehiWiY0Ola6hoTkOVaq17JUn2NlRQDYNCJYuUHU7ViV6WO+2bWMD6q/LsAhenSVJpXoK6lJM7aO0zhZM2iRmNr+IiCH6FG9jhF9w1Z0HjDLPj89Zl/1Ojo6kRjTVxkyodNBTWgqFc0lehQ/a1ZUb6kcQD6C8tkCsexrU+6PsIqeU5GJ16D/6Qoz1bFGcX0/swI0XdDqWJ1CxkrHg6xrSEjUtZFZUQ3lcuUamT9W5jI6CQ2ixtI85rjpmNAE5GTiJ2Fzv84MWkI3863BsQI0Ez3WKSiV1p2J16D/zLGyUxp0P3fYkC57rGNoWU7vlPK1jOgb2uQmOlXrPuC0XGjyR9JEzySb4giQTurMRBbBGRigKWZZAM2OlfP5iVE9dfqA5tIkh43TmUHTYRCjpRoZK0fn4yP6xuynSwo0OPuJcT1Bk+V2rNSKApBjR3SNh9c4HltXD5rWnmBXX5gWO1Kmb0gIY751nScHaByzr7HEN21HbCg3JOzZmpTDhnIzaBoIY22ZSI0ZNCDbH9ESoGnKoOk8B43J09W6MikzaKrT4IBex8odWOjYWLJ6HjRsLtpLCkY0Md86GSuWQRvToI+nIoOmafpaVgZNg+mLRPUc+8A+X7djldBV4qiR+Xaz+so3aND1aB8SMkntCDsaR1cm3tZgR9ixP+l9VEdFT5wqepSXSrNnTZMdyZrOrVH/dbTlxMr1DglJaTyuAHAFTRrK93VWNBTBGRGgsXPQxsfHoSeDFtXI2DqfP6EpsIiWUrYO0FOalx4PrLF3SodBdKfCdTioAJWKKr9nOZPltPSgaRprmy5NSkKPHdHoELDx2JNxrHMkeoocK81Ej5YhISnH+dY1bEVTaVKsTN++xmxHKnkKMvEaiJ6UJsKMPWvszEEtdkRjoAtQxk53qbSuDJqdVH9tWSXnMfWtK1H3OpoMWiCwc9DKykr1Z9C0nbszomFjQYZFZf+vVFZU4zq6apW1ZdA0jgcGnD5FxTqifRomK03SwXy7HStNRI/OYUMAsZo61tGKkD4CmuyILsfKdQ6gttIkVuKoaUiIrUH/3X2zgB6iU5uD6iqV1kb0aOqJzzquQ7H+pysaToEd0Xmeoo6BVO5hQzpKRZNx+n9dQXx8RNM6lugjHidLBi0bmgzihGamRRdja0UyD5eWkoJTsY46HmTNjBVAzKYOlh3QV5qaZv7syVWaBOTov85MvIYMshVxOVYanH1dB/Vm9bJqKk2a0OVYuRziSUf0lOhnvu2UPsJY5zRM1qeooycS0Begaa3oOQUljlrH7Mcz/68S2nuCdWbQiuPMC9C0ZdA0O1a6eh4iUdfDpWNIiCNL69QkTb0j2hgrVuIY13DPcg+G1FDimDaIqs0Ry6DpYr41jnV267+2AE0j0ZPQpY+nYIojW0ddDrEWO+Jivq2IhoBQ8zRMQGMGLaLRHmvcR937mvvfqhCJUjk9MPl64llpKqCn5SIdVOvKoGkctqK7VLoAzrwATZdjlQ4sJtmDzOqHAT2pcAblZ1zpfpDLANj0/7qGhMDWW1KgxbHSODUpnUHTMB4bcAILpwFe57QrLZn4qMbSJNfn6wp0J4b1ZOLdtkpbSY2twbHSXeJ1Cqav6cygTcZMPNN31hOs4xw0Bm2EmabKKPe90nXsD6CR6NFkj7PG7GtquSiAMy9A09U7wqCLaUlOaOpB0/lwuT5fubF3H1egI0BzXY+ug1F1yGJrl9IwSABwAhcW6Ooaj62rB811PboGdyTG9PWypokeDcw3g/KjSNyl0joqGtx2RKNjpe3sRl0ZhDLXAbOqA13np44x+4CjI46N1NbLqoHo1LmvAZrtsYvo1FIZpdGOuO+VLsI4pWGqKJAZtuWWfQpxZgVotiY5WQ+yJsYK0NeD5vX/SmTpzKCVeP+/KmQxVpqYRmByZStyZehivrWN2XfbEU09mIC+THz6/ydTJp4RZuN61lEn863T9rPrslP6HKtc2cpwCjJoDLoqenLlqgJ7tnWQSloJCraOtiZ/ROO1ZZH8mnpZAX2ZeAYzJIQXOhkrB7oYq1y5qpCV1dLIfCsPYtyOziR2rHQYDbZ+k82x0t474s78aDrwHtBvR3Q5+7n/r1rWpHOsNAbVfw6OlbZSaZ0VPW7CWFMvq/unDlmAeh9BN2F2qjJoOm2/tooeB6rXcVL2oOkucdR1MCpwCphvnRk0nQ6BDoPokjGZDCKQWT9dTbkMukpFT0WJo64etNz/VwWtm/QpysRPutIk9zpOMsdKK9Hjmgarg+g5Fb1TgCb9d65Nd6CrtaJH4zrm/v8ZL0szYXYqCOMCOPMCNO0ZNJ1My2TrQdPJfJ+ijSX3/1VAZ0kBkFk/3YyV1iEhk8yx0m5HdBI9GpnviG6iZ5KXOAL6pup6yVYC3ecpOtcTKVEvL4ug0Ej06NzXcv9fuSzdGbRJ1BOvnejR6UdOkgDNsqzbLMu6a2Ji4hQ0909m5ls1+6FxSMip7EGbTE25gCtA0zQeOFeuMlg+/68I6euxNGd+NE1xTP+/pkOPc/9fBXSv46kaEqJjFD2Todux0paJ13hQNaA+Cw9o7uVDRke0lDjqHDZkiB4p0F4qbTJo3LBt+wHbtu8sLS3F5OtB02wQtQ6cOEU9aFrGY7sNosYSL53DLbQYxFOQQcv9f1Vwr6Ny5lu3Y8XWT/N47ElH9OjMxLvukw6ih63fZCtN0j4khAW6mgkznT1oys/AhOaeeN1Ej07y5VQMW4Em/Xf7I6c+PDr134AXOg1iJKbB+dY9Ncn0jkiBznIJnVlPQLNjdYqmJum0I7qZb52ZeN3TMCddqfQkZb6B7NI81TglzLfmoWWqq3mAUzdsaNL1oGku8dUZNGmvwnKeMVPieLpDt0GcbAqByTskRHvviE7Gyn3PdDK2unvQNE5N0ppB0zy0RufIau3jsSdbBu0UDQmZbL2spyKDBkw+e3yqMvG6SxwnXQbtVJVKaxxaNtky8ZOlxDELGuzhKdtYdPegTaZpP6eyd2QyjdkHMus32RyCrM1kMjPfOuyIs37ax2NrnBo2me2Izl5u7Y6VzvOLdPag6bbHGntZtRAGOokezX7dpPZH/hx64r1x5gVoOjBpmT/o3aR1MlaWpfdBPmXnjmg0iGXV6mWdKsZqUjuok4z5/nMZj62T+dbqWE2yc9C0Z9Am6zpi8pZKay8VPVUljjrum7OWJVXqZek8B21SZtB0HjCro3fE7QRPunNHNE5xBKD1gOXJPCSErV/pZAvQdG8sjgzdpaKTrQdN65CQUu//V4U/h17WWLkGWZOZ6NE4JMRt83W2Ckw2O3IqD7yfbOeysmvTThibg6r5YGPyMd8llflyVeKUnTui0SGYdFOTTlFJQaluxkq1OTpVpUk6iJ5al1yN5ylONuY7EkVaNyZ1ieMkdqx02uPJVipdqpkwPlVTHJWfb2taLqQh7Y/osCMaM58mgyYInQbRspCZUqOz5nuSMVZuGdozaKof5FPU3F9Wo17WqTKIk21ISLk7QNOZQdOYQQD0lB2mm9I1T3HUeuC3xl5WHXYkNomHhOg8Ty6romeyZeJ1Th/UXSo9Sc9TBIBUnH5qIXqCHftj27YEYZMuQLNDGUTbtvGHzS34zO+2omd4wv+Fkhyro93DeOv31+HRHW2FX1hSkS1XEK8c7sFvNx7HD547hEQy5f0iSQZxaDyB/tE4UqkCiiqpd2QikaJr23AcHYNj/i9MZ9DCrWNL7wi+/thevHyo2/9FEhmr3ScHcP/WE+gfiXu/4FQ190tgrMYTSaRStr9Bk3gO2kQihfu3nsADW094v0ByadLOE/2479VW/2uTRPSsO9iNP21pxYsHugqso7xA99evHMON/7UWX3lkN5J+z7ckO9I7PIGvPbYH133jWbywv8tHljyiJ5my0TU0jomEj30EMs5VAQf1wW0n8MX7d+Kz927Fyf5R8S9UxI4kkim09o2ipXcEx3tGwjkGARzUFw904ZZvPYd3/2g9xuJJcVlAIDvywNYTeNcP1+Mrj+xGb6E9uRgCljgOjyfw5K52rDvYLb6WAYaE9I/GcddzB9E9NC4mw40AQ0I2He3F3/7m1cL2KAjcfT4F9rWOgTH81+N7seloj7gsIJAdSaZsPLu3A+OJJEYmEuKy2DpaEd+M3R+3tOCWbz2HP25pEZcD5Pg+3nbEtm384x+24x0/eBm/WH803H3j8Ef2tg0W9n+LIUAm/vGdbfj6Y3vlBDJxx+fzIXps28Z/PLoHKz//KP7xD9vCyQpQ4rjpaC+u/M9ncOlXnsLafZ3isgL4IBpCe9kQd6z+9+kD+K8n9gEARuNJfOMtq1Fe4nETJJQmdQ2N4z0/fgVHu0ew4UgPfvr+i3DV0ibvF5dUAPGRUM7Hs3s78L6fbEj/e2p1Kd54/uz8F0oYj712Xyc+9svNGBxLoDQWwT/fehbec+n8/BdKcKxs28aH7t6I55wHYfaUCvzhry5Dc61HX4OE6YNr93Xir+7ZhJGJJH694Rie+tQ1qKv0MLBuh1iQRRoci+M3G47jPx/bi4lECrPqK/CrD1+CuVMrs18o4YDZsXgSn79vB57d24mK0iim1Zbjy7evwpJpHkYv6RjvEIxVKmXjXx/chZ++dAQAcMd5s/DNt56b/0JJgcW9m1rwuT9sx4RDTJw9qw7zG3NLNOWUOL54oAuP7DiJX64/hpRNG95nb1me/0IJvSM7Wvvx9h+8nP73+y6bj8+/bgUikQLfP4S87zxzAF97bC8WNFbh+2sPYdm0msJ2JASDeqx7BG/63kvoGhrH1KoyfOjuDXjh769DY3WO3ZXQy/rC/i588YGdONQ5hJQNVJVGcdd7LsDlixvzXxyNAXH4ruNLB7rwsV9uSf97eDyJ77zzfKHvVYyN/rcHd+Fn646m/z17SgW+/+41WDmzLqSsfMdq98kBfOCnG2DbwJ62QXz47o34zjvPR225oD7ZThDs41itP9SNT/7mVVSWRrHuUDcOdw7jrvdcICariGM1nkjih88fxjce3wvGOXz6xqX4+PVLBIQVJnpSKRt/+5tX8fSeDnz76QO4eeV0/Nvtq7x9jSAoMmb/YOdQ2kb8cUsr9rUP4u9u9rBHgWS59MJH/x/f2YavPbYX+zuG8L/PHMB/vOkc/MUFcwTlFbYjbf1j+Oc/bceTuztQVRpFZVkMa//uGlSWCtgB9/m2Hli7rxOf+u1W2DbwuT/sQEk0gtedM5NfDpCtFz7r+OzeTvzqlWOIWMBLB7tRXRbDG86dJSivcNCUStn476f245m9HdjW0o+yWAT3fuQynD1bwI4UOT5pR2s/PvbLLZhIpvDYzjasnlOPj1y9CIubBf2JhBOglXrbkftePYH/e/YgYhELv95wHO+/fAGWevk1QVBkSI5tk1+TSNqoKovi7+/dhuc+ey1KYyJE5aTLoEGY+T7SNYxvPbkPbzh3Jv7m+iV4aNtJ3Po/z3tnLdIGUTxA++SvX0X7wBju+eDFWDqtBh//1RYc6x7xfnEsXAZt09FefPyXW7CwsQoPf+JKLGwi58qT/Q45HnvT0R58+GcbMXtKJT5941JcNL8Bn79vJ7777IH8F0twrJ7a3YHn9nXiE9cvwc8/eBE6B8fxuT9u92ZmRpyMF8tIciKRTOGL9+/EjLpyfP/da9A7Esft333RmwWVMDXpC/ftxJce2g0A+PIdq9A9PI7/W3uwsCzB+3b3uiP47cYWrJ5Tj2XTanCgYwif+PWr3pnWtEEUM6ijE0nc8d0X8dOXjuDaZU04Z3Yd/rilFRuOeLCtsfAZtB88dwifvXcrzptbj399w0qUl0Twtcf35r9QQiZyR2s/3vnD9bjn5WN420Vz8dYL5uC7zx70ZlxDEj22beMrj+xGfWUJHv3klfjA5Qvw05eO4F8f3FX4jYL6uPNEP77x+F68fvVMPPG3V+HsWXX4ryf2eetISDvSOTiOd/94PeLJFB742BX41Ycvxlg8hT9tafWQFY7osW0bX3poF0Ynkvjraxfji7etwMz6Cnz0F5t9Mhz+PWhbjvXiw3dvxMKmKuz615vxtzcsxUPbT2J9oWx7IRQold7TNoC7Xz6K5dNr8KXbV+FLt69CPJnCx3+1BeMJgexWVolj/n37/aYW2Dbw0j9eh/980zlYd7Abf/e7reIseMLJLHoEaBOJFD73x+2YVV+Bdf94PT56zSI8sbsdhzqHxGQVcKz6RiZwzdeexdce24sbV0zDzz5wEW5cMQ3fW3tQLGtn+f4DAPDdZw/g6T0d+IsLZuO65c24d3MLbv/Oi9h1YoBfFuDKxHsHaF9/bC9KIhae/+y1eOP5s/C9tYfQ2hciq5sr14Wtx/tw5883YWAsjrvevQYXzW/Alx/ajbhfxU4xFMigtQ+M4fXffgHP7e9CTVkMwxNJdA6O48GtJwVlFQ7QvvP0AcxrqMSzn7kG8xur8LFfbsHvN4XMpAGediSVoqzP3IZK7P63WzC3oRK/ePlYCBmu7GDO3jY0nsBHf7EZ//3UfqRsG5+4fgkqSqP41pP7xGQVyMSzAKa2ogRvv2gubACP7WjDm7/3Eva1D4rJg2N/fAjjn7x0BEunVWP9565HVWkM//D7beLZ/yKZ+FcO92Dr8T587LrF+PxtK9E2MIY/veqxZ0nCmRegCTLf31t7ELFoBP9061n45A1LcNe71+BYzwg+c6/HBhSyxHHT0R68cKALn7lpGa5Y0ojvv3sNbNvGX96zCaMTHorDAgoBecmUjc/euxVTqkpxz4cuxoqZtfjbG5Zib/sgfrfxeP4b0j1oYuv4w+cPo7Yihl99+GJ8/Pol+On7L8Rrz56Orz+2F52DOc5OyIOq48kU/v2R3VjYVIWPX7cYVy5pwidvWIond3dga0t//huYQ7DqTdyyAOCel4/icNcw/u7m5bh55XT89P0X4nDXMP7o5TSG7B15ek87/rClFbeeMwMPffwKvPPiebjtnJm479VWDI7lkAYha+fjyRR++PxhXLZoKn7wngtw13suwJdvX4XdJwfwLw/sytf/ROGSgmJYu4/uz+dftwI/ft+F+PWdl2BabRm+9NDu/JLYLIPIv44HOgbx5Yd348YV0/CT91+I91w6H3deuRAPbTuJrcf7sl8socTxq4/sQW15DBv+6Qb8+x1n48t3rMLZs+rw/bWH8l8ccjz2n15txYsHuvGpG5di+fRa/L/XnYV3XjwXd687ggMdHo4skyPQOxJPpvC5P2xHfWUp/u0NqxCLRvCx6xajpXcUT+5uz39DyBLH//enHWgfGMOP33chVs2qw5JpNTh3Tj3u9XKIQvZXbD7Whz1tg/jraxfj0zctw/suX4DvvvN8DI0n8L9PexBLDDm9I7Zt44v370RdRQl+9eFLUFkaw51XLcTMunJ86aHdYoFMgdKkX60/htJoBL+581K865J5eNcl8/Dvd5yNQ53DeHi7gJNqFSZ6nt7TgUsWTUVjdRn+4sI5+Owty/DYznbc9ZyHbgdBgdKkeze14GDnML5w2wpUl8Xw7kvnoSwWwTeeEHQaC5RK3/fqCZzsH8M/vGY5vvOO83H10iZ8+qalGJ5IeutbUfjbkYlECt9+5gBuWTkd//Gmc/Ctt52H779rDbqGJvDp3231LxkuhAJ25GT/KB7d2Yb3XT4f02rL8emblgEA7vIi+rjlZtuRsXgS//Sn7WisLsNTn74GN62cjg9fuRD9o3G8eMCnPLkY0kGTd/Z4aDyBP330cmz74k14+R+vx+Lmavzf2oPoH/VpByiEtF7k2/7h8QQ2H+vFLatmYH5jFR742OW4eEED/t99O8SD3XS5aP49f2DbCexpG8Snb1qKslgU77x4Ll450oNXc/esoEgHaPnr+I3H9+LxXW34p9eehQc+dgU+deNSvP+yBXhqTweO9/gkDQqhANG55XgfXjncg49ftxhfeePZePJTV+PBT1yBWCSCO+/eKKb/DB6E8e6TA9h6vA9vu3AuplaX4atvOhubj/Xhxm+uRcdAgXYYPxQhjH+x/hhqy2N40/mzcdWSRqycWYvvrT0odl2TckiIgGPVPxrHn15txZvOn4XmmnJYloWbVk7H3928DE/saseTuztyZIQbs/9/zx5CfWUJ3nHxXADAvKlV+O+3n4c9bQP4j0f35L+hxCnXE2CH79/aioOdw/jsLcsws54CvdedMwPnz63H97yMdAjHamQigWf3duKWVdNRX0mbRSwawSeuX4KUDTy6I8dpCNmD9vD2kzjUOYx/uGU5SqL0fd95yVyUl0Twmw0ewefKO4CzbgMaFnDLOto9jC8/vBvXLmvCTSumAQCuXNKEFTNqvZ2hED1oY/EkPv3brThrRi2+8ZbV6TLDd14yDyMTSfzp1ZweqpCB7iuHe9AxOI73XjY//btbVk3H+y+fj5+/fBTbW3OC3YQTaAtOcXxsZzvqK0vwnkvnwbIsVJbG8JmblmHr8T48uy/nWQs5Hvv7aw+hvCSCr7zxnHTZy51XL0J1WQy/3pDLSIYbEvL8/k68cKALf3PDUjTVkG2IRSP4iwtmY0/bIPa05TDkIQO07689hJUza/Gui+fRV7YsfOrGpSgvieL/nvV4tkP0sv70xSPY2tKPL92+Kl3Se8NZ0zCrvgI/efFI/htCDBva1tKHR3e24a+uXozz505J//5158zAnrbBfKchy47wy/v20/tRV1GC15+bKVdaMq0Gbzh3Ju7d1JKfIVx5hyMr20F96WA3trb04xPXL8E0p8S6ojSKv75uMba39nuTRsXgQ/TEkyk8sO0kblgxLavE+tplzVjYVIWfvXQU3ChA9BzoGMShrmFctyxThv+hKxbi1nNm4KuP7sF+EfbbJxOfSKbwvbUHsXp2Ha5b3gwAaK4px51XLfImVoKggB25d1MLVs2qxUeuXoSYs48sn16LFTNq8UjunhUEBXrQtrf2YSyewu3nzYTlvO6mldPx+dtWYPfJATwkElgXOPbn/ldPwLaBt6yhEsNZ9RV4x0Vz8bN1R/HELg9iRUSug28+sQ87Twzg3+9YheoyWuMrlzaipiyGP2wWzCL4jNkfiyfx1O4O3HHeLKyYWQvLsjC9rhxfun0VWnpH8F9eFRJFZfkPNtpwpAeJlI3LF08FQHb9629ZDdsGvnDfDjHy5T33AdXTgGkr8/704xePYFFTFW5zSijfeck8NFSV4muP7QlH9ORcW1v/GO55+SjeeuEcfPiqhWmdfOP5VEoppP8FqofWHaRKgttWZ2ztvKlV+MfXLMeR7hHsPimYRQY8iZ7fbDiO0mgEd5xH1/O6c2bi7g9chLb+MXzzyf38MnxaV2zbxrt/tB73bz2BN54/GxWlUViWhb+6ZhEOdQ7jmT0dHh9WDJMxQBPA/VtPYCyewtsvmpv1+w9cvgBNNWV4aFuOQxwig7avfRBP7m7Hey+dn1Unfe2yZtxx7iz8flNLfvqVjdrndKw6Bsfwxft3YfXsOrxm1Yz07y3Lwu3nzcKR7hEc7hrOflOI3pFHtrdhNJ7Ea12yAGDZtBosaa7Gg9tyHvaQpUmP72pHU00ZbjhrWvp3teUluPXsmfjTllacyGW23vJT4K33cMsB6EFP2cBX33ROVn/P61bPwOZjfdie63yFmOL4yuEe9I7E8dlblmX1JayeXYeVM2vxi5dzGoZDjsd+Ylc7ymIRXLUk43xZloX3X0aB7M7c0pu4s64CJY4HOgbx2M423HDWtLQzBAC3nzcL1WUxPLFLXoB2sn8Uf3q1FW+9YA4aqjKfU10Ww1VLG/HU7o7sjF3I8dg/efEIZtSV412XZNuR1549A5YFPL4zxyEKMX1tT9sA9rQN4q0XzsnSx6nVZXjT+bPxwLYT+Y3ejLHlnBqWStm4Z/1RXLSgAa89O/NsRyMW3nvZPKw/3JNfnhWC6Pn9phaUl0TwwSuziZRrHWf92dzG6xB9bjta+/HM3k58xAnas+Qta8bQeAI7cq/tdd8E3v4b4Lx3Zf36wW0nUVUaxe3nZfeJ3LZ6JvV0bPIgjYohq3w5c5+3Hu9Dz/AEbjsn29ZGIhbevGY2Xj3ex88QF5ji+LuNLYhGrKz7H4lY+Lc3rEJZLCKWRYt7lzg+sO0EjvWM4GPXLUk7jABw51ULUVMWw49eOMwvK8uxylxnx8AYtrf249az83uJXnv2dGw+1pe/jxSFP9Gz/jCVcV84vyHr9687ewbmNlTil+sFAusCvax/evUEzp1Tn9Vv+8+vOwvLp9fgi/fv9K7YCYoceY/vasc1S5tw08rp6d+VxaJ420Vz8OC2EziS62sEQbpUOtseP7evE6PxZJZfAwCXLJyKKxY3Yp1ISXHajuTb/qf3dKA0FsEF8zL3bU5DJf72xiV4cncHHhcJdudcCHxmHzD/iqxf72jtx9bjfXjHxfPStr26LIZPXLcYLx7oFgzive3wc/s6EU/aeN9l2bZ2TkMlzp5Vh4e2Fxlg54UC05BfOdyDpdOqs/ZjALhkEQW+G73aHIIix46MxZP4w+YW3LxqOqa45F21tAnvuGgufrvxOH8Js48/sqN1AM/v78LZs+rwkasXpX9/y8rpmFpV6l1lVQwBXJAzIkCzLOs2y7Luik9MQMSxum9LK5ZOq8bZs7IbImPRCC5e0ID1h3uyHeIQPWjfX3sIFSXRrGwFw5vXzMbgeCL/YY+JZdAe2nYS/aNxfO0tqxHNGRpwzVLH2dmbmx0Uc6wSyRT+9+n9OGtGLS5ZODX7Iy0L153VjM3HejE87pqyFCKIGU8k8dzeTly3rDlvIMInb1gCGza+LsKieSCZsvGHza24emlTmhlneNcl89BYXYovP5zT9xOi7OqFA10odXTPDcuy8MbzKRtzot/lfIUYa2vbNp7c3Y7LFzeiojT7vbOnVKC6LJbParEMmsCQkM/9cQcqS6P41I1Ls35fEo3g8sVTsXZvR/azFqIH7efrjiJlAx+6cmHe365fPg0dg+PYccIVWIcYsz8WT2LdwW7ctGIaymLZ6zi1ugxLm2uw8Whv9pvSzDd/gPbHza15DjPDuy6Zh4lEKp9YEsygrTvUjaPdI3j7RfmN/m+9gDLWv8h1LAXtSCpl47Gd7bh6aVNewLSwsQrzplbi2Vw2MsQZSQ9vP4loxPK8NmbHXjqYU55lWcCyW4CK+vSvkikbT+xqw7XLm/OGPRBpNAN/3NzKX3rlc6+2HOsDAFyQ4+gDSBMtL+Z+76KyvImeZMrG7ze34PrlzXnDlxqqSvGm82fj/q0nMDTOOUEvPR4727H64fOHsXx6Da53AnKG6rIY3nrhHDy0/SR/L5qPY/W8Mxn0qqX5w2DecO4sWBbwq1c4e38KlEpvONyDRU1VmJoz6CYSsfC2i+bg5UM9/GVlPtNg97YNYvfJgXT2gKEsFsUXbluJ1r5R/NarzaEYmBzXOrb2jeJw1zCucJF8DB++aiGiESvfRgSB5U0Yv3SwG5WlUVy8MF//z587Bfvah8SftZx7Np5I4r5XT+DmldPz9sj3X76A+sPWh+gPy8F/PbEPNWUxvOn87Pv27kvnY+XMWnz1kT3+U7j9wK4tJ/v28qFuTK0qxdJp+Xv5a86ejq3H+9DSy6mPPsf+JFM2Nh3tzSMnAMrszqwrx4bcPZIHOYTxozvaMDCWwNsvzLftbzx/NpIpG8/k+r/F4DNs6MHtJxCLWPj5By/C9LqMjYxFI7ht9Uw8sbsdD+UmKIpikmTQbNt+wLbtO0tKS7hLHNv6x7DxaC9uPXtmFlvHcNGCBpzsH0NLr4tFEyxNOtk/ivtebcXbLpqTxyAA5BBMrSrNT4eyDBqns/Pcvk4saKzynFgzd2olFjZV4Zm9Pmw0p6ytLX040j2Cj1y90HOC3JWLmxBP2lh/2MVsCQ63sG0bf3XPZgyOJ7JS5QxzGipxw1nT8MrhkCN+HTy/vxNtA2N4y5r8aXW15SV458WURRhw94aFGBLy3L5OnD+v3nMS1flz6wEA29xlPkWa+wth87E+tPSOejr6kYiF5dNrPAK0wlOT/NAxMIYNR3rwnkvnp8tt3bh2WTNO9I9hX7vL+YpEM9fHuY5P7+nAxQsaMKehMu9v1y5vRsQCnnSTISGGhGw80ovReNJ3Euua+VOw5Whvdi26oB0ZTyTxu00tuPGsafkTDQEsnVaNxurS/JK6UpaJ58v8/89T+9FcU5bHVgNAXWUJrl8+DY/tbMu5NrFe1q0tfWgbGMMtq6bn/c2yLFy7rBkvHuzKrjIIkUF7bGcbLlnYkC7JdqOppgxLmqux/lBxO7LrxAC6hiZw44ppnn//4JULMDyRxC95HTmfAG3zsV7Mbaj0vP8rZtSivrIkHXwEhk+J4+6TdG1eNgKg7Pd4IpX9LPHAFaD1j8Sx88QAXnfODM995C+vXoSKkqh3K0Ah+ARoLxzoQmN1Kc6aXpv3ljkNlbh++TT8cv0xPofYJxOfKuCgAkiXc27kHU3vU9Hzxy1E4tx6Tv59u3TRVJwzuw735FZjBEGaMM7IYz1mrATQjeaacly2qBFP7Grnl+VD9Gxt6cOqmXXp1gY31syjsugtxzidfZ/95fl9XegfjePNHvt/STSCG1dMw8uHusON+Hew++QAnt7TgY9euzjPJkUjFv72hqVo6R3Nr0YqhrTOZ9bftm28fKgbFy9s8PR9WSVU0WOgcuGTid/XPoih8QQumD/F403ka68/1F34aKZCyCGMf73hGOY2VOYlDACa4txcU8Zf5utjR9bu7cQlC6d67iMfvGIB5k+txMd/tZnvyJVJ2YPGmUFjvUq3npPvEACZUoRN7sg+wLkjXnhkexsSKRvv9Ro5D3KIL1vcmH+eEetBSwQvWRlPJLHuUDeuWuIxJtrBNUub8fKh7uwyB6YUnM7wxiO0Ppct8pZ3wfwpKItF8OIBV4Am6BAf6xnB03s68MkbluAKn+tbPr0GLb2j/KyuB+7d1IIplSW4/ixv5+viBQ2wbWCzl44AXMHn3rZB7GkbxE0rvPXxrBm1iEWsbOc7RObnvldbURqL4OaV3te2fEYN9pwczDaatqMvnBm0x3e1w7aBm1d6X9vVTn9LXlaXMbYcjnjn4Dj2tA16j0kHMf9r5k3J6S8VH7P/3P5OlEYjnpsBAFwwbwoGxxPZk6oEz0F7Zk8HeoYn8PaL53r+3bIsrJpVhx25vYNpoif4te1rH8T6wz2486qFvmPAb1k1HV1DE9nlKYJB9aM72hCLWLhuubc+XrOsCWPxVLpUjGSITfc80DGEg53DvvoIEBu/taWvqGPJJpBetMDb+V45sw7nzqnP78MthgIZtPMcsibvLRELVy9twtN7Ogqf55aLrJLzjB1h5z16ZSsAYM3cKZhRVy42mATIYr43O071+fO8nbimmjK885K5eHJ3RzYhVgw+B1VvPd6HNfOm+B5Lccd5s9A9PMHZP+idQTvQOYSBsUQ6gMjFkuYaVJVG09nRwPCYBjuRSOHeTcdx3fJmzyAeAN5x0Vzs7xjK7zEuhnRPfEZfNh7pQX1lCZY2e5N2N62chiPdI9jTxtmr6NGDFk+msOvEAM7xGQG/ek49ymIRPJU7O6AYfAakbTzai5KolVfRwnDd8mZMJFJ46YBAWWUOWKCbm/V0y5o3tRJ/4C2Z88igdQ9P4ET/WFafrxvzG6tw9qw6/Pzlo3xTYX2Id9Y7eu4cb3nXLGtG19AEvz4yuM7oO9w1jJcP9eS1AKS/omMj1/EGhB4ZtGFnX/d7ruc0VOKH77kQKRu4dyPP0KHJFqDZ4HI+uobG8b21B/GaVdOx2MewLGmuRlksku3sCDLfT+/pwOLmao/zlzK4fNFUdAyOZ09hY45VPHj0vaN1AGPxFC71CZgA4NrlTZhIpLDukItp9WnKLYZNR3sxf2plejhCLspLovnZGMFx36zR9HUezCADyxqKj24l0CGYnbhl1QzfsyzOnVuPaMTyDuIBLp3845ZWxCJW1sACN8pLolg+owbbWvpcny9W4jgwFscfNrfilpXTUeNzltG5c5zAosNjHTl70B7YegILG6s8yykAYEZdBZZPr8GzuVnd9PTB4I44K0u7widAA4Drz5qGXScH0MbKRUP08q3d24kLF0xBVZn3d2SO+0sH3RlksV7WJ3d3oK6iBJcv8g4GAWDVzDrs7xjKzjSl7UjwkhXGQl+XU27mBgusN3gFaJyZ8Ud3tuGyxY2oq/Bek0sWTkV5SSS7ykDQjjy2k5hhv6wXQM9230gcR/yOQHGw6WgvZtVXYEad/xEe1y5rxrbWfnTxHE7scW1dQ+NoGxjLK8l34/WrZ6JvJI7n93MclOqj/+sP92De1Erfa4tELFy2qBGbjvaKDTBwZdA2Hu1BNGLh3Dn1vi+/fvk0JFM2XuKZDOjhWA2NJ3Coa7jgmXGXLZoKy4L/Iele8BkSwvYHr7JUgDIkq+fU8wdoHr2sT+1uR9fQBN51yTzft920cjpVEfAGMiwQdNmtzcf6cN6cet9A95aV01FVGsV/8w5m8CB69rYNYjyRwjk+OlJVFsPNK6fjvldb+capp0mJ7Gt49XgvVsyo9SWo1sybgljEwibejJ0HXjrYjYWNVVllctlf0cJNK6Zh3cGu/GnOheDhFxx0fEzPs04dfObmZTjaPYJf8WT+fTLxW1v6UFsew/zcc1wdXLW0CZZFfrIQXKTSbzYcR9Tpx/XDBfOnoG8kjkM8vZEe57Jub+1HykZBmzV3aiUuXtDAl/n8c8+gsUbTv752se9rYtEIzppRm92rUuRgSC8Mjyew/nB3QUcHyKTnswYzxPgzaIyt8GNZAcoOlkQtvHLYZVjSjlXwdWSlG36sJ8PSaTXZ5WuCpUnrDnWjsboMi5r8A4TlTsnKXl7GLge7Tw5gaDyBS3zYYwCoLI1h5czabAdVkNV/8UAXLpzf4Mt6AsA5s+uxvaU/w/wUaO4vhN9uOI6h8QTuvCq/R4uBXffLBz3YQY4pji29I1h/uAd3nDfLs5yC4aqlTdh4tCeb+Y/xB2gvHuhCbXkMqwo4sZc5AU76vgmO2T/ZP4q97YO42u+geQCzp1BJcZbDXGD6mh9SKRvP7u3A1Uubsoas5GLVrDokU3Y2Yy1A9Gxt6UdNeQzzp/rf69ryEsxpqMButyyBAK19YBxHu0dwTYF1LC+J4rJFjdlZVkE78viudqyeXVcwqGKb7qvHCztfm48Vt3/XLm+CbdO+ExgeOs9s2lkz8svyGK5c0oSa8hhfCY+HY5VK2dhwpMc3e8Bw7tx6dA9PZLcCBIWL6Nl6vB/Lp9cUPGj4vLn1qCmL5RM5heAu63WeO0YWrpzpv45TqkqxamYdnuMJdH0yaBuP9GJqVamvgwpQxnaXs+cEhseQkC3H+1AaixQkcRqqSnH+3Cl4yuuYjEJg57I6+tI/EseBjiHfDAJAfbgfvmohHt3Z5n/eqxc8Wi62OdnM1QUOUX7LBbMxMJbg03+PHrRkysa2lv6Cznd5SRRLp9XkVyxwIpWy8crhnvTADD/ccNY0xJN2djVSMaT9ggyBwgKTRU3+tv3qpTSpmmswiU/LxZZjfVg9p953/2+oKsV5c+rzK2gE8MKBTly8oCFvZoAbTF838wTWbp/f0U3ma/tldBkuX9yIve2D3mcre2IyBmgcjtWGI72oKY9hRYGNDgBWzarFztaBjEMskEHb1tKPeNLGpT4lUAysX+aYu1F4+ir6We3P9OZia0sfpteW/3/2/jTIdi07DwO/DeCMOWfem3e+bx5rrnoszmSVSpSKLpYGymaQZrtb4lAm1bLCUrdkKaSWQ3bbdHdHu8OyBpoOUrQUIjUFQ2LRDMuUGCRLI6tk1vhevXrzu3PenM98DoDdPzY2gIMD4AAHe+28eWp/ERX33ay8ufMAGxtrre9b38rdoM2ajecuJw6WBXrQvnznBAe9Mb47R04JiARtvzuK3OUWqHwPJx5+69WH+K6nd3ID/etbLbTrduUE7XczXLeSeOmxbXzx1nGUWCzw2Uauh6/fP8X7b+Q/6B+4voHOyMXbB73ZtUrct3/+ygO8eGU9N4m5vtXGje3WtCuWDKhKfEYpN8liBiXec3UdE4/jzf1YIl+SQeOc41++to/veOrCjDlOHC9eWUe7bsekeYtJRWXAndV/JvE9z1zEv33zIJKLLHKO3DnBfnc8t9Dz3GVRFZ2yP//gj4g/d18svt7tY7z/+kZmZVzihcvr0+z4Agna14Ii2PvmvOg+/tzFaQfaBZ617sjFV24f5ybVgDizmjULX72Tbf/cHbm4dzLE85fzezLfe3UDF1brJROL2T0vr3PeenXHwodubpWbm5TSN/vqgw6O+xN86xP5760PBQHs7y1igR8EcZxzvHLvdO77uGZb+K5nLuC3v/GwOGNnWdG1DP78WvDey2PQAMGw/vt3joqbJWS8l2QSn/fe+rYnd+D5HJ8v0z+dIpV+9X4HT19czS3iACKR/9rd02nzrnmQBaWgYCwlaVnSNYlPBT2MU4qdeUg5R758+xib7RpupvQWS3zHUxdwbbOFf1Rmjl2Ki+NX75ygP/bmFl/ee20dX7t7uvjQdgB3T0RLxnvn7EeR5KCcJX2KxPGNvS6aNQtXcwpUAPD7g/0/4wqchZR5iv2xkAF+KCfRBYTK4Eu3T2Zn5paA73O8vtcNi/RZePLCKjZatenWlHmQe59Z4bn1jQddXFpvzBj/JPFS2YRw+Rg0jjIM2hfePsRLOfpzifdcFQHxLXlAp2i+50G+KD8wZ4M2azYurzenE7SP/Angj/+6mOFVYr0PzAn0AdEs+ZU7J9HBEh6IZYLvB7At0cCfh2cCaVsoO1yg8v3PvnY/aNiddeaJw7IYnr20Njt7qiQ+//Yhrm+1Uk0t4viWx7cwnPhhkLnIMOBv3O9i4nG8/9pm7ve9/7r4/2UlcZFB1b2Ri3//ztHcpAIQyeeXbsWS+J/+V8B//I8KrSPx8t1TbK/Uc1+qQJRYTCXWYYJW7LO9fdDH3ZMhvnNOwcCxLXzo5iZ+N+ifzJtflIff+cY+Lq038FyOVAQQFbvhxMebDxOJRYkE7TdfeQCLYW5icWOrhZrN8MbDmHzjhU8D/+UxsPNU5r+LYzjx8PV7nXC/5eH5K+t4e78X9bMulKCdgrF8ZggQQSUQSZ0XsfL/4rvH8DnwkTmFF9tieHxnJdc1ULruzdvblsXwPc9cxO+89rD44NKUBO3r9zu4uDY/IPjgjU1840GnuHlBisTx383pP5N47rJIZL9YSp43/Yw97I5w0BvPvf+A6EW8lzQUmodEL+s39rrYbNdwaT3/Osp+oH+anD+ZiVkGbb87wlv7vTBIy8JLj2+h7ljlBjunFHpee9DJlJLH8fyVBVoB5BzR4Dq+FRQKn9rNV1Q8vbuKnZV6IdOdENbsOfKl2yd437WN3ETXthh+8MPX8LnXHuKgqKQ4xdjoXwTn7XenuFPG8b5rGzgMeroWhSw4PZnDaAEiRryx1cYbZZxMUxi0Nx528cSF1bnx7yee34XPUVwuPaVEEet+9c4pfD4//pWjVH67jMrgT/8e8J/+TvjXO8cDDCd+GG9mwbIYPnxzc7o1ZR5SBn7fPx3MjQ+BqBWmtAlQ3q+j7CfpQsG46rg/xmt73Uw9eByyn+k1+TJYoHfki7eE61aae2MSN7fb0wkaY8Dj31mYHTzqjfHOQX9uRQsQUqiTwQS3DgNpygI9aL/16kN85OZWqoNNHDNV/QXssX/j5Qe4vN4M5Wl5eP7yGl6931m4qsW5kBx8tMAe+UjgTCTNUhaROMpKZF5vCSD6Ips1C1+SfWgL9E79u7cOMPH4XNYTEC/W+6fDSPO+9Tjw7B8otI7EK/dP8cKVtdyXKiCqWo7FKiVoUo72LRluUXF84LoIYl3PX0ji6Ho+PvfaQ3zvsxfnf7bgxRslaOUZtN98dQ8fvrk1NdclDY5t4fGdldmXeAmFwSv3TuH6PFdKJPHC5TX4HFHv7ALnyFfvnODxnZUZe/0kbm630a7bUVC5wLP2hXcOYbHIFTUPT11cze1TeCeQbD2WI12T+N7nLuK4PyneCJ+aoJ3OZesA4IM3NuBz5LJ/U0jpZf337x7j6kYT17fyP1vNtvC+axtzpaBT+M+/DPzEvwj/+sq9+dJNie8NxsSUkovK93VwTd962MPjOytzn9sb2218oIz0KsW0SVbp82SAgAi+P3Jza7pXdR4SpmWnwwnungzxbIE98nxaQWwe/tBfB/7w3wSuvB8A8O5BD3XHwqW1bLUOIMyLvvXJlLFFuf9oOkEbTjx840EHHyhQNPqupy+AcxRnkcNnLbp/v/HKHl56bHtu3CaLWOUKFNOQ74UnczwKJJ66uDJdfJuHlHPkzf3e3GQQEKqWVq2EeU0KEy/PhXnFvvdcXcfuWqPcYOftJ4ErHwj/+lrQL1+kQPGRx7bw2l63uOyQMfG+jl3P+ydDXMnoGYyjXXfw1MWVEkWlpWPQiiNs2J1zYAIiQAWECxOAhdzX5umY47ix3S4/CyUGGbgXYdAknR4yPyUr34Oxh5fvneJbnph/HS+vN7HWcKINukBg9dqDLt57bX1u1QcQCeFRf7IwXf7mfg8HvTG+ZU7/BSCshHdW6mE1caGg8e1DbK/UcWM7vxrj2BZevLIe9SlmuK/l4ffePYZtsUwHpzjk/i/1QojB8zlevd9JtbJOou5YePLiynRFt2QP2tfunKLuWHg6p0dR4vGdFXg+x93j4UKuol+6fYzToRsGjHl44oJM0BL7v6AbbHfk4mt3TzOdS5N46uJq2Ai+CCRDW4RBk8ZH7xwGe6TkOeL7HL936zhXbithWQzP7K6GL+JFJI6/+9Yhnru8nmmOE8dTF1dw67Cf6WQmz+rHtucHO1Iq/ZW4yU8eEp/N9Xx840G3YIImzAukGcpcpCQWb+/38PQcZjhabxNfvXta3Dly8yZw/aXwr18PJFsvXJm/3uWNJq5uNKP3VhEkpNJvH/TCZ3IevuWxLXzp9knBzzbLxH/t7ikshkL7+1se38LX75foQ5NnfvD5ZCE5y1ExjhtbothRyl2xuQ586EfDv75z0MfN7Xahd/K3PrGDO8eD4r2KiZaL1x504fk8t29Q4v3XBWNROLFInFXDiYdX7p3iO1JGByTxYpDEfL7CoOU3H3ax2nAyjdbieHp3FW8+7C7MxI9cD7cO+7l9/BKObeF91zeKy5dTCsZfun2Ca5utuZ9NjlIRA7RLznoLIPf/0xfn738Z//xemcKS3QivJ+cc906Gua1EcdzcXineg7l8EkegKIX2+beFdeo8yhUANlpCBhExaOWkSSf9Ce6dDPFigUMFEBXi+6fDcg5EMXzp1gkYm8/EAEJ2yBiipKmkPfZX757A83khto4xhmcureLVBSWOrufjrf0entot5h4oGbvS1r4BPl+w/0zi0noTe6eBxKFk0Mg5x798fT9wDZu/h5+9tIbXHgTsYIqkYB6+cucEz+yuzgzeTMMzskCxYLD/1n4PI9cvVBkH5MsnlgyW7EF7+Z5gGOb1XwDJns/yEsfffvUhLJbvFinRrju4stGc7Z0qeI68ev8UnGNuj4LEU7sreOewX85qPYYv3T7GhdVGoergTO9syQTta3dP8bAzyjUIiePp3bXoPC55jgzGHr7w9hG+q0DgBQBPXlyFzyOmLIl3D/tYbzrYaM9P9q5sNLG9Ui/OaiX2/NsH4n7O668ARNP9pz9wFX//d98tNrQ30dzPOcfbB71cU4s4PnRzC2PXL9cbE8Od4wE2WrW5SgyJZ5KmU/Ng1wEwwLIwGHu4dzLMNb+J4yOPic/2cpHPlsLEf/3+KR7fWcl0Aozjw49tweeJWZd5SDDx7wZFkjy36PCfBq0AVXq13z3s47E58l4JOYbk375ZkCFMxCOvPxS/59MFYoBW3cYLV9aKB98J1l8WXook8TXbwocf26w0e1UyWkXe/09dXMXI9XGnaKKbiEfeOejD5/kGIXF86OYmXr57UiwmTWm5+Pq908Lx78ef30UnaMFYBG8f9LCzUi90Hn/gxiYshnJ9aHYtvJ6dkYv+2Cv0jgSEyuKdw15BBnkZE7SCle8vvH2I913bKHRgAuJAeD2s2JarfMuEZF6PisTNnRY4x2KOWBB08jO7q4Wqw+26g5vb7VhfWLnAStpwF2UHpxKLkknMraMBxp5fiBkBEH5faKZREl+5Ixzsih5il9YbuB8maOUYtNf3utjrjAoF+oAITo76E+x3x6VNQjjn+Oqdk0IJPCAKBnXbihiLkghNDQpUxgHg2mYLd44H0SFWYg4a5xxfu3taqMIKRLK0dw57qQzCPPz2a/v44I3NQi8DQMgc39hPShyLMfEvB4xp0RfdYwE7WGo4Zgxfvn2C91/P7/WQWG042FmpR8x/yXPkn7/yAIxFPQjz8OylVex1RkKaUvIc+fzbhxh7fuaMvCQiaWp6MvDOYR+PFQz0GWN4z9X1hSWOsqe26LP0Ix+9id7YKxY4Tp0jNo77E3SG7tzeOonI8fK40Pcn8eB0OLcfLI5nL63ijTIsglMPP+M7YRJT7LNJaWKhoDFlUPWr9zthwXAePnSjpJlAMkE7EM/79a35fTFA0ArwYLFWAM453j3s42bBJP6Z3VVstWv4t0X70BJJ0+t7XdgWK/y8feD6Jr58+6TYZ0vMQZMFmaL7/6OP7+CV+6c47hc000jg1mG/8FrS2KZw8pl4d0plRREGDQDef20TE48XK9ImFD1j18fbB/1CkkMA+I6nd2AxlJP5xnD7aIDrBa/jSsPBC1fWy41IsKNz5EHQc3h5jtGKxGM7bQwnPvaKqLq+WRk06RZVRLoj8fTFVby+1w0Si3K9I2GCVvCAlg/pIjJHzjm+dPukkEZb4tlLaxGrldIom4cv3jrG9a351HV8rTCxKFn5lr1rRapngLD2tRgWljh+PZDlFQlQASG7uX8SrFUyQft80LuWNeg4iecuxfr5Strs3zsZYr87nuuWJ+HYFm7utPHWghLHV+6dwrFY4ft2bbOFkeuLPQKIilXMNSkP7x72cTKYzHVmk7i83kTdtgTzU1Li2B8LJ8CigT4gqrFvzUiliyV3L987xUarVrhady1oXL5zXD5B645cvPGwO9c6OI4b8d7Zkgna774lCmZFenSBKLB4c79bOkH7d28dwLFY5lDpJKR08d2M87hMYAUImds3HnSKDX9NJmj3OrBLPEvvubpe3PEtIU2Sha2iLNOVjSZ21xoVErRRYakQIAY7j1y/+Hsy1jvy9n5xdgQAdtebuLTeCJ0fC4Mx9Mcu3jnsF37/b7RreO7SWvEANWFa9u5hH5fXm4WLz89dXsNhb4yHZebzBTjojdEfe4X3v2UxfOjmVnFpasK07I29Hh7bbmfOJE3i2Utr6AzdYjFA4ll7R0qXC+7/73pG9Lx9rszMvACcczw4HeFywf3/4tV1rDWd4kxk4rPJ3uSi+18Wqd4qMjMscY68td+D53M8U0ByC4ixLe+9tpE+2qcAbh8NcL2AaYfERx7bwhffPS5e6ImdI/eCBK3oO1k+J1lqjGksXYLGCwVWDzsj9MZeoQZJiWtbLfTGHjojt3SC9o37Haw1ncI3MdVqvyBuHw1w2BsXkm5KPHdpLZCheaVdHL/47jE+VKCPSSLqZyofWMkewKLBiW0x7Kw2sHda/sXjB31TRSvVgOhDO+iNhHa6ZIL2yr1TrDWcQkYDQNQA++qDTmpzfx6knGWenXUc1zZb4WFUFq/cO8XTu6toOMXutzQkCBMLp1F4P0qmoGjwbVkM17dbgS68HIMmnanyZg0mcWOrjdOhKyRnJd1gX77XwYtXihcMZIJ297j8ffvK7RNwjlKFnpsLJmiC9Twp1J8jIQe5Pjgdli70vHq/gycurOTO2opjo13DetOJjJRi8HyO20fFGQRAMBauz4sFO4kz8s39Lh7bbhd+llYaDh7bbhdM0Kab+2UQUZRlYkwMmP69BQf27p0OsTvHaCIO6dL2WlHptV0LnzlpmV8msX7hynp5iSMY3tjrgfPiChpAuFR+/u3DYn1oiUJP2YJB2Apwr7xC4l5wtlwrERA/eWEFbx/0orFFeUicI68/7BZucQBi/gFF9kiCrXv3oIe1hoOtguqID97YxGa7Vm6MRoDOyMVg4hUuUNgWw7c+sV2CiZw+69582MOVjSZW5hgySYRKkyJqpAQTL9VZ81wV4/j2J3fwe7eOIlfggvB9jjvHg8LsMSAStN7YKy7zdaIE7b5k0AreN5nsF1J1fbMyaNLsoGj1AED44OydDkv3jry218Ezu6uFA6uLqw20avZCCZps5CwqOQTEw+f5XCQyJeagPTgd4u7JsNRa17Zk0Dgo5fAGiEP28nqzkHRTYnetsVBl8M6xmElSpNdD4vJGE5wHjF3J5PPle6d4oUTwfXGtgdWGg7f3e6VdHKMDs3jAcHWzKe7ZAvj6/U4hUwMJuUdCfX3CNSkPv/vWITbbtcIyWEAkTbePkvtx/n2IBlRuFl5rih2X6xU4R1zPL6XjB6IkpnCfQgxfDkwsyjBoN7fbuHs8DBwxiydot48GOB26hWWpQFSxvHcyLP2svbbXDZ15i+JG0lk3wL2TASYeLxUQlwsap/f9naNB+HwUxYtXiyYW070jkpma5+AYx4dubuHtgz6Ois5MCuD7HHudES5vFJc4yutY2CLerofvt3snQ7RqNjZaxd8lL15Zx+t73QLM53QP2t1AYlzmvn38+V1MPDHPcS7Cc0Rcu1tHfVyfYzQVh3zHLdKHJuXTecPek3ji4gqGEx/3TgsUjsJzhMH3Od496BdyOZSYMXjLXWt6Dto7gXSz6DvZthi+6+kL+NdvlGfQZO/6bgmJ77c+sYO39nvYLxLfJM7I+6fDQtbwEu26g921Bt4uwvzEr5dl4/W9LhgrLqcERNI08ThevleOsd7vjjB2/VIJmjQKKSxzjEkcZdG66H27sdVCs2YVLIYsW4LGUSjrjOZNFN8wMkF7cDoqXfm+dTgoLBMBRCVyxmq/IL747jEajlVYTgEAF4J5OvvdUanASrojlWEQ5FDERQKr1/e6hdkziYtrDex1yjMIL5fsmwIQ9k88OB2WYtB8PxjQWiJAZYwJt89kYlFABigHK5YJTq5utHDQG5c2rjnuj3HvZFjYIASIAplwMGyJBO3zbx/ipce2CzmKSVxeb4o9UtJm/4u3hbz3wpx5VHFIdvz2Ub8UE//2gTBaKcN6Nms2Lq41Fkqsvxy4bs2btRXHpY0mPJ+LgaYlbPal3Kmo+QkgDDDqtiV6PkswaIOxh3cP+6WquYBIPm+lDCqWjlxFTRIAEagwtmCCdjwoxVYAYoj4Owf9+WxMotDzoDPEZrtWWCoHxPrQirpUBjjojeH6vJTEca1Zw9WN5vQw9jzEAqu7xwNc3WwWDr4BwaC5foE+nASD9uBU9qkU/2wfeUzMQ/v3RWYmxc6Rkevh/ukQN0ok1dsrdVxeb5a+ZwDCnusyn00WxgtJ5uU5YtnY740w9vxSicXuWgNrDScyFCqyVnD/7pZkYgBR0Lp3MixdoHgQqHzK7H/ZolConzURa+13R7iwWny8CyBMZ94uJHGc7om/ezzA7lqj1DnynkBN8XJJVvf2cfliyPWtFnbXGsWNQuxa+Bnvnw5xYbVeWNHg2Bbee3UjGpGUh29WBu2t/S4ajoUrJR6GKEEbAk7w72rzD8Gx6+PuySAMzIpiUav9f/vmAT58cwu1Ag52EjvBg3rQLRdYvXJPDJYtEzS26ja22jURNJZIYjjneGOBBG13rbFQD9qXbh3DsVipzza1R0p8tncO++iPvVJrAaIac+uwX9okRDC65RgE+VIsK3N8ObTOLv7Z1ptCUhZKHGOBVR6O+2O8fdDHhx/bLPU7XloXe8Tj5SSOrz3olGJYAYSB063DQakE7WslDUIkrm62wgp+GXzpdrFB93FcCPrHRH9pcTfYr945hW2xUkUlxljQ81mu0PPGwy44x0IM2u3DwYwsSxbRypzvctBs2QRtOPGw3x2XT9CuSIZkDosWL+5YNvZOR3NnWyXx/usbsFj5eVAyiSkjcQSECqC4xDEq9IgErdx1lPtz/n2bPkfunwzhWAwXVooXO2q2hWcvrYaz4XIRkzge9SbgvBwTAwDf/cwFfG4Ba/N7J0PUbIadgr2jgJh1CYg4bC5iBWMppyzaKgKIc+Kp3dVyEscADzuj0vtRvg/KOkfLInKZBE32l371dpEEbToe2e+OSxUWAeDxnXZBBm2aib9/OixsoiFxdaOJjVYtNMYqCmmsd22z+HnMmBg3VNg10o5LHAelihOAcI786p2ThccIxHHOErRiTX5vPhTzT8pU2XfXJDsyAq5/C/BHfhZ47Dvm/jvhRlfuBQ6IrL6si+Nxf4xX7p8WNpqQkI35B71RlLUXCHreeNjF9a1WqcoIIOQQQuJY/N/dOxmiN/ZK6c8B8cLf746LN4AG+NLtYzx/Za3UZ0tlWQtA9oeUDb5vbAtpHp8KCPJ/X9/neO1BtzSDcHUzJk0tgTLDZ+O4uNaIpBtOsQRNVhLL9E0BwgDA56KKHyH/bPB94V72RMH+HImNdg1rTUewMc0gAWrN7+F8+d4p6rZVSiYCANc3W6UljgfdEW4fDUpJNwGEbJs4RyJp0jx87e5JMHy93Dlyeb2ZYOLnryXlcEUdxSRubLcx9mbdt9457MOxWOlg/+kFgsY7C1SHgehcmRvsJBi0vc6odKC/0nDw7KW14jOTAsgAtex6zwTXsdD5Hgus7hwPSye6V4v2dCaY+PunQ+yuNUrFG4BgPl+5dzrfgTCm6JHjFMqoIwDgEy/s4nTo4gtvl+sfvB/MgCrz2S6tixaOvOHvIWItF1JOWfZZe2Z3tZzEkQnnwaP+pLD5mYRU3Hx9XjEkAcmg7ZZYb61Zw5MXVvDlQgxaFI+4no+jfvkE7bGdFex3R6WZ+PsnQ1wu+VwzxvDClbVi0uwY9juSiSy33ocf28S7h30cFJGLxuag3TsZFu4/k/jAjU2MXL+ApHgZGbSCEscyBiGAePGsNZyAHbGAD/5IoaBRVljL9CgAImnqjtxSWfbvvnUIzoFvf6pcgrazIiWOY5TpQXvzYa90wAiIfqayEkdZJS3TWwSIQD+UXRWE73N8+VY5J0wA2G7XUbPFC7moMx8gAqcyzmwSN7ZaGEw8HPRjssM51/TO8QCDiVeaQbi2cIJ2igur9dIvuq12HUe9YHbTe/8Y8O1/au6/kYOVy5hNAPHiS2yPzNn/e50RhhMfN0tIlyVubAXs+OPfBXzmt4Dd5+f+mzf2enj8QnH3Mond9UYxS98Y5Au/TP8ZgFAyI6TSxc+Rr94tJ++VuLzRLG0S8o0HXdTs4jbdElfDnrfp/f8gCFDtksG3NEooHHwj6iUsm1hckdXoeWxMQpr0sDMq/dwCQvL+pVvHpWzb9zvi2SsToAKCCR25fiSHzkPAxI9cD/vdUam+KUCMktho1QqcgbMSx0slq+yASKwPeuP5CpCrHwRufjuwcWPhBE060RaSVMZw72RQitECRPD9xIWVco6AzA4T47LrPb27iodyJEcewmeNhcXBsvt/d62JC6v10rMAH5wOsdpwCpt2SLzv2ga+UpJBO+yNwTlwoeRnk9LUuUYh8RjEEjL0skkMINjIb9wvN/7hqD+GxYQKpwyeC5jPN4rIbmNmQw9Oh6UZNGkW9Ma8osE3o8Rx4vlB5bt8YCWCnXISr0UTtM3AOajQgNEAMol577VywU6rbmOlbguJY8EeNN/neHO/G8oVyuDqZqu0SchrC1a+5Qu/jMzxncM+OiO3dIJmWQy7a0HQWCL5fPneKZ6+WJ5BkKzsrXhFd841XZRBuBQ0798vKXF8JTA/KYvNdh1Hcp7Mkx8DvvvPzv03X759jMd32qWDk5D57MQTtPxzJLIgL/dcA+IcEcUQBlz9UKF/IwYGlz+zLq410B256I8LuMEFkExL2UQ3ZNDkZwPmJ7qnQzzsjEr1n0lc2RCFHl6CrXvtQQdPXlgtJQEHokAteY7s98alAx2gxDycWGB1d0EGTVaj5waNsXvFmYW9TjlXRYkXr27gZDCJZkIWgDRy2ikhAwQiZ7hCA6uDAbPyDLuyWf6zyRmNuUgyaAtU2YFILvfKvEr7xeeAH/vfgMbqwgnaWrOGi2uNgvbfEe6flJevAcK2vZSLacCgNRyr8CgOicgoZM51jL2z5XN+sSTLBIj7VlbiKOSU5dd63/VN3D8dzo9LY8+2fNYuluxBk06OckRFkbV6E47O0F1oj1wPCtCnw+LvrqP+GJvtemm2WhrPZM26nMLqLtDexnDi4ag/KV3okbnAu3OftWVM0Oa8pG8d9uH6HE8skFhcWm+WDlDffCj63co+fPKAPZ5X9Ynh1mEfF1brhe2j49hZbeCwN0LRHrR7p0MMJz6e2i0fNF7ZaOF06KJf/LnDq/c7uLDaKGVaAESBVZnE+u3QRKb8Z7u03ijdg1bWIERCBmr3pxKL/CQvZCJL9qA1HBtrDSchA8zHcCKsa4vOJItjq10rtfcB8dnK9oQBsQQtLm+Yc45E5hDl98h2PPksAC9wL1ukqCQDjP1O8fXe3u/h4lqjdBVyvemgblvTPWhzzpGXF5T3AqJ3duz6GHjFkkEA+MZep7S8F4h6o5KOsAfdUdh7VwaSeZ0bEMfOkUgGVT7Yf3p3tVTl+3joY+LxhYJGqXIoZMwQ4KA7xkrdRqterkhVysnx6d8PvPDp8DoukjSFxcU8JNxgy853k3jqYkHGIoZFEzQAeGJnpZj9dwx7CyYWT15Ywa3DPsbuHIVQrNBz92SIKxvljF2AEq6psUKPTNDKSm6BYPD3/U6ptoqj/rh04glEKoevzpM5xs4ROV90EYkjUMAiPhaDPOiI/VjGnVViN+6cXhBHvUnhsQhxXN1soe5YxYoG/8H/B/iPfrG0xb5Eq25jd60RztnLRIFtfv4StDmf6q0KwbfoiynnzvOvXz/AS49vlc7oN9viYT0ZFF/v1lG/lCVyHDurdRF8FwysZBKzSNAoTUmOBsUdAb/xoIPnLi8eWJWReckXYlkZFCCC/TI9aN2Ri3snw4WCRvkS7oxiL7k5zN03HnRKOzhKbK+WSyy+dvcErs9LuXxKbK2UW2vi+cKCeYHn+sJqHYzJAFg+p/MZNNF7VD7w2lqpl3L5uncywNjzF9qPIfPTLf6Se+egjycWWIsxJs6RbvFCjzyPy8p7AWCzJc6Rzlju//x71h+7uHU4KC3vBcSZxRhmZioedMfheVYGj4UDS+clTXFp0kgkwSVlroAoih31J/kurLF7tR8URxZJLEqNEQhw0BstxERKJ8dCa334PwH+wP8zlK+VDVAB4Npms8Dg92gfupyjO3IXCvQvrjXQrtvFgsYAVRK0x4qaQAQYjD30x95C+/+JiyvweYFZrzLYtyzsLSAnA8SYiLpjzZevxVwcZbywiMT3hSvrGLl+qft22JuEMV8ZiLmYkbw/E/EErbPY/l9tOAHLOi9Bi/b/Xmfxc+RS3PehIA57Y2wtcB1ti+HxnXYxiWNzA2hvh8ZGi3y2x3bahkFLQ5igLZBYXFhtFJs5EeD+yRCvPujge565WHqtzYUYtPJukRI7K41SPWjyJXW9hFtOtFa5BM33+UKzi4BsaVIe3j7oY6Vul7ahBYIE7aQ4gyadOhdhYuQ8uJNh7DrO2f+vL3gdAdEXVqaXLxzDUGJOnsRmu4aR6xceVPluwIwv0hPp2BZ2Vup4GLfan3Mdbx8JFzinpFQOEP2lvbFXeGSBlJQUHRgch3wJPyzDoB30Cg9MT2JntV5qXMc7B32sNpxSLnASG1IGPgwq1fNkqcF1XGSP1GwL2+36FIPGOcdBb1Sa1QcE+21bbH6AGiu4HPTGC60FRFXeXAVIPEHrCnnDIgHqhdU6Nlq1YsYMAQ6644X2ACCcHAvPQgOiBG2t/HrXtlroDF2cDnPey7F9OPbE3txeIGhkTPRKlpEdygStzKxQiccvrOBhZ4RekeHYCMyAgIXu2xOhk+O8YD86R476k9ISWEAE3ze2WvMD4tg7W8YLi6y3iFHIUW+M7ZXy92yl4eDJCyvzDYCmGDS5/8t/tsd32qUkjg96FRK0uCt2QRz1x9ha8Bx58sJqMWfRADIWWoT5vLm9UqA48QglaIyxJxljP88Y+8exr73AGPtZxtg/Zoz9dMGflPv/vvagi+2V+kLVip3VOvpjr3A/hxxY+F3PXCi9luxBK5qgeT7H3eMBbpTsT5DYWQkq3wXtse8eD8BY1JtUBtslE7Q7xwP0x17YXFkGrbqQ5pXqQTvo4bGdldJSCkAcKp2Ri964mLnLoj2KALBSt2Ex4DTOoM2ROL5z0F+olwmQe6R4oP+l2ye4utEMpQplIKtgRVm0N4PKV1mXT4n1Vi3QuheTy8k5SotAfraiz7aUlCzUNxsyaMX2f3/sYq8zwuMLrAWIgGaaic/fjzIZXORZk0Wsqf2fg7CotOAZeXGtMcWgnQ5dTDy+UIBasy1c22zNZywSzf2LBANAYrB3FmJ7/jgo+iwiF2KMCee8EhLH/e5iiS5Q0skRgkGw2GLBtzyn8+dBRXt55IrfaXOB6wgAT1xoF5s9FeB0MMFa0yltWgMgfC8UTQjlu2CR6ygZ+rkBcchq2TjuT8KiTFncyJhjOIVYcfphV8wAXIStfnp3FRYDvlGwD41zjsMqicXF1fmJbiyeu386RDvwHSiLx4rIYONS6aCPZRFWS7LOD0q0pxz1xwsVQwDB6r572Idb0JjvMIhNFlJQ7LRx/3Q4J5dQlKAxxn6BMbbHGPtq4uufZIy9yhh7nTH2F/J+Buf8Tc75jye+9grn/KcA/BCA75z7i3A+N+t89UFnoUAfiKrRRYPUL98+QbtuL9QXI+U7xwVNQu6dDOD6fGEGbbNdE2tZxSrf946HuLDaKDygLw55oB8Miz0I0o70mQXv28X1crPQ3jnoL8wgSK31g4Lr3aqQoDHGsNas4XSKQcu+b6fDCU4Gk4UD1O2SssPXHnTw/AIGIUAUGBZdTzoiLSJxBETFuTN0Y9cv/xxZZI6ShPxsRdnIt/d7aDhW6ZlUgLhnjBVnkGV1dGEGTSbxLJIL5a/XWzgZlEW2KEGbf8+A8jbdEhfXGlOJ7kEFqRwgArmvzzPuiCVoVVgm6SJ4/zRHnhc7O6RsdBEmBghMIEr0M4m5TIt9tmcvCyfHonNDH3ZFortIEvNckTlXUwya+HOjtdhne2xnBbeOigeNJ4PJQvJGsVZB2W2AkEFY4L5ttGvYatfmFyiCPcmZhZPBeOHPFjrn5iE2ruNk4C6UVACiX/viWqOwSU5/7GHs+osnFhdW8M5hf2ZG4xRiSdPdYNj9IkWxJy6sYK8zyk8spgo94ndab5b3RWjXHaw1nRlZeRY45zjqTbC5ABMJCFXdxOOFx1sdBnnAIsWXDwSqon/3Zo5rqkIG7RcBfHL6ZzMbwN8A8P0AXgTwI4yxFxlj72OM/Vrif7vZvyP7QwD+VwC/XuxXyf5QYgZUp9RA1Dhkw33RavSXbx/jPVfXF3oRrDUdMFbcxVFuqhsL9qCtt2oYuz4mfkEG4WTxAFUe6If9Ygzaqws6D0rsrhV33/R8jltH/YX6fYAosS5639497GO96SxcGVxrOtMMQg7zeftQMgiL7ZHtFdGnWMT21ve5GGdRMfguyjLdOuxjq10rbWwhsd50cDqYFHIfdD0f90/Lz1GSkJXS44LJp3RwLNvHCsTlm8XOLFmJXZRlFUzkpJDEceL5uH00WMgJE4ipDGSBYs4L7e7xAHXHWjjJubjWwMNY0CUNcxapoAJiXt/rD7v5c4XiCVpvsX43IC5xzNkHsbOjOxLP+NoCgRUgEouicjnf5zjsjRZOdGXB9dWCMsf97uJr3dxuo1Wz8fXckQUxBi1IrBZl0B7bbmPi8XzmM4YqCZoslBRNrOX+LzOAOw4h3yxmOOH6wMTjIWteFje2hTFZofcyY+gOJ1gtaXkfx+5as3Dfu0x0F2XQHt9Zwdj1cfckJ7GYcoMdLhy7FXJyZLFEd+hiteEs1AoAyJ7+Eomut3iiK4u7RXsHD/tjrDWchUiKb3tyGyt1G7/xyoOc71KUoHHOfwdAMhX8KIDXA2ZsDODvA/jDnPOvcM5/IPG/vZyf/auc8+8H8KOpH4GxzzDGvsAY+8Jkkv/w3TkeoDcuPwNKQr4cizBorufj5XuneN+1zYXWsiyG9WYNJwWDOFkdurG92IO3Hhx8IRlTROK1QMMuIKR5dcfCYUGJ4zcedHBts7VwNfdiicPy7vEAE48vHDTKOSa9UfHeqZsLrgWIeR+dqYA4J0E7qrZHtleEa16vQF/YneMBRq6PJxfo9wHKSxz3Oos5pUnMXsfsw/FBZwSfL87ESJnaYeEEbXFGFxAMT9EE7bW9DhhbrE8LEOdIZ+jCLyAVvX8yhOvzhfovgcgI4WRYjEG7E1SOF0l0gcgkShYoDha0hpd4/40NcI78OUaxpGlRpzdAnEvrTQf384K4OIM28mFbDO0FZFBAObnc8WACny/WywTErPYLSsqqJGi2xfDs5bX8/iKmTuJ4JThjirIxVRK01YaDC6sNvDOvxyiA3P+LMGhAuX6mUVA4XvQ6ysJ1LosWKzz2Rh5WGovtfSAoChdkfuQ7btHEQvYm517LxLiORd9d0XOdk8TEinNV9iMgXLGLFieqJrqyL3LufLLYeouu1XBsfPczF/E733i40L+XqNKDdg3ArdjfbwdfSwVjbIcx9rMAPsQY+4vB1z7GGPtrjLH/CRkMGuf85zjnL3HOX6rVarmB1Wt71ZgYeagXMQp5a7+H4cQvPZMsjlB2WAC3jkRPWNmZDBLyIZIvlLzAinNeqQrDGBNSqF6xXr5X73cWvmeAOCyLBqgyoFiUQZOHendUkEE76C8kb5RYazo4HbiFGAvJsi7KoMnDqIgD4ZtBFeqpBSWHkcSx2HXcOx0u1OsmsdZ0pnvQcoL9RQcGS4TJZ4HrWMViX2KzXSvsBvv6Xhc3ttql7c4l5DkyLsDEyxfvIs5sANCs2WjWLJyMipmEVOkbBEQSP/Z8jAJrcOnoW4VBA4Av3T7O/qbYZ/J8ju0Fk0FAvBvuHBfrQTsdeVhtOAvJoIBycrnDwGxi0WCnXXdwc7uNr5di0BZbCwBeuCxmymUrCWISR5mgLShxLNQ7GEPVgPjxnXZhq/3D3hgNx1qolwkQjN3dkwFGbk7BL2i5kHHJolJR2fqRP9A8in06IxerjcWv4+56s7BqR77jthaU5j1RhPmMFW4PemNcW/AcDBm0vMKLLCpZNk4Gk7D4vwgKzR0MINU2i7KswpuiVpxBq9ATDADPXV7DneNB9qiJR8kkhHN+wDn/Kc75U5zznwm+9luc8z/NOf9POed/o+oaMvheuAE+ONT3CwT70hp00SQGEButqMTr9mEfV9abCzW1ApFGeCBzppzA6qg/wWDihS+PRbC9Usd+gUFonHO8fdBbuKIPROYuRRwBwwHECzjmAcBacKh3CzBoni/0zov2DQIIetAmMTvi7JflraM+2nV7ocZ/IKpwF5mF9mbYE7bYfQsljgX7tB6cjkJb3kUgmJ9iEseqvUybYQ/a/Gf77rGw2F/0zAJE0nQ6KFYMeX2vu5DlfXwtABh58ws9khVYNEEDROBb1Gzo7vEQVxcsYAHRGSkd/OSfiwbE2yt1XFpvlLKjr5JY3Nhu5QeosSDudORXkngVCuQCdIJBtIvKkwFhFPJGwev4sLM4gwaIOVdH/Ul20S8WWA1dH3XHQrO22HtZPhu5zGcMJ4NJpetYxjVyP+iJXDSJf3xnBZwL9+lMBHtSvk6rM2g5a4UJN0N3NFlY3guIovBBb1yod1AW6hbtebu0JuK+XHYwERcs+u5aa9ZwYbWeb+4SU/OIvsHFr+P1rTYedkaFHI87o8UdTCUeLzELsGqCdm2rBc7znHVpE7Q7AG7E/n49+Botcg6LO0cDNGuL9yA0HBtrTacQg1bFglZio10vwaD1cb1CoC+DjIHM5nMCK0kBL+qYB8h+pvlBo5jd41dKdNeCQCO31yPAu4d91Bc0ZAAiBq1I78WD06GYb7WgxAsA1lvOtLnFHAbt+tZizcFAOQbt1uEA7QVHFQBAPajMFmHQPJ/jYXe00KwhibWGg+HEBy8gcbwTJmiL7ZGabWGt4RSSb0aMbjUZbJHeC9fz8eZ+D89UeK5lEhNu/5yCwV6FOTISm+1arActe++PXR8POsNQMrYI5ItfJhQng0kQfC8uhXpsu0AfTgxVAoIb2228e9jPZn6mmvv9SgGqDOSKOBDKc3m1wno3ttshs52HkethOPEXDvQBhMZHr2RJKhM2+5ut2sJn7lrDwUrdLsegVfhsjwfuckWKmYe90cLyRiDezzRfLjeomKBttGtYazr5BYqmGPqMGx+tLnFcb4BzFJqbW8WuHRDtMNc2W/n7PzH2p0o89eyltWImOQokjtLQrAiL1g+y+Cr37dJ6A/sFR9IcVUzQrgf3IHNPEjNonwfwDGPsCcZYHcAPA/jVCj8vE4yxTzPGfs514xKlWdwJtLeLHpaAqHIUCXaqPnSAYNCK96ANFjYIAeIJWnBtcgKrb4SmHYv18gEicS3CoFVlK4B4X9j89d7e7+Gx7fbCfSoyyCiaDAKLOThKrEsGrcBg4NtH1faIrMx2Ciafl9eblZ61zXa9kJHGYW8Mz+eVAn0ZjIah6xwGbatdQ7u+eEDZbtiFgqC3KljsS2y0iiVo90+HGLt+5bWAggzayRCtmr2Qw1d8veOI9s/8vgenQ3AevRQXwXpQCZYJ2unArcRWACJILTPnqsp6N7fb6I+9bAY8duafDr3Kn+3KRqtQ71Q3uJ5VGLtrmy10RvNNIKIgbvG1ng9MxrIdOKcZtCrJIGMMlzea+fPr5FoT4QZYKSDeLh4QnwwmC0s3gaifKZexCPbksKJUFAicHPOSmPUrwE/9K+BT/190h9UkjrLAW8TgQjLxVZifa5st3M67Z4kErQoT/56r6/j6/Q4mWewgm5Y4VtmPkTR1/n7sBc6SVZ7tndVGSK7kQczArM6gAci5b+ps9n8ZwL8B8Bxj7DZj7Mc55y6APwXgnwF4BcA/5Jx/rcjPKwvO+Wc5559xHHtu5XvRvhGJdt0uZJJw2BvDYlho3ppE0R40WR1e1PwBiExC+pP5DNprD7pYqdsLm4QA4iHqjue7Ad6tyFbItYBiSVNVyWHDsVGzmcYEzUF35EbMT56L41F/YYt9IEpiZECVhwenw0qMFiA0+UVYJvkS3F2Q9QQQ08nPt9mv0mQt0a476BeQbby930OztjijC4gkZhAEb3mQsuxLFZ7rMmZD90+HuLTeqJTEb7RqOBoEn+vSi5nfJwPOa5X2v2TQIonjegX5DiAStLm21TFUqQ7LcyZzQCqL+i87I68SgwaIILBIsCMLPlXWk/d1Hosmz+UqQdxmu44rG81w/MsMEiYhVZIKQBQnizBoMjmt0vMjJcD3CkgqO4FD36LYbNew3nTyCxTB+TGsaLYCCInvXKv9y+/FCA7Gno/VigwagELmZL2Ri1bNXsjtW+L61jwGbfqzVNn/77m6gbHrZ5tpKDQJkfFKkREaIRNfJUFbqeOwN84fWQBgMPEwcv2FZamAKGAxlnNmqWLQOOc/wjm/wjmvcc6vc85/Pvj6r3POnw36yv6bEr97BeRLHBc1SJBYbTiFmJiD3hhb7cVmrUhsBpXveZvloDcC59WkQrJaGuaDOYGV7FOpEli168UYBBUM2moJBk24AVZLLFYajkhinvmDwPdmj/+7ddiHbTFcqZB8rjVrQjo/R+J40p+gM3Qr7f8o0S3GxlyusB8BwVYXkTjKZuwq900G32EKQ1zoadVsDAoE5e8c9PDY9mIW+xIyYJOV2iw87MhEd/HrGDHx84079k6rOW8CYk8eThzg//xPgR/5+5nfJ1+ClaTSsgdtIBm0av0+QGRGlJk0AcDj343/44U/DwCVWFuZoOUGO8wCLBudij04gDDVKiIXkozkWgXGQj6P85gfWWWvEsQBYibn65lub9MMWhXJISBGJBRh0GSCViUgls/HvTwzmQDdkVtpjzDG8MSFOT0/TDJoQKOinPjGVhu3jwZzx8RIB+aqNvtAMQatO/IqJUyA2P/73ZxerQSDVuUcec9VIfH92p0MBjlIBjmzAjnx4knM7loTNZsVY9CC+G5R51lAJGg+nz9/WJ5ZVZ61umNhd62Rc2Y9QiYhypAREAwCaUcVBgEQAUGRQP+wW43+BEQPGufRZsiCfAlWaXyuOxZaNTvGoGVv8jcediuZdgBBgDrx4H/8LwM/+ZuZ33fvZFhpdhEQkzjOCYhdz8dBb4SLFdgKIJbE/+g/BD7+FzO/79ZhH1c2mqgtOCMEiILGyNY8/b7dCnTOVfZ/u2aDsfkMGudcBN8VmBiguMRR2hlXdXEEAI78HjTOOe4cVWfQWnUb/SISx/3ewoY1EqEd/ZyXjmTQqjCRcq1wi8xh0KoYhACxQs+THwPa25nfJws9VYyNZhk0txJbARScK/THfw2/d+0/BlCt8i2VAe/mMhY2wGx0hm4lyRUQyYXmBcTyPKnCDkYMWn6lXQbfVYI4ALiSlzQlBlWvVQy+r2wIR8B5hhMqErRL601R1S8gcVSxR+aaksQYtKrP2o3tNgYTb25fWCi5rfDZLqzWwVhxBq0KWwfE9n/WfUucw4s6bwJCbm9bDG9mGYXEhosD1Rhd2xIS3yKMrny2Vyokn9tBDH0wx2dCvgOq9M0CyO8dfJRcHNUh/UPdORaHQNXK92rDKSRfq+rwAkR2ocdzLLL3pSFJBV0xIA720FguY3O4no8Hp8NKUiEAaAUP0ejb/yxw7SOZ33cnmLdWha2Th9/cRLc7BufVGASxnlOoT+veSTVXOSA6IMLEIkPiGA4yryCntCyG1fr8z3bUn2Ds+ZVkeYDY/0UYNJlYXKxQoJBMSBRKpu+306GL3thTIpWel6B5Psetw0ElB0egeIK21xnCtlilYki7LqQ6gznjOjjngcSxeoI2r/ACiHPkwmqjUgVeJvHyHOkMJpX654DIXW5eQNxXUB1u1oSDa25fGLPAmRUE39UljhOPz3UQ7Y4maNXshYfZAqLy3axZ8xk0BTIoIDAT6I4ykqbo7Jj4HI0Kew4ALm+04HPg4Zyg8VRBglZ3LFxcbcwNiD2foztyKweoj++0cfuony2/Dmz2hx6rfM9kC8itOUl8JJVb/L45toWdlUaoSshDf+xWYrSAGINcINhvOFalZ82xLVzZaOasJX62H8QkVc/IiwXnePZGLtp1u5La5EJBp+qI9a9437bay8+gSZMQz81+EcgAtWpiUSSwAkTSpCJhAjDXal/a/l+oMCNHrtef4+K43x3DryinBIBWYDs8mNOH80BBlb3o8Og9BRIvoLgM9t5J9c/WqkVyAgCZ9006BVUuUDSduQzaAwX26YCYhXY6nMCbI/F90BliZ6W+8IgJII2JTP9ZKiS3gJQ4zt+PY8+vLMsOJY7zErTTES6uNiq94BhjoudtToJ23J9g7PrVz5G6cN+cJwMXstSKzHjdAWPJHrRqVf3Ndg3NmoV7c6V5HuqOVYltB8S5/SBvgK5lA5YFz+eV2ZFwbuicPjQVgT5jDFc3Wrg7RwrYU9CDBgi23ucZgVwsGHZ9LGyxL1F0FpoKBg0Qw7HnrSWLIpULFNtt+Dyn500OqvZ4JYYVKDisGvEErdp13F1r5D9rsfWqFwzEHpmXyLyx+pHKex8QSpxM2WGg4pFF46rJ5+5as1iCNnYrfzbpSnowh2UNEzQFDNq9k8Hc91cWzkWCJk1CbDvbJCRsEq8YWK3oZNDakkHLD6zkS+LCWrX11poOwvdNRmAVzi6qXPkWG3tec/xBd4ydCswIUNzFUYVUTq43by3OOe6fDCtJrgCEA4XFYcgy9//9kyGaNatSkzVQjEG+H9qnV7tvm4HEdy7zczrExYpJdSRxlAla+nVUYVoDBIWeSbH9WGW+G4BwDs18Bq3aqAKJ9aaDwUQmaOlB1YOOmnNESnXmFXruHg8qF+ckg3w6dME5V+LiyBjD1c0W7s5hLPpjt5IsSWJ3vZlf1WcWeHDPqiZNYYI2J7jqDN3KlWggSD7nJhbVZVBAtG/TZY6xBM3jlVhbID4LTU+CdnWjOZeJVBWgyuLTvGB/5FW/Z3PXCiB7rKsmhJfWG4WGVVe19Aci9dRhHvPzZ17Gz137mcryXkBcy+x7Jva/H8SQVQqnAHBxrTGXPQaC61jxs8mY/bBAUQlQIHHcamHi8XQp7DeVxPFoAMdilSu2kh3J09WPXR8ngwl2KjJaYYI2pw/noDtCq2ZXrlQ0azbGMpPPkMrJl0RVdqQZPEjzBhAe9MaVJFdAdLDPSyzkQ1I1sSgicTzsjTH2/MoJmrznftDcn4W9zgi7a9WkokDAoM35bA8V9DIBwsURwFwnR2HsUnE/SiaSF2PQVEh85zNocj9W+2xFGbQHp8PK9wwQe2Tk5V/H6Byp9qzJYCNP5sg5D6TS1e4ZIALSztDFyPUx9vzKLo6AKBrenWPK0B1Vl0EBItnPreozK6x8Vw12ZNA4t+dHAYMGiHfSPFv/iEGrGnznmEDEGTQONJ2K/W4lGbSqrNal9fmMRdiDU5Flkj3R2bOgpMSxOuvZqtu4sNoowKCJc7lq8rm71gyLbHnojaozP6sNB3XHymerN67haGJXZusAcd8edIbp0lTGps6RekXW/+JaA8f9CUZu/vtSxXXcbhc7szoKRiMA82ahLWOClsOgXd5oVnJVBMQh4XNgOMlu2H37oAfOq80uAoCNwJ53XuV7vzuuLKcEhBRjXmD1QMFwWUAYTgDIlYtOPDWJrm0xtGr2fAatMwRj1cxWgGISx3thgFpdKgcE0rwcQ4a9zrCydBMoxqDJl0TV6yjdn+YVKB4Edu1V0HAsWCwmccw4HG8fD1C3rcpy4iIupqHktuJnkyzP6dwezFFlJhIQAWlY6JlzjlRNCGUva961VDHsXmK9VUNnOAmT3aoMGiAC8Ltze9CqV9kBsZcedkfZsuGgBw1AZeZHPv/zrPZV9LsB4p20d5pvSqLCZl+sJT7bg9TKd7TnOVhlieNGq5gM9mQwwWrDqdRfBIh+PlGEyH6muooYtCtBTJbJxgRFx5HLlUjzbmy35vegDRVJHIM+xXkS/e7IrcwOMsZwYaU+V5rXH3vKGDQ+R5qqkkED5ssOuwoSNMe2sNWuYX+uSYiaXtbcQdzLwqCFPWiehzwGraqDIxA1juZVbOUg56d3qzkdhs3983rQuqPKMkAAaNTsuQNm758OUbOrGQkAUeU7N7CSw74VJJ8rDWeumcBeZ4Ttdr1yn0dos58DySBUZ9BkgmblOm+qkq+tFehB2++MsVK3Q/nlolhPmDKkwfM5Hipg0BgTSfw8m/27x0Nc2WxW6tMCpMTRyw0m905HSgoGzZqNum3l2uz7Psdhb1xpgKlEq25jPGcOWjhzTZHEMa/Qo4r1BMT+Px1OwmtZtQcNEP2MD7uj3Dl1PQVGAoC43l5wr1MRq3xXTSy22jUwNl/i2K04T0vi8noDY8/PlXn1xy5si6FRMWjcWW3AtliGpJJN/XfVRJcxhisbLdybww5WnTklIWOJo172eaFK4ujYFi6vN7NZrdDFsZpph8SNrTZuHc6XEwNAu+J6YZ/inGBfBfMDiDhp7loK+rSAqFUoT5oqz5Gqz5o0/5rniNlTJAMXfbr5z5qqBC0cVl1gjEAazkWCVrQH7dpmtWZ7IJKU5TEkrz3owmLVE7S6Y2Glbs91sjvojnFRBYPm2DEGLaN35ETIoKoGqFLimDesV9LMVZNBQBzu3XkmIQp6meRavbGX2/h5T5GRRmsqQct+XB+ejpTI11bqBRi07ggXFFzHhiOrp9mB60FvBF+B8yYg2BhewCREhVSuVbfBef5nU1UwAIBGzcIoh/U/HU7gc1QavCnRrMXPkYyeyNPqxi5AtP/zellDgygFDJpkkE8GagJUQAwH5jy/x6g/VsSgzZvPZNkhg9aoKM1zbAvb7Tr25ziiCZOE6olF2KuVE1zJPpWqUm/bYri42pgrceSonugCyHfNC3A6UMNEyj6cPBbhNJR4URtOBGZiLldSoLix3cLd40EuqyXbLqpKU+U7KU9S7Psc/YmnJPncWWnMdR/sj7zKbB0QFZazR01YoYtj5QQtuI7zZLd9BfPkAPHZ5kmlBetZbbg4IPKJtaaT/tmWhUGLwJHGoHk+x4PTYeXGfiA+rDcnQdvr4OZ2u3LlDADaDQeDeWYCnWHlKjsQBHEhg5a+OVQ4DwIR8zPMqXzLSqiKBK2IcYdgmap/Npl8jnPm1jw8HcJSwI6EEkfOMnvQBmMPnZGrhEEr4uK43x0p2Y/y+cnrU1Rl7AKIPenzfInj3ePqM9CAYhLfhx01BQNABNt5yaB81qoaGwFiT47lUlkM2kl1i30gbjZUgEFTcN/qjoWJy8M92VZwxl8Mnsu8RvieAhkUEEnzMs0LYtIkFYnFzmq9gElI9aHYwJy+sAAqZFDReo10iWPs7PAVMGgA8Pi8gc4Q56QK+Zpk0fOCfRn/VO3BAQSDnNlfF7o4VpelAqKlwPV5LtM0cn0wBtTsasG3TNDyjEIGEw+cq/lsO6vzJY7dkVuZGQQi2f2DAudI1SKcXOv+HCMlFW6YgNgj8wx5OsOJkr5ZQCjl0tuYli5BQ2picdQX1vBq2JH5lu1vPuxVZs8k6nZ+5XvkisGLKoLGpmPPHTB7+7ivRCraKhCgHiia7wYUc9/cOx2pYWJq8+WbD4NB5lUrMHItL4dBi8YHVA+I1xoOumM3lx3c746UJNWy8pa3/1X1RAJISBxnr+VEzgBUUOgp4mL64FRNwQAQ1zKvp0QasWwpuG/NmoXRHJt91YWevHPkzvEArZpd2cEUAOqOjbHnh3LEqsEHELGWeb2WgkFTwNbJeUlZpiRT0iQVwf78qn5PUV9M5HaYHXz3FUm8gBzXyCkGjSm5jk/srOC4P8ndI2PXV7IfpcQxz8lOlcQREFL2Tpb82op6rFWwTJcKsFoj10fDsSqzrPKdlCfNUzX2AZDPWn4PpnCDrb6WZH4yTVAsO8agVTTkWWvi0noD//L1/dzv6ykyUrqy0cR+d5zfgzmqPqRdYqNVS3+ul49BA9KyTknVVzWbACL3p7x+pqP+WMlagGS1sgNUVb1MgDQJCf6SEli5no+7x0M1CVoBe+yDUOKoJrHOY9B8n2O/qyZBkxXTvM+mimWyLNGEnmcSIl8QSkxCmg44ny9NVSFxlNcx76B8cKrus7XiDFrK4Xj3eACfA9crDPuOrwXkJ/F7nWFli32JRs2aw6CJAGlbgcSxVbMxlBLHzMHpago97QISR8F6VncwBUTBbOz64bVUk6BJt9JsKbsYZquArVttoO5YuT0/ftiDpiZBy5PKuZ4Pz69uRQ9E74m8xKKrSAYFBAlaKoMwnaCpYCLlsPq39rNZtJHrKUkGJYuex8Z0hpPQfKsq1po1dLOcsWNDj1XctyIs63DiKdv789bqKnIVBcR9G0783GJVb+wpYdCAOb1ajIWGW1XPSMti+OR7LuO3Xn2YGcP5PkdvrEYqKgs9eQ6cHUV9s4Bwa//mYdBSEAb6CpiYiEHLDgg6Q1eJ/TIQBQRZkPbMShi0mo0Jzw6s7p8O4fk8HPhYBUVYpsPeGLbFlDQ+rzSc3IPrsD+G63OlDFqeNE9VgibX83i2zX7omKdC4hj0imTJHF3Px1F/rEjiGDSI5zBokh1UwY4LBi07QXs3CGpvKkjQ5jE/ns+x3x0ruWdAIHHMuY7SkEcFy9Ss55sNnQwmOB26ShI0GbTNkzheU3BmASLYGLl+WDRQERAXcSvtKUosLIvh+larYIKmRuKYF+gPg3ebirXqjoVmzco1FeqP1BgJAELieNyfzJ7zMz1oChi0C2L/5skcR4oYtPWmg5rNcq3GeyMP7Vr1Xj5AsHA+j2bUTYFFPdZqJL5BgpYjOxxN/Mp9U4DYj9sr9TkMmpq5fEDUCpL1vE0C5n9VwVqAmAWYnaBFDJqKPfn7XriEkevjS7eOU/9/WTBrKeyvyxtrocp5FsiROC4Lgzbl4pjyoWQFT4VDWXtOgjbxRAVDFf3ZqOX3jkibU1UMmnyo0gIr6X50XUGwI6noeSzTVrte2ZAECCReBXqZVEjlijJoKgoGgLiWHlimscu9Y8myVg+I5Ysrq2hw2B+DcygxrYlMQvIZtAuraow0RA+a/NvsnnvnQAS1j+2oY9CyEovD3hiez5XIUoH5EsfDvtoetElOD5o0O1BxjhRhIoVBlJrrWLcZxq4X7n8Vgdx604FtMRxnMGiezzFQ1F8EiALDu1kJmmWFRQpVEsfuyM0sVskzWcVagBh7kOdWKuSU6hg0IKXSzpIMmgL3we02LAa89TA7QRt7ahI0xhh2Vhq5TORE0VpA1MeWKnMMzg9PEYN2YbUOxuZJHNUwaIBQduQxMVKJpYKNCQfDZ9y3fpAMthUxP7vrOTMVmSXaLlB9DhqA8PzOMhxSKTmXQ+gzRwhAShxVJmj57TdZOBcJ2pSLYwpkRUFFVV9W37J60GT1ruqwSImGbWGcE1jdO1EXfDdrdvhQpQVWcpjeje3qa9kWQ92xcivfKuZbSTQcK9e0Q9XMKaAY87PfUcMyASJI9TiynQdPBlip20r2ZE0maBnXUj5r2wpkqTWbwWJzGLTTIS4qSmLEdcxm0G4d9lG3LVxSsF5UoEg/mKO+QXX7P6/Qc9Qbo+5YSpKApmR0gdxzRInEcU4v63AS9OgqOB+BwCTE4+G1VJGgMcaw2aplDmSX8k0VVXZAWo3rYdBkUTTLgU0lgwYEYxBygp2R66GhaK0ibAwUSRwbjhiynJtYKGJ+AFGoyWM+VfW7AVEfWyrzGetBUyEDdGwLF1Yb2MuVOKq7jrvrzVyTkMjSX41JCAAcZty3XniOqJM47nWG6f3ozILPmRKzFSDq0z3MkEuPPHH+q9iTsiia5xrZV9TvBohRLaeDSYrEd0kYtBAcmQyaYzElQ0Vlpd7104OdjsL5OIDYcPkSxwG22rXKM6cAYRIS2YzP/rzbRwMwpiYZBIJelRyW6cFp9flWEnUn32wldANUEHzPkzj2Ri4GE0+pxNHNkTjeOx7iymZLUQ+O+BmTjAQtMpuovv8ZEw32uS6OnZGyJH6eSci7h31c324pYXTnSRzDvkFVBYo5TPxhb4ztdl3JHpmWiqYwaApdFR3bQt2xMnuCVc5AA4LzWLFJCABstGuZDJpk4puKAqsb2y2cDt30+ZosKtKp7MPJMgpRzqC18hm0ieejoaCiD0QJWrrjm9j/HNXt2iW22nUcD3KSJk9dYrGzmj8eQS2DJhO0bAaNgykrUFxazxiPEEBVLx8wn0GTxUc1cuL8wfDyHFERKwLis008nl5YssQ5Urerm60AQgbOGDJnHMrYTsWzvd5y4Fgsd57i2OPK9v9mq46x588qrpZF4hgh3Wb/IHDMUxFYOUGA6ma42J0O1NnPAvMr3/dPhrisKGFq1Kzcyvd+V8xlUrUx23U7t7lfZfA9z2ZcZS/TPHt4lZJbIMb8ZDrmDZRIYIGoQJGZoEmzCQVSOUA6Aua7OKpgtACxH70cm/13D/tK+s+A+S6mDxUWDICAQc5j0PoTJQ6OgPhsPGTiZ6/j7SPhqqhqj7TrdqbEUWWPLgDUbTuUHALqEoutdj2TQZMzm2oK3l9AJC2VifIUmJA42hZTIhuWCVoWY6EyQAWkxDH7nTJ2fSWfC5gzn0kmFlyNxBHIT+IB8dlU7ccLq/kSx7Gn7jrKWCn1vkmJI1cjcQSEK+A8F0dV+/HSegMPuyO4Ge9Llb2sO+H8uvRzxA36gh1LzWeTrFZ6/5SQOKqKFW2LYatdzyz0SEWPCnacMTa3d3bi+UqkmwBCj4XZ67h0CRpSA4KDnjpDBrm55WZPImTQFEkc5zFoh/2xskC/4eSbJBwPJthQYCIg0arZGGSwWhPPx0FvpEy+JivfWRa0e50R1puOkpfpPIfKMEFTJF8TDFp2gnb3ZKhM4jU3QZMMmgI3QEAku1mJruv52O+qS+Kb8R60lGt5/2SojD2WL66s6ygrvOrmoOX3oB30RthWwHoCwXXMYeLvnw5xZUONqyIgZI5Zia7KGWhAdN+kHEtVALLVrmW6OMp3TdWRHBJyT6W6KwaBlSomRspYb2UMIlYZoAKCjemkOqIJTDyOmqPmOuZK84K97SuSOALAZis/QRu5nrL9WEjiqChAXc+9jtLFUY3EEZgvOxxO1DFo17faYg5vhlwuZH4U3LdmzcZK3c41CQEikqEq8ve/cERWdY4AYk9msVqhokHRntxeaWQykYC4liqkm0BOgrZ8DBqQlnU+7I6VGTLYltDVZjJoQYKmikGrz+mdOuyNFQbDMZOQFLncSX+CTUXSTUAkMoMMBm2/OwLnUNqDBiCTjdlTOHNKSlqyeqeOFFqaA4JBcDMGVY9dkcRcUWSSIBO0sZu+/6UTnQo3QCCfQT7oBfMNFd23ds3J7EFzPR+H/bES8xMgJpXOKPTsdUbYaNWUVd/nuTjud0e4qKiI1XSs3F7W/Y66ghmQn8TL4c+qpKLypdwdTeBYTFnStNmu42QOg6YqsJL3OZX5sURgpWrfba/UsdZw8G6G+6A8I1X1hc2VOLo+6hm96mVRsy20anbGDC8pcVR3LfMkjpxzpUnTzmod/bGXyUyPPR72I1dFrklI8E7jgVxOBS6tN7DfHWcWx+QcNBWQBYrbGT2fKntZASFzzEosZMyqKrGI7lt6gcKFpSzRBYKigQaTEECom/LmN04UMshhgjZTfFnGBC2NQVNoaQ4AjsUyKWspcVRls9+Y0zt12BsrlJPl944cD8ahJbQK1GzRcJ+G0FVRocQLyDa32OsMlRkyNOtirSwGTQYQKsYHACLRdTNMQvY6Q3CuxuUTAOpOfg/aYW+Clbqt7GDOC76jPaLKbMWK9WBOX0vpTqmK9XTm9PKp3I9A/hw0zjkeKkyaWvX8c+Rhd6SMGQRE0czLKJgd98do1dTtR3mO9Ebq2ApgDoPmSwZNsTQvlUFj8GChqeizMcZwc6eNtw+yAtSgv05REjNP4jjyfGUMGhAwdjkMmhhUrYhBC/ZImgrE9Tl8ri7Qv7CS3880dj1lvXz5TEzk4qhKmid7B7NMIITEUR2DBsxnkFWtt7OazTLJmFXVdcztHbSEUZTKM3Inj0Hz1CZoeQwy5xwTj8NRtP9lMft4WRk0abPv+x6yetB2FCUxQH5AoJNBm3g+OkNXaYKWV/k+6k2UMSNAkOhmmK1IiZcqk5CQQctIdvc6aoZUA1F/UZat/+lArZFMq2bD9a1UOZmUxKhiWedJHI/7apP4Rs0Ond6SUL1HWnUnStAS58h+R50TLBBJMbKe7WOFPWFAvsSxN/YwnPhKJbdZiS4gAiPVCVqWouFkMFFWCAHiEseJUvnOZruOwcRLvUfyjHQUsXUrDQftup3ROyUMh1QFjADw+M5Kpq3/UKHECxBB49j1U4s6IrBSxzLJ9TqjbAZNKG7Usazis82eGaoZhHnDqlVKRdt1G7bFMkxCIhdHRXlFqMrJMgoREkc1i13dbIKxyLk2CZUSR0AMa8/qQZPFcD0SRwseVyc5BPRKHMWYifzrWKeWOC4LgyZt9q2UJ7g/DhzzFAYENSub+TkdumAMWFPU0Fq37cweNDlcVlUg16xZseb+2Wt5Mphgs6UuaHRslinxehj2aalZr57DoHHOA0MSRRLHOUO45YGmao5GWzJoabLUgVq2TlbfMhm0vjpGF8ifX/dA4WgEQPQy8YwezMjYRVUva2A2lLH/uyNX2RkC5Jvk7AeBujKJY06hZzjx0Bm6ShO0mm3lMGhqi0rxHjSV1eG8YEd1DxogWLQscwuPMzQUJmg3d9q4fdRPVZ0oZ9Ba0nBiNtj3fA6uOGhca9ZyGbSs0T+LQO7jNDMZlXP5gMiyPZtBU5foMsaw2shiIqMeNFXMjzReyjIKGbm+Msltw7Fxaa2J2xkM2tD1YFtMGRuzs1LHQYYVvSz0qDd3STcJcRWahADisx31x6lnvTxHVK23s1rPnN8oYx9V1zE8s5aVQZtCMrAKKt9KGTSbwctgfk4HE6w2HCWOkYCUJmUMs+2r/WxNJx5YTb9YJp6P7shVzKBZc90wVSUW4dDjlAfuZDDB2PWVBY0124JjsVyJY6tmK3vAa7YlbPZTHugwQVN036TEcZyRWBwpDoibOQza3ukIjKlLmlr1bOZHJmiq9ojsZc1KdDtDdYMwgcjFMU0e9VCxaY2QSqcnaA8VJ4PAfAZNFVMNRC9lqgRt5iWNmIujoootIK5/ZoKmUJYHiMHYE4/jfgpjoZpBWA+v42ywL4tzqnqngGDuWqqkUtwrVWwFIGSwAFKNQkYhg6bOxRHIY9DU9eAAOVJRSyZolkIGLRgwnmEUMlJoEgKIPrSsuYMqZ9cBolif5QYbuTiq2ZNyuHaWSYhHYBLCebprZFSgUCQVDWLqNBZNdYK21nDA2BIzaNNIJGg9tZVvQCQWk4yAoDN0lcxbk6gHfVppwwDl5lHpmJfVOyI3j9IEzc4OrDrDCWyLhXLBqsjrQYtmTqlh0ADZO5Xdp6iqRxEIJLdgqRJH1QxaKHHMSJqONTJoe50hdlYayg7Kqd6p5DmieDQCYyyXie+OXKwqTNBkMpHGokkGTeXYh6xE96HiRBcQAUdWwUy5xDHYa92RqzSIW89puFfdgwaI92FqD5olJY5qAysgK7FQ34MGpPfFTFyZ6Kr7bOvNWoY0T0oc1e2RjZa8jtkMmnKJY46kTG2BIus6RhJHVQzazkodtsWyJY4KGTQAuLzRzFxLpSEJIBLdice1MD+2JZjPVAattYUTrCndI9tBDJ82/mGkeP/LmXJpTreqCz1WMKM5z6E1898q+Q10IsEiyAqQapMQLyOwOhmMlVZs86R5MkFTFRA3HCvTZl++FFQGO3lmKyLRdZTp98MANSVpUi3xAkTAkcegqUziLcbwy+7HwT/6kzP/H1mClmkSos5VFBDXMUuaJwaZKzTSsC2ET/WMxHGMhmOFVUMVqNks8zp2hy5WG+r2SJ6LqWp2sBWXOCaCqpBBU9yDlpXoClm2+vO4O3KVS+WAbGkeoK7yDYjrn2qz/8Kn8a9r36a0B20zs8ciPgdNlcTRyVxLtZEAkMP8xHrQVCHTTADA2JPjCtR8tnbdRquW0acIcS1VX8e8OWg+LKi6lJbFsLvWwP2T2c8m3TBVFl8urGb3hakcig3MkUordoOV66Xu/x/6X/A/t39CucQRSGd1VUt8rwau12nSVFdxDxognu1vSpt9+RJSZbMP5DM/Bz21hiR5gdWR4gRtSpqUqPypNpsABBOZ1TvSGU6UGa0AMYljynWUL7wtRXOggGDAcl6CpjBotC2Gf+Z/FP4HfnTm/zsZTFCz1TGReQma53N0hq7SJL7pWJkujg9O1TodWhbL7kELXA5VFQwAwLGt1ALFcOJh7PlqJY7SuCZFLv2wI6SiqsY+iHEd+VJRpQUzO9u0icokpDt0lVbZ83vQxB5RGezvrNZx3J/M7r/v+M/wj51PhaNCVGAjR5o3nKhNLOT7KW2tMEFTHqCm9+AAAMuYTbkI8lgtmeiqCogZY7iy2QznCCahsgcNENLUdIljsA+ZpfTs3WzXU5N4GR+oZJAvrjUy+5lUDsUGonOkO5q9lhPFLo5yvdT9v7qLQ6+tXOIIpMsOVRdfHttZAQC8k+I+q5qJBEQBffkljhwpDJoICFTKrvLcB1Xa3gMxaV5KYiEPapUzp7ICK/nCUylxtHMYhFPFPTj1nOsoP5vKQK6Vx6ANXGWDzIEocEsLUo/7IkBVxkSG7oOza3UVm58A+fbwKo1dAHEdsySOR/2x0gQeEAd86nUcEVzHHAb5YXeM7XZdWaN608nuQYuMjeh7Wceuj/7YU3pmxaXSSgPUVrY0zyVg0DZCM43ZQG44USvxksZSWQGxbTFlwU5eECdl2Wp7p2oYTvzZ9xhLL/RUwc5KHYyl28PLAFVlQHx9q407GQnaRDGDJkxCshNdZQ1oAdaaDrop7ptRT6RKBk3syTTGWvSgKWTQGjnniKe+lzXTJAeSZVX32XZyChTyvqk6k1cbDi6s1vFOyvxGbQna8jFoHLMM2hhrDUepZCOvKf2wqzpBy6583zse4sKquh4cy2Kw7SAoTCZosgdNoYtjLec6dhTLACMmMt0kBFD72fLmd6lm0KzgQfZTDCBOVZskONJ9cDbQl/Isles1nfTr6HpiALfKvkFxHdMLFL2xh5W6uoQJEC/KtOuo2uUTmC9xVMloWRaLrl8yQetP0FY4Jw/I7kFTLe8Fpl/KKp0O13LMLaJB1QqTpna27HDkemoZtJaU5qUxP+oszQHRE2axdKfDCZHEEUhjPsU5whQmFo5tYWeljocp5haqe9AA4NpmC3cy3AfHrmqTkIxA/8oH8e8v/iC+gmeVrQUIY4Y0lknGByr35IWwnyklsXA9bUx8yKDpMHeBepZ1qwCDpvJaPrazgrdTErQxRS9rq5ZqEDUP5yJBi+ag+TNZp6h8qwu8gcA1L8MyuDNylUoc85ifuycDXAsm1avC0F7DhDWAtatTXw970FQyaJaVaTOu2sUul0EbjFF31DbG5zFoqo1k5DmRxqCp7sHJkzjKg1olO5jFoO13xeBolRLHKQYtcY70Rq7S/jNADmqf/WySiVTbg5Zd6NnvjpSNs5BgmQma2h5FICiYpZwjJ0FCQNETDKi1a1+tCycv3QxamuHEcKJWdtWsCbvtLAZNZfHUshi22unzkkZEDBqQct/YzH8owcW1JvZS7OFHintwAOE+eNAbp46LoehB647cWZfZehu/dvP/jpG1omwtAFhtOuE5G0ckcVTbgwZEve5xDBW7OK7mJWjSDVbhOZJp7gJxLVXukZptYa3ppCdoiuegAcBj2228myNxrCsceL/Zqi3voOq8OWhdxYE+kD2o+qgnLvC2wn63PJOQO0cDXNtUxyAAQNdaw//7fZ8Fnv7E1NeP+xNYCue7AQGDkDOuQG0PWjaDcNIXSYxKjXuznu7iyDkPPpu66ygZNC+FQVPdgyODxDRpXkfxkHYgGP3g85lERlokK5U4MpbpPtgbuVhRnqCxVDdYeR1VJoSysphWoFDNoAFAeBanSKVVSg6B7J7gyHlW4Xk8xaCpez1aoSNaGoOmvgdtI0d26PlcaZWdMSYkPBk9aCoDVCDbajwMrBQzCEAOg6bwnQKIIct7aRJHxTbjgGDQAODO8XSQKgZ+c+WJrudz9FOSQd/nsBXK8gBxtqYxaKp7IoFofEmqxFGxSUiei6mrmUETn03ts72zUk+VOI5dHxZT+9lu7rRx92Q4U9SklDhOFyiWJEGbxvSH6hBUvh073R5bDnUkMQlJBPucc9w5HoSHqCrYFsPAas+6OA7G2GzXlc13k2tlm4ToY9BOBuqDxixzi8HEg+tz5SYhAFJHMahO0BhjweiHNImjemmerGQmr6UcMqrSxTGvB6078ggSNCt1XEGHsgct1WZ/rDxBizf3x3FMwKBlmQ1JuaBKRjdeEW4ofEEDIrhKc3GcKJ5fBORLHH3OlTnmSaQ3watn0ABhdpM+vyhwX1MsqQRS3DcZTYK2u9ZInd9FIXG8Hqhzkk52FP1u89wHbcXXcTUjsaBg0GQ8mJ6gqbfZB/IH3qvtQcuXOKpO0LZX6qk2+6oZXSCy2k+eW2OiBM3zOXrxAsWyMGhTSHwoCgbNyUgsItt7dcFOFoN20Btj5Pq4SpCgZZlNqJTKAVLiNbuW73N0x67SJCZP4iWNNFQi6zrKh12txDHbJER1ggYEzE9aYkHAoEmWIplYyLkyqk1Cchm0utpAsmanm1uQmK1kuJj2Ri4GE095gsbCBG3WDValTBrINm2SFXKVBbqpBE0hgwYEVuM5PWhqGbTsBM3zecjKq8JmK33ODw2DVgvVLHFQVL7nMWgqTUIAYHetiYed0cxZT9E7FQ50TkgqJ0SBPpDO/PicK937gFACjVx/pmBLwaA1azbWGk5GD5raAoUsIqa6OPrq9/96s4ax52fOXVO5FiBi6yybfZXMOBAzUkqcydH+V5ugAcnzeBkTtJnKt6s0YAREQJDGIKieSwbEXPMSB4ls3lXOoLHsxEJ1YJWVxHRGLjhX38sEZNvsbyg0CAGEZCnNtCOUwSp0scuSOHLORe+U4gJFzUln0Ch60LKSz73TIRhTy1bbFlJt9j2fYzBRz6A5GS6mJBLHkImffpGqHsAtEfWgpfQEU5wjKYWeXhCkqLxv8SBAdUCQNfRYJvEUAUFa0sQ5lCol5HpZDJpKsxUgqLLnDHNWmVhkDhgPGTS1e2R3vQGfR2odCQoGbb2Vzg5S9PuE1zElsXA99QnaakYiQ3EdASG7Tev3VC0DrNkWWjU718VRJROfVaDgnMPnaotKgIib0uTLwmxF7Tki45jkuTUh2P/hjMOUz5aH85egJfZDZzghkDimJxYys1cqccyYX3TvRCRoNAza7NeP+mPlDNq8AFWpxNHO60EbK5c4WowhTb0pDxeVMq9I4jj99ZHrw/U52srdB9Pt4SkYNCcrQQvmkqnUnFvxHrTYQdIfq2digByTEMn8KJWKius0TOz/MEFTaLYCxBm06P74PsfJYKJe4pjRy9elSNDiJiGKg7isYb0UPWg128JK3dYncUwbxArBWDRVB8PtOo564xnDCapB1UAa80MncQRmWa0xRX9dQxrXJBmEINHVJM3zfIIELXhHJY1CZJFTZRIDiMHfaf11I8UjLYBs2SHFPMWs/S+PY9VMfLvupF9HAgYtq0AR7X+FhZ40Bm35JI7TNvucc3QJGATbslIDgsPeGLbF1A5GzWDQuiOxSVXLNy0r3a79uE8QWGUxaCETQzC/KKsHTbXEkaVfRwqW1c5g0ORBpjqxyOtBaziW0gAoZAcT++SwN1Y2WFnCthg4n5U49oJnjcQkJDXRdVF3LMVW9OLzJN1nH3bEfryoWuIoX5ax63g6nMDnak07gGwmPrxvCqWpUyYhCu8PIJKYNKtlChdHQNyHNAZNJGiqJY5ZDAINg+b6fCbZpTAJyXTNy3AxrQpZ/OolmJ9wfpdiR8zVuqOFQct0w4R4r6ne+/Kd2BmlJxaqE+tWPd3VWUh81e7/1aaTykROfI6azZR+tmju2vR6MvZRnDOhXU8fu0PR7xZJHNN70FQO/E5fa+kSNExlnSPXx8Tj6ivfGXN3DnpCvqNSHlLPaO6Xm7Sl+OWWKXEk6R0RPTjJSqccZqtyPWlukbyOY9dHb+wp79OyMq5jyKApTNCskEGbXk++xNvKe6eymU/lcmI7PUET0mX17qxpNvsRE0PQg5Z2HUdqB5kD2VJRKZVS3YO2Z1/Ba60PAlfeH35NJgOqJY6OlX4de2MXzZqllGWN/yzVDNpmK919kKIHDRBV2ySrJaVJqgPUC2t19MbeTGIhekfUriXNLd7en55hFEkcNUjKiExCQtOk5HuMIPkE5HymxD3TOk9OFChUS27lekkGTSYWqhnkVs1OHVeg2iQEyJ4p53q+0qRCrJV+3+R1VJ7o1mxMvFlX57FiS38gZgCUlDhKsyHqHrTlY9CAeNbZJXBDA7Ln7hz2RkqZESDbfU0maE3FwbdlsRkmZuL56IxcpYOcgWz52oPApeqyQgMIQFzLpFSUImECxMGUQqCFDJpKxi5rDppk0EjcBzMYtPWWYkY3OKSSZho0zDhDuMoUg0YjcXSsdKlod6jeeTYrQdsPGLQdxT1oY3sF/7/r/z2w/WT4NfmsKbfZz2DQugQOvnEoN7do19Afeym2zpJBU50Q1sJZcRLyzFLtmndpLTCcSFjEu776oPE9VzcAAF+9ezL1dYpB1UCWpIwqQRO/ezLYH008MKa2vw6Qn00Hg5ZjEuKrZ9DCBG002zsFqJfmpc1F5ZyTJGhipEW6i6mjfH+kM5/yHFF+HYN4N3ktKVwcZSyTxcSrlDhKVcm0omHZEjSO6cr3kK53JM197bA3JkvQktI8eUA3FdPjNmMzTEw0T0g1OxLIrhLr3T8RL/FdxQla3bFmruP9E5pk0M6Qih71xlhvOsp7p4BZiWNvTMWgWRi76dI89YY84jolryVF8D01By2GiIlULBV1WDqDNpwoTz7DYkjiOu53R9hs15S7bTkpRSwK6TIA2Blz0HojV/k9i+P6Vlvpz9sM3h3JeWFhDxpJ8K2HQdhdl71T0xbxrseV9jIBgkHbaNXw1TvTCdqYwH0NyEjQZBxCxKAlk/ixx1GzLOUJYdroB4pEd6XuwGKzjnlAYLOvOInPMgmRxzFFYpGWVABqZamAMI67lRiNAIhiiOq9L5MYXedImKDNFCjU96A1HBvNmpXCoKln4lfqNmyLLSeDxhj7NGPs5zhP9mnRJGhZPQ8HBAlaVuV76HqwLaa8YmZbs8GOzOopKt/AbIL24HSI1Yaj/L4JBo3erh3IkzhOtO2RPmnvVAqDNpgQSPPEn8lgn2J8hjVlsz/LxFMwaFkmIVLbrwpWFoNGMKQaSDdSonBVBKTNfnqCpnqtOD7+/EWlP0+y6keJBI2qB62V0s8hE3jVkrLQsj3BoE18HzXFazHG8L5rG/hKMkEjYH4AwSLMzq+jcXFsZcyF9HxfOTsCiAB8RuJIIBW1LIbNdrbEV3UvU1bvYJhYKF4vTeIoYxHVDNrN7TYOe+MZVsv1KJjIdCMNKpMQuf+T13LsqTdbAUSBYmYOGsH+Z4ylON0uSYLGOf8s5/wzonoUfSj58CmvRmcEqBQMmmQQksHOYOyjVbOVV8xsa5ZBky52K4qr0fKFkmQR9jpDpQOIJdIYtDBB21C7nrDZn/36UX+sXE4ZmoQkA2JCBi1t/x/1xwQGEGfEoMUljmO6HrQskxAyBi01QVN7zwBx39JkqQBFwUwMqk72soo9ovaeSWy0asrZua1Q5jIdpHoE9tiACHaSjmjyEip+rYTugw9SGDSKxOLp3VW8s9+f+ppWiSNxD1oyQHUJZIBA0M80ypA4Ekh8sxM0xfcsw9yCSuLYTmHQKIxdAOCxHcHsv3uY3P9cOYMWmq0k3TB92YOmdLkwlkmeWxRz0ICgBzOZ6Prqe9CAlFEkBS4eXfmRCiyeoAW234qr0Wk9D67n42QwUTqkGogqOTMJ2sRTOuBQwk7pQRsRHcjZDNpIOaMFZEgcT4ewLYYd1fctx8VRtZwyix0JGQsCm/20BG2/oz7YDxm02GfzfI7+2MMqAcvkp9jsSzdA9VLpLLMVGnYQSEvQxnjP1XWlawHpZySF7T2AkIHx/OlgvzfylPfWAcC//YufUJ6sA5FCIYtBU20Skia7Ct3XFEdWG60a6o6Fh0kGzeNK5d4Sm+0aOiN3yqJ9Ela+1csA7x4nJWU0CVorwyRE7H0KBiGFQSOQeAHB/LpeRoKmONBv1ixYLCo+S1AxP80Um/3I2EXtWje3gwTtoB/2YwJBvyeB4mq1MVug4JzmzAoLFEm5KIFJCCDOrZlB1UTnyNIyaNNIkSZR2OwnKt/Hgwk4VzsDTayV3jsymnhhw7BKpEnzxkRUfNiD5iUTtCFJgmax2eTzwekIu2sN5QeJmIOW3oNGxaAl1+tRmYQ4s+YWg7GH3thTLpezUxhkqufasTIYNKrEImcO2hqBDBBIMwmhkTja1mzy2SNyw5S9WclCD5XE8fJGU3mvJZA9rNT1fdiWWntsQAT7SakcVYDKGMPuWmOWQSOQOALpttVjzwdj6oNGnQyafAcn75tLMCsMEAxCZziZYqep4gExvy7FZt/nyo1kGGOpM7Xk+aj6UrZrDsauP3X+ekTmPzcDBu2dBINGIXEE0o1kKOegAbP7f+yp768DRIFiZlA10TmyCIN2/hI0Db0jNXvWZp9ivhWQ3V80mHjKLfbleslAn0rSYIcMWnQtOefYI2LQ0vpiHpwOlZuRAEGCljauYDBRb5KQ2YNGExDX7VlzCznwWPU8rTT5ZujOStBbmtaD1hu5YEz9SAvHnjXSoJrdmOaGOZx46IxcEoljOoPmoWYz5XN/spLP7sjFKqFJiGqEEsfBLINGEXynWVZTSZMAIXOccXEkYtDSbKtlEKc6acpzcVQ9B82yGOqONcMgeITBt8+jYh8QuYqSMGiZEkf1n00Mj9ZkD18P3Ddj980lGEAPCEZ3s13DrRmJI00So9NsSL6Dk4k1hQEKkC5xHAdSUdV7ZJZBm4/zl6Cl9KDpsNk/6AZ21Zr6iwYTL3S0Ub1eci3pGKU6sKqFPWjTwffY85VfRyD9sz04HeIyQb+bYNCmv+b5HL2xRyZfS2PQGFPv9JnG/DwMErQLa/QFCunOqpodsVh8Dlp09HVHHto1W7lxQt22QpmLxGDiwfM5gRtmsEdi11Em1TQmIbM9aFSMlm2lM/HUJiGq0a7bqNvWTB+O53ESlkm+P+LVaKoeHED0MyVd8yYejblFWoI2cTkaJAFqDYOJN30mhgya+vVaNTvsX5IgY9BSZkGNPbFflM8BbNdx1BvP9JJKBlk1VhpOKF+XCMdMKJcTi3Mo3jvoE8kAAZHsJofQuz5Nv2danyJdopsucfR9muso9sjsmUXR7/bNIXFk0wmaqNiq/RhpNvvH4YwfTS6OE0954A2InrfkDG6qHrQwsIp9NqrZXYA07pi+joc99a6KQLrNvjSbUF4wCJP46a/3Ry5JYpFmbrHfoQn2UxO04GVAMQcNqT1oNIG+k2IP3yEaDRKx1dF6kvXfoUjQUhi03shV3g8p1wKmmXg/KIZQmYRQgDGGjXZtxmafjEFLsaz2iQJUQEjikj3Ari/s4VUjnUHzlFv6Awida6dYBCKJIyD6p1JdHIlMQoDpzzZxJYOmdr3tlRpcn6OTtL7nNPsxj0GjYn7izxqVOyuQzsZMCAZVA/I6pie6ZHPQEvfNJdr/qw0ntaikeu8DQuJ+OphERdTlkzhyTPegTbDacEicDpPBhzxUVAffjDFYLI1B85UPqQaEHtpNZGhUdrC1lMCKqk8FyGAHJx5aNYJkMGUtqrl8WUYyvbGHNkFiIeagJSWOItgnS9BiyS5VEmMxxBi02Dkyphl4XLOF+2Cc1aJi/eU54qdcxw2FQ9Ml0nrQqAZHy6pwfP/3J3SFHkrsrNTDZ0mCygCildJwTxWgArMmTZzzGWMXVchi0GgCqzT3zSBBI7iQzZShx3Q9aHJYb+w6+jQmIaHEN9GH5lExaPVZBo3cHj4ucfRoRloAYv8fJ4bQux7N/k8bIUDXy5fuYkolg12pOxhO/KmWDiqp6M5KHT5HTOa7dAkaZgZVUzRz1ywWHlISVENYgQxnxYmHFoVJiMWQdP6magoOq/reLINGMWDWSkmsB1RmKxZD0iOEzLQmwySkP3axQpDE153Z4FvK5VS75kUMWjyJF3uEIolJ6x3pEzFo8pCPnyVdokIPMDvjkCrRBTIYtLFLUnhJc4OlMnahxsW1RvgsSVD2oAGJBC3sQVO/Xj0xh5KqlwnISNA8Iqc3ae6S0uBPIRVNM3ehMNIA0iWO8rlWvSelkiXZh+Z6dAzyDINGbg8frSff1xTMz2YKgyZYJoJCT8o8RZ9IKi0ZtL6mAoV8X8V7MMeu+nEFgDCfAoD7J4GR0vIxaNPoDGkqtrZlgfPpfo6oL4bI+l6XSQjDjLkFlUmIk+K+JgMr1bO7AJHIxJMY1/Ph+pxkXEGazT61fG1WUuaRJLppPWj73RHWmw6hAUT0tVDiSPBs8/BQjEscPZLnWlYz43JR6YaleoQAMDvjkDIZdAJ2MI7uyCPtQUt1+jxnCdqF1caMFb3r0ch3mtoljnYiQRP/TfHZ1tMSNKIkJn1+HY1JCCDmZg009aCtpcg3w8Ra8bWU7sZHCat9n9MYoKw07KnAW64F6LGHl3EPFYOWlEpPiGYOtlIY3VDiqPizNRwLjAHDJINGlMTL90e8D42q0CPN6vY6y5qgcWDKJGSkfp4QECUW8cp3ZzhBu26TSFHSpHmDMeEctBmTEMmgqQ6+ZWAVXceIQaP/bHKWDEWim2bpHwXE6ud3AbOjGETvFI0MNtmDdtSn6eWzwv66+LNGw0QCiA7FKZMQOokjMD2ovUskcQTEOeJOFZXoEl3Hmu2v61FJHOWcKy9NKn2+EjTJoMWNEqhkgGlyIUqJo+hBm5V4UbwzmzUbdcdKMD80ie5mS45HmGXQKJjIVmoPGs0ekYluXOIoz2Jb8XrSAfj+zCgGTpLEtOvOjFSOzh5+1pBHxiIkPWjtejgHUILK6bCZMvCe6hxhjKGVsp5HlsSnJ2gUUlE5H/fB6WjOd0Y4XwkaMGMSQpKgpRoX0AQfQHrSNCQaVJ02v4uMQQsDqxiDNqYLrJLyTXk4U82T4xxTgRZV8B1KHJM2+2Mq17xZtu50MCHpZYr6i6KvhUk8wf6PKt/RV3pjl4SJlIFp3MmRUnaYPEeoBkenrQVQujimn8cAjaKBEhdXGxi5/pRRgkvE/KQ5olG5rwEpEsewl4kgG8SsUQKVVC6aXzfrwEYhcWzWbIw0SbzyGDTVAfGVjSZsi+H20bQ9vO8TBd91O4w3wrXC/a92rVCaN55N0Cju20arBs4xNZ9s4tJcx3aqxFH8SSXxTe/BVH9GyvdHN5GgUZzHF9dEgWJ6VmT+9Tt/CVrCJISiB81OSSyokkG53myC5tPY7KcyaB4ciyk/SGSAOtXcP6Jj0ERfTBQgyEOlQZToApiy2qeS5mVKHMceiWueldITeTqchNVWpWuF87ui+yb3I0XlnUvmLDGomiKxqKeMmZCBOVkvqz+9VsOxSOQajkaTkFqqVFo82+dN4ihf0nGZI1UDfHoPmviTIrBqOGKshCxauUSDeiWSCZrP6azoGUtIHCWDZql/tzSd2QCVih1sODYaM0wkTYLm2BaubDRx+2gw9XXX52ERUiXaDSeMNySoxkykuTiGCRrBZ0vtwSRi0NLmKVIluoBIdtNMQmiSeMmgTc8BpCgq1WwLF1br0wnanAt4/hK0BINGKU1KBjurBEEVMGsS4vkcY88nsdlPS9DGLo3mNkp04xLHoPJNkVgwNsXEyASNZuC3+DPNNY9qCPGMScjIpevlS2HQKJKKcH5X7LONJr5yw5oIsz1oIrGgkYoC0/uftpfVmjEJ0VVU4pyTSW7TetDOs8QRmE7QqCykmzkSR4I4DnVb9G7LPRj2oOli0IiCOMtigWteygwjogB1mOxBI2IHASHJj0scpSSbYr3rW62ZBI1sUHXNxtjzp5xFI/dBGnOLtB40iv2/mZKgkbk4ap6nmGTQpBsshQw2lDiO44oGn6Q4DACX1psJieNSJWjTAUGXKACJ3Aene9DWKYOdWJU9TCzqNEnTjGMkUYJWS7HHlk27bZJAbloGKF9yFFJRlpI0hbIrxclnxKBNf703pjJlSGPQ3NCSWfVawDTLNHJ9EtYTQKwHLdqbw4lP4+LoyARt2iSkVSPqZbVmjY2oGKbkrMjhxIfPaRKmNBfH82wSAiQSNEIXO2A6sKJyXwMiibyUOcr7RSVxXG9OzzCiCuIAERBP96CJz0oxqDp9DhqNDBYQVvunw6TklpHIYG9stXHrcFriSNaD2UgbHi3+VM1qtdMMeUKJI6GzaH86sabq9wSmk0+PkIlPzl2j7OVLNwmhKfQAIkELXRwL4FwkaIyxTzPGfk6MQRMXbuQKhz4KI4E0SQ1lsGMnDCcGlMxPiiHJ2KVhLNKkov2xC8diJJPak4nF0KXtQQOmh353h8L2XnWwJS9VMmnqj2kYtLT+OioGzU5j0FyPkEGbljjKyhkJE5/CIHeJjI0AOeMw0TeriUGTZxZF32BawWy5GDS63hFgui8mmpFKI3EEop5mN3RxpHmWV5u1qd4pKhkUIGahHaVIHGmkovrmoAFCwnmaZCKJkurrW23sdUYzZhoU11GOoOmlWN+rzqul2qmfMqiaQuKYxqBNfLo5aIA+Jj5p7uKFa+kxCaEqGACiB/lhfMzKMkgcOeef5Zx/RrCB4gNJSp6mBy1F4kiZoNnTkrLI3IIg+LZm5WtjIlvRNKmosIa3SQIEi6VfR10SR6qAOEoGo7XGro+Jx7WYMgwnHkauT9KDZqewIyOiggGA2IEo/qQM9MM5aAmTEKqkybIS+5HwzEr2oI1cun7P3HEdVEwrETZbNdgWw2HMapxqULUMGvUNqhbryQQtmoNGE+ysNpypBM0lCvQBYRQSD4blTqRg0Fp1G6OExJEy+VxrJq6jR8fWXdtqAQDuxVgEKoc+yaDFZ5OF9vCK94llMTQcK9XFkcokBEhKHOnmoAH6zIbEeITphAmgZdC6sR40qusIiALdYW8ci+WWIEGbQrAhQsc8TbbOovJN1IOWsMcOGTSi/qJZiaOn3GIfiAff0z1oVFXvGQZtQpjoSokcp0/inZweHKpxBUD02aIh7XTJYDz5FD1oVIG3lDgGDBrldUxJLDojl+TMAmYZtM7IJZm3BswyaDKgpEisU/f/2MNK3SaTtFHBshi22rWpYb2u75MEcTJoTAusKKr6kcRRrOeGLo5E0rymM+ViR1n53spg0BhF76AjeqemLdQJGbRWogfN9wmvY8pgbI+ovyiVQaYrUGRK8wiupYxF4xJfl2oOWop8kyrRBQSDlspEkvTpWrDYrMSRqqh0YbUOz+fRWbIMDFoaKO2qnUTvlOdzerlQQk4G0Di9WRab6WUauz6J5FAOunS96cCKIhgGZuWbAw0JGo9dSyojGStF4kg6riAh35QvbxIGjc0mMSPXQ4NAlgpgpgetS+gGmDquY0jjPAukDaqe0Mkpgx40KYOlmqUIpLOsvZEbVsjPG7ba9alhvZTsSKtuTw19lc+0DonjhHAOGiCe2ZEbmUB4RFbcgKh8751G8+t4UOihuI5Skj/NxtAlTetNB6eD2R40CkSMBf167RSHPo+wBzNpbiELFDSjGERi0Y2PRyB0cQT0MfErDXtacujRJWiMMaw0nMR+pGPQLgQS9/2uPP+XKkHjkB8oGgpMyaCJjSGDYV0mIZK2ppg7ZVuzboDClIGgJyxkEGIM2ohm5hQwK98chSYhFD1o4s/4tRyOPTQJe/nin01WmCjcMJ0Eg0ZZMLBTjGRoJY7y59JLHJ2UAgWpVJqxqWeNWuIIRD1NY5eSQZN7ZFrRcN4MQiS2VupTEscJoUNfOzH0lVbimDAJCSqBNaLPJt/98hn2fA6iHAaX15sYuX7MlIEuQUszd6GaAwWIc70zpJfKAZHD8VTvIKf5bFEPJr3EEQjs4VOSGIrkMy2x8H2aJEYmaNNmQ+JPnQwaVdFgpe5MJYSuz5UPaZeQJlH7sg9t6Ri04APJA4WC1UpKaiJrbKLEIiE7pEzQHMuaarYHAhdHEgYtpfJNzKBNOcu5tL18wDSrRdXLZ6fIKUNpHoEbppVgfqTDF4mLI8tK0KhdHKcljjqYeIDWJMSOseOc07P+QFR8iXrQ9JgNUVn668B2uz7bg0YUfDQzgkaqOWhAlKCRM2hBwUgG+5RJzJWNJoCod4qHg6rpegeHCXt4qj3SrgsmUsYFlHLKtcasNE8wn+rXkmdRfHi6LHJSfLzk/C6XkPkBRHvP1HXknOxzAelDuClaPuWAcclWR718NM92sufN9ThZUWkmQVsuBg2QHyjqi6Gr6k+C4CN0KCNKLJyESUjIWBANBk54hJDZ7KdZqJP2oNlsitGiNAlJm0028WiYH0szgyaLR2GCRsmgpSS6tC6O0xJH0n7PlB5MSpMQOzaofRSYyFAzaPLZlkEQSaEnw2yIYu/rwNbKdD+TS2QSAoizL63yTRE01pMSR592Dprc252ROJ98wiTmUpCgTQ2ZBcAIgsZmSs8P5Ry0mjNdSPWI3ACBqKDeDQrscsYVRfAtz6L4HDRS5qfmpA+qpmJ+GtPMj89pBn6nuThSzkFrNxxwHo1J8giZSGDWlIdqXAEgXByBmIvvUjFoMZt9yjk4tQSDRtkAD5stXKwAAFVCSURBVMwyPycDSlOG6UAHkDb7FO5rgcQrnliMPJJgGJjtQaOcg5Zmsz/xaDTgaSyTFpOQkEEj7EGTa8XnoE1oJLcAIolj8CetucX0dfSDXlYqkxDRyyr+m3JIu1wLiJ5tShfHtB608yxx3F6p4ag/CQsuHtGgamC2LyZyX1O/VtiDJpkY6eJIJs2blstRma0A2Qyacr92IJTJJx0BqfaIvD+T2H2jSyrE+SDjN/lIU3y2ZMEAiIJ9iv3frNvoT2b73cj6+WJzADnn4JyqJzJb4khifZ8Yj0DZgwaIAuA4piqjGlcACBVS3bZiVvvLlKABSDJoFNXoSFKTkO8Qya5sa5r5ORlMsFKnGWZrpQwhHhMxFlGVPdr8+90RdlbqytcC0mcz1WxG8mCn2ewL9x86Bi2Ww0QMGoVJSGI2GaUhT5p8U4vEMThHKGWwycRCSpcpTUK8BOtPVQxJslp6Et3YHDRCJp4aW23h5DUtzaOrDvdThudSze8CgFGw98I5aORsTBTsU13Hi6sNWAy4fzIQXwgSMxoDiKweNJrPFo6xCF4wLpHZBCD2SN2x0BlFSTVAy+iOYvEH5xyMEfUO1qwpQx55NlI5za7GJI6UbF0712Zf+XKhR0F/NO0GS5agWdaUY7tH+KwxxnBhtY79znj+N+M8JmgxBq1Zs0gOkmTvCGUDPCA2XlwGeDqckPSfASIgTs5BozJlSM4vGk48nA5dXFpvKl8LmJVvDiceSeANRAd8PCEcu0QMWorEMXRxJBrFAESfjVQqajEwhgTz6ZEYuwCIMWjiM+qyh/d9jg/9178BgKaoBEwXKCjvmVwLiF6esgKpa+C96EE7nwnadlCgklb7pC6ONTsxYFb8SZFY1BMM2iRYjKoaLQsdUuLoEjKRjm1hd60524NGYcoQmoTEg0bazwZEklRKBg0IeqdkUh18RIr1Gvb0XD6ATgYIBOYWEz3zu4AgQRtOM5EUS8kY6r/99a/j5bunwXp0hR7JsoYMGrFUtOawqXfLhNAkBxBKpNCUZ6kkjjEXxw6hXbWVCFBDC2mioDHNJIRCTgbMWvoDgc0+YYAqk8+9U0HrXgysRlUjKd8cuXQJWmizH7uUwiSEgK3LMQmhZNDig6objkVWCUxKU/WYhAQMGuEohjiDFpe+UCWf8etIKe8FUnrQZKJLOKhafjbOOY77E2y2ac5IamzJBC0wChEBMVEPWj3Zgyar+urXSvb8hAwalSNgY5pBo5qnJbG73sBe0DsiTyuKQdWhSYgmF8da4lmm7IkEpqV5ITtCWTBI9KBRDTNv1mwMxtNMDKCnBy16rinUQtHP/PWv3ANAPwcNiNw3qV0ca/Y0g+YSzkEDxH2LVA1LlaAh5uJIOfB1WuJFOeMHEAFIPEClTNAsxsB5YjAwEYNmh+yIuH57HVF9JGPQEsnnYOwRMgjiz6RJCI3EUfyZNEkAaBgS+bKUn61P6LwJpAw9JjQJYQmb/ZHrw2I0h39cmidfpM9fXsPvf+GS8rWA6XOEWuKY7FOUMnAKk5Cw0BOs1Rm5cH2O7TaNVJoaW8HvfRwwaEJSprcHjUTimHDNc0MXRyoGTZqEBAkap2MiASH1CtnI4PpRzbgCpiVlVEOIgRiDFro40rF1QIL5IWTQ0hM0TiLLA+T+mLZrB+gStLjEkXIAfRzyfUI9Bw2IYhxyBs22phg0j7hA0a7HXCOXi0GL0BnS2lUDcYcy2YNGyKAlXBypJI7JGVcAHYMm15NSF1l93KVi0BLyzeHEJ2MrrBRWa0I0riBMmKZcHF206zZpxSwe7FMlunK9ODtCOgct0dwvZbAUPQnxc0T2G/30x54iZf7jrCdAJ3GsJQyAKFUG4ZkVBJDHPSEPOa8MWtQEHwUgVMxPMylxDGJVEoljgkGTkjm6fiYLNZuFzxZl7wggKvsyaYoGVRMwaCk9aJSfTRYHZJDqerSJ7mrDmelBo0g+bUv0n4+96R5MKgZNFkNm7eFpEzTphAnQsYNf/at/ELbFZnreKN6bSQYtlIoSFSjqCQZtQlygWKk7YX/d8jFosUHV1DN+QgYtkO9QJjFxJuZ0MCGxNAdm5WuASECpPhsLGDsgsigmS9CsaTfMAWEPWiRxTJiEEPbgTEkcxx7pwG8g2v+DMZ3zJjB93yaecKOikMoBmJE4UiaDcWmeZNCoikqAOEe82D0DCOWUCeOOEWGfrp3oZZW9W9tEZkPUaIU26pGEh27GVTqDRpEzJRmLkEEjbLiP99hRGmkAIgCPhh4HCRrBemGCFmN+KFmtqNgSzUGjCoYBcQZ2h9PBN1ViUbetGYkjpSGPz6OzMEzQiD7bSsOBz0UhOuxBI0wG12P3LZI4ql9Ljk/pjaLnWqxFV6CQCZrni/iDsgetHZ+7Nucjnb8ETZqEDOlslmctpGkljkmTkBNCBi2ZfI5d8XA3iT4bQ5TE7HVGqNkslPioRtJMo0doxR31KYq/c84xJpI4MiakolMMGuGgXjvx2QYT+gQtkhPTstUzNvuEfYrxc0RWHilnd1mxc2RAzKA5GWckjcRxei05Q2zznEocowpxjEEjrOpPPB4GIJH7GoHEUbo4Bs/wJHRxpAsz4v0j1Axas2aHvZ1hDxpBIBeahAT7w/c5aWKR7CcVBQPCHrS4+yCxFX3NZtokjq0E80kucWxGcwApB3DH10v2vJG4RjbkYOwEg0bVg2lbmEjWn9h5FggYtKXtQTsDk5CxBomj3PC+z9Ebe1glD77FescDGezQXEvGopfZg9OhsCsmNJsAokOfclZSsgdNykPqRA92clYeJYMmP1vcEZBS4ujEGDRKJgaIB6bSJISQQYu5OFKOBYnWi86RAaH5CZAuA284FkngH5kNBRLHIEHbOqcSR9nP2Y8F4JRVfSAKGimb+6VULmTQiF0cgWl5NKUbJiDumwwaQxdHih60xBw0+iQmOQeNuActbhLi0ZlbAEDdsadmXHFCk5CkHb18rinORABhjNgbeaQJk8RKPZKmUrrBhgxayIzT2uw7toWxNy1LpTyz2g07GjC+dD1o0iSEMPjONAkhkgs59myA2qKWrwVn1nFf9nPQVKOFKQkP19pepat6J+Wbok+RKvGc3iPy5UbVb5E0QOmPXRKLfQChW1hoEjLxyPYjEBQoNLHVMzb7mhg0eSBTDle2YonukNgkJDlCYzSh62MNA//gJXoY9KCdV4mjSGQjGSqluYXc2zJo9Agr7Ywx1B0rZhJC6+IIiPNW7kGXsJcPEM9SJBeVEkeK8TQWHIuFMxqjXiZaKbYbT3SJXewie3ja5LMR249yPaot0koUXlyfztIfAFYbIrbpDt3YAG5aaWqSQSMZ+F0T52N/NG0kQ9eDxqaGtAN0zxogEtCR6wfn47IlaBDBXHfkYl2bSQidfAeYDlAjaRKVFbf4Uz7QRz1ZjaYJdhiiaktv5JJKvJLyTcGy0koc5eEhH3CqIDVpgNIdeWgTs4Oh4cTYI9uPQIJBC/Y/VTEk6kGTVWpKBi3q0+pqSNAcK3aOEM9Bi9jBqAeNKqlmjE31CRz3x7AYyPp0qcEYQ7tmT0scCXvQgGg/ULo4AtMBsUyoqRk0mQj6xAxaK5A4+j6PMWhE4xFilu3UNuPyWZbPF/UcqGbAavk+J5cB1p3pHjRKOXFYDAmfa5/YtCaaFxa6YRImaCsxaSonPEcYY1ipO9oYtLhMOjI2or9v/Ym3jAya+GCc0w58BTDVF+NYjExLP9XcHwSodPK1pMSR1hEtbhLSH3ukw2Xj8k3OuVaJ45iYQRNSnujv/ZFLJoNNOlRSuzhaVhqDRiRxDCtWEYNGZUiS2oNGvP/dRKFH2xw0wtEIQOC0FeyNo/4Ym+06KVtCjVbdwWAScx8k7EEDYrIrQmkSIJ7bcUwqRynxAiL1CeecdFYYEJOLul7MxZHoOtbsiEHzaJMYGYy6nh4GTRYxJ75P7nSYZhJCXgwJ2Wq6pBqYjlMpzX8k4uMRZCxCKRdN9qBRnZE1x4r6L0NjI0IGLYgBIifHbJy/BA0Mp0FSQSVfmzEJIayyA4nm/mBTNonla2GC1tfRgxaZdlDO04rLNwcTDz5hEs8SSUzUg0bFsk7PXOuT9qBNm630x7QSx/QeNKJ9Ig9enQyaJxK0ms1IzxE7lugOA8khVeCTPCPHrk/HekK8RGWV86h3fodUS4gARFhyUwaNzQSDFla+iW5V3bZC12NKd0oJJ3h3ysSTkkFoxRiSkEEjupDNmhUzm6A1Lkj2oE08WrOV+DgGj5gdrMcKBoDY/2QSxxQGjbKIFDlJ09reS6TNXaP6eGIItx6zlZot9ogo8khZth7mc/kkjozhsEdrsxzJ16Kgkcz2G4nm/kDWQD1gOZQ4Bj1olBJHmVf0xsQSx5h8U1Z6yBi0hM2+rNLVHLqAeGpQNWUPGpsOvocaGDS5H0OJI7VJSMxmX4uLY+A6S/kCjY8roL5nMz1ohBJHIHqJAsLYaJPI5VYXZIJGHaAmGTSPWuJYi0wZJkSutnHYluhBo56VBEz3GMmTmCoAF3JKPYN65TWbxBi0GiGDEB/HQG6z7yQZNDqJo5MYV0A9OF3+aGkND9AWKFITNEI2Ut8ctOhdFjJoxC6OQMCgLZ3EEcBBkKDtECVoUe9IFHxTMSPAdGBFbY+dTD6P+xPUbYuM2WIxk5D+yAstVCkQBcQ+Toe0c6fC6xgcjNQmIXbSJISwB82KMWic83AoNhXivVPUhjwzJiETOmkeYyxMrHsjl1TeCEyPK6B33pztQaPqvwSkVEm6s3pk6gldaNXF/C6P0wbf7YSLI7XEUdynoPLtcdJeDkDI8zyfPtAHpm3UOaYLPaoRt/Sn7kGbnYPmh7MHKdcbe76G4DtF4kiVoFmziS4lExk3KvOImXFAsFqyqETpBguIJEYyaNRFrDiDHLHVtHPQgEeMQWOMPckY+3nG2D9OfH2FMfYFxtgPFPxJOOyNABAyaDMzfjxS+U6qSUidesBsJHHcaNfIKvsWEzb7nHP0xnQ9YcC0xLFLPBg4Xr0CYgyaBiOZsetj7PmELo6RfHPsiTl5lHPQLDYrcazbxIOqwx40OgYNiIovlK6zybUAPbPrgFgPGmGiC4hKuCyCUM4A1AVZIfaJezlkUtFPShyJ4sYpF0ffJw10gGjP65QmxQd/W4xmH8YHcJO7OKbMQatRShxlD5obNwmh+WxJiaPv081Bk0mmvF8usVRU/mzO6c1/gCiW6o1dcolju5HSg0bmYhrtR5lcU+7/kEEbu2oYNMbYLzDG9hhjX018/ZOMsVcZY68zxv5C3s/gnL/JOf/xlP/rvwDwD4v8HsGiOOgGDNpqo/A/K4M0m33K4GPKJCR0XyM2CQkljmPSeUIsmPE2CgZiU/VNATHmc0riSDQrL7FHyF0cYxJHuUeormV8DuAwkNxSJjGOHSWfoTU3UUWVJRi0IXFi4Viiwk85NF1iao9M6MYHAJEEVQbj1GdkfOCs6GWlvZbUaNUcDCZ+jEGjWSfpLKfDxVHep8GY9tkCgJolGvxDFztiF0dAShxlDxqVVNQKTUJ0MWhxq3FKs5VQ4uh55AYQaRJHuoHf09fRI1wLiJIjn/PYoGrCxCJ4f3WHLjkTP+3iSLxHwjEu9KY1AMLiomAI89cp+pb7RQB/HcDfkV9gjNkA/gaA7wNwG8DnGWO/CsAG8DOJf/9jnPO95A9ljH0fgJcBNAv+HgAYDnpj1GxGb7Ovqb/Csljo1CSdvaiq32kSR6oZaEDUgxa52NEyMQCCMQyit44qKJ612ac2CYmS+N6Y9lrG3aH6wX6klDjG3QcnxIMiox60KMGgZtAmgUkI9dwum0UJ2nDioUnI+m8EPWAngWHTWEMPmgx8emOPPNmlRrtuYzB2Yw59RHbtCYkjtftaPCDe745xcY2miCohGLRImkQZWDVjDJofujhSmYTY2A8K0R75oN7peMf1fVJpqnxHjty4pEyPSQilxDHNDZM2QYvaLKil0kAUS/VGEYNGlQ+263Y4By3c/xpMcqhbVYCosF6EQSv0luOc/w5j7PHElz8K4HXO+ZsAwBj7+wD+MOf8ZwAUlCviYwBWALwIYMAY+3XOuR//BsbYZwB8BgA+csUSJiHdMbbadUJZXtIkREOVXZtJSHQY+z7H7aMB3n99g2QtIOhBQ2QpSln5jss3O8Q9aEmbfR09aHI/9ogt26NxBfTztIDp3inq4bZRQKWTQePojz1c36KV5dn2NMtKec/WEwkatQxcBlqcc3I3WB0ITUJkYEUU6Kw1HdQdC2/u9wDEm/tp1qs7Vnj2PuyM8NhOm2ahAI7NMHS5lsp3cqacWI8uQYtcHGkZNHnWulMMGqXEMerVou4vasz0oFFKHKcdsl3yHjSE61FLpYEoQeuOXHLGbqUxy6Dp6UHTZxJShEGrcrpcA3Ar9vfbwddSwRjbYYz9LIAPMcb+IgBwzv8S5/w/B/BLAP7nZHIWfM/Pcc5f4py/FPwkHPTGpNVoJ8mgTWgtpC2NJiHxJOZffH0Pd44H+OR7L5OsBQQ2+0H/GQCyvilgWr5JPRg43qALxHvQaB5sYRIi/lseXFSOmDLm8Hwe64kk7tNKziGhOiBDiaMFNziQaRk04TI3cj00CRkmYJpBo55d16zZaNasWILmo0FYdZQM2ji4Z9SGK9QITUKIE4uGY+N7nrmA//1rD8A5Jx0wK9aLAuKH3RE5gyYLIDLRpR5UDUibfbHXqYrENZtFph3Ec9BC23svmidH2Tso+4vHrg9qC3WtLo7SJMTXMzg96kHj5D1hwLSsnVriGHdx9In3SE32RHpcyxy0ZuAvMSgwqFrbW45zfgDgpzL+v18s/IOYMAnZWaVL0OIudoDYkOuEts42i88vog2I7Vhi8U+/eAe7aw186n1XSNYCIoljf0w/qDfOfMoqLtUcNCuZoBEzaBaLzSUb0coO4xJHXQxaOE/Op72OcZt96qHYQOQyR13kAWYH3lMmngCw2aqHcxTHGlwc+2M3ZOIpCz060K7b6E+iBI1yXtIffM9l/PNX9vC1u6f0Lo6OsNmfeD4OezokjtZUYEV5HVsxiSMPldJEBTkWtT1QOx2GEkePfi4ZkLDZJw6IZ01C6JKYNLMVSkYrLnH0NUgc5ftLJGi0TPxKw8HE41NJPNmsvHDMBL3kFog7IHNQMmh3ANyI/f168DViiDlo2ysaKnMxdoRaBhUyaGMPtsVImRhAbI5bh308d3mNtFpmMQbOEVqmUvagxRm03thF3bHoJIczPWi0wX7cACJk0IiS3fiYCcmgUfdpxZ2v4r+DcsQYNJmg6XBxFFJK2qTCssSz5vscE482YQJEH9pxMEeReuZVzY56+QCQjZjQhXbdESY8wfNFGRC///omAOCt/V7Mjp5mLTGo2sN+VzgtUydoSZt9bQwalyYhVM5yLNYTRu1iFymGdEi8aqEpg0feOzhrs08/By00CfE56XWMm4ToGDMh319j1ydn4tvhzEGXvIg1JXGkjj8wfd/mfm+FdT4P4BnG2BOMsTqAHwbwqxV+XiYYY59mjP2c/PtBb0w2A00iLjuk7kGLM3b9oHeErL8uxo7cOR7i2maLZB0JxsRavZD1oWfQhKsXrbwg1H9r6kGLm4RINpKKQYuzg/IZoGwaty0rPIQnoYsj0XUM9wQLg2MdPWjULodyLUDsSY+4jwQANtq1UOI48ThpgiZt9vvE8l5dkMG+TDgpA6vdIEna64yiwIrQfXDs+XjYGQVrl/D/WgBSHq3DJCE+9Fu6OFIlTfG+XPI5UDH3QWq2AogzaPTvl1mJI71JiLxfwiSE7kyMt1mEzLiG+zZyPS0ujoAoRpP3YGo2CWEx5lOVzf4vA/g3AJ5jjN1mjP0459wF8KcA/DMArwD4h5zzr1X4vTPBOf8s5/wzgHB56wxdeukEmx6eS1mNjgdW1NIkyfwMxj72uyNcpU7QIOagUfdNAdPSPMqDOL6WDHgmwRDdGiGDFpmE0BquxFlWagkKIAwSvES1mCwhjNns62IHXU9PgmbF7xunLVAAwGYrStDGno+aQ1l1F4E/tYOpLsjiyulQXD/KxGKzXUPdtvCwM9IyqHrkRgkaPYMmejx1mIQ4toWGY+G4P4GsfVO5OMadbalZJstisJgobOo47xuhzT69rXndEfvjJGD6Oedksryk+7fnczLzH2C6XUVrD9rEJ19PDnPuj1zyPRIyujGzIUrmEwjmA3NFEkfO+Y9wzq9wzmuc8+uc858Pvv7rnPNnOedPcc7/m+q/9nx0g+B0V0PzsU6bfQCh5IXSoUweTreP+gBAn6AFc9BC1odU4ij+9IIXNmF+NqX/BoCRp8MkRCwWjhAg7q/zfE7exC1+thWTOGpycWQW3noonO1ubNM9A45lhYlgg7gnLG5u5PmctJoKiMBfShxdzycbMQFEUiVqB1NdkP1MsqeO1u2N4eJaA3udIbnEseHoTdCkPFqHxBEAPnB9E1945zBk0Mh60GJnoo7P5tgWJr4f9gBTBqhTJiEaetAA4AP/1f8OQBTByRi05Bw0n5MmuvFRP9Tz5ICYxDGWWFMpvaYYNOo9EmfQNJ0jVhAXz8nPKkkczwQyQaM++C1r2riDsvptxwJiantsucnfPZQJGq0EhQUUmmR9KOcXSTmBH7iV6RgS6fkcDzsj/I//4jUAxHPQfJmgeWAMaBM7fca17bQJGmISR1oGTb5QOICX752CMeC5y+skawHiusmkgpxBi50jHrHEFxA9aCeDibB55rSyEOniGLHH55tBk8GOZASp5agX1xoBg0YbWEkXR8kMUs0qlRC9iXEmhvYZ+86nL+Ard04wls6KVAyaNasqoNwjNSkV9WmDYQAh0z5136gkjokziVJZE2ciAfo5aPJjxBk0qucaiDNoHmT7FBmDVo8xaMRs3XQPGm2BWEIkaAClSYg2xHvQpGZfi31vMKG9P/ZIK7Zxanww8cKBmDRriT9vHQ0AANc3aefUMCaC4cGYPkiNz++iljjGe/l+5tdfwV5QMSadgyYZtKGLlbpDxpBEEkd6eQ0gDsN4L59tMboXTRBQ+bDw8t1TPL6zQlo0cGwW9k1p60ELmE/qoH+zXcdg4qEbOKbS96BFTPx5H1Qth4jLhJOy8g0Ixcne6SgMrCglZQDCPU+5J4CIQYuSGNLl8J1P74Bz4LAnElBKBi2UymmQHdaCHs+wB5iyl0na+rsxxo5ovVGs/wwIJI6Ej5oTu2+u79MWieMtHcHHpJ1fN+viSLWejLd7Yw+eTxsTRAkapx/zE0B6MyjpQTtrxHvQOqHEkZb5sYKDvz/R5z7ohwwaPS1+91gkaLvrxExkQOXKgJGywhOf3+URH8RxI424bJOqV9GeYtAmpAFqxMREBzGpq1HcxZGY+bFixZBX7p/ihStrZGsBAYMWFieI56DFe9B8Th70bwSjRx52ZXGCuActJnGkNBvSAdn3KD8PtRx1d11IHKl7R0JmcESftAMiINbJoMnC8Dh0lqNj0HyNDJoTjCvQ0YMzZbNP/NlknANE88IoC7eOzUIWxuO09yxyA4zb7JMtp3UOmoxv3jnokRcb6zFGN+qBp2fQ+LIwaHF0Rh4sBtJB1UDkvqaj5yFuEtKfuKTBh9zop4MJ6rZFPiuJQcxB84glh8B00ywnPojjNvs3tiIWkiq5sKzI0r838sj6z4DpQJ96SCoQPWsAvV277EHzOHDrsI8nL6ySrQWIzyb7jKjnoMngNEzQiKuAMkGTluqURko1hwUmIfQFMx0IEzQpcSRn0Jo46k8wnIhDhG4OmtgD3eA9TX3mh4OqNfaOAIAnbfbJJI7WlNkEQG9973p+KDEnlVOGg7GjHrQaUaL7p37f0+F/TzwezEGjfZdF942WQYvHO54GiaNjW7AthnGMQaNa7rGdNj76xDb+h3/xGg67Y9LnekriqEExBIjk2vOXhEGLozPysLPa0HABxYMmJZWkjEUsID7qTbDVJhzCHWyI7sglNeyQYIyBQ1QDqYOQeGJBfRAnbfajr9PJDuVanZFLK7kNgxA9wUG8v871aGfH3Nn5Nvwd9/vQ5S34HFgj7pHRyaBN2exr6EGT1+6wJ4ZVUybWjbAHzQVjtIPTdUBKHKUUkDqZfuLCCgDg/3j3CAB9gtYbueRVaEBcNzG/izbxDNcLZWXi71QSR/ns+j7H2KOflSfnrnkaGIS4xJG6B+3KRgt/4fufBxApayi3iOyVBcS7jNr8BxB7UbpJU8dYwqXVI5+DxhjDT3/vU+gMXXz9fofcnRWQNvu0BQMJK2xZWbIErTt0yR0cgcjWPGTQKFktOb/L59jvjnBhlS5Bkxu9E/QxUUNqbT1fQ1UiHqBSSxxjNvvyQKbElEnIcII10oKB+NOP93YQVx0jiSMtg9bbeA5/xf0T2O8FhRfiBM2xrKgHjZhBC/e/F0iKiV/Wa03BoB10afsv5c/mXMzAXG04pJViHWgmpIDU9+oTL+xiteHgt7/xEACtiyMgPhelq6dELWCapLqAunfESSRoVO+0eF+6dMS8QBj31KzpHjTq3qmaLRhxHXPX5M+e+D65eZgde5f5xKNO5I/mQXwlvka7/xs1S4vEEYjkxHudITGDJn722OORSQi5zT5Doraf/n2kv4UixE1Chq5PXvUGpElIZEqiwyTkdDDByPWxoyFB645cLU5oDAACjTRxfhYxP16gNdciL4icB/90TE6hGvEkpjfytPRESiYm/jUKxIfCTzyOGuFaMqm4fyp6E6jNJuIvbF0mIZNQpkG73kZLXLuDkEEjfIkG1+4rt0/w7CXavkEdSPagURev2nUHv/+F3fDv9BJHlzzIAaLna6JLmhSejcHfySSOkXzt3skQK3WbtCgneqciN0AdTIxg0HSYUAXJrkc/H1UwaFHvIGUMEnftDXtLiSN66dJKPa4DiNqY9joj2h40yaC5vpZ+T0Bct6U0CXF9oE4sFQKkcYGvyR5e3CTpBLizQlcpi2+8tgYnNCFx5OSWs8B0YsGpXRylxDGQ19gWw5/9A8+RrRfvSeiOXKw2aoRrRQe/DttlceiL58z1/FByQAFZ3LlzPJz6OxXilT9qiaMMBkYTGfSQLhdj0ESCRsmYSHbuK3dO8J6rdGMRdCF0cQzYVerKNwBsx94rVMvJPdAb65E4RkNmgz1PLXFkiQTNJhp1ElPVPDgd4vJGk7a/yLLg+jFmhPjWRa6Rema8AeLd4hNLHIVUND4HjbawCQQmIWHCRMygOTZGrh9KHCn3pEzQOLHZyrTNvj6TkKWUOLo+R11DZS5pEkI7YFl8ngenImgkZdBiD9SKBgbNYsEgRR0mITHdvufrkzi6Hn2/Ty3mDtUZTkgTi8gAhZP3CABCNjEMAqyJT9uDJpOKe8eSQaNLdIHpF4suBm3s6WHQ1oNrqaMHLW5A8t6rG2Tr6IJk0OTYAB1sk5w/ZTHCOWghM+jp6UGzImc58Xc9DJofmIQwYgbN8wSDdnmD1rW65lgYe1xL4A3EGTR6d2eZxLs+PYM2bRKiZxYrj5mEUO//uiN60HzipAkQZ6QkRkhHTCRMQhij/2xMzkFbBgYtDsGg0f/asuenp2HuTsigBQnahVVNDJqOHjQIBs33aV0VgWkGjVriGJcXTDxObydtCwaNc47eWJ/EUUePQNOxhTOULzTglA26MrG9dyKeNWqJYzzwbpK7OE6zCdRFg2bNgmOx0MWR1Jo79rNfXAIGLerV0segNYIzijIYDhm0kUsqeZWQe3wUjMOhTnSTJiFUjF38DH5wMsTl9RbJOhJiUHXEoFHfuXogldMxr1Em8a4n4xC6tRzLimz2ifuA46N+dPSEAeLcGk18LS0rQMSi0TJoUQ+ajvE0gEiu+bIyaHoqc/pt9qXEkTJBiwekOqyqGQts9jUcxPGkiVriGO9BE8YWxAyaxTDxfAwnoupIyfwwxoS5i8+19AhINmHk+uQujtIa/t6JYNDoXRyjs0qXi+MokItSz9ZijGGt6YQMmg6JIwA8eXGFbB1dYIyhWbO09aABUWFTsuKUa/RGLqlUWUKeFSPtEseAaSI6q+LFlgedES5v0BqjyR40QI9Uru5YGHmiB02H+gQQvbk+sZInuo6BxJHY/VisE5c4ki0HIGhHCBJ5HUZNMkGj3COMMaw2HJwOJsJcTsNZbDEmjI2WkkHTlKAJm30R7LQJbZ3lgyYljpQz3jZatfAh1sKgBVSuRzyXDJhurKaWOEplix+4OFIHI/Lg74wmAOjdB23Gphg0ysBHMkvDiRdIHJeIQdMocbRDNkEPgwYA661aJHGknIMW2xPnfUi1RLNmRzb7GoIdHcqTkBkc65E4RkUJXRJH8afsQaOSEcvPdeuoD8/nuLxBzKDZVpDAiL+TJ2i2FZoy0M/KizFoxImFY1uYxCSOpH3wsRjE1yRxbDg2RhM/mDNLuhQAYEcDgwYAF1br2O+ORL+bJgZtaXrQ4i6OE59redHYwZyC3sjFSt2mdQSMMWjrTYf081kWC+es6ehBCzq1xBw0ailDvKJEnBDG5QXUzoNAJHGMTGvoDSc8X7xkGKNlYySDNnS9QOJIt5ZMyO4FJiGUzDiQ7EGjvWcyINYVrAIi4T3q6+1BWxY0HTsaVK2DQdOQMMWLEFp6xe2ouAPQX8fIvEP289FcU3ne/om//XnYFsOHbmySrCPhWCyUAAJ0JjIS9YCJ0dG/7YQ9aPSJRS0wlxPrUdvsB9FVzG1ZC/PpeuTJp4QcTfPS49uk61xYbeCgOyaXwEqwoAC+FAxa0sVRt8RRVxB31Btjo01rWgAAW0FVQoeLo2UFEkcNTaXx+V3UzcBTEkcdDJol3KG6Q9kTSWxuEbgM6Rh4HDFo9BJHx7bQrtsYez7qjkUe+E8xaJp60KTEUUfQv96shVV3SpmvTC4o5d+60axZ6I/03Ssd7sfx50mHxDHa83qKEjODqokSNHludEcufup7n8R7r9Ea4zjBgGUpfiVP0Ox4D5qeM9j1OHliYVsMk2Ad6tjRisUgcqYWtTyv4URz0HQkaA9ORdvPf/iRa6TrXFhtYL870qL0AqK4eCkYtDgmPieXCgGBxMvngaU5bSIjE87uyA0HmFJCzj/TMwdNBvq+tpen60uTELq15DMsZvDQJhWAbD7m0Vw+4nsnCxQ6egflnhcSR9pB1UAkc6ScKyQRv3bUDIZuuRcw3cOnowftIuGwXt1o1uyY4yb9enokjtG5pNMkJDLGof2MjDEhTwoCK5voxuk286rZLHxvAuK9TbueSAg9Df3boc2+75Mra2q2MAl52BnB9TmubdFJU+OjfmRPJHkPWi0w9NIkcfyrf+g9+OmPPYUP39wiXefCWiRx1NGDJgvg8yoh507M72k0CRm5ogpCabEPRLKQk8GE3E4XiAJiLRJHJtqOdbjjxBu4fU67nnyBCpt9nzz4rtnCJETaclOzuhaLzASog55Q4jjxtEhe1ps1PDgdkffxAVEAWbct8oNfBiKho50mBk2C8lwee+IzLVOC1oj1Neuo2upImOLFUy09aAmJI/X8LkCc/dSMRTxB03HfZMKEsAeNdr26Y6Hfd7X0oEnJ/MTj5AG4EyS6d4IxLlc36RI0liJxpI6xJIPGNZlpvPfaBjl7DIjZw0f9CcaeryXxtKTN/rzvo/9V1MLneiqBkcTRwwpxBUsGqBOPa2HQpNRKl0mIcHGkr0yEM2p8+mZga0riqIFBCw5+OdiW2oEzzqDRV+UiiaMOwxXJ+lAz40BkIqCD9T8bBi2WoBF+RmmmcYOwIq0bzbgcUENmoWMPNmtxBk3/ntdxHS3GwAOGiWwOGosnaDquoxWaaAD0Dn2twCBHh4Q+GlTNyZkf2ct3N0jQrhEmaID0SkA4v446xorPQdNRVNKFC0Hhb78z0vK5WEGTkHPHoHEwfT1onGPkeths07kqAtPzkaj7VIBIhtIkdKaUYIhchqhvmzzoPZ9+3klcXjDxOXlg4FjW9OB04uRa7n9O7KoIJExCfE5eMZZJhY4ETSbuOp7r5Bw03RJHyvv2B168jP/s9z2Nz3zPk2Rr6Eb8/NXB/Oh0cQT0Shx19l3aFgP35Tr0DJqOXj6p0ODQI5VbaTjojfQwaFHrA33vlGNZcH0/TNCuECuipBugLpOQqAdNj8RRFy6uihj/QWekzWafcz73+Dh/CRpnGhk0wOU++Xpx3T610xsQJYSToP+BEvFeLWr6PWTQ5KBqwvXkrLAvvHOI04FLPoRYBjunA2GzT83qijkdHJwxbT1oo4lwcaROduXL7OZ2m3QdIAoOdDzXMlgduholjq2IQaOU+dYdC/+3P/Ac2c8/C8TPDD0ujvR70LJYGMSdyRw0Tf0joTqJeFA1AHKHYCBSaOhi0FYbNrojV8t5L9+d0iSE8qPJcTh3jwdYbzpTCgMKyDFG1IPTJRqOHZqE6JiDpgvSfEowaPTrhXPQloFBY4x9GsCnP3LFAoce+15hEiJchsgTtNiLmjrQByLmQEeCZgUSRx/0muXIZl+ahNCuxznwr14/AAB8+5M7pGvJYOd0KBK0FnH/oBNIHBnT6+I40SAX/ZGP3sS1zRb+8g+8QLoOEAVXGy16d9aoB0081zqkGtMM2rlTzJ8p4gyazkHV1GjWRBCnw9ZfBvc6+y4ti4F7+hg0XRLHiedHJiE6GLSxp6c9QM5BC2z2KZMYOU/uzvGQtP9MQjJo4X0j3ip1R7hver6eXi1dkO/no/5Yy7s6lDgug0kI5/yzAD770lX7Jzl0MmhiCDH1iyb+otZRaf9zf/A5cA78wPuvkq8lJY7QMABQvtQ8zuH7emRDEvQvGfHzTwYT1Gz6Z8AKJI7QMB5hyiTE91EjvnGfev8VfOr9V0jXkDgNxiJ8z7MXydcKHe2Cwgv1ngT0mYQsI+L9xssyqBoQ/UUng4mWZCluRw/o6bOzLXoGLc4q6XiOawHzE5mE0K650nCEZH/sku8TyaBNPA3jdywGz+M47o/DebOUsAOlSzioWoPEERCM9TL1oMlivutpstkPTUKWIEGLQ2sPms8x1lAJjL+odTBoO6sN/L/+w/eTrwMELo4cWhit0LgjOLAc6nJSDLos1E8GrhZzF9sKJI6gr0rPuDhqCEh04Y2HXQDA739hl3wtmUiHjnYaXjTrmnrQlhH6JY66GDSxDqVpjIQdS9CaNUuL7EokaPKz0awXr1HpcsOUNvQA1aeKIFU8JwMXLU3zISNlDd1aNZthEtjetzSchzLQl2IoHT1oADAYe8uVoIUD6H0thX0xB21JGLQ4ODS6OPIgQSNer2azMJHRwaDpBAvmPfhch5GG2Oy9sReYkug7QOhdHKNRDDrGI9iMwdOUWIcSR1e4OC4TE/OXP/Ui/ukX75DPcQHOxtFO9liIM2x5Xtg6MG0SooNB03N/5OfSInGUM0SHLloaTK8APT1oUwyahr0hbPajHjQdDBogeqrXGrRSQPk+ERJO2t4p4Yapb5CzlMrJxJr6yJejQQYTT6tCiRqSedR13ywWKJSWbVC1TgbN9wUtTr0eYyxk0XRINHSCITYHTYPN/rc8voVf/8o9uD7XGjBSN8RLduJkMEFbg/ugFTBonoa5ZA0nLnGkX08nnru8hj//yee1BOByD+p0cVxvib2oIxlcNsTnoOnY8zpMQoAoQdMtcdThSgxIBi34bFQ2+3EGTUNMUAslXuLsoH51rgZjYk4GE/JzShZP/+kX72K/S2sCEZqtaBhPAwTvaS7WAzQwaLE+52Vi0OIfRU9iHUgc56x1Lt+qWhg0xuD6vhYGDYhYhIaml4wusCBD8zT0MgHAf/Ltj+Odgz6+fPtEaxMrtdOWDIBPdTJogVTDJg6+bYuhZjMMJ34gcTyXx9KZw04waDrnoBl5Y3nEJY46ggJ9JiH6JI4y+D7VyKBZFqIEjcwkJDauQEPxIyzuaErQJIPWHbnaTEL+5ev7AGj7tOQcNB0FaSDoQeM8YGM09KAFz/ZgslwSx/i90hE32iyaXZeHcxgJMS3SCdsOetA8XQnacjJoljxAfF/LgfXcpbXwv3U03ktQJxVOzGaf2sERiExCdAwSBUQf5nDiYeL7JthfEGcxE0q6OOoK/pcJUyYhS+biCGiyh7ci1lgbg6bDZj/2c3WZhAAR+86Iu9BWYioQ8kHViZ9PKnGM9fLpZGJCaSq52kU8b/2xS57E60T8XukzCVlKiaM+Bm0Y2FXrsPWXG3/ZEjTGpMRRz8aPBzo6JY7UMtiQQRtOyGegAUJi4/tcyyBRQDDH/bELzo1cblGEM6EmsgdNT+9Kq2YvVd+gLsQLLcvk4ij3gh5zi+i66ShcAYHNPjmDFv1cPTb7QYIWMGjUR/BqLEGjVmgkE1zKOKRmsaCXT5cboGBidEkqo3aE5ZI4xregtgTNx3JIHBljn2aM/RygtwdtELih6WTQdFUBdYGBhQeIjhhON1UtQc36ODGrYB09aDaTDJoe5rNZs0Kr7GVycdSJcCaURokjIFg0k6CVh5QCMqbJJETTPZLBvhaJY+y66XBABiSDJnvQiExC7HiCpr9/VZdJCEBfSEqeTbQ9aNKQRE9h0wpaEXSZoslYeDjxtCqUqBH/LDrO4nAO2jIwaJzzz3LOPwOIBE2LxDGw2Qf0vNgaSypxFBsRQS+THk12+N86XRyJq4Dxl7SOHjQr2P+uphdNs2ajE8wMMxLHxSBvk06JIwCst2rmni0AKXHUFejoukdy3+lgcON7XJuLo6bAW0KHomBW4kiL1ZgKxNY0Q1SCMgCXe2Ps+loCfSsWX+lQDIU2+xNviSWOetbjy2gSIiSOeg9+HZXAppQ4LhuDFuj1BQWv4b7Z8QdNp8RRT6MzAD1z0KbGI+hh0HojmaCdu2PpkQBjDI7FYjb7hkF7lCHVEjoCOUCf5Fu+O3UoT+Jyb13qE0sHgxbbEzrinVqCQaPeKysNfQ6myYSaVOIoZeaur9XFkXM9hR4pcVw2k5D4GaxF4mgtEYMWh2DQNLjYxQ9IjQxac9kYNADg/EwYNJ3nB/0ctBiD1tDDoLmexh40x45JHJfrGdAJx2ZhD5quwP/yehOb7ZqWtZYJ0hFtmaRCQJxBo3+O11vRvtPFoDk2g6+xB03HdYykeXpcHB3bCtkY6s+XTDZJJY6hzFyPBFAyMZ6mHjRZdOGcvk9RJ+LXTg/zGZiELN+gaoaaDgYtduG09KAtKYMWUvA+13JgxV9sOiWO1AxC/OfraIZ3LIax62tzcbQZC6u3OtzflhWOZYUSR10M2n/9R94L15tvGWwwDZ3zwnRCfh4deadtMaw1HHQ0zkGbZtCo5qDFEjQdLo7SAdbT04MGCKOQkTvWvv8pP5sTk4rqkzgKt2Ud68VbcJaJQdPtXRDOQVs+Bk0Po2VpZtCW1WZfSBwDlyHNPQl6JY7ULo7xHjT6ukq77qA/9oIeNPo9yZhorAb0MT/LCDsmcdRVoLiw2sDljaaWtZYJsgdt2fa7PC9kDzc1JIumy8VxelA1PYOmxw0zYNBccc907Eh536h70JLQwaCNPV8bg+b5HFyTQqkRM+LR6ZJNDf02+yjEoJ3LbEC3O5QOBk0mZsvn4ijocI9rYtA0Shx//v/yEj76xDYAHbNc4j1o9HtktWGjN3aDgZvky8G2WCivWTbJl07UbP0JmsFikK6Dy3af5FmoO0E7kzloy2KzL5kfT7DvOoLUnZW6WHuJ9r+8VbokgJbFwvhKxz1rxGY3LtFtOxOTkKXsQdM2qFpzgrbMDJqQOOqpFMercdSB/ideuIQP3dgkXUNiugeNnkFbbTroDl24vq+lB0JWAoHlC1h1Iu4+a67jo43QJGTJChJy37maEjSZ6Oqy2bcsaDUJ0SNxTJqEkC+JC6sNAPrPKSnjpMBZMTE+17NePBZepkKqbuVVOAdt3veR/yaKoUviqLuCJV8uy5egBYMUNbkB2poPSF3BSNwlUgeDttJw0B258LmeF6iQOOoLDpYV8WTaDPx+tLGsPWjyvPA1JWgyHtBrs09rEhIvZta0mIREvVOAnjN4Z/VsGLTh2CP72bp74CUTo29Q9XL2oE2ZhBiJ4+KwmKWHidFtErK0g6oFPE1ugFOVEA27W75cqE0S4sG2DgZtreFg5PoYjD1t84xcw/xUxlSAsEQv0GXEskscdTFo0lhLV4JmxSWOGhg0HfPrQpt9jSYhkkHTjeGEjkHTzcQwxuD50Dao2rFYmMws0+uFMRZ+Hi3S1MB9sz/JLxacCxdHxtinAXz6I1cs2JosuHWbhMjKxLIxaLLC4+mag6b5gIwa4ukOfWBa5qIjEJFJ4Mlgoq0SKJPcZarM6UZ8n+huvjcoh8gkRN+aP/wtN8gLjk9dXAUAXNtqka4jETJoZ2ESQsWgxc5AHedvNKg6MAnRIXFcEwnayWBCv1gM0uWWAvrjD6FQ8nx9CWHDsZduDhoQtFlo6uWTc9AenI5yv+9cJGic888C+OxLV+2f1JWg6TYJeWxnBdsrdaw2z8UtKQwhcYQ2swndVLUMiD1OLXHUy6CtBmsMJp6mBA1wfT/8b4PF4BgG7dzAskQ/tc779N/9sfeTr/EfvXQdN3fa+NbAQIkauouajqWXQdPhlhd3HwT0moQc9/UmaKQM2lRiTbZMiFDiyLm2Qk/dsUSCtlxcAmzG4EFPgsbC+5a/1rnLBuIuMpRYjQXBOhi0H3j/FXz/ey8v3ZBexkTfoMf12OwzxkKjBB2Bvj6JY8wkRIuLY7T/9Wnpo/82WAzxkQjLJp1bRjRq1tLdJ8YYvu3JHW3ryQKq7J+ihsUY/LA7hN7FUQckgzaRPWga1pTD7bUnaIQMWjzG0RXv+DyQOGp6b8qCyLK9p0OJo4aPJSWO806sc5cN1DUlaLKBVaypYw4UW7rkDIhVCjQNqgaiKpbOuWvU/RZTNvuaXByjtfUkaGn/bVAO8X6VZTOfWEY0a/bSJWi6IQPGMaE7Xxz2FING887WPWPKSfSg6Vh/qx0waIMx+VpxDChNQs7IxVFXCwkQzUJbtve0PId1KYZ8zjFPeHXuMoKGpkbgeAOrDhfHZQUDADkHTVMgInMZHQfIZvCSoZYdnlUPGjDNylAhvsSySSd0wtZcwTWohmbNWrpARzd+6FtuAAC+86kLWtazNAyq1g1ZzNHppHt1U/Qofvy5XfrFYhgSMq26TZqkxFHMXdPFoMnxIFqW0wZ5v3QUJ6RiyJ/DVRuJYwZ0M2jLiqkDRNPLTLBNvpYD5I9+6BpOBhP86LfeJF1HJmgtTRX3tViCpmMOj2HQ1EAGWoY9Ox9oOoZBq4oP39zC2//dp7StJwI5WpMQ3QhdHF19PWgbrRp+7//xfeGgcV3ghP3iugtkdjBPS1dLBxC1/Czbe1qnxJExcc/8OanF+UvQNDFo2ytRgrZszoo6wRi026fLZXRJHH/8u54gX0fOwtExAw1IMmgmQTsv0CnTMKiOZs1eukr0ssO2GDq8hbHVQn1JziopjR65eo2atmJxlg785Hc/gf/Ttz1G9vOnXRzJlgnBGCKTEM0SR90yXGrIe6fFfZMxcM5jbrDpOHcJWl1TghZn6ozEcXEwRAYauoJGZwkrPFYwf6Td0GSSE+tB0yPViP/38tw33ZBnlUnQzgdaNRsT4hEdBmphMYa/530C28//AP7kkpxVToJBY0vCDEr8wh9/CWOX45PvvUy6ztR4BE1SOc/XnKAFhMWyqTTk9dNR2A8ljnPY3HOXoOmSOMZhgp3FYbFoALGuAyR80Jbstjm2hZW6nkc2vo4WBk3zgPFlhWHQzhe+/akdbeYWBmpgW8AATRyv0isndCGcgyZ70JbsDP59z1/Sso5uiaNlAXeOh7hzzKdUX5SQLOvzV9a0rKcLlkYGTc5Bm+ctd/4StNq5+5W/ucGiIc66Ki6S8Fy2OVA1i2mTONrBjKax5xsXx3ME04N2vvBnvu/Zs/4VDEpCmiYtUxFEugSHJiFn+cucY+geVG0xhncP+wCAC6t6ErSv3jkBAHxU05xDXbA1FvbleIR5EsdzVyc5CwbNYHEwsFDiqMtlSKcbj07YFtMypFpCzqmxtZiERP+9TIGPbhgGzcCAFrIAuExFkJBB02gSsoyYcnHUNKhawiM0P4ljEsRzH7qxpWU9XZC3TldLB+cc88bnnjs6SpdJCAA8f3kNX7/f0bbeMsJiCHssNMT5AKLEbNleMjXb0sagAcCzl9aw1xlpCUR0N1cvKxzTg2ZgQAr5XlmmZ4wxBttiWm32lxFnMQdN4mFnRL4eAPyPP/IhfP3+KVoaYxEdkASCPpv9+XPQzl+CppFB+5U/+R3ojeiGGn4zQNqJAvpeaDrtUnVCJGj6HtnnLq/hX76+H1ZVKRE/FJeN+dSJSOJ47sQRBgbnCsvEoAHi84wMg1YJ8WNXt/vxg1M9CdqnP3AVn/7AVS1r6YRO7wJpEjIvuzh/CZrGrL1dd7QGxMsIBhZS4rokjmGCtmQv0D/3B5/D4xdWtK333CXRBPzaXpd8rSmJowkOFkZoFWzyMwMDEsiqt71kD1ndtsIEzRzBi0F7D9qSxThnCZ3tAdF4hCWz2W865+5X/qbGVEVJ06kvLYKXrQr4xz5yXet6H3lcaMxvbLXJ19ItDVlWyHl5hkEzMKABh8jQlo5Bi/UgLJvNvi7E94Qeu3byJb5pIMMOXRJHzrEcLo6MsU8D+PRHrlhae9AMVEDvgQUsr8RRN566uIrf+DPfg8d26Fm7aYkj+XJLC2noYva+gQENIgZtuR4yJ+ZqsWQfTRvOYg6agRrodHG0gtafpUjQOOefBfDZl67aP2kStPOF+Pmhj0EL1jNvmcp45pKeWSdTLzZz3xaGrODWjdutgQEJZExFfU79xp/5HjQ1xjs1K14kM2fwItBtdmUSNHXQKXG0rCU1CWmanrBzhbOwT5cvF/OSOT+IWxKbl87ikM/YUxf19SoaGHwzgloRoqs4JmEYtOqYmuepqZcJANYaDv6XH/8o+XrLDJ3u30UljueuUcEwaOcL7CwkjnI985I5N5geVH2Gv8g5x2AsfKFevLp+xr+JgcFyQla9l+2YmupBM0WyhTA1B03DNZTrfc+zF/Hhm8s1l0w3ZH1Cx9a3pEnIvO+j/1XUwpiEnC/EN7u2pmo5cNBE+ucGTHPlcVkhHTdfuGISNAMDSixbDmOFypMz/kXOMeIxjk6b/bpz7kL5Rw6WZgbNLzCo+tzd1c2V+ln/CgYlMM2M6Dn5LSNxPHcwEkc1kMNKXzQJmoEBEURUtWxOh5LxWa5PpRfWVB8f/XpyjZpt7lpV6BxAz4I5aEthEhLHss0e+WaCth604E9DxJwf6Ha/Wlb8zR/9MP63r97H7lrjrH8VA4OlRChxXLJjKnI/XrIPphHxd5dOBq1mm7i4KuTt0iVxBABv2eagGZwvTLk4aj5DTKB/fmBs9tXgvdc28N5rG2f9axgYLC2WtQctHHJvDuCFYenuQTMSR2XQuf/lGktnErJ8x+Jy4ywljuZFc34QLzaaHjQDA4NHFXJQ9bK9XsL35ZJ9Lp2wpySOOuzaxZ91w6BVRihx1JKgiT/n5GfnMEFbtlNxyRG/W/ps9qf/NHj0YRuJo4GBwTlAxKAt1zllhQzCGf8i5xi6TUKYkTgqQ1TYp19L3jc+5ww5h3fVnB7nCWcxqDpcz7xpzg3irJm5bQYGBo8qwqr3kp1TYQ/Osn0wjZjqpdYQXctigZE4VoeMF7Uwn0uboJnq+rmC7sGNgN6BgwZqEL9Vxn3TwMDAQC90MgjLCt0SR88Xk7QMg1Yd8nbpKOwXvV3n8K6a0+NcYcokRK+Lo4nzzw90u18ZGBgYGEQIbfbNi3NhxF9dOhRDbuAyYRi06rA1SnwjBm3O99H/Kophzo5zhbhcQhejpbMSYqAG02YyZ/iLGBgYGORgWV0cTe92dTDGwrhDR/zhyQTNzEGrDJ3zc00PmsEjAessGDQzz+XcwUgcDQwMzgMiF8flOqeMzb4a2BpbLFxP7EUjcawOne7fkYvjsiVo5vA4V4jfLkebxNFo6c8bbM3uVwYGBgYLYUkZtIhBOONf5JxDWt/reI25QQ+akThWh8xxdeS6yytxNDhXOEuJo6kEnh8YiaOBgcF5gAyqlu31YhkGTQkkg6ZT4mgYtOo4CwZtXpnnHN5Vc3icJ5yJxDFc2+yV84KpQdXmvhkYGDyi+PjzuwCAF6+un/FvohaRzb5BFYSJroZ4xzUJmjLI+/Uo9aA55L+Japjg7XxB81yQ+JqWObPODabnoJln3MDA4NHEH/rAVXzi+V2sNM5f+JQHnSYJywxHIxMpGbSGkThWhrxfOvxWQonjHI3jObyr5vA4T4jfLW0SR83rGVSHkTgaGBicFyxbcgaYHjRVCF0cjUnIuYJMzHQwn8YkxOCRgDXFoJkeNIN0nIUU1sDAwMBAwGLTfxosBkujgkcyaI6x2a8MnQyyVVDieP4SNMOgnSvE97ph0AyyEL9XRmJjYGBgoBeyMMZMjFUJOuegSRfHmknQKsPSyHwWZem0JWiMsScZYz/PGPvHsa99jDH2OcbYzzLGPlbwBxH9hgYUOJs5aKYH7bwhclA641/EwMDA4JsQ5gxWA51ugNIkxDbBTmXYGvd/JHGc831Ffhhj7BcYY3uMsa8mvv5JxtirjLHXGWN/Ie9ncM7f5Jz/ePLLALoAmgBuF/ldDIN2vsDOQOIYSTXMXjkvsMIZJOaeGRgYGOiGThe7ZYaUG+ocVK1rxuwyI5pf9+hIHIt2uv4igL8O4O/ILzDGbAB/A8D3QSRXn2eM/SoAG8DPJP79j3HO91J+7uc457/NGLsE4L8H8KNzfxNzeJxb6JM4SqmGwXmBcRAzMDAwODuENvvmCK4EnXPQfC4ZNHPTqiLqHdRhsy/+nMegFUrQOOe/wxh7PPHljwJ4nXP+pliQ/X0Af5hz/jMAfqDgz/WD/zwC0Ej7HsbYZwB8BgA+csXQuOcNZ2ESIjFv8xs8OjDyGgMDA4Ozg61RmrfMiAZ+06818UQIbRi06tAZg0TPGJ1JyDUAt2J/vx18LRWMsR3G2M8C+BBj7C8GX/tBxtj/BODvQjB0M+Cc/xzn/CXO+UvBT6rwKxvoRvys1+3iOG/GhMGjg2gGiXm+DQwMDHSDhSqGM/5Fzjl0JrqRi6MhL6rCtvTdN9USx8rgnB8A+KnE134FwK+U+kHm9DhXiN8t/QmaydDOC2yN+m8DAwMDg2mY3m010Oni+G1P7uDtgz42WjXytZYdOucAFjUJqZKg3QFwI/b368HXiGEOj/OEKYmj5h40k56dHzCN+m8DAwMDg2lENvsGVaAzQfuv/vB78ZPf8yS2V+rkay075O3Scd9YQQatCi/6eQDPMMaeYIzVAfwwgF+t8PMywRj7NGPs54K/UCxhQISpOWiaWHgjcTx/MD1oBgYGBmcHI3FUg8gNk36tumPhqYur9At9E0CvxFH8qSRBY4z9MoB/A+A5xthtxtiPc85dAH8KwD8D8AqAf8g5/1qF3zkTnPPPcs4/E/w2FEsYaIA2Bi3c/CZDOy8wEkcDAwODs4M5g9VAzow2/dTnC0xjkbjoM1bUxfFHMr7+6wB+vfivpQBm058rnIWLYyhxNPnZuYGROBoYGBicHXT24CwzdEocDdRBZ4FC7g0lg6oNDBaF3OuM6ZtxVXTGhMGjAyNxNDAwMDg7RGewOYSrIOzlM9fxXEHn/o9iVLoeNG0wPWjnF/JunQXdb1wczw/MDB4DAwODs4M5e9XAMGjnE9Ggan1rLUWCNt2DZnCeEA5t1HhYrdSFctcckOcHxuLZwMDA4OxgetDUwMz0PJ84izlo89bSNgdNHcymP084Cwbtv/3B9+G5y2v4zqcuaFvToBqYxuqVgYGBgcE0TA+aGtgaXRwN1EFnkTi09J8zYPz8JWhm158vMP10//ZKHX/m+57Vtp5BdeisXhkYGBgYTIMZmbkS2GcQ8xhUh6UxBpHPmjMnQTuH9Wqz6c8TdA7/Mzi/CPeJCQ4MDAwMtEPGiuYIroawB81cyHMFnUZlUVy8BAmaMQk5v5CW9yZBM8iDGZJqYGBgcHaIJI7mEK4C+wz67g2qIzQq03DfwjXsRv73kf8mCmAGVZ9fyLPeyCYM8mCcrwwMDAzODmGCdsa/x3mHZTEzLuYcQmes6nrCYfwfbf147vediwQthNMA7NpZ/xYGJRBRuWf7exg82jAujgYGBgZnB3P2qoHNmCk0nkNEffD0aw0mLgCgVbNzv+98hc27LwJrl8/6tzAogVDiaA5/gxwYeY2BgYHB2UEWUc300GpwLGaS3XMIndLU/tgDAKw0lilBMzh/kMyIqSgZ5CCcHWNOJAMDAwPtCItj3KRoVWCZBO1c4ixcTHfXmrn/vwmHDEhhGctZgwKwzJBUAwMDgzODfEeb9KwajMTxfMLW6OL4/e+9gv/ik8/jz3/yudzvOxcJmnRxPDk5OetfxaAkzmJQtcH5g5E4GhgYGJwdLEOgKYExCTmf0NkHb1sMP/2xp9Cu54+iPhcJmnRx3NjYOOtfxaAkmJE4GhRAyLSabWJgYGCgHfIM5oZDq4RmzUJjjvmDwaMHnYOqiyI/fTMwqIgo8H50Nr3Bowfj4mhgYGBwdjBnrxr8xHc/iU++x5jZnTeEg6ofIdrKJGgGpJBnvtFkG+QhOhzNPjEwMDDQDSNxVINrmy1c22yd9a9hUBLSoOxRIhMeoVzRYJlhEjSDPOicQWJgYGBgMI3QJMQkaAbfhGg4QpZadx6dtOjR+U0MlhKGGTEoAmYkjgYGBgZnBhb2oBkYfPPh9z2/i7/5ox/GYzsrZ/2rhDgXCZpxcTy/CCWOJu42yIEZx2BgYGBwdogYNJOiGXzzoVmz8R+878pZ/xpTOBcJmnFxPL9gMIG3wXzI/WFs9g0MDAz0w7yiDQweLZyLBM3g/MK48xkUQSRxPNvfw8DAwOCbEaHNviHQDAweCZgEzYAUxsXRoAjMOAYDAwODs4OZg2Zg8GjBJGgGpGCmt8igAGRiZiSOBgYGBvoh5z8ZBs3A4NGASdAMSCHDbSNxNMhD6PZptomBgYGBdph3tIHBowWToBmQwjBoBkXA5JBIs08MDAwMtMMyNvsGBo8UTIJmQApjEmJQBHbIoJl9YmBgYKAbxmbfwODRgknQDEgh423HMCMGOTADzQ0MDAzODvLoNemZgcGjgXORoJlB1ecXZg6aQREYm30DAwODs0OoXjAZmoHBI4FzkaCZQdXnF2HgbSJvgxzIBN5IHA0MDAz0w/SgGRg8WjgXCZrB+UVoEmLiboMcWKYHzcDAwODMYHrQDAweLZgEzYAUoc2+YdAMcmAZiaOBgYHBmcHUxgwMHi2YBM2AFFbIoJnT3yAbjDEwZhg0AwMDg7OAkTgaGDxaMAmaASlkvG1MQgzmwWLMMK0GBgYGZ4BI4njGv4iBgQEAk6AZEMNIHA2KwmJG4mhgYGBwFohMHE2GZmDwKMAkaAakYEbiaFAQFmNG4mhgYGBwBpDvaMOgGRg8GjAJmgEpjMTRoCgsxsw+MTAwMDgDWEbiaGDwSMEkaAakCCWOhhkxmAOLGScxAwMDg7OAeUcbGDxacM76FygCxtinAXz66aefPutfxaAkZFXOMYPQDObgT378aXzrE9tn/WsYGBgYfNNBihfMHDQDg0cD5yJB45x/FsBnX3rppZ9M/n+TyQS3b9/GcDg8g9/sfKHZbOL69euo1Wra1jQMmkFR/F8/bgowBgYGBmeB0MXxjH8PAwMDgXORoOXh9u3bWFtbw+OPPx4aUhjMgnOOg4MD3L59G0888YS2daMeNG1LGhgYGBgYGJSAKaIaGDxaOPdh83A4xM7OjknO5oAxhp2dHe1Mo3FxNDAwMDAweLQR2uwbCs3A4JHAuU/QAJjkrCDO4jqZOWgGBgYGBgaPNiKJo8nQDAweBSxFgmbw6MIwaAYGBgYGBo82LDMHzcDgkYJJ0BRgMBjge7/3e+F5HgDgk5/8JDY3N/EDP/ADU9/HOcdf+kt/Cc8++yxeeOEF/LW/9tfm/uysn/Xd3/3d+OAHP4gPfvCDuHr1Kv7IH/kjAIBf+7Vfw1/5K39FzQdTAEmcGQbNwMDAwMDg0USYoJ3x72FgYCBgEjQF+IVf+AX84A/+IGzbBgD8uT/35/B3/+7fnfm+X/zFX8StW7fw9a9/Ha+88gp++Id/eO7PzvpZn/vc5/DFL34RX/ziF/Ht3/7t+MEf/EEAwKc+9Sl89rOfRb/fr/ip1IAFIkczgNjAwMDAwODRhGV60AwMHimcexfHOP7qZ7+Gl++eKv2ZL15dx3/56ffkfs/f+3t/D7/0S78U/v0Tn/gEfuu3fmvm+/7W3/pb+KVf+iVYlsiLd3d3566f9bMkTk9P8Zu/+Zv423/7bwMQksKPfexj+LVf+zX80A/90NyfT43QxdFIHA0MDAwMDB5JREVUk6EZGDwKMAxaRYzHY7z55pt4/PHH537vG2+8gX/wD/4BXnrpJXz/938/Xnvttcrr/5N/8k/wiU98Auvr6+HXXnrpJXzuc5+r/LNVgBmJo4GBgYGBwSMN04NmYPBoYakYtHlMFwX29/exublZ6HtHoxGazSa+8IUv4Fd+5VfwYz/2Y5UTqV/+5V/GT/zET0x9bXd3F3fv3q30c1UhlDia/MzAwMDAwOCRhGUGVRsYPFIwDFpFtFqtwrPFrl+/HvaK/dE/+kfx5S9/udLa+/v7+N3f/V186lOfmvr6cDhE6//f3v2FVnnfcRz/fOKfHlc6tbSmbmdMwYg4AwepBWHKAmLrsNQOnM2NlQy6i3gnjMgYG3QXZSJejG2wabE3SwxqmZvbXNVg9UZXoax1W5xsNou06rJb2TD77iLHzD8nPdGc5Pd7zt4vCHnO8+Q8+RB+PDlfft/n98ybN6VzN8p4iyNPqgYAIEs0uQB54VPzFC1cuFCjo6OTKtK2bNmigYEBSdKZM2e0fPlySdKFCxe0ffv2h/7dhw8f1ubNm1Uqle7Zf/nyZa1ateqhzzcdWlhmHwCArP2vxZE5NCAHFGgNsHHjRp07d2789bp167R161adOnVK5XJZJ06ckCT19PToyJEjam9v1+7du7V//35J0tDQ0IQzXhOdS5L6+vrU2dn5wHsGBgYemFVLZXwGjZEGAECWWGYfyEtT3YOWSnd3t/bt26cNGzZI0oT3lS1YsEDHjx9/YP/58+fV3d1d8z2fdo9ardUdr1+/rlu3bqm9vX0SyaffnXmzFmbQAADIEsvsA3kpRIFm+0VJLy5btix1lJpWr16tjo4OjY6Ojj8L7WHs2bOnYVmGhoa0d+/ehp1vqmyegwYAQM7u/I+mxRHIQyEazyLilxHx2vz581NHmVBXV9cjFWeNtmbNGlUqldQxxn123mzNarGefHxu6igAAKAG0+IIZKUQM2gorkVPlHT2Wx1aPL9U/4cBAMCMM8+pBrJCgYZp97kFeSz5DwAAJkZ9BuShEC2OAAAAmB7jE2jcgwZkgQKtAbq6urRo0aJ7nj22bds2VSoVVSoVLVmyJKv7wgAAAO74zNzZemx2i76zeWXqKABEi2ND7NixQzt37rznYdOHDh0a3961a5dyXuAEAAD8/5rVYg1+f1PqGACqKNAaYP369bp69WrNYxGh/v5+nT59emZDAQAAACic5irQftMjffJBY8/5TLu06Y1HfvvZs2fV2tqqtra2BoYCAAAA0Iy4B22a9fb2qrOzM3UMAAAAAAXQXDNoU5jpmg63b9/W0aNHdfHixdRRAAAAABQAM2jT6OTJk1qxYoXK5XLqKAAAAAAKgAKtATo7O7V27VoNDg6qXC7rwIEDkqS+vj7aGwEAAABMWnO1OCbS29tbc//BgwdnNggAAACAQmMGDQAAAAAyQYEGAAAAAJmgQAMAAACATDRFgRYRqSMUAn8nAAAAIG+FL9BKpZJGRkYoPuqICI2MjKhUKqWOAgAAAGAChV/FsVwua3h4WDdv3kwdJXulUolnsgEAAAAZK3yBNmfOHC1dujR1DAAAAACYssK3OAIAAABAs6BAAwAAAIBMUKABAAAAQCZcpNUPbd+U9FHqHMjaU5L+kToEssYYQT2MEdTDGEE9jBHU88WIeLrWgUIVaEA9tt+LiGdT50C+GCOohzGCehgjqIcxgqmgxREAAAAAMkGBBgAAAACZoEBDs/lp6gDIHmME9TBGUA9jBPUwRvDIuAcNAAAAADLBDBoAAAAAZIICDU3B9lbbl2z/x/az9x3bbfuK7UHbz6fKiHzY/p7ta7bfr359NXUm5MH2C9VrxRXbPanzID+2r9r+oHrteC91HqRn+03bN2x/eNe+J22/Y/sv1e8LU2ZEsVCgoVl8KOlrkt69e6ftlZJekfQlSS9I+rHtWTMfDxnaFxGV6tevU4dBetVrw48kbZK0UlJn9RoC3K+jeu1gGXVI0kGNfca4W4+kUxHRJulU9TUwKRRoaAoR8aeIGKxx6CVJfRHxr4j4m6Qrkp6b2XQACuI5SVci4q8R8W9JfRq7hgDAhCLiXUn/vG/3S5Leqm6/JWnLTGZCsVGgodl9XtLf73o9XN0H7LT9h2prCq0nkLheYHJC0u9sX7T9WuowyFZrRHxc3f5EUmvKMCiW2akDAJNl+6SkZ2oc+nZE/GKm8yBvnzZeJP1E0usa+6D1uqS9krpmLh2AAvtyRFyzvUjSO7b/XJ1BAWqKiLDNsumYNAo0FEZEbHiEt12T9IW7Xper+9DkJjtebP9M0q+mOQ6KgesF6oqIa9XvN2y/rbHWWAo03O+67cUR8bHtxZJupA6E4qDFEc3umKRXbD9me6mkNkkXEmdCYtV/lne8rLFFZoDfS2qzvdT2XI0tMHQscSZkxPbjtp+4sy1po7h+oLZjkl6tbr8qiU4fTBozaGgKtl+W9ENJT0s6bvv9iHg+Ii7Z7pf0R0m3JXVHxGjKrMjCD2xXNNbieFXSN5OmQRYi4rbtnZJOSJol6c2IuJQ4FvLSKult29LYZ6ifR8Rv00ZCarZ7JX1F0lO2hyV9V9Ibkvptf0PSR5K+ni4hisYRtMQCAAAAQA5ocQQAAACATFCgAQAAAEAmKNAAAAAAIBMUaAAAAACQCQo0AAAAAMgEBRoAAAAAZIICDQAAAAAyQYEGAAAAAJn4L6VEAYoCc2VzAAAAAElFTkSuQmCC",
- "text/plain": [
- "<Figure size 864x864 with 2 Axes>"
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAG4CAYAAAC+ZBgrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABTRUlEQVR4nO3dd3hcV50//veZPppR79W2ZMc9dhwndgopJCEhhZCwEAIbWMqGLLAbdmH5sSwL/NiF5buw8IWlJZSEkiXUkEJCSILTEyd23OQuy5LVextNn3u+f8yM5CiyNJJm5s695/16Hj+SJXnukcee+9bnfM45QkoJIiIiIppm0XsARERERLmGAYmIiIhoBgYkIiIiohkYkIiIiIhmYEAiIiIimoEBiYiIiGiGlAOSEKJeCLFDCHFICHFQCHFn4uNfFEJ0CSH2Jn5dm7nhEhEREWWeSHUfJCFENYBqKeVrQoh8ALsBvB3AuwD4pJRfz9goiYiIiLLIluoXSil7APQk3p8QQhwGUJupgRERERHpZVE9SEKI5QDOAbAz8aGPCyH2CyF+IoQoTtfgiIiIiPSQ8hTb1B8QwgvgGQBfllL+XghRCWAQgATw74hPw31wlj93O4DbAcDj8Zy7Zs2apY49p0RiGo70TgAANtYW6jya9Dre50MwGkNTuRd5Dqvew0mrgYkQeseDAIBlJXkocNt1HtHSnRr2IxiJwe2wwh+KYXVVvt5DSrvj/T44rBa47Bb0T4RM93+OiLJj9+7dg1LK8tk+t6CAJISwA3gEwONSym/M8vnlAB6RUm6Y63G2bt0qd+3alfJ1jaB7NIALv/oXAEDbV6/TeTTpdfU3n8XRvgn84WMXYXN9kd7DSasfPHMCX33sCADgrtvOxdXrq3Qe0dJ95Oe70D7kx9rqAuxuH8Gzn75c7yGl3Vu/9Rzqit1YV12Abz11HCf/81oIIfQeFhEZjBBit5Ry62yfW8gqNgHgxwAOnx6OEs3bSTcBaF7sQCk3SahxoLFZzm3WJJQJC5bE92mW546IckfKTdoALgJwG4ADQoi9iY99FsCtQojNiE+xtQH4SBrHR5RF5rjLSilhUSMfTX2fmpSwQJFvmoiyYiGr2J4HZn0FejR9w6FcpMpP52b5PjU5XVkxO0siIWkmee6IKHdwJ22iBLPcYzWFKkjitAoSEVE6MSARJZjlHqtJTCcHk2MPEhFlCgMSzUuVe49ZmtFV7UEiIkonBiSiBLPcY6VKPUgi2YNkkiePiHIGAxLNa6GbiRqVWb5LtXqQ2KRNRJnBgESUYJYgqEmp0D5I8bdmee6IKHcwIBElmOUeG1/mr/cossPCChIRLdJzxwfm/DwDEs1LlXuPuZq01UhIbNImosX6U3PvnJ9nQCJKMMs9Nn7UiN6jyA7BJm0iWqSu0cCcn2dAovkpcu8xyz1WrQoS90EiosXpHGFAIkqJWe6xah1WG3/LChIRLYSUEl0MSESpMctKKLU2imSTNhEt3PBkGIFIbM6vYUCiealy7zHL96nSYbVTZ7ExIRHRAsw3vQYwIBFNM8k9VqWNItmDRESLMV+DNsCARCkwy9TTfMzSx6JUD1LiFcwszx0RZUfniH/er2FAIkowyy1WSgk14hHPYiOixekYDiDfZZvzaxiQiBLMco9V6bBansVGRIvRMeJHQ0nenF/DgETzUuXeY5adtONnsek9iuzgWWxEtBgdwwxIRCkzyz02JiUsinRpc5k/ES2Upkl0jARQz4BES2WW4DAfs3ybUgJWRUpI3CiSiBZqwBdCOKqhvtg959cxIBElmeQmG9PUWebPs9iIaKFODcdXsLGCRJQis9xiNQWn2JiPiChVHQxIlC5maV6ej1luspqm0mG18besIBFRqk4N+yEEUFvEKTailJhlJZSmVA8Sm7SJaGE6hgOozHfBZbfO+XUMSDQvk+SGeZnlJhtfxab3KLJDsIJERAvUMexHfcnc1SOAAYloillusVKqNMWW7EEyy7NHRJnWMeKft/8IYEAimmKWm2xMqR6k+PcZ03QeCBEZQigaQ+94EPXFDEiUBibJDcqIaRJWVVax8bBaIlqArpEApMS8u2gDDEhEU8xyj5USCh01wn2QiCh1HSMBAPMv8QcYkIimmGU7g5iUyq1iYz4iolRMbxLJJm2ilJnlJqtJhabYuIqNiBagc9gPh9WCynzXvF/LgESUYJZbrKZNH8FhdoL7IBHRApwa9qOu2J3SaQMMSDQvs6zumo9Zvs14BUnvUWQHK0hEtBCpLvEHGJCIppjlJhvjPkhERLPqGA6k1H8EMCBRCnjrMQ4pJaSEcgFJ4z5IRDSPsUAEY4FISkv8AQYkoilmqEIke3FUCUg8aoSIUtWRXMGWwiaRAAMSpUCVe48Zvs9kUFCnB4lN2kSUmukl/gxIRAtihntsLJEUVFnFltxJ2wzVPyLKrLahSQDA8jJPSl/PgESUYIZ7bPJ7UGcfJFaQiCg1bYOTKPM64XXaUvp6BiSal1l2mJ6PGb7PWCIhKZKPuMyfiFLWNuTH8tLUptcABiSiKWa4x2pTAUmNhCR4FhsRpah9aDLl6TWAAYlSoMq9xwzfpqapFZB4FhsRpcIfjqJvPMQKEtGimOAuqynXgxR/ywoSEc2lfSi+gm1ZKStIRAtmhkbfmKZaDxKbtIlofu3JFWwMSJROqtx7zNCknVzunspBjGbAjSKJKBVtyQpSGafYiBbMDPfYmGJN2jyLjYhS0T40iVKPAwUue8p/hgGJ5qXKvccM3+ZUD5JiAYlTbEQ0l5ODk1i2gAZtgAGJaIoZgqA2tZO2zgPJEjZpE1Eq2of8C+o/AhiQiKaYoQdp+iw2NRKSYAWJiOYRjMTQMxZc0B5IAAMSpUSRu48Jvs2Ycvsgxd+yB4mIziR5SC2n2IgWyQy32GQlRZVVbMkgGGMJiYjO4OTgwpf4AwxIlAIVfjgXYrp/x8g01c5iszAgEdHcFrMHEsCARAQgXokwwy12qgdJkSm2ZK8Vm7SJ6EzahvwozrOjMC/1Jf4AAxIRgHjFxQw32djUKjZFAtLUFJvOAyGinNU+NLmgI0aSUg5IQoh6IcQOIcQhIcRBIcSdiY+XCCGeEEIcT7wtXvAoKKcZPzbMTwhhiqnE5Pegyio2S+IVzAzhlogyo23Qv6BDapMWUkGKAviklHIdgO0APiaEWAfgMwCeklKuAvBU4vdEhmK2CpIi+ei0CpLxnzsiSr9gJIbusUBmK0hSyh4p5WuJ9ycAHAZQC+BGAD9NfNlPAbx9waOgnKbCEmoBYYqApCl2FpuVTdpENIe2oUlICTRVeBf8ZxfVgySEWA7gHAA7AVRKKXsSn+oFUHmGP3O7EGKXEGLXwMDAYi5LlDEWYY7VeppiZ7EJIeIrEM3w5BFR2rUOxFewNS5wk0hgEQFJCOEF8DsAn5BSjp/+ORkvNcz6SiWlvFtKuVVKubW8vHzBAyXKJIsQptiNWbWz2ID498oKEhHN5kS/DwDQWJ7hgCSEsCMeju6TUv4+8eE+IUR14vPVAPoXPArKaSrceoQwx1Siaj1IQHw6MWaC546I0q91cBI1hS7kOWwL/rMLWcUmAPwYwGEp5TdO+9RDAN6feP/9AB5c8CiIdGaxmKQHSVOrBwmIV5DMsMknEaVf64APjeUL7z8CFlZBugjAbQDeLITYm/h1LYCvArhKCHEcwJWJ35OJmCA3zEvAHAeeTh01otIUm0VwHyQiegMpJU4MTKJpEdNrAJByzUlK+Tzi95HZXLGoqxPliHgPkvETUnKqyarQFrDxgMSERESvNzARgi8UzUoFici0hBCmaLZKhjxVdtIGEgHJBOGWiNLrRHIF2yIrSAxINC8zNC/PxywbRSZ7cVRaxWYRnGIjojc6MRBfwdbEChLR4plumb9KTdoWsEmbiN6gdWASbrsVVQWuRf15BiSalwq3HrNUkKYPq9V5IFlkFZxiI6I3ah30YUWZZ9GrehmQiGCmw2qTTdrqJCSLhcv8ieiNTgz4FnXESBIDEhESG0WaoFYWU+yoEYBN2kT0RsFIDJ0jgUUdMZLEgETzU+DeYxECZlgpruQ+SDxqhIhmaB/yQ8rFr2ADGJCIAJinB0lT9KgRMzx3RJQ+S13BBjAgUQpUuPWYZxWbej1IrCAR0UytA4s/pDaJAYkIZjysVp2AZOFRI0Q0Q+vAJKoXeUhtEgMSEeKr2MwwTTO9k7bOA8kiq8Uc06NElD4tA74lTa8BDEiUAjNUVuZjMcdJI1OVFLtCh7Fxio2ITqdpEsf7fFhVyYBEtGRm6UFKHtqq0hRb/LBaEzx5RJQWXaMBBCIxnFWZv6THYUCiealw64lvFGn87zQZFGwqNWkzIBHRaY73TwAAVi1hk0iAAYkIgHmW+UeTh9Va1QlIFh41QkSnOdYXX8G2ihUkyjQV7j1m2SgyWUmxKjbFxqNGiCjpWN8EKgucKHTbl/Q4DEhEiK/6MlUFSbUpNhM8d0SUHi39PqyqWFr1CGBAIgKQ6EHSexBpoCnYgxSv/pnh2SOipUrXCjaAAYlSYIZDXOdjMclGkawgEZHK0rWCDWBAIgJgpmX+EhYRr4ipwiK4kzYRxR3rS88KNoABiVKgwg/nZlnFFpMSNota/62tFnCKjYgAAMf707OCDWBAIgKQPGpE71EsXUyTSk2vAZxiI6Jp6VrBBjAgEQEABEzSgxRTLyCxSZuIko73pWcFG8CARClQ4dZjEcIUU4maVC8gsYJEREB8qr2lPz0r2AAGJCIAgMUkJ8JHNU2pJf4AD6slorh0rmADGJAoFQrce0y1ik21gMSz2IgI6V3BBjAgEQEwz2G10ZhUr4LEgEREOO0MNvYgEaWPmZb5q9aDZLEIUzx3RLQ0R3rHUVPoQmHe0lewAQxIlAIVdtIWgGmm2JSrILEHiYgAHOmZwJrqgrQ9HgMSEZKr2Ix/k42yB4mIFBSKxnBiwIc1VemZXgMYkCgFJsgN8xJmWeavYAXJLA32RLR4J/onEdUk1rKCRJReZulBimoSVgWPGmEFiUhth3vGAQBrq1lBIkors1Qh4keN6D2K7LJwo0gi5R3pHYfDZsHyUk/aHlOxl1JaDBVuPcIkFaSYghUkG3uQiJR3pHcCqyvzYUvjT4hqvZISnYFZjhpRchWbxYKYJk3RZE9Ei3O4ZyKtDdoAAxKlQIUbjxDm+D6jmgarUCsg2ROBMMoqEpGSBiZCGPSF0rrEH2BAIgJgth4ktQJSsqTOaTYiNR3pTX+DNsCARATAPKvYYpqEzapYQEoEwkhM03kkRKSHIz3xM9jWVLGCRFlm/NgwP1aQjCsZCFlBIlLT4Z5xVBY4UeJxpPVxGZBoXiYorMzPND1IUrkepOkKkvGfPyJauMO9E2ndIDKJAYkIiVVseg8iDdSsILEHiUhVkZiGlv6JtE+vAQxIRADYg2RkVvYgESnrxIAPkZhMe4M2wIBEBCDRg2SCCkRMk7AoNsVmt3KZP5GqDnbFV7Ctr2EFiSgjzHJYbVTRjSIBIKaxgkSkmubuMbjtVqwo86b9sRmQiGCuKTbVjhqxs0mbSFkHu8axrqYgI72Xar2SEp2BRZjjwFMVjxphkzaRmjRN4mD3GDZkYHoNYEAiApCsIOk9iqWLahIW1QISm7SJlNQ2NInJcAzrawsz8vgMSEQALBZzNGlrUsUKEjeKJFJRc3e8QXtDDQMSUcZYTTLFFolpyu2DZGUPEpGSmrvG4LBZsKoy/Q3aAAMSEQDAao2vYjN6FSkak1PL3lVhT/QgRbmKjUgpzV1jWFuVP/UakG4MSETA1PEcRq8iRTUtYy8WuSpZQeI+SETqkFKiuWssY/1HAAMSEYDpm6yR+1iklIjE5NSqLlXYE9saRDnFRqSMzpEAxoPRjPUfAQxIRAAwtfu0kfdCSlZQ7Ir1IE03aXOKjUgVzV1jAIANtZlZ4g8sICAJIX4ihOgXQjSf9rEvCiG6hBB7E7+uzcwwiTLLDBWkZAXFblPr5x4bm7SJlNPcPQabReCsyvSfwZa0kFfSewFcM8vHvyml3Jz49Wh6hkWUXcmAZOQiRDixD5B6y/y5USSRapq7xrGqMh8uuzVj10g5IEkpnwUwnLGREOnIYoIm7WgiIKnWpM2NIonUMtWgnaEdtJPS8Ur6cSHE/sQUXPGZvkgIcbsQYpcQYtfAwEAaLkuUPslMYeQqxFQPkmoBiRtFEimlazSAockwNtUXZfQ6S30l/T6AJgCbAfQA+O8zfaGU8m4p5VYp5dby8vIlXpYovczQpB2OJqbYFNsHaWqjSAYkIiXs7RgFAGyuK8rodZYUkKSUfVLKmJRSA/BDAOenZ1hE2WUzQ5P2VAVJrYA0vcyfU2xEKtjXMQqHzYLVVZlr0AaWGJCEENWn/fYmAM1n+lqiXGaOVWxq9iBZOcVGpJR9HWPYUFMAR4ZX7NpS/UIhxC8BXAagTAjRCeALAC4TQmwGIAG0AfhI+odIlHkWEwSk6VVsagWkZAWJy/yJzC8a03CgawzvPr8+49dKOSBJKW+d5cM/TuNYiHRjhqNGpvZBUmyKjRtFEqnjWJ8PgUgMmzPcoA1wJ20iANMVJCMfVps8rFW1KTZuFEmkjn2dowCATRlu0AYYkIgAmKOCFI7Gx67aKjYhBKwWYejpUSJKzb6OURTl2bGsNC/j12JAIoJJmrQVrSAB8ecvwik2ItPb2zGKTXVFECLzPwiq90pKNAuLCY4ame5BUu+/td0ipr5/IjKnyVAUx/omMr5BZJJ6r6REszDFFJuiZ7EB4BQbkQKau8agSeAcBiSi7DHFFJvKFSSrhWexEZlccgfts+sKs3I99V5JiWZhioA01YOkXgXJZmUFicjs9naMor7EjVKvMyvXY0AigjkOq02exaZiBclmsXCZP5GJSSmxu30EWxqKs3ZN9V5JiWZhhsNqk2exqbbMH0hWkDjFRmRWnSMB9E+EsHUZAxJRVpliik3Rs9iA5DJ/4z53RDS3Xe3DAIBzl5Vk7ZrqvZISzcIcq9gSTdqKncUGAA6rBZEoK0hEZrW7fQT5ThtWV+Vn7ZrqvZISzcIUR40kl/krOMXmsFmmtjkgIvPZ1TaCzQ1FU9X+bGBAIoJJptg0LvMnIvMZD0ZwtG8CW7M4vQYwIBEBMEeT9vQqNgUrSFbL1PdPROay59QopATOzWKDNsCARARgevfpqKErSBqsFpGVM4pyjd1mmerBIiJz2d02DIsANjcUZfW6DEhEMMkUW0wqWT0CWEEiMrNd7SNYW10Ar9OW1esyIBHBJFNsMU3JFWwA4LAJ9iARmVA0pmFvx2hW9z9KUvPVlGiG6QqSzgNZgmhMKrmCDWAFicisjvROwB+O4dzl2W3QBhiQiABMHzVi6GX+mqbkCjYgvsyfFSQi83m1Lb5BJCtIRDqxmGGjyKhUNiDZWUEiMqWdrcOoK3ajpsid9Wur+WpKNIMZmrRD0RicNjX/S3OjSCLz0TSJV9qGsb2xVJfrq/lqSjSDKZq0oxocqgYkVpCITOd4vw/Dk2FsW5H9/iOAAYkIgFkqSJrSFST2IBGZy8utQwDAChKRnmwmCEgqV5DsVgs0OX0eHREZ386TQ6gtcqO+JE+X66v5ako0g8UEASneg2TVexi6SAbDCHfTJjIFKSVebh3GtkZ9ptcABiQiAIDVDKvYYmpXkACwD4nIJJL9R3pNrwEMSEQApitIRt4HKRRRuwcJAFeyEZnEzmT/0QoGJCJdmWEnbZUrSI7EDuIMSETm8HLrMGoKXagvyf7+R0lqvpoSzZDIR4hpxr3BhhVfxQYAEU6xERmelBI7Tw5he2MphNDv+CQ1X02JZhAQsFkEokaeYlN8FRvAChKRGbT0+zDoC+vaoA0wIBFNsVmNHZDCUQ0Oq6Kr2NikTWQazx0fBABc2FSm6zgYkIgS7BZjbzYYisbgtKv5X9rOJm0i03i+ZRDLS/N02/8oSc1XU6JZ2KwCUYPuo6NpEpGYnKqkqMbJChKRKURiGl5uHcLFq/StHgEMSERTbFbjVpCSlRPVK0hGff6IKG7PqVH4wzFcvLJc76EwIBElOawWw+7EHEpUTlStILEHicgcnj8+AIsALmjSb/+jJDVfTYlmEW/SNuYNNhkMnHY1m7STq9hYQSIytudaBnF2XREK3Xa9h8KARJRksxi3BykUjQGY7sVRTXJ7gxArSESGNRaIYF/HKN6UA/1HAAMS0RS7kXuQklNsiu6D5Er0XoUixnz+iAh46cQQNAlcvJIBiSinGHkfpGTlRNWdtF2JqcVgopJGRMbzfMsA8hxWnNNQrPdQADAgEU2xGXgfJFaQEgEpwoBEZFTPHx/E9sbSnHkdy41REOUAu4H3QZquIKnZpO1KvKAGOcVGZEgnByfRNuTHJTnSfwQwIBFNsVkshl/Flis/eWWbzWqBzSJYQSIyqB1H+gEAb15TqfNIpqn5ako0C5tVGHgfpHgwUDUgAfFpNlaQiIxpx9F+NJV70FCq7/Eip1P31ZRoBrvVuBWkZDBwK7oPEhAPSAFWkIgMZzIUxc7WYVy+ukLvobwOAxJRgpH3QUoGA7UDkgUhBiQiw3mhZRDhmIY3r2FAIspJRt4HKRmQXA51/0u77FYu8ycyoB1H++F12rB1eYneQ3kddV9NiWYw8j5IwTArSC67hT1IRAYjpcSOIwO4eGVZzvVQ5tZoiHRks1gQMehRFVMVJJUDks3KVWxEBnO4ZwK948Gcm14DGJBoHlIas6KyGA6bQMSgFaRAJAa7VUwd2qqi+Co2BiQiI9lxNL68/7LV5TqP5I3UfTWllCiUj+L7IBm1BykcU7p6BHCKjciI/nKkHxtqC1BR4NJ7KG/AgERz0hRKSDYD76QdjMSU7j8CACebtIkMZWAihNdOjeDKtbmzOeTpGJBoTgadcVoUu9WCiEH3QQpEYnA71A5IbrsVIVaQiAzjiUN9kBK4en2V3kOZFQMSzUmpCpKB90FiBSk5xcYKEpFRPH6wFw0leVhTla/3UGaVckASQvxECNEvhGg+7WMlQognhBDHE2+LMzNM0otC+Qg2qwVRTRqyMT0Q0diDZONO2kRGMR6M4MUTg7h6fSWEEHoPZ1YLqSDdC+CaGR/7DICnpJSrADyV+D2ZiEoVJLsl/p/UiHshBcOsICVXsRkx4BKpZseRfkRiMmen14AFBCQp5bMAhmd8+EYAP028/1MAb0/PsChXqBSQbIkl8kacZmMPUnyKTZMw7IHDRCr588E+lHmd2NKQuxNPS+1BqpRS9iTe7wWQm63otGgGLKYsmt0aryCFDbjUP8AepKkpRq5kI8ptwUgMTx/tx1XrKmGx5Ob0GpDGJm0Zr2uf8XYqhLhdCLFLCLFrYGAgXZelDFNpusKZuMGGDbibNvdBmn7+2KhNlNteaBnEZDiGq9fndk1lqQGpTwhRDQCJt/1n+kIp5d1Syq1Syq3l5bm3YybNTqUKkjMxxRYyYAUiGInBrfBBtcD0OXRc6k+U2x4/2It8pw0XNpXpPZQ5LfUV9SEA70+8/34ADy7x8SjHqNSD5LQnA5LxbrCcYov3IAHgSjaiHBaOanj8YB+uWFuRc4fTzrSQZf6/BPASgNVCiE4hxIcAfBXAVUKI4wCuTPyeTESpgJT4z2q0KTYpJQMSAI/DBgDwhxmQiHLV8y0DGAtE8LbNNXoPZV62VL9QSnnrGT51RZrGQjlIoXwEpy0xRWOwgOQPxyAl4HWl/N/ZlPISq/gmQ1GdR0JEZ/Lwvh4Uuu24eGXut9rkdn2LdKdSBSlZ7g0ZbIrGlwgEHqfaASn5/TMgEeWmYCSGPx/sxVs3VOX89BrAgETzUKpJ22bMHqRkQPIyIAEAJsMMSES5aMeRfkyGY7hhU+5PrwEMSDQPTaGElJxiM1oPUrJikuzBUZXHmZxiM1YFkEgVj+zvQZnXie2NpXoPJSUMSDQnhWbYpqfYDBaQOMUWlwyInGIjyj2+UBRPHenDdRurYM3hzSFPx4BEc1KpB2l6is1YFYhkxUT1KbbkKr5JrmIjyjlPHe5DMKIZZnoNYECieSgVkAy6D5IvFAEwPcWkKotFwOOwsoJElIMe2NOFmkJXTp+9NhMDEs1JoRYkw/Yg+VhBmpLntMHPJm2inNI/HsSzxwZw05banD57bSYGJJqTSmexOQw7xZZYxab4PkhAPCT62KRNlFMe2NMFTQLv2FKn91AWhAGJ5qRWBSm5D5KxKkiToSgsAsrvpA3EN4v0c4qNKGdIKfG71zqxpaEIjeVevYezIAxINCeVepBsFgGLAMIxYwUkXygKj8MGIYxTus4Uj9M2taqPiPR3oGsMx/p8eMe5xqoeAQxINA+VApIQAk6b1XhN2sGo8kv8kzwOK89iI8ohv9vdCYfNguvPNs7qtSQGJJqTQvkIQLwPyWhHjUyGo8qvYEvKc9q4io0oR4SiMTy4rxtXratEoduu93AWjAGJ5qRSBQmI9yEZroIUinEFW4LXYeNRI0Q5YseRfoz6I/grgzVnJzEg0ZxUatIG4nshGW2Z/2SIU2xJeU4rjxohyhG/fKUDlQVOvGlVmd5DWRQGJJqTahUkh9V4FaSJYIQVpASvM15BUukMQaJc1DHsx7PHB3DLeQ2wWY0ZNYw5asoalfZBApBo0jZWBWIsEDHk/H4mFLjskBLwcZqNSFf3v3oKAsC7z6vXeyiLxoBEc1LtB3Gn3XgVpLFABEV5DEgAUOCOV9LGAxGdR0KkrkhMw69e7cTlqytQU+TWeziLxoBEc1JtqsJlsyJgoGXioWgMwYjGClJC8u9hPMAKEpFenjjUh0FfCO/Z1qD3UJaEAYnmFFNsis3jNNY+OmOJSgkDUlyBK/73MMYKEpFu/nfnKdQUunDZ6gq9h7IkDEg0p5hiFSS3w1iHnSankgoYkABM/z2MBxmQiPTQPjSJ51sG8e7zG2A10MG0s2FAojlFFQtIRtuJmRWk15ueYmNAItLDz15qh80icIuBm7OTGJBoTrGYWgHJ7TBWD9KoPx4EivIcOo8kN3CKjUg/E8EIfvVqB647uxqVBS69h7NkDEg0J+V6kBI7MRtlewNWkF7P60qsYgsaZ5qUyCx+u7sTvlAUH7hohd5DSQsGJJqTej1IVmgShlnqz4D0elaLQL7Lxik2oiyLaRL3vtiGLQ1F2FxfpPdw0oIBieakYg8SAMP0ISUDUoGLO2knFbjsDEhEWfaXI/1oH/Ljgxebo3oEMCDRPFTbBynPEQ8aRlnJNhaIHzNi1K38M6HQbecqNqIsu+eFk6gpdOGa9VV6DyVt+KpKc1KtgpTnNFgFyc9jRmYqcNu4USRRFh3sHsOLJ4bwvguXm+qHNfN8J5QRMc0YvTjpkmewKbahyTBKvVzBdrpCtx2jgbDewyBSxvefPgGv04ZbzzP2ztkzMSDRnJSrICWn2ELGqEAMTYZQ6mFAOl2Jx4nhSQYkomxoG5zEowd68N7tDSg02ZmQDEg0J/V6kAxWQfKFUep16j2MnFLqcWDEH1Hu3y6RHu569gRsVgs+ZKLm7CQGJJqTshWkSO4HJCklp9hmUeJxIKZJbhZJlGF940H8bncX3rW1DhX5xt8YciYGJJqTavsgTVWQDDDF5gtFEY5qKPOwgnS6ZGAc4jQbUUb96LlWxKTERy5p0nsoGcGARHNSLSB5nPEKks8AAWnIFw8AJexBep3k3wf7kIgyZ9Qfxn07T+GGs6tRX5Kn93AyggGJ5qTaFFu+0wYhgAkDHFUxNBkCAE6xzTAdkEI6j4TIvO5+thWBSAwfvXyl3kPJGAYkmpNqFSSLRcDrtBlio8FkBamMTdqvU5qYcuQUG1FmDPpCuOeFNtxwdg3OqszXezgZw4BEc1KtggQkj6owQgUpHgBYQXq9Yk98qfGwjwGJKBO+//QJhKIxfOLKVXoPJaMYkGhOKi6VLjDIURUDE/EpJPYgvZ7TZkW+y8YKElEG9I4F8YuX2/GOLXVoLPfqPZyMYkCiOalZQTLGafA9Y0GUehxw2qx6DyXnlHocDEhEGfDdHS2IaRL/cIW5q0cAAxLNQ7WjRgAg32XHuAGatPvGg6gqNN/eI+lQ4nGwSZsozTqG/bj/1VO45bx6065cOx0DEs0ppl4+Shx2mvsVpN6xIKoKGJBmU+Z1Tk1BElF6/NfjR2G1CPz9m81fPQIYkGgeKlaQClzG6EHqHQ+ikhWkWVUVutA7FtR7GESmsefUCB7e143b39SoTOWaAYnmpGQPktsOXyia0w3qwUgMw5NhVLOCNKvKAhfGg1H4w7k/VUqU66SU+I8/HkaZ14nbLzXnrtmzYUCiOam2DxIQb9KWEpjI4d20+8fj00esIM0uOfXIKhLR0j3W3Ivd7SP45FvOgjdx2oAKGJBoTioGpEJ3fB+dUX/uroLqHY/f+NmDNLvkFEDy74mIFicUjeGrjx3B6sp8vGtrvd7DySoGJJqTigEpuTN1Li8TT974q1lBmlVlIjj2MSARLcmPnz+JU8N+fPa6tbBahN7DySoGJJqTij1IyZ2pc3kn5q6RAAAo0yy5UFMVpDGuZCNarK7RAP7nqRa8ZV0lLj2rXO/hZB0DEs1JxQpScmfqoRzeR+fUsB8lHgfyXXa9h5KTvE4b8p02VpCIluBLDx+EhMTnb1in91B0wYBEcwpF1VvmnzzsdDCHK0gdw340KLBR21JUcqk/0aLtONqPxw/24R+uWIW6YjVfaxiQaE4RBXeKdDus8DisGMrhgNQ+PMmANI/qQhe6RgN6D4PIcIKRGL740EE0lXvw4Ysb9R6ObhiQaE5hBStIAFDqdebsFFskpqF7NMiANI+Gkjx0jPj1HgaR4Xz7qeNoH/LjSzdugMOmbkxQ9zunlKhYQQLifUi5WkHqGQ0ipkk0lDIgzWVZaR5G/RGMGeDYGKJccaBzDHc924pbttbjopVleg9HVwxINKewogGpzOvAoC83K0jtw5MAwArSPJJ/Px3DrCIRpSIc1fDPv92HMq8Dn71urd7D0R0DEs0pHNXgsKr3z6TU48zZfZDaBuMBaRkrSHOqZ0AiWpDv7mjBkd4JfOWmjVMb5qosLXuGCyHaAEwAiAGISim3puNxSX/hmAa7VSAc03sk2VVR4MSQL4RoTIMtxwJiS78PXqeNu2jPI1lBOsWARDSvQ93j+O6OFtx0Ti2uWFup93ByQjoPVblcSjmYxsejHBCOanDYLJhULCHVFLmhSaBvIoTaIrfew3mdY30+rKzwQgi1drVdqHyXHSUeB9oZkIjmFIzEcOf9e1DsceDz16u559FscutHY8o5kZim5CqG5BEe3Tm4TPx4vw+rKrx6D8MQ6kvyOMVGNI+vPHoYx/t9+O93bkJxYqNcSl9AkgD+LITYLYS4PU2PaViaiXafDkc12HNsiikbahJVo1wLSCOTYQz6QlhVyYCUimUleTiZ6Nkiojd68lAffvZSOz508QpcouBxInNJ153vYinlFgBvBfAxIcQlM79ACHG7EGKXEGLXwMBAmi6bmzRpnoAUiUmlK0g9ObYTc8uADwCwqjJf55EYw6oKLzpHAvCHo3oPhSjn9I8H8enf7cfa6gJ8+prVeg8n56Tlziel7Eq87QfwAIDzZ/mau6WUW6WUW8vLzZ1SYyYKSKquYst32ZHvsqEnxypIh3vGAQCrGZBSkgySLf0+nUdClFuiMQ133r8Xk6Eo/ufWzXDarHoPKecs+c4nhPAIIfKT7wN4C4DmpT6ukWkm2TpISomwoj1IAFBT6EZ3jlWQ9neOodTjmKpw0dzOSkxFHutjQCI63df+fBQvtQ7hyzdtxMoK/sA1m3SsYqsE8EBiRY0NwP9KKf+Uhsc1LLNMsUVi8e9DxR4kAKgvcedcg29z1xg21BZyBVuKGkry4LBacLxvQu+hEOWMPzX34K5nWvHebQ34q3Pr9B5OzlpyQJJStgLYlIaxmIZZptiSu2irOMUGACvKPHju+CA0TcJi0T+QBMIxHO/34ap13KMkVTarBY3lHhxjQCICAJwY8OFTv9mPTfVF+PwNXNI/FzXvfBkmTTLFljyo1q7oFFtjuRehqIbusdzoQzrUM46YJrGhtlDvoRjKWZX5nGIjAjAejOCOn++Gw2bB9967hX1H81DzzpdhZqkgBSPxzSHz7Gr+J1pR5gEAtA7kxjLx/Z2jAICNDEgLsq6mAF2jAYzk6NExRNkQiWn42H2v4eTgJL7znnNybgPcXMSAlAFm6UEKJAKS26FmQGosTwak3Kg+vHJyGLVF7qk9mig1Z9fFA+X+rjGdR0KkDyklvvDQQTx3fBBfuXkjLmwq03tIhsCAlAFm2SgykDhexKVoBanc64TXaUNrDmw0KKXEKyeHsW1Fid5DMZyNtYUQAtjfMar3UIh08ePnT+J/d57CHZc24V1b6/UejmEwIGWASfLRdAVJ0YAkhEBTuScn9tBp6fdhaDKMbY0MSAuV77KjscyDfZ2sIJF6HtnfjS8/ehjXrK/Cp6/mZpALwYCUAWbpQUpWkNwOdf+ZrKspwMHucUidn9OdJ4cBANtWlOo6DqPaVFc01cNFpIpnjg3gH3+1F1uXFeObt2zOidW4RqLunS+DTDPFpngFCQA21BZiLBBBx7C+K9mePTaAmkIXlpXm6ToOozq7rhD9EyH05MiKRKJM290+gjt+vhsrK/Lxo/efp2wv6VIwIGWAWZq0k6vYVO1BAqZXjB3QscE3FI3h+ZZBXL6mghtELtLW5fGpyVcSlTgiMzvSO44P3PMKKguc+NkHz0eh2673kAyJASkDTFJAOm2KTd2AtLoqHzaLQHO3fgFpZ+sw/OEY3rymQrcxGN3a6gIUuGx4sWVI76EQZdThnnG854c7keew4ecf2obyfKfeQzIsBqQMiJkkIXGKDXDarFhbXYDX2kd0G8NTh/vgtFm4NHcJrBaBbY2leKmVAYnM62D3GG794ctw2iy4//btqC/hlPxSMCBlgN4NvekS4BQbAGDbihLs6RidmnLMpmhMwx8P9OKy1eVKV/LS4YLGUpwa9qNzJLfO1yNKh+auMbznhzvhcdjwq9svwPLERre0eAxIGWCWVWy+YBRWi4DLrvY/k+2NpQhHNew5NZr1a794YgiDvhDevrk269c2mwtXxlcAcpqNzGZn6xBu/eHLyHfZcP/t29HAxRxpofadL0M0k5zFNhGMIt9lg4DajcHnrSiBRUCX6Zk/7O1CvsuGy9l/tGSrK/NRXejCk4f79B4KUdr8qbkXt/3kFVTkO/Grj1zAabU0YkDKALOsYpsIRpDvsuk9DN0Vuu04u64IO470Z/W6Y/4IHjvQi+s2Vis/zZkOQghcubYSzx0f1GW6lCjdfvFyOz56325sqCnAb++4kOerpRkDUgaYpUl7IhhFvpPLQwHgmg1VONA1ltX+ld/s7kAgEsNtFyzL2jXN7qp1lQhEYnihZVDvoRAtmqZJ/NefjuBzf2jG5asrcN+Ht6PY49B7WKbDgJQBURMFpAI3K0gAcPX6KgDA4wezMz0T0yR++lIbzltejPU1hVm5pgq2N5Yi32nDn5p79R4K0aJMBCO4/ee78L2nT+DW8xtw123ncgFHhjAgZUA4ao4mpPFgBPkuVpAAYEWZB2uq8vHwvu6sXO+hfV3oGA7ggxetyMr1VOGwWXD1hio81tw7tc8XkVG0D03i5u+9iB1HB/ClG9fjKzdtgM3K23im8G82A8IxcwSkZJM2xb1zaz32doziYIY3jYzENHzryeNYW10wVbmi9Ll5Sy18oSj+fIhVJDKOHUf6ceN3X8CAL4Sff/B8vO+C5dxZP8MYkDLATBWkAlaQprxjSy2cNgvu23kqo9f59a4OtA358U9XncXDJTNg+4pS1Ba58bvXuvQeCtG8IjEN//noYXzg3ldRVeDCgx+7CBeu5Kax2cCAlAERE1SQNE3CF2IF6XRFeQ68bVMNfre7E/3jwYxcY2AihP/z2BGcv6IEV67l0v5MsFgEbt5Si+ePD6BjmJtGUu7qGg3glrtewl3PtuK92xrwh49dhGWl3AAyWxiQMsAMFaSJYBRSgocczvCxy1ciqkl87+kTaX9sKSW+9MghBCIxfOWmjSyfZ9B7tjXAIgTufbFN76EQvYGUEg/u7cK133oOx/p8+J9bz8GXb9rI7T6yjAEpA8wQkAYnQwCAMi8POjzd8jIP3nluHe7b2Y5jfRNpfezf7OrEw/u68fdvXoWVFd60Pja9XnWhG9durMavXu3ARDCi93CIpgz6Qvjofa/hzvv3orHcg0f+/mLcsKlG72EpiQEpA0ImmGIb8oUBMCDN5p+vXg2v04b/73f707bn1b6OUfzbg824aGUpPnb5yrQ8Js3tw29aAV8oip+/3K73UIgAAI8d6MHV33wWTx3ux2feuga/veNCnqmmIwakDIiYoYLki1eQSr3cfGymUq8TX7hhPfacGsXXHj+65Mdr6Z/A39zzCioKnPi/t5wDKxuzs+LsuiJcvrocdz3TirEAq0ikn45hPz7801fxd/e9hpoiNx75h4txx6VNfC3QGQNSBphhmf8QA9Kc3n5OLd67rQE/eOYE7tu5+ArEa6dGcMtdL8NqseAXH9qG8nxW7LLpU1evxlgggh8+26r3UEhBoWgM393Rgqu++QxePDGEf712LX7/0QtxVmW+3kMjAFyilAGm6EHyhSEEUJLHgHQmX7hhPbpHA/jXB5ox6o/g7y5tSnlZvpQSv3i5Hf/xx8OoLHDh3g+cx9UpOlhfU4gbNtXgR8+34l1b63kKOmWFlBJ/OdKPLz96GK0Dk7h2YxX+7fp1qC7kWWq5hBWkDDBDQBrwhVCS5+AurXNw2Cz4wW3n4oZNNfja40fxvp+8gqO98zdu72obxi13vYx/e/AgtjWW4oGPXojGcjZl6+Wz166BVQh87sFmSJMcNE25a3/nKN5998v40E93ARK45wPn4XvvPZfhKAexgpQBZtgHqWskgBqeDD0vp82Kb797M7atKMH/+dMRXPOtZ3HxyjK8ZX0V1tcUoNTjQCQm0TMWwGvto3isuQdHeidQ5nXiqzdvxC3n1XM5v86qC9341NWr8f8/fAgP7evGjZtr9R4SmVDb4CT++4ljeHhfN0o9Dvz7jevx7vMbYOcPoTmLASkDQiaoIHWNBtBUzimfVAgh8Nfbl+G6jdW458U2/P61TvzbH5pn+bp4Y/C/37ge7zi3DnkO/vfLFe+7YDke3teNzz3QjM31RZzupLQ5MeDDd//Sgj/s7YLDZsHHL1+Jj1zayHMuDYCv0Blg9CZtKSW6RgK4ZFW53kMxlGKPA/901Vn4xytXoXMkgCO9ExgLRGC3CpTnO7G+ppAbb+Yoq0Xg27eeg2u/9Rw+/r978Js7LuCmfLQkx/om8J2/tODh/d1w2az40MUr8LeXNKIi36X30ChFDEgZEIoYOyCN+CMIRGKoLeYU22IIIVBfkof6Ejb8GkldcR6+/s5NuP3nu/Gp3+zDt999Ds/CowWRUuLZ44P48fMn8eyxAeQ5rPjIJU348JtWcE85A2JAyoDJUFTvISzJycFJAMAy3uBJMW9ZX4V/eesa/OdjR1BT5Ma/vHUNe8RoXoFwDA/s6cJPXjiJln4fyvOd+ORVZ+G925ehxMOVwEbFgJQBEyFjbzrX0h9ficW9OEhFt1/SiK7RAO5+thVCAJ+5hiGJZtfcNYZfvdqBP+ztwkQwivU1BfjGuzbh+rNr4LCx+droGJAyYCJo7ArS8T4fXHYLp9hISUIIfPGG9dCkxF3PtCIQjuHz16/jlhcEABgLRPDQvm786tVTaO4ah8NmwbUbqnDr+Q04f0UJw7SJMCBlgNED0rF+H5rKvdzmnpRlsQj8+40bkOew4e5nW3FycBLfuXULCvPYZK8ifziKJw/34+F93Xjm6ADCMQ3rqgvwpRvX48ZNtfx3YVIMSGlmtQhDnw4upcTBrjFctrpC76EQ6UoIgc9euxZN5R587g/NuP47z+Eb79qM85aX6D00ygJ/OIpnjw3g4f09eOpwH4IRDVUFLtx2wTK8fXMtNtYV6j1EyjAGpDTLd9kwbuAK0qlhP4YmwzinoUjvoRDlhFvOa8DKinx84ld78K67XsLtlzTizitWcR8rE+oc8WPHkX48ebgfL7UOIRzVUOZ14J3n1uOGTTXYuqyYKxsVwv/haVbgsmPUH0EwEjPkPiqvnRoBAGxpKNZ5JES549xlxXjszkvwH48cwl3PtOKhvd34zFvX4G2bathzYmCBcAy72ofxQssQnj7ajyOJo4JWlHnwvu3L8Oa1FTh/eQn7zxTFgJRmFflOnBr2Y2AiZMh9cF46MYR8lw2rq7iCjeh0XqcNX33H2bh5Sx2+9MhB3Hn/XvzwuVZ87LKVuHp9FSsLBhCOatjXOYoXW4bw4olB7Dk1inBMg80isGVZMT577RpcsbYSTTwbkcCAlHZVhfFdUnvGgoYLSJom8ZcjA7j0rHI2aBOdwfkrSvDgxy7GA3u68N0dLfi7+15DU7kH77tgOd6+mQ27uaRvPIjX2kewp2MUr7WP4EDXGEJRDUIAG2oK8YGLluOCplKct7wEHidvh/R6/BeRZtVTASmg80gW7kDXGAZ9IVyxlg3aRHOxWgT+6tw63HROLR490IO7n23FFx46iK88ehjXbazGDZtqcOHKUjhtxptmN6r+iSAOdY/jcM8EmrvHsPfUKLpG46/DDqsFG2oLcNv2Zdi6vAQXNJYyyNK8GJDSrKowvndQ71hQ55Es3AN74ocpXs4VbEQpsVoEbthUgxs21aC5awy/fOUUHtrbjd/v6UK+04Yr1lbg8jUVuLCpDOX5PGoiHSZDUZwcnMSJAR8O9YxPhaJBX2jqa2qL3NjcUIQPXrwC5zQUYX1NAcMqLRgDUpp5nVbkO21TP7kYRTAS3yr/6vVVKMrj1vhEC7WhthBfvmkjPn/DOrzQMog/NffiiUN9+MPebgDAWZVeXNhUhnMainB2XRGWleSxb+kMwlENPWMBnBr2o3UgHoaSb3tO++HTbhVYVZGPy1aXY111AdZWF2BddQGrQ5QWDEgZsKrSO7Uawijuf+UUxgIRvHdbg95DITI0p82KN6+pxJvXVCIa03Cwexwvnog3Bd//6inc+2IbgPiWIBtrC7GmqgCN5R40lXvRVOFBuddp6pVxUkqM+iPonwihfyKIrpEAOkcC6Bzxo3MkgK7RAHrHg5By+s94nTY0lXuwvbEUTeUeNJZ70VjuQWOZl0d6UMYwIGXAupoCPLinG1JKQ7zQ+cNRfO/pE9i2ogTbG0v1Hg6RadisFmyqL8Km+iL83WVNiMQ0HO/z4UDXKPZ3juFAYlouEIlN/Zl8pw21xW5UF7pQXeRGTaEL1YVuVBQ4UZznQLHHgeI8O9x2a068voSjGsYCEYwFwhgLRDDqj0y9HQ1EMDARwsBEEAMTIfRPhDDoCyESk697DKtFoLrQhdoiNy5sKkNdsRu1xW7UFbuxstyL8nxzh0bKTQxIGbC+phC/ePkUWgcnDbFc9GuPH0X/RAjf/+steg+FyNTsVgvW1RRgXU0Bbjkv/jFNk+gdD+LEgA8n+n1oHZxE92gAPWNB7Oscw/BkeNbHctgsKM6zo8jtgNthRV7il8uefN8Gp80Ci0XAKsTUW6sFU+9rEohpGmJa/G1Uk4hpcuptMBKDPxz/FYhEEZh6P/52MhSFPxybdXwAIARQ6nGgzOtERYELqyrzUZ7vREW+M/HWhdpiNyrzndxriHIOA1IGXNRUBgB45uhAzgekJw/14d4X2/C+C5bh3GU8QoEo2ywWgZoiN2qK3HjTqvI3fD4YiaF3LIj+iRBG/GGMTIYx4o9g1B/G8GS8ahOIxBAIxzDqjyTCSzzMhKIaNBkPO5qc5eKnj0MANosFFkv8rdUi4LJbkOewTYUuj9OGMq9zKpB5HDYU5dlR6LajwG1HUZ4DhW47itzTH+OWIWRUDEgZ0FCah1UVXvzxQA8+ePEKvYdzRrvbh3Hn/XuwsbYQn712rd7DIaJZuOxWLC/zYHmZZ0mPI6VMVIzkVGiyWkT8V6LCRETTWNPMkHef34Dd7SPY2zGq91Bm9afmXvz1j15BRYELd9+21ZDHohBR6oSIhyGHzQKXPV4NctmtsFstDEdEs2BAypB3bq1DmdeBzz/YjGhM03s4U4Z8IfzL7/fjjl/sxqpKL379kQumdv8mIiKiOAakDClw2fHFt63H/s4xfPp3+xHROST1jQfx9ceP4rKvP41f7+rE375pBX5zxwXcvI6IiGgW7EHKoOvPrkHrwCS+8cQxtA5M4vM3rMOWhuKsXb97NICnjw7gTwd78WLLIGJS4sq1lfj01auxqpKH0RIREZ0JA1KG/cMVq9BY7sEXHjyIm7/3IjbWFuKaDVU4f0UJ1tcUIM+x9KcgGImhfciPk4M+nBiYxOGecexuH5nacXZZaR4+/KZG3Hp+PZaVLq3Rk4iISAUMSFlw/dk1uHx1Be5/tQN/2NOFrz1+dOpzFflOLCvNQ4nHgQJXfGmsy26FRUzvVRKTcmoZb3IfkqHJEAYmQhj0xZf5nq62yI2ty0twbkMRtjeVYnVlPjdZIyIiWoC0BCQhxDUAvgXACuBHUsqvpuNxzcTjtOFDF6/Ahy5egeHJMHa3j+Bo7zjah/w4NexH26A/sRttBOGYhtiMTUucNgvcDivcdivcDitKPQ6srsrHRV4nyrzxkNVU7sWKMg88TuZeIiKipVjynVQIYQXwXQBXAegE8KoQ4iEp5aGlPrZZlXgcuGpdJa5aVznn12mJ/Uos3KOEiIgoq9Kxiu18AC1SylYpZRjA/QBuTMPjKs9iEbBxjxIiIqKsS8dcTC2AjtN+3wlg28wvEkLcDuB2AGhoeP2J8dGYhpODkzgxMIkBXwiDEyGMByMIRjSEIjEEozEEI/FpJ4n4jrBSAhLxt1ri2GebxQKbVcBmEVPv263xLfPtiffdDiu8Dhs8Thu8zvhbj9OKEo8DlQUulHocPBOIiIhIcVlrVpFS3g3gbgDYunWrBIDjfRP4n7+04MnDfa878FAIwOuwwWm3wmWP7/rqsltgFQIQAhYBCMR3ho2/H6+w+KNRRDWJaEwiqmmIxiQimoZYTCKiSURiGvyhGMJz7ElkEUCp14m6YjfWVOXjrMp8nNNQjI21hTxTiIiISBHpCEhdAOpP+31d4mNzevpoP27/2W447RbcuLkG5y0vwVmV+ajId6Ikw1WccFTDZCgKXyiKyXAUk6Eohicj6BsPon88iL7xENqHJ/Gn5l788pV4caw4z463rKvC+y5chvU1hRkbGxEREekvHQHpVQCrhBArEA9G7wbwnrn+gCYlPvnrfWiq8OLnHzofZd7s7ubssFngsDlQ7HHM+XVSSgxMhPDyyWE8faQfD+3rxq92deDmLbX4/PXrUJQ3958nIiIiY1pyQJJSRoUQHwfwOOLL/H8ipTw4158Z80cQmwzj7vedm/VwtBBCCFQUuPC2TTV426YafOGGCO5+7gTueqYV+zpG8YsPb0N1oVvvYRIREVGapWUeS0r5qJTyLCllk5Tyy/N9/UQoiqoCV1aP3UiHwjw7/vnqNbjvw9vQNx7CHT/fjVA0Nv8fJCIiIkPRZblWKKJhQ22BYXd33tZYiq+/82zs6xzDvS+06T0cIiIiSjNdAlI4pqGuOE+PS6fNNRuqcelZ5fj+MycQjLCKREREZCa6BCRNStSXGDsgAcDtlzRi1B/B4wd79R4KERERpZFuOyKWeY2/AuyCxlKUeZ146nC/3kMhIiKiNNLtVFOPw/gHqlosAhetLMULLUOQ83+58qSUGPFHcGrYj1F/GMGIBk1K5LtsKHDZUVvsRqnHYdjeNCIiMg/dUkqe06rXpdNq24pSPLi3G53Dfr2HkpPGgxE8ur8HzxwbwCsnhzE0GZ7z6wvddqyuysf2FSXY3lSK85eX8OgXIiLKOt0Cktdp/AoSAKytzgcAHOmd0HkkuWVgIoTv7mjBL185hVBUQ22RG5euLse66gIsK/Wg1OuA02aBRQj4QlGM+iPoGPbjxIAPzV1j+M6OFnz7Ly0o8zpww6YavHfbMqys8Or9bRERkSL0m2IzSUA6qzIekI71MSAlPbyvG5994AD84RjesaUW7922DGfXFS5o6mwiGMELLYN4cG837tt5Cve+2Ia3bqjCP111FlZW5Gdw9ERERDoGJLfdHFNsHqcNpR4HukYDeg9Fd1JKfPOJY/j2X1pwTkMRvv7OTWgqX1zVJ99lxzUbqnHNhmoM+UK454U2/PTFNvz5YB/+9pJG3HnFKrhM8m+IiIhyj27NHTaLeRpxa4rc6BphQPr2U/FpsVu21uPXH7lg0eFoplKvE5+6ejWe/ufL8PZzavH9p0/gr37wIjrY90VERBmiW0CymCgg1Ra5la8g/eVIH7755DHcvKUW/3nzRtgz0Fhd6nXi6+/chB+9bytODflxw3eex/7O0bRfh4iISL+AZKKl3OX5TvjD6u6mPRGM4DO/O4C11QX4yk0bMx5+r1xXiYf//mLku2x4zw934rVTIxm9HhERqUe3gGQ1UUAqyrPrPQRdfXfHCQz4QvjqzRuz1he0rNSD33zkQpR5HfjwT3ehbXAyK9clIiI16BaQhIm2tinKM/6u4Is1FojgFy+344aza7Cpviir164qdOGeD5wPKSU+/LNdCChcxSMiovRiBSkNitzqVpDuf+UUfKEoPnJpoy7XX1Hmwf/cugUt/T589bHDuoyBiIjMhz1IaaDyFNvvX+vCucuKsb6mULcxXLyqDB+6eAV++lI7Xm4d0m0cRERkHjquYtPryumnakA62juBo30TuHFzjd5DwT9fvRo1hS586eFDiGk8GY+IiJaGFaQ0MMuu4Av15OE+AMA1G6p0HgngslvxmWvX4lDPOB7Y06X3cIiIyODYg5QGZtkVfKFeOjGENVX5qMh36T0UAMANZ1djXXUBvvd0CzRWkYiIaAn0W8VmnnwEt0O9gBSKxvBq2zAuaCrVeyhThBD4u8ua0DowiT8f6tV7OEREZGA6BiTzJKQ8h3pTbAc6xxCKatjemDsBCQCu3ViNumI37tt5Su+hEBGRgekSkMwTjeJUnGI71DMOANhUV6TvQGawWgTeeW49nm8ZROcIz2ojIqLFMdFaMv1YTXSuXKoOdY+jxONAZYFT76G8wV9trQMA/HZ3p84jISIio9InIKmXJ0znUM841lUX5ORUaW2RG9tWlOCxA+xDIiKixdFpii33bqqUOikljvf5sKrSq/dQzugt66pwtG+CZ7QREdGicIqNFmzAF0IgEsPyUo/eQzmjq9ZVAgCeONSn80iIiMiI2KSdJg6rOlmzYzje/NxQkqfzSM6sviQPZ1V68ezxAb2HQkREBsQepDSxWU34TZ1B+1AiIJXmbkACgAsaS7GrbQThqKb3UIiIyGBYQUoTu0IVpFPDfggB1BW79R7KnC5oKkUgEsP+zlG9h0JERAajzl09w1QKSF0jAZR7nXDacnv/p20rSiFE/EgUIiKiheAqtjRxKDTFNugLoSIH9z+aqdjjQGOZB/tYQSIiogViD1Ka2G3qVJAGfCGUeXM/IAHAxtpCHOga03sYRERkMOrc1TNMpSm2wYmwcQJSXRH6xkPoHw/qPRQiIjIQNmmniSoBSUqJockQyvMNEpBqCwGAVSQiIloQTrGliSo9SGOBCCIxaZgK0vqaAggBNHeN6z0UIiIyEFaQ0kSVA2sHJkIAgDKvQ+eRpMbjtKGu2I2WAZ/eQyEiIgNRY14oC1QJSIO+MACg3CAVJABoKveipZ8BiYiIUmfTewBmkYun2mfCWCAekArz7DqPJHUry7146cQQYppUJshmUziqoW1oEhPBKIrz7KgvyVOmJ4+IzIsBKU2sigSk8WAUAFDgMk5AaqrwIhTV0D0aQH0Onx9nJFJKvNAyhHtfPInnjg8idNpxLl6nDZetLscHL16BLQ3FOo6SiGjxGJDSxKLID8wTBgxIKyu8AICWfh8DUhr0jQfxrw8048nDfSjzOnHr+Q04p6EIBW47hn1h7GofwR/3d+OR/T246ZxafPGG9YaqOBIRAQxIaWNRpII0EYwAALwu4/zTWZYIRR0jfp1HYnyHusfxwXtfxWggjM9euwbvv3D5G46cece5dfjcdWvxg2dO4AfPnMDejlH8+P1b0Vju1WnUREQLp0jdI/NUCUjjgSg8DquhennKvE44bBZ0jgT0HoqhHe2dwC13vwQAeOCjF+H2S5rOeB6fx2nDJ9+yGr/82+0YD0Tw7rtfRtvgZDaHS0S0JAxIaWKkwLAUE8EI8g00vQYAFotAbZEbXQxIi9Y/HsTf3PMK3HYrfnPHBVhbXZDSn9u6vAS/vH07IjEN77/nFYwFIhkeKRFRejAgpYki+QgTwSjyDTS9llRX7EYnp9gWRdMkPvmbfRjxh3HPB85bcB/XWZX5+NH7t6JrJIBP/nofpJQZGikRUfowIKWJKlNsE6GIYQNS1ygrSItx3852PHd8EJ+7bh3W1xQu6jHOXVaCz7x1DZ483IcH9nSleYREROnHgJQmygSkYBQFbmNNsQFAXXEeBn1hBMIxvYdiKMOTYXzt8aO4aGUp3rutYUmP9cGLVmBLQxH+/ZFDGJ4Mp2mERESZwYCUJqr0IPlCUXgcxqsg1RS5AIBVpAX61pPH4AtF8fnr1y95M1SLReArN2/EWCCC7z/dkqYREhFlBgNSmlgUCUihiAaXffaVS7msIj8ekAZ9IZ1HYhz940H88pUO3HJePVZX5aflMddUFeCmc+rws5fa0TceTMtjEhFlAgNSmiiSjxCMxOCyG++fTXl+/Oy45GG7NL8fv3ASUU3DHZc2pfVxP3HlKsQ0ibueaU3r4xIRpZPx7nQ5SpWjRgKRmCErSMnDdRmQUjMZiuK+l0/h2o3VWFbqSetj15fk4dqN1fjNrg5MhqJpfWwionRhQEoTFQ6rlVIiGInBbcCAVOi2w24VGOAUW0r+eKAHvlAUf3Ph8ow8/vsvXI6JUBS/54o2IspRDEhpkjy83MxbvEQ1CU3CkFNsFotAmdfJClKKfrurE41lHpy7LDOHzW5pKMLG2kL8785TGXl8IqKlMt6dLkcll/lrJg5IySXyRpxiA+J9SAxI82sbnMQrbcN459b6jFVGhRC4eUstDveMo6V/IiPXICJaiiUFJCHEF4UQXUKIvYlf16ZrYEaTXMWmmbiEFIwYPCCxgpSSx5p7AQA3bq7J6HWuO7saFgE8tLc7o9chIlqMdFSQviml3Jz49WgaHs+QkqvYTB2QohoAAwekfCd7kFLwxKFebKwtRE2RO6PXqch34YKmUjy0r5vHjxBRzuEUW5okV7FpJp5jC05NsRnzn02p14EhX8jUz9FS9U8EsadjFFetq8zK9a7dWI22IT9ODPiycj0iolSl4073cSHEfiHET4QQmenoNIBkr0bMxPfeYDQekIy4ig0AitwOaBLwhbm0/EyeOtwPKYG3rM9OQLpsdQUA4OmjA1m5HhFRquYNSEKIJ4UQzbP8uhHA9wE0AdgMoAfAf8/xOLcLIXYJIXbFYuY7Dyt51IiZpwqM3oNUmBc/Q27MH9F5JLnr+ZZBVBW4sLoyPTtnz6e2yI1VFV7sONqflesREaVq3kO1pJRXpvJAQogfAnhkjse5G8DdAFBQv9p0KSLZgxQz8fRNIJzsQTLmFFtR4pDdUX8E9SU6DyYHSSmxs3UIb1pVntV9vS5fU4F7XjiJyVAUHqfxzvkjInNa6iq26tN+exOA5qUNx7imV7HpPJAMSk6xGbWCVJTnAACMBVhBmk1Lvw+DvjC2N2Y3PV7YVIpITGJvx2hWr0tENJellgL+SwhxQAixH8DlAP4xDWMypOl9kMybkIw+xVaUmGIbDYR1Hklueql1CABwQWNZVq+7ZVkxhABebRvO6nWJiOaypHq2lPK2dA3E6FRYxRZKLPN3WI0/xUZvtKttBFUFLtSXZHZ5/0wFLjvWVhVgV9tIVq9LRDQXY97pctBUD5KJK0jRWCIg2Yz5z6YgEZA4xTa7/Z2j2FRfqMu5guctL8Zrp0am/o0REenNmHe6HJS8qZg4HyGS2MPAbtAKkstuhctuwaifU2wzjfkjaBvy4+y6Il2uv3V5CfzhGI708tgRIsoNxrzT5TAT5yNEEj/d26zZrzCkS5HbgRFOsb3Bga4xAMDZdYW6XH9jbfy6B7vHdLk+EdFMDEhpMjUrYeISUjIgGbUHCQAK3DZMBBmQZtrfNQpgOqhkW0NJHrxOGw52j+tyfSKimYx7p8sxAokpNp3HkUlRg0+xAYDHacNkyHwblS5Vc9cYGkryprZCyDaLRWBddQGau1hBIqLcYNw7XY5JVpBMXEBCOKZBiOldw43I67TBF+JRIzMd6/NhdVV2ds8+k3U1BTjcM2HqzVaJyDgYkNLEuJEhddGYNHT1CAA8DhsmGZBeJxzV0DY4ibMqvbqOY31NAQKRGE4OTuo6DiIigAEp7aSJJ9kiMQ12A1ePgOQUGwPS6dqHJhHVJFZV6FtBWltdAAA40ss+JCLSHwNSmqgwxRbRJOwG3QMpyeu0copthuP9PgDAygp9K0hN5fHrtw6wgkRE+jP23S6HTO2DpPM4MikS1WCzGPufjMdpw2Q4BmnmJLtAx/omIMR0QNGL22FFbZEbJwZ8uo6DiAhgQEo7M993o5oGh4H3QAIAr8uGmCanjk2heAWpvjgPbof+Z+w1VXhZQSKinMCAlCY6nM6QdZGYhM3gTdpeZ/z4wYkgp9mSWgcm0VTu0XsYAICmcg9ODPhY4SMi3Rn7bpeDzNykHY5qsBu8guRxxAMSG7XjpJToHPZjWWluBKTGci/84Rh6x4N6D4WIFMeAlCbJjSJNnI8Q1TTjL/NPVJDYqB036o9gIhRFXbFb76EAAJrK4kHtJKfZiEhnxr7b5RBh/nyEiAn2QUpOsbGCFHdq2A8gftRHLqhPjKNzJKDzSIhIdca+2+WQ6aPYzBuRIjETTLE5443Ik2EGJADoGEkEpNLcCEhVhS5YBNCZGBcRkV4YkNJEjSZtzTRN2j6exwZguoJUX5wbAclutaC60M0KEhHpzth3uxxk4gISojEJh8EDksseryAFIwxIANAxHECpxzHVm5UL6ordU5UtIiK9GPtul0OSTdomzkeIatLQB9UC0wEpxIAEID6VVZcj/UdJdcV5rCARke4YkNJEhaNGABg+ICU3QwwwIAEAesaCqC5w6T2M16krdqN3PIgwN/MkIh0xIKWZmfdBAgCLwZutXImz5IIR3nwBoG88iKrC3ApI9SV5kBLoHmUViYj0w4CUJsLgwSFVBm9Bgs1qgd0qWEEC4A9HMRGMoqLAqfdQXqcmEdi4WSQR6cngt7vcwym23OeyW9mkDaB3LB5AqnJsii0Z2PoYkIhIRwxIaWL82JAao0+xAQxISX3jIQC5GJDi4+lPjI+ISA8MSGky3aRt7hKSGSpIbruVPUiYrtBU5FhAynfa4LJb0D/BChIR6YcBKU2mdtLWdRSZZzVBBclttyIQZgUpGZByrUlbCIHKAtdUhYuISA9Cj4qHEGIAQHvWL5wdZQAG9R4ELQifM2Pi82ZMfN6Mx8zP2TIpZflsn9AlIJmZEGKXlHKr3uOg1PE5MyY+b8bE5814VH3OOMVGRERENAMDEhEREdEMDEjpd7feA6AF43NmTHzejInPm/Eo+ZyxB4mIiIhoBlaQiIiIiGZgQMogIcQnhRBSCFGm91hobkKIrwkhjggh9gshHhBCFOk9JjozIcQ1QoijQogWIcRn9B4PzU0IUS+E2CGEOCSEOCiEuFPvMVHqhBBWIcQeIcQjeo8lmxiQMkQIUQ/gLQBO6T0WSskTADZIKc8GcAzAv+g8HjoDIYQVwHcBvBXAOgC3CiHW6TsqmkcUwCellOsAbAfwMT5nhnIngMN6DyLbGJAy55sAPg3zb65tClLKP0spo4nfvgygTs/x0JzOB9AipWyVUoYB3A/gRp3HRHOQUvZIKV9LvD+B+M22Vt9RUSqEEHUArgPwI73Hkm0MSBkghLgRQJeUcp/eY6FF+SCAx/QeBJ1RLYCO037fCd5sDUMIsRzAOQB26jwUSs3/RfyHfeUOsLTpPQCjEkI8CaBqlk/9K4DPIj69RjlkrudMSvlg4mv+FfHpgPuyOTYiFQghvAB+B+ATUspxvcdDcxNCXA+gX0q5Wwhxmc7DyToGpEWSUl4528eFEBsBrACwT8QPdq0D8JoQ4nwpZW8Wh0gznOk5SxJC/A2A6wFcIbn/RS7rAlB/2u/rEh+jHCaEsCMeju6TUv5e7/FQSi4C8DYhxLUAXAAKhBC/kFL+tc7jygrug5RhQog2AFullGY96M8UhBDXAPgGgEullAN6j4fOTAhhQ7yR/grEg9GrAN4jpTyo68DojET8p8WfAhiWUn5C5+HQIiQqSJ+SUl6v81Cyhj1IRHHfAZAP4AkhxF4hxA/0HhDNLtFM/3EAjyPe7PtrhqOcdxGA2wC8OfH/a2+iKkGUs1hBIiIiIpqBFSQiIiKiGRiQiIiIiGZgQCIiIiKagQGJiIiIaAYGJCIiIqIZGJCIiIiIZmBAIiIiIpqBAYmIiIhohv8He2jICechzzMAAAAASUVORK5CYII=",
- "text/plain": [
- "<Figure size 576x432 with 1 Axes>"
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"targets = (16, 17)\n",
"xmax = 15\n",
@@ -332,22 +287,9 @@
},
{
"cell_type": "code",
- "execution_count": 118,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2YAAALYCAYAAAAXYuFPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9bcx237YfBP3GuvdpS2nPOSEHqG2RigRENNQUAghYio0YIGj8UIu8FFQa0BAoKgRrfIlCiPIiviTkqJVUXgIGoh9QkaYiNlqwJQTUmmCRUiltOS1IqXDovtfwwxwvvzHmWOu67ud59n6efbjm3s//vtaac8wx5phz/sZ8GXMuUVW8wiu8wiu8wiu8wiu8wiu8wiu8wtcLx9cW4BVe4RVe4RVe4RVe4RVe4RVe4d/p4TUxe4VXeIVXeIVXeIVXeIVXeIVX+MrhNTF7hVd4hVd4hVd4hVd4hVd4hVf4yuE1MXuFV3iFV3iFV3iFV3iFV3iFV/jK4TUxe4VXeIVXeIVXeIVXeIVXeIVX+MrhNTF7hVd4hVd4hVd4hVd4hVd4hVf4yuE1MXuFn1JBRP4uEfnvfOE8/1IR+Q1fMs9XeIVXeIVXeIVXeIVXeAUOr4nZK/xABhH5x0TkXxWRn/61ZeHwuZM4o38XkX+j/fu5X1LOV3iFV3iFV3iFV3iFV/i2wmti9go/cEFEfgGAPwOAAvjzv64035Pwf1HVn9X+/Y6eSES+88y7u/DR9K/wCq/wCq/wCq/wCq/wvQmvidkr/CCGvwTAbwTwdwH4FUP8j4nIPyoiv09E/o8i8kcCgKzwt4vI7xaRf11E/lkR+Q9Y3I+IyK8VkX9FRH6biPzXRGTrHyLyC0REeUJju3f/eRH54wD8nQD+VNvl+tcs/qeLyN8iIv+iiPwuEfk7ReQP+pSCi8i/ICJ/vYj8MwB+v4j80SbPf05E/kUAv15EDpP/t1lZf62I/EiTP9J/ihyv8Aqv8Aqv8Aqv8Aqv8GXDa2L2Cj+I4S8B8PfYvz9bRP7wFv8XAvhvA/gxAP+0pQOA/xiA/wiAPwbAjwD4ZQB+j8X9D+3dHwXgFxuPv+wjQqnqbwHwVyB3vH7Uov5m4/kLAfzRAH4egP/6R/Ju4S8A8OcC+FEA37V3vxjAHwfgzwbwl9q/X4JVnp8F4H/U8uD0r/AKr/AKr/AKr/AKr/CVw2ti9go/UEFE/nQAfySAf0BVfzOA3wrgP9OS/cOq+o+r6k8C+NVYO1h/BIA/AOBnA/j3ARBV/S2q+i+LyBuAXw7gb1DV36eq/wKAvxXAX/wF5BUAvxLAr1LV36uqvw/A32T8rsKfIiL/Gv37rS3+f6Cqv11V/016999U1d9v7/5CAH+bqv7zqvpvAPgbAPzy5rbI6V/hFV7hFV7hFV7hFV7hK4fXxOwVftDCrwDwv1fVn7Dnvxe7O+Nv9x82Mfm9AH6uqv56rJ2j/zGA3y0iPy4iP4y1s/ZDAH4b5fHbsHa2Pjf8oQB+JoDf7BMtAP87e38VfqOq/ij9+/e2+N8+0PC7n4u9LN8B8IdfpH+FV3iFV3iFV3iFV3iFrxxeE7NX+IEJdi7rlwH4xSLyO0XkdwL4VQD+BBH5EyjpH0E0PwvAHwLgdwCAqv4PVPUXAfj3Y7kX/lcA/ATWbtofSXn8uwH8S4MYv9/+/kx693Pot7b0PwHg3wTwx9NE60dU9Wc9U+aL0Hn0d78De1m+C+B3PcjjFV7hFV7hFV7hFV7hFb5SeE3MXuEHKfwnAbxjTap+of374wD8n7DOhHn4c0TkTxeRn4Z11uw3qupvF5E/SUT+ZBH5IawJ1r8F4FTVdwD/AIC/UUR+tl0W8tcC+Lu7AKr6r2BN2P4iEXkTkf8sAN7R+l0Afr7xhqqeAP4nAP52EfnDAEBEfp6IfC/Pdv19AH6ViPx7bGL6NwH4+1X1uw/oXuEVXuEVXuEVXuEVXuErhdfE7BV+kMKvAPA/V9V/UVV/p//Dck/8C+kM1d8L4L+B5cL4iwD8Rfb+h7EmSf8qlnvf7wHw37O4vwprsvbPA/gNlsevuZDjL8faafs9AP54AP9nivv1AP7vAH6niLi75V8P4P8F4DeKyL8O4NcB+GNvyum3OvK/P+lOMS38GgD/CwD/OID/N9YE9K/6AP0rvMIrvMIrvMIrvMIrfJ+DqL48ml7hFV7hFV7hFV7hFV7hFV7hFb5meO2YvcIrvMIrvMIrvMIrvMIrvMIrfOXwmpi9wiu8wiu8wiu8wiu8wiu8wit85fCamL3CK7zCK7zCK7zCK7zCK7zCK3zl8JqYvcIrvMIrvMIrvMIrvMIrvMIrfOXwmpi9wiu8wiu8wiu8wiu8wiu8wit85fCdx0m+fPhp3/mZ+gf90I/kC5H4qcIpBSjP+fqpYPlu904+maeW9y3BlQxCtDfxz8Q9JfeTPPQm7tk8tjyfyesz+elN3CfxuUyvN3GfwFc8T8Fla3iySdX8nkiL0qWu6Tb+u5wyMtKN/95N9jSVpW40vbfOUFBllPJ7kD/+o7dpOW+nkUt9T+WntCO/pH0kt/Q0Mrwb5JD2d4ynF6Ih7IN89jSA4J/6Z37yJ1T1D8WT4af90B+sP+On/Whl4F1EpGJUx9HSEI1I5zYGWXFBv1WW1bYMcVteleujNM/GfxiPn+TnVfrwruUvhKmFz5fC6QvMeUTjTemTeTeMvUt3nZVSgufxOvO9thlzW+efj/DvQb7+Q5nmlmXyHRJ2zOu0IhOmUZ5TfjdyXdulxv/CRnWMvZT/QobNhgx5bzINbamn9fSP7CkgF3YNgMi1zb78/WVw//sV/uxf8gfr7/m9759M/5v/mZ/8R1T1P/4FRfrk8FUmZn/QD/0I/tQ/6i8DAOghwCHLmohA32wTT9Z7PbLlqng6f0YabPF4xHPEKU0iOJ3Ye+cDN+S6ZLJnTu8GoPKl9wfKoKLLpLxHKSlX0jY4kD1tkd3TtkGGHhe0Q/r+O8BH9nwj/cS3/S35Up5XtLrlo6Tv+7wgdWJVyss83Ig0XUbOGx+t8lB+IqA9Z41BUQB34VEH/Yteg1ZaeaSVpxsxEc0JgMdRvjWdWrdR62qZ9+Fp7Z0/C9O6jI3vlhYa3fOA1rSUxvkc9nwUWkoranzWe//HfA+SUXA2Poo3UevKSXtE2uQZcS4TTrzJiTdxQ3kSrWb5nDZ0pxCci6+lFTmzXMb36HypfG9yJh+x9J5vKf8qn/8WqMUv3bxp/k6ZhXSXcCUA3iA4LP7QI36vtAL+34EDP+3n/tbfhg+En/HTfxR/8n/wr1ityXBfZf3W7xzAsfrt+R2yA3As487hEQBOfjbcpviOKSqAvi2+5xuA70hkdYkx4lhOcgwYw9i+YRvac7MDHLZ8O5Y9g6kTdre8pvgJu4MZ6aJgoWgOG5n3kC+gs81w+TzvHm99uORFM7HURVtgI77S+VLahd3JV7h87TlxLfNlTGU+1LoIr5uIwZexbE8vGPhyPGOB5PMhp+FkysN8Asu5CsPeMHbvadkOAIT7EVfxODBUFra9FQwmOzLwFcZfOVPWwtdxv/IN22fYnkM6x+OFj294x3fkLLpKvM20EafdhiR2L5uBhvtcvsH+eP2ZLXsz+/EdsyncNkJnXE/woSs9qw5YjvJ8wHFfmo34fNz/foWf+L3v+Cf+kZ//yfQ/9O/6rT/2BcX5rPD1XBm3BREGYxkmEjKnnbImw6DOyr/XpoDQauq4K9XBHgmct0WgNONK7UbbjMhlxpVHj952rh7yvaYVev8pq66KXa/zqvV1njuttuc7ma7rSG/bTY2b+VxV0qbVkodCM8nEf6rTQfls5K/C0Ex7BvQ4rK5FN2k6v+Gz96Ok7rl0vWqJUaNtvaMrg/ieW/47n0KtzkVwpsnfe7YZ5pSvVhINw9qbFC5KpG46k28OF1LYLG+WRFWm3Fvec3vJtFp0xXrVoJVCx3pUAOdeoZ8UVHKxbU2SAP2OQA/gFMQCWaZvGTDGGj0OLPrvCE7/fTitRh/0xaocxFORxr5PbarHdxlZzo/g7+XLe9pbTL3DR6e/oB1t4iPRPLOHtmnAX+8no71pJb4o1yiTNAS71cleAWOVbHnUSdbOl2D/FpgtTRP1brRx1S22nSapWFoxZi7XlZRXtlcZ67a0DcsLnexyXfFtMp+lYTWbwXxbZ184mL8Z+xXAKbwEyHx1S+v0VUamlc3ecN7THhjn6/2C82ds7oQdqz3tWfINpYx8zyvc/4EIinc9P/nftxS+yo4ZgNU4xIY+KtBtq1WoEdkmvOSzJVlZCXc76oRCrxz5ncmpwFqkhZ6W79E6WRuHq4i5/7R45WTSaBdByFhEbDIVvRTWdcAt1LdoALnl5a8oLTgtQHod4gWF5xh3M8Hy4mzzmUnGVr6gtRe1Lge+VM9cf6vJdGPVafW+fBM/yfbJK5qlDBrwPOuSukCwnfTp2UqK4UUir62tbKVdWDjhK5OWwgbnAimTWsHqIpmWBUE03YOaa6XWoIesScFhBRRVnKEzgariFMFBij7dTU0EJzRoVxlgaZfIvmkSK32mWNE12D8WxOAA8G60YpgCha2sHoCeUAXe5IBC8S4njoQFM+g77YElI3StMC7JT/BulMbu1Uq90i6+itN2t2TxTc2syZQKDlGT/Cx836EGXRJGOGpAlmFmORy/3Ph7+RQotKdolFhMFtFjOTIAOPGJhuzN2pxN0PTNJlNvAOTIpUKvQ9BgIlzTV0fQqBdrGweiPQNYE7F3qyvH9lCEs+F80XBQsuPRnwiWlrr6hhcdOqIvEe2YkF952mcxVQnTSe5HNmMbg01x3S7A9NfL73w2Y4NdN03OfO7g1sopTeYig6xdH5JXu75LfrrxDflKmdSSKomnQeZM2IwXFWxxmuZHdtWmfObkSPam6Ib6gqDq7ZTVz0+nJez2OoqNZyHsjzx1bWKacLxJLdSgHR1PwyeoYTcy49OUcRjjsxn26J6y0C9kRPbRxFTHULGur1H378TXKVf0AZGz0MKw/xBA9MB3RWmXaenxIAnfw2YY/kKy7HjHmwIiYRXI3mh0l8OwXFUMmgSq7vHhvNT6zwGI14GGzeS0EDR7484Dht0ch7qLlrbJu7LbLsZ9xYHj03H/FT4Uvs7ELCynAscbcKztU/g/GAyJkCsgWadmwBK7xDqxVrfHGMUmb1FA3lec6BnujPomOL8jMUBQGhB2uyyMEtRBiiF0Wq1x03NxlRnLR7SxIoyKVvw80fKzUNJuLO2hrwa77dlku6DlgYg+K2MbiPTybQMIoOhNRKuM7H40UZMFZXcWdSIuFHrai8a4TbC1/uTymZGqWVXaFFECQBcb4W4DVY3yuoNRPCsgBxdXW15ofDiv1k58PCYltpS18JUcGOXEKswPmWVbKwxjtWTglcO3kFxxulHGmvAdsiZjzucNanxl45tqXpMaH/CfJrTzPU0Xyyz5by+72GR31eGaCKkZaW+2YpMZGO0BFbVBi2na+eKgtGfwWU4/J96MdpVd8Rbxi1bMdIoNflKOxct147pUWZNVrwWX+UgNWZkEJ7vwfIqzhWBhLBbOLgwzzD7IdVGakKWRIuK8FuXIuLLjpgC+U3FSrXBed5cY432hYHnyBYmEjse1yOXvkrFCg5YE93yextQJu6XqopfvTqbSu4uuohaCb8W2Vp+Eg6NutvJwW9AqSJeL20mAbGa+VY+0H8RHrviqY3XmJqW8NEnbguFbw3l3G1x10HG0PYvvttgQRawf20DbsQyOqbqQcLWbazwWl081ytf5gJ9DNRoTC0+xBveSuOElt8mCykKpg/CfsTzlOAj3HVdJb0iboXDc97eZ2nXjaQGxxaikhS3GBcKLy+0aSjyu5ctxgkJxyNFw/yQsd+zGtc2wMriNOUMzEpjlHKtueK9UjaNhudDipdXfafV7+DPFZZtg3F9vPwn3v09BkTt+P+jhK+2YrS6vMUq0RlURrlL0XaSO6t2o8G/hLoy1ou5Y+35CTl0G/c3cbPBGtP6rgfcoY6bdjO1t0K18Hwnj+TFWwkXW2h62fMaElY9vslzSNjHcqJe873QK0CjD8jHcvqRobYFNddmiYkHZ8IZx1XAVYxcVYcKi55q3kgASBhMDnVa+YaxWwk3k0hTZqO/jkrWDyKusmbtQcZ1WlQ4Qi02MWvlKlTUFR3cchaZzeLGzaYOcjU+a7FonWfIqgmnX8vXJndJI1Acfwbe2DGuXVlM2clGKjzjkoMXL9BZ5m3sgyejtiOvVacsRqfiXrjAabT1bX0oTHEKOgn1Sn6GHI68NKOqkuDh/0cDMYS31LB/Athp88LwmJ5IjBytG7dY7Lt5hbNYVDVKOHMqI09JCTaWl3x/A8lI9IeNnpGWgod+zjBRkf7zaTefdoykv32waRXum7gd4XBk38L6ogxCCE3TaHo1sA4FrQTrwHY0UtSL/z2bbugGizFq+ZdcOjkc7476G7LhfRZ5w0JGiZSve5pVSEHZT/azFH6F8uh2rfNj+OJZnj6sGSMMOZC4xMUwrFHQFUzUxSXrerQuny7eW8gROkstSOz5IevF2s+N+WmaUuK5XPYUw6lNtRtoulZTfsVuwzgM7XS4Sekh7uvorp9W6znCB+6Sagvt32PYthJ8qO3pfzZUxGwzMONMWlaGU2vNyIfTBUn8G4ZM124MGM7TyFYMgH+2cCvkuIO8KvFlG8ga8aR44j/ydL7hHh6H1ciijlgO7Anqk+1OAtNMGeOUOQU9XaIVpUcb15RngHril9fjuhrN1vlHmltcztGQM2OjwBC/5OCI4s2wa3SBH5pNuiO8oVtMFNr5ayrudd3OZ0GghcZYx0nIQA0ji48+xkkd5a+OjxsfdGmqpli56Xa9mxTKyYCYzfLCuUT6IO+e5S2GnzeB97LRkMtEWfeZuVdKe6ToDd2XMAp3ixpV2r7DWGd/lxJva6qnRuDtMmpfM1+vPXQFXP19lSzdIPwzta5cotEJ58czYaVVh+12L9h1qcJN69gULd5dceUvg2FoNP/COd9Ib69XLJLGK67QJgWqDgVwD9t2BuhoNvKsa7Sr5u9Emhn6aAYzzZYdh/5tJ5goQRHtWocks4W+ZrKm16bAZhL/WiCw3G4QYP+vr7NWQ7R2Jy4rLk9i8ixaYQxPBDTdR05Yxace0C3yeXCYnXIyf/uPGZjAGdlwMDB1kTkzqYFx1g4GWcbLCyI77My0Dt1N2bEEISc1rl4n5IunGqsnuaTtdjNUdy7FNxFKkRgvN9l6wPgXVwgfB59hshlW2l1kMU+E652wNl8gFGMKujNwQFp9D/ZXGrpd7EgDmrui6JjlUjNbLaljrXh/unrdkME8Ed0nF7tKugLkVInr2wmbDNS+DVNrTiEV8t0hw0HjyXdZw0D0tvP4CrU3HC/dPHDGBSvdZtwtsM94/YDPE24TJ9w5c2kSXH8guw7tk7+H2uNIWiLSyefm14P7ypnhDeo18Ku5/P4JCzW794IevNjFbu1Qn5HirhpEmUqLICU0Q8hZ2z1TIQCkgPtlbW7ceV42bdRb4xu2iFUlr7CvEA0eTkewE34bItGQgN1oAUCnuBiWdlSFEciN6NJnYiBKdu78UG5pYsMnFQb1MTNZ10Yz4HW2ZLEnNqxgjFdCIcw2rKEG3+TmDMUBruuGdpCIny6iWM/F1Yp7sJq1CeNBWZPbdIcm0bUApR8ltG+QkqeI4ZtpQo9Gm0V9tT0hGXzSQY8X56iLE2mkMlphWIq2YAXJ7cnC70WxKaVyRoz9hVzgy3uruEnzB5YEycpR0TxTADFJRR2pc15ml5UaydqpOqUaN5Qx3RF3uL8uX327uwmFG8oy6c2N2eFq4AXXjbIYNLrMPKpz2jPKuHA9XBPI6Em+jeZMisGRSHEWPQnm5hFy+EieJnC6LT3JOAO+g27hgmGk5MiyFu9FHg+FQ4CXhvlD/hSAmw9FZhYdIKctG6yp1XQQfT3OWvHqf3CZhkbC+1uiDlbYs3HWMveCz4SSlDz4FzGpWMlSFYz9jmwCxg3iZVy8PJytpqxso30rYdXNlQ1Awx9pCw/0uYzU+tUWISpE5JuxjYTV3anv5aEKDKl7IK9SmVH1decfuHpa7m2xpF96mrVbnFZW4ePokhXE/d72JNircf4rdBMq4n/qrde+431UXKBuJ4xyy/UubUJivZ1WorPPEjsdnTMrYfXq9OJHr9S6E49mhNvGIInBbMJdE8TNSWC6FZgeWO6XJD0ACUxfGAgdht7sTruc3SKRd/7jTrwGd03qx02ZU2rQZzsVxz6dyKyxbpIH7vpSpklju1emIygt0aQfovJ3Xl2tM4rQd4T7gZ9pySesTcP/7GF6ujJ8TdA02u1FAM85XbSBUX1rlRV7ITuWGOnDxHdE63be9+qkPsNVl6nwnOa/CDe1TafsoZf+5pdWWQHtawtN+RqGHjfaGzyTjVmanbQYywPqBDCV3WjkZjeRmbC/iSiKUBcd795i6SBCboDT52fi0vPxRYiWLClRc/1AmZIA/r8gaN8hcit0GS10mT+PgrvvgkDhlvqSX4lpJ8ZmkGxCXw0xSTJJoQMfPmrSlL/OutxtGklhKvxca8Pig4oYWTKvbLnCt9pRcbeCiNLgofCxO4QORSqvpHrDTUl0AKOfLVoqjlEGhpWkWeJFavicQawiE72g/S99vHdbK44McxgNBFn90p+a2AGAdskSl9SazteFsVUVmGdLycy/fXdoQhASXIa1iw8WSyYRxV7jX2BV7ekXbOzXxJS+xsTwdJvfySYm63G3rskz2byjfXozdPXzcgaNOW9XBBdL6iLZk7GXVbLG6CU72gYVvugl7UDjREQ2pfJJF7jpHXsaQaVOAqcJmO7dhv9aqCFwcwJB3sNNTIxXQcR8NF3uoTWDARf8drooppbfFikc7X3Y9d64k4WbXlgu78UXRInKP0XbVfAEYawKuWHZfiQ/rhstQ7U26LorJwJyV2nosGGrmXnqBCOWEHvsK36Pw9W5lNBTfqzmHHQXB2zXKo9GJtPnT0zJcpiuH2C1hAojgfPPn2Vhd2b8uU6W1bivlcc+x+0i2Io0G60pG2fXaaatuKrNHfsSXtC1uNO6SMrbXc15TmTuAykU6XLwLUjpnNBn/I0s0ZR92e+PhBU0rVXeyahMorjdFSfm8u7fUdjGv0KZyilukxR6kR56GTDDsLpNpyK2fuJuJmksNNcAwDu5KEnKJTTZSKCVO7kbkq/Knaun+fcyw3H/tASfSlK2dsHJ43fS91jptVdYi4yZIrDKoSq7KAjaxu6AlhFnVJqEbn0TnpENDN6k7Lp/mCqc1IXd/Ac6QAxC84wz3xL18qbvlgqSxM5lSZIhD+rCVU5LrtLa86vD45JVJFeznGNBxY+7MO26UvYLV7KTmteH41E+aqUlaSiw7Lt6VofO9TNv4AzdYPdE8wNQt70lG4KFebvkWm3Fjx6Tj/I1FvcL1B0Z4bpWOM43zXV5smp/Qq+e94fCVvb9gyC6Xam584Z54aYuqzahOmEYb2ExYLtdVTGhcdOr2xmVclkNLA4ybf+GyaFSBms1wGXob9AX7vbbWH8bFg6Wk8k2jCV/cUmHsTizXUKPgVMGbkGwbpsJ2PU8qod8MCZTjCKHPnbbcWAm7odLKfmpeXKXgyzlSx92exo6apjeIY7n/BRjXzXZT3Xbcz7696uxb3pFSmLvoT4HwlXbMFPLd9zUx+qHvxDmD6Fl9JHVIMVZ7t0NJm1YnB34BQT7QEIG8mc/021ERSmHOy1j0R/K9NVZAOSvB4dIIFDCZw2XMkOelbnpmTxjdDZFv+I6yNVqukhI98S1GeRhdPBpoedzNjEb6GYaef2tzIKOCeG52F7jk56JIf7ZE3QBfFrDYQTJfxZCv51UOibS5C1dVE4NQ8vcvwdponD2wyQG7R5xEe0i6qXjn9UmOgK51Vwn3Cb+Q4gg+WRGel5tDn0geinSNgZ2XCkPqt1XZWYWg9gYgOPSMW6eWivhjnO4KI+azz3VxRQszmcsx8IBfay82IbLbtuhcggLws6U8WFj0a/KVlRCtxcqf+RymWV5w8Px5N9F1Q00zz6WFxhE3hXl87BqWaegHg9Lf0te1rhSAO4daSVDtAPdfXiBHpkErt6A0+lm2TtsfO59nMPWWz0W6ie+EV0DuODe8ekqei3Al9i12M9g33RgUVQ4dUycZJ331cKObGA+0PGfsXg9peiSFx0VVEx6Pi2TRBLMN910mQOo77+eB5bnLl81XrRzSis5YrjjP5RKoTT9566CmjMrnTd1YVX35ZCJUZvi4uvBK6H3NMVrFcBRrd0hV8SYSn0nJhSNzoTc3RD9z5aWKPOHnngxTzWUdbgfg8JG473ZgvT1rky32JnXIiJsSnKG7NRnLhUE+xbysQK0XIXxmWr8+/zR7wTqOaa4i7E3Spt309z7xhLo8tWvEBSBBC5qoJu4fUfGIMdu3eyfjCt/yxPEj4evdyvjdd+CHvpNXHcM6YF/GIbelMhjIkWmGXNoGRML9Jge8yYc7YblaH8udxw1d3T+oP7d3ilWeIgbxLbIbYQwyPJ4aVitfH09wcYuI03iC02JTVU3biqeF6afT+op2kTHHTZflQ3E9CDEqHx4wZVWCDUgSs3mlzAJ7s4DFRY3sVDwjL2iIXZubgYRSuePGrGgnOhtpA2Dm4+VLtwfLlnz2q3tK3TVz2lAJrK2HHqltmtxsxLa69mJ3vjRoSb6exhWqUcdC+WXZzWSomR+nhe8cxVpg7IT7YfbFIk8LqPiF+ScJm4bNr01OIb1esg7CUNPOYNCqoYYc1qcVp9h5tRjjOMBolEHxBqhdoS/eT0/keRYbiKhduUx8Mle7gN9oFx9bdDKTpVQn4TkAM8y0Suxuny70Sk/P8xbtbVjNyvC84Ea6/QY+EHZzYkFtt5EZNZ6Ki0Q72YwSRzJ17Ka+07t3rMXd4aISrbS8enGCaMbFDa+oDAXrGCcG3RRVeJqGy9M4p+6QVTEuZWTc74VtW5G17inXUaYqiJASajupyopFra0y1wPfpqg0wE3sRmC165ndGZOPlld+jpyTZp0wzjczNWEqsgN7O6n45PZgpU4bQRidRXaS6k484H5ciuO9MeyNNYxmIxKDDRcTje3mRdNvCLXwTQovn5g67q9lt8OxjW2V68byUvjYUeKZbYZ7GQAHVE/DceSkprQBx9SVR7jWB3YfpjPblZNQs+0GOq3nVWnZZgAHRCkft5VQk/ltpPXdvWjtrc+FnjVxP7SlXJ6l0Wwr+km4//0KCvyUufzj60yArQFR35/wv6TfJ2E3aWlQmYbPBhSav1c+Aj2OtSsn65naf7OwVUodH3Igc1e+7VnaW5nTjvl0XUjyvKVthv1Rk+7G+FNpy3tUtY75dGt+gw0bn/HZgfEurT4on16mHfnOjSUBj+MDzB/VIIpuJhnTKOzi3E+qc5L4qM15HfZh0FVals5dTLissZvThG9dLPhmW/dj1bDj0sugspNhchGSUWr+wKBXLt1Ou1U3y6WZv0JMtvznk9IsrpTysGy1rJm3y6JmbM/gw3xrWVP3PW+NfUX/V58/xzhPuN/q9wK7eyMdevA1LcWNUo1jeGqPwvJS0qFfTe1dOU5q3ChPy3vGxevnD9uMm/SP+NJweqd+hIsXfLfxlQ6J7oI0DTS+evNU3mzA2MtXn/swRbeGNYdYtNH93SjbNsPN7KeybVg+pl1vKqbOsl7GDc8KKdU39qOSb8W/XWbZMVUT/7qsK0jQdlwMeQw79/IlbZWN30nwn8vHfNNGMSBc2Yyqt84fG+3Jv4f0E2ZNOH+i475fUfIK3+vw1VwZcSrwB74LfX8HvvOdfA/sk6GyIqq4OLCVaSMreu5Wy5eB3pi1pGwn1u7Xaastbx5PLKXnR0DsixLj9hX9trTiMpbklTYmUtKee/LNmNS02tJenimbyvelaHt51A3ORCtbXlu40sXVM67UrLvMYzrJArH8QNupmuizjcYuG9qOVjev4S7RuomfZSLadH/xM1rEx4hp8yN0of4fSysAzlNj42i5gszlk1KeNBD+zNe6C/r5pSXQQdtyZ7ju8Pk0c82BDzHMleUEhHaWlowKu4vLdGNpddEul5mV/oBiXSN34lQxd5x1Nf0b6Sbi4DImn3eccQW+pkbgjjTu5pNuj4idT8VaOV4wJ3YLV+oN6kdf7b4u4xufrQ43T4HKGW6QCYHJV0zH7MLkckjUT+7YCuiiWV1ungc+51piwucC3bXx8PnDgrtKgjKQFFpm1zB1A02Swf8TqmlA3x4LpmqLuyo+yzjYgUL7EBcvnnFRXM5rshX93Q12X4Yhr16eR7LrVl83fC/zI+YXtNFsBr3yXRV1yCEBoyN2a2YFJM6yN0UVafPJ2WR0zMz+DFu8oRZKzZzTgvguLLdYqgshPuFueSphNzV9WXwnLHc3yHNIqwV/s+R5g6EhumO5YdtBedVzvIyDltrK5xd1+Hms5UDo0yDTBYyvCFQNR7FcCt9lyczna73+ogziDudq2J6I/0YVyi75rvLDUF7MNvmnUI5YOnMb4ZsF5uDOfIUdUVcJmVY0z2X7Vffumn+N+0gbCv+UgOK7gfuAfDLuf3/CT5WJ49ebmP3kTwI/7W1dl++vATLGFthvy2EnQGVOG+cIaJJWbTwZ2siW8npjvpU9N8syPvC0PF6Adx0uH9HyNchtrMHlY/D1OM3ibQZmtFUd+SXL09NWwibzAz6fQ9vLVwuIXVe9PIXPNe12w1zXeTxr0ZsyI2dGQhcjP4YsvDCtVaAQ3+5nVD4VIPxsrSyybuc14K6PsspzZPk5rRrboywkpEEK41MuMGETWxXF5YuJoiV5Rx68dq2qIs4XHEFrht0umxCso5+HkC5NRrXyZb+QKJ+m2vN7YurXVi/adS5uuQmeYST9mvuV95ucYeT4qv2QUXI/SsBn4dSmiFe09RrlIyZ3qwQqh51VWBd99Oua/dwBYNc5E5+8JjmffUgh4Gv7nda7S9ao19caHK3wya4WgZPcB5vrrlAbfQIX+bmP6QsuKvZLpDwLx/eCEyRT7eoFf9GwfHRlpIf4XADFF1hBjdtxsWV8JXOnJb6B1YM6ZIgT3OimlE+qjGh1MJawsisLUCKYb7G9kP8Gy3va1I1Um8EFlPW8Y2o1ZHf428tbxYgllB32mcoWhTruZ3zGxQkx8R15hRyKKnLqZr9pkLHR/2tfLDOb6Crjs0nEOcrjLnjcN10Dp09OTANH2GJ3Gkz8fTd8zhJw4yc3U4qptJnWLVfg/iqxLYKdC38lvyn5Vq5FkiKjY/mOubrROkqp08oRV1U53rLN8NTv9rmWzd4gJ1sH4b5YbdkF/HVhznXzAPddw18M978PQaGvyz8+J3il4ziqoSAwjOdY4emo6lQ7krEfrLa0/bnLtegRK1Cx5KVNxikI7GwLg3rN+ypok+lyJ6rlFeXR9nzBtz8H6azKjZY9KHjX5U5ej2cbuRnJ9j4Ps+uWdzm0/UjiTkusNQTXbBO84wkqIGp5N01Gg9FWgCwg1W6ME/I7JsleGl+ewKRwGj/pOATJnnz4Xb86dxt8adFOFE0iLwN/ElFaPqudmMH0ump81enFcySDQGmXjlKmaCchczYYV7/ntA2PxIdY5OLJaYh2TYg6Xz654P9yN4+fk7tGDpe0YgrxSa96mdM1xmVW1PIxn6qrgK0SOC8ufx04+aCOL0GoNJ911qDjMb0fsa3jIm8jlDxLz5hx/wmcqxI8geXUB2Pkc5UWFRoe4eY1Lu60BWOHkpRuXyHmoRzcULJNzHS9fP18XYWyJojsP2M3Z7okpDBuQpA2dK/Gi6DxX8dqac+l0wAjtiWfNfjPR8k8SMZSVk7KkjU+20VRXa9UFsfFEbs7KeHxKg+XJhM7phYZqYIldGX5SbwFHCe10ib6ws7PEuJtuJ/lyyUxnyw1G6KlRob+4fZqdSwtb6Pm28QksYVxf6Ll1IGzp3tJ7FgOK4N6WbXyAS3ewcpXsZyeQhdKuiDdUInWQiZXyhfE/e910LVw+1MhfLXLP/QQyB/4LtSvDFqv4yOIeWpSW+9vq/Ml2zTYoytj9AgdBuwrrdqtjqsRwrbWk3ZzwYn/0CCSDNbmqOCPVDwfY7CMMtDqBW2Ro38qoNMWwVF6Zjn8jZaWjc2U10C7l+8+/2JjyLpLk22sfdJNGr4aH+eSKxKRLliZRF+MqBbSWgdqTY7S0s8yDJWcnPWkYwFLedjtUYIv/Ja/i8mkGwEwraYrhnZDX3SxCxmTtTYIcMcQofKdSDdIvzDFsz5RV+1O0XLboKiuWxXNxqRxXD0kP3IqRrvq2o+Za9TJ4um3eb0ror58VVBMsev3cq9U3s1k8+quohAoThzxvNItOXLtcvVwWat6TKvphuJX269D2OYYFO6Hq0SieQh7uQq5K+MSb13i4QY2V0qB5TLpK7rvWG43OZDMui/usgDe7a/0BB8MbOTZ/ytcyQfsDsBjHPGaaKBSHgXQbUT+ATz2cx4NFjZa4huXq1xhaZfxQqzyruBiPk+4eIn7BcsqD72g3cpnP/pcaguTTM+Ud+JrjPwCiUuaKIzTVrwaIdWb2GAz2GUrFwOyfAW7Gx5Ddbe3LCKnRaYVep7mq9VlPbF74WJON1zn7koeO1qDbmIhMPjQApfHKaV1/G31m4t2js+Oo4n7iZsZl+6GieWOdVDCtuC7aOMcsnF9Jxxc58T8eWG7y+Rjx4Ps5bsVeCG14l0W7rv7O4hT4u3yO3gfcH8VPXHf3QjPyIaX6WqnYJvhF1idELxb+2ebcYBw39qh77++gXZCddnXwDFZZXW5VtmtHrPqAFTcD8z+RsPS1U+N8FUmZiKyJjwA8JN/AHg7gOOAvr1B3r7jVpH8a1FA5dKImKOvn6OotNnaEr4arSVTQxfB+qtrtGN51s5kx1Fq/5LoJ5WNgj61bsXk3XmhschAW3byUfMK4zsYhELr5J3PjXF+itb1RkFaecsAofPitFggVHWjRTcbL46DNL66lS+SdxlxJfMyUGlQbdBQ0kpOyoL2qkJbfbbylbTFZXLJfIy0daXTjfdxSNBxt4hULi4N+D1zv0GMadkFZA0gsmwC/xByipy7dmL1s9wrYsysUj9+rIAeaWTEdOALF6dElZLblA82zLXPzqbVPsVnDVaXzu/imJGSNfE54O4jZsB0lcylOuSgq/KXkQY9G7uMi2HISW6PYu47OWVfg6nku9K6+4o5DoVr0LlcMwWQmG6SjOQCGuZX3NVlxb6HjImNK97O4cG7QObjbetTQsFFx2NFuZ032kpJS21Dsq2VtKh4PLmLbyu+FFfwmOImWL3C8nI2idt/687OJ3CzdruKscdM+1GbocCIbUIyjrjYxOt1koszSXxnq7o7ZiNtfKXtBF4uy66MD635UjuqOwHU5rqMyTyFui2fbDYysY/dD1dscYMEpiFOTAPC1iDbc2liVAelyzipprthx+6ATKn9v5SdZHI+ge+qgTq+e5cWSKhRWaWrfUfRZp0nDojEdCZlIluiZE9P4yPq2OTOe9U9HDbF4O96WS2t1IT74e4Ou93QbOApPHHxUlpa8drRguVXuC+B+1XGVYL8y/Uu1BgPnBB9w3ko2IW92hvG/bVQmJMuwbtkOd+srK0bXuI+Iq41jFcoQUT+KgD/RSzv/39YVf+6T83rK+2YCeTNrvf87jsAA4S3B+fNOK43EGnxPJClBBlHVmyj7flyE92Ksj3qkM+W70ibcFwHE/d5sVzaftylHUPvqR+gDQNfXlzQ3vAp8f5YyuNK2UOU90rY5g7Dg5KSyfRMVjPa0bD7mnRs3apQikrLO118vXHmo0EZNi9zqmxKEQR8cQiIz1aErrcm8+Zi2boPDxhCR/4sQyobQcQRD+K0krlF5VEckCM1LepfAyIewuUgJQdLFE8uK4UNfIghcQXxmlPm8GWjRX1eV/Y7beaVea96VtcrctDJfFWs/lBpvYZPwRpMwD+K6nw0XGFCRs2hnpoBPiJXGtAFH24nR6F9AknGMGKz1IbEfXLDthvs7s8z7U2YojsOwBcMr+0PM38O9wvJYH9uaJ1PH2Uh+3bo8a74MsgxGZZLXKRnwonHeNxYXMrIbtFPyOQROstQvQK1Q91YB9rLt7UNSx55Zb6Molti7t8CmtwPQjVfR/88R/GM8PIV8WfsLhINpkwpBavV44RfwDFSW3xPnzmXOqF4xsVARkn8yTLNfCEduylv3aahhG1CLuuJ+0s3m/8TtEi84/6J9R23yBtX+djlUp6r2Qy1DYoVn2sHo72xp/XvWLt+VcUA6jdD37zsN7ifMmqJ+/bC+l7oV+Es8ksA/CcA/Amq+pMi8od9Tn5fZ2ImAnl7A06FfJeOHb6dufpeRgrNGAMYUdlf+WePLox0BVW3XArfFy5p2ajd1XkfSBB4TemmvLSVpRiq/tzy7nw2Obr6Wryn6aA+8R1pL5LcuXR4HgwMV0i+Q+ic3V2y/WD2Tfre7NQhdUgHxCrZnYx3fHPypOFC1Q1hPug+MLDMqoGiqYSmd3AaJUm3mTCF9Ze7w1SAt3ybbS0marPwPKBA9k/thnyNTHxAkCedPB8e6UgeETQZT/WVQHP7IDg5faXYhRC1G8WWsKfJ6D78SStBa8MgHJ0WNW9VjVXZRStmYO0uL/VvyMCMbxpRVRRa3zWwr6FtMvtk9F3X5SbOx92x+DIRga+g8y1ngncgjLSvQPebM321GSbfJwVv4/mAAtbFDXjA444Ear/6REmRH52WTnsPXHdQ4NTFTlGcoolypacR2x6nnaK2TAZ88sHpXXmfGnI1XAybgfb+ip5Vv+HKzsN3uQrcbdjS3pNss96a8P5mTB9AtQ9DLvLfdq8mEZrwyoqT5Fv0Qxl5G5zWGnIike1RUV0mcxJHNkMI35DxmW+t3MQSQmthmyE0mVgvl1fk+r17aKT7neN+Kb/mhR7hBhldsEwnAD0JQ0HYDfg36tJV0V0G+dKMivsrYdrSHVNW/GltquM+Y7e7Vp5wzM0Gr5SPl091eVCwLeMbK12mU7LGfK/O00nB8jMWKTvue9Pjk0QKBX2e95sNCrP3Xyf8lQD+ZlX9SQBQ1d/9OZl9vYmZzcT1PLF8MzS1OllFdlcBdbKSsaIsj9Bkq6fOp725xQUez7ZEHwSAgI7GGpc0VCAdZByEnd8/4nNHW8WocZ9CexVuEnyMNgGsTLIeW0D4ZKJM0Lict+W+t8ZihtRXyrYwkd3yaUnD2CuPWXfaEieFlg2UIzz3qqs1kXRF9Ag3Z8nHPsucxqINlnyiIJITsTTCQq4VuowIsXLvJDc6DgcCxMqfszxicJOV6cZcIpekXXKolSELxecCXEaNlFiDJjljbOcfhRbJGyedzxsE73b/Vr7NK/G93hatu6FUWh805CXG7gqZOnFXE3ddWoMMkpmrkYx40irxoV20oqv60dSPhmtc9MZGkRsgtbyumGwNMRrhRb+ptDKIweXNgVm1IrnIMRTrojjj5OQRlt3g/iVkt/7I4dL0PIWpF20hZJwUYLSPeIr3uxv3xSu+/Gx/I8pHqC3dJaYOJQw8JozcYX9F9EtLStpLm9Exluqwy15A2t443vsCEuZ+xws4npfTeltOXJSdNjDD0oY+st4Sf+kqfTsvVRfd8o9P7FhZQv8OXbjonspuJ9KLQ0p6JWw7tLrDez0e4jf2Ei5K4vGBRF/PdbnBJ+6z+71juVsXd0f3ZrM+O5ICsEv/GwTAO75rGJ+cc1rqE/PddZHcVwOftMlFuO4upsjPHbRuGO3gU3H/+xW+1o4ZgD8GwJ8hIn8jgH8LwH9ZVf+vn5rZV5qYAfiOuS2KGFAK8HbAL9oIELlaelLsYNae+crlcj2zyF59jQ/7bpd8p3ovOE8JGlhzVr2BS+NTAJnZMPiQjIXPaCQQxqkY9abXqeMF3we0U6h6nDLeZXQk2MoXcW00I628riP16N5Oatq8Zth5NAtBA7FLX3z1sxC+GjmsZm6VngWMC2Yijg6Qu5H0CvDiX6BkUVWwWW/GAaD2FwbkZBCVootroOlrRUl1izSayHWsTzfXWf6+ttIvJeFe4n2bd3tTrZNemVaK25ErNh/TNPm0c+n8tD6YpkrdB0ntrIIcsZtz2kHxtctyQkXT9UQBiE1rB1qNgyW+qnuuRS1zYVJ5y98418FxRQwI7GAJ3Ki7G6LqSW43tj4tPiU7rTypdkX2qbXijU8OEkAC07cM2JBAWbB7wuMLt8LA1NKdOyB3vklbJmdl0Lf+u3W/gZaaW5OZZWyQ1PCpd+gP4X6TI9o2Gs+eRrDrZkp8EVJGeWgzpOmGZVx4Y/3Ssdnjuk6bge02wTEoXLmpbfCi11Aayl+brdbkRTIzC2htK45XbiPY+8BpR7zk4ni/IJfRTMMXiAjYNX7Dbv+z2cSUI+JJxpIm0rrNqMKGpjT1AdG4YKmlWvkQnpc6cpkNf9fjuSZT0TaUdGOYx7jYx4kmj/o54sBBXTtXl5jKB0UH3LfnsBkANLDbcS9lBrTYDODNztOtSdsRtPb9tMZ3tXH2l0H+Yr5NN49w3599Ue6ncPgxEflN9Pzjqvrj/iAivw7AzxnofjXWXOoPAfCnAPiTAPwDIvJHabmS9fnw1c6Y2QeV7FKNY10AYkEpGabf0zMTxy4Zg05eHlCX6pqlIFzpgNVd4QqljZ/KW86nibi9OFjGhWBTjY55dT53neeBHhl/R2N9Qdvt7UPai7Qb7V3kQLuFW77V1e+aj8bzZS8rLrf3MpcXbP1GWe8VcDUQ62mLAeXmyc1VSs7UDvVGAs0KdrcjEmWTXju46/DhZv+WF7mylAFUSsFuIOvvWu8Lvm50L2n9iXzroz9KzSvEcBkzja9QBo0izgYcrnuLT75C5WeNpFF1d0KBD1kqLmhxx6rHwIHqXlkvAlmDNj8gr/aPP1t6pPZp59DSfZK5CVGorP5fb4SK0qgZuzfaT8PjLVhdleiHWJeAcEe7tX9pffZzcJEujfhoXpPNeLpKP2QzBvt6JdMNmu8Lezfayc6fnRBcvsQqfyy5XeJwz17HtNWVMYfKXTvj4ilxiYWjjfb6VRZAx6SsmnvDWWk553jfsDxw2hhdrYGo2YyFiRVZ16+CxjtfgOhXbN7wqKV819id2uAPV3u6jncTn6rnAfc731YOvpUSgC3oaNiMZbe6htwmNTtAuq1yL+rq9uiVk6eF73Cfab+iq+DDoPjsHbOfUNU/8TJ/1V96FScifyWAf8gmYv+krFttfgzAv/IpgnzFHTPfhNbYMRMA5/t77qDFfiz3cOsQE7oQIvqKVLpddZTwfOSClrO2oVtfBpUSnau5zUZwCAPTaJcNcdonjJO64SM+d2B7Z+WvAqnmEW2vjrCL/rBZhvzdjxGWwUfH7U77oHxjMRvibz7jfQTU66rnI0DboosxgQCDANzmKCs2ZqETCRnXYmS20dGVRlnVQkaSwPb0vHa9RBHtP3pq0Abob/qojMXkC7cVAQRKbi5p1P3DqbF6aPo5zZdGLDMfgLurhSPGcrvR4Cu03eCr4D7WV62Tk0W7fvhtVnHFtALvkTZ31o64CQvACazrmO1kgq1Or/sOq0OIl1dMX2IY5M4jPgg7ADtT4K6KCGMfLpLUThR5TTQgUDs/sIyruVpSXm7819O7TRpZRtO1uJF33Tjtl3JpoQ7qz94oJ+zufZTx2NM+gcdXwBf4hTF6SIwHNuMmK0q7je0HHLzERSXYeQb3m4wfthlPhEsPiQH/u80o7YGaAcu8g2pridrSKr1XxGRdFFUmfxSMsu5peURBSwSyqyyz8bZSL+uI0hOOx9IK2wFkvFj/zCZYLwmSQX6/TTFkinblHge5oBOy085+2VWkek6ZbLni1OKJEB8nllxo4rr1RY40SQtT/Ur4RevnsyitZRI4GfZpYR+XD1S+Q2B2bfHjK/t9V8qvy184cyYeC2Ji48cXDi+Dfd6EXdYXHlcsP4JvPfd3CrsfnlA98CZ5eln0vLEZGu3A9VgWrjabUXF/2S3GfZex0vaLS7+1cN6eH/qehv8VgF8C4P8gIn8MgJ8G4Cc+NbOvdsYM3/mOjRAP+H2xMeSxDqeOQOsxR1MBOt0KOipap+qDWMAaHtFxvvYsdMXy5jrD7IIW1XASGG6rRhRX3a5yXMJiXdIeN7STQe0Gpj/TYy/fZmwvaNEeS/mmBF3EG910vl2vV+WdD3R7Eil8o667KyNx6uUrQpctp+lchNAvrYylsWq1L1taN2HWa4jv1nJaO0lArmcb1OVyQy1a6u8Qoee8OKLLzPkwXx9T8ZmEXBlNc8K68UmJp8gLKTwtyH2mnosKWsvrHWq++0ybcKKOOeB+v0qimhOjOB/W9Why+nfZeOU39v8s33B7XWYSfgWzm2E1TZ448WaYdeJc33sz2qgrG2Vy+U4bheZO5HqzaI848eBnW/0Q+Bn5tlVW5DXKK66NKj8S2uC89CMfPDMeb9hGbY5oJzwu2HCDV7EDdZWWZQ6coOej4v4l5jQ+0ZSZT6eZcFGIzRO47+nubMZDTOVIuXjcsFsqdo/F5UitMj8qX2TU+HSbAdKVWJ9p0MU3ukYDmgpcBrw6JL1oOE5b+FDMDa1jSMfuGfd5gmIiHkTr8hcsd6xruL7ZmwyM5ctm6Jo4XaVVn5T59M9PfjlHjdSqude44z6X2HOiXHS559XyOW16TyhJsX6vyeBqH7PNUNYrlDSm0Ymc20yLoALSU0QD9xftuixkLSOeeq7FSznCYrDNeId/l8ybvGE9YTkubcbC/UW1OBfPD7KJXoZvNSi+6hmzXwPg14jI/w3Avw3gV3yqGyPw1VwZbTDlH2MKw6pQO6laJmU0UIsg9n6qiDbY5LTrOQFgpyUZL5LUZU7iJUBCie5ycBb9N8uo97QQpGtyMz63BtVpKc/IW/e4gXThjz1oF46Iex6+ghZ8b2ScddMFofguA9MXo6mpr55u5NPbl4CXObO4WjbMVmRNuwWpBKqtViR3VcheYVP8xkaofSN2FeLWP+NzMTYofU6ThRXHaL3s3MyVjTrKuTDmC6a1p9WuXJOAf8Or6EaIlv6yTE7r8guqbiTydlqO435r8SFAhR93I6GTdVF+lpEZ8yTNr9p3Y5xDEi35F8wa4ppG479RPqJKQ8tuQnteSStURwpu4KuvfKoBpFbimMNYxuJG0QicOltqpD7ZjahiIwYbQuxKpcmATzf2hprnTDsybLRcAY/Javu6wu6Jj/1+ZDP6Ua5Svs6X5C547PaQzlgVOZxv7yzeztqlGdwc/e/Wbvqz1xvhvrog0Xb8fFGmrefeGlZvQvePtiF2l0Uf0a5ddl8Iq42nYar3cNd105vfNggZzjl3fK6UVcYL7GbJWNV8ZsvLG7n1vFxue2D15Nl/xxm+B7eXt1azfxqkTHBUKV3imWot/2oTiZ/cFiabwa7mR0is4e1QaAc8VvjCFuOv0MKDt3+Pl+hD3WasZ3aWNZvE/TvKe2Uz0jqcjRZUXr+t+FsNCsH7V9rTU9V/G8Bf9KXy+2oTM7wdaxlEveOJXQW0tnAFWDc2yoHeUqa9iBWVFiKGELG6IcVGjwaeV8vBaRLwIiJAJRMHSGmCVTeUYUjCQCSf6NQTbU/bEmjtYUP5UI03PxeUvabtfGUqwxMy97s7IqmnHfId85r4MOjGoEHHcgVJieO0UhNO1L6iWC1dMTojlvGsBz64J74+iaxsArgvXRmbchScbVXQcj2p7jClMbDeuqtm4+PZn5bAziUjD57nzp4AcfOiX1kvwiuvJ7lBLtojJpis6zQu7i5yqsaNX2Iy+W1dfgU8d5MjaM1JUnPtGJA4HwZFuJp40d21xl0XD1oFOAEcsVWocb38ulOrVArUaF3mnDa5iyTsG2V235ZnG7TpTsn17XW7XGfWSu53NHe+vgvFmyJoUyybuinpRk58J3LZ6/750Fy0Ii9rJ/FuFTJquPTr1iGpWSrN8iY85vS9GAXbMGHqNmIhGR/REiV3MWb+2KxV3O8gSs8h7oT7nu8DmyGd1ui3NafhOWWUam/0kW5SieyWXNrKjX0qumFMFSpDz+vCDT2wm2Xt7E0ZZQeym5tejGJfNFzL3TUt3Rm5SHVysu18epzAbpXuIlZ7U2xIUYd5SxB2hwSBI60Lai5RxXktTxt4TC7gWKgXEyi3EUq3NsoRu2aO40J8XdXiKK5a9Cp6xs6W3wTMC0Dsvveuijc1TwSjd9zvzcjxFViY+66Kg2pbBZUWjTb0uuzN0o1pVXIzXUyvbhO/G+3RS520ud+HiDsCu1MQx9Jrm5HjEHdpV/FdP68jvML3IXw9V8Y37wWEQtwDFXwoo3Y6NMMOTm+dVQZaNm7dsNsp1u5qEhaugJ83Y3vHvdCyrgBcsyIh6kiPXSh78bSmFWB9ZSDFaeXrumEhWuYY1DzxBdkxSjwZiVFmQUzKeMAQtH3hkZ6LjsOfmpJ341fiuX60pkOtk8WHRzd6oZzVZoVOP2/uMeiuJjWuzuaaIHW00nQjkLhD3uC28SXiMDaxYeiXBnSjDi0yCJUv2q6kcfL7MdxQ+aRmiUB8MXdlbQ+npT7lyCanurU5IZ7L5cMGNVjuOgdNBg//no0q3iHh3++GbMlgaeXAe5wHEAjezfXP3oWMNkmz8q3ByLHKDD+TddoESCF4W3JYahfABzIHDruEI89zvVsJDst3cbALn0WR14AcsRt6WBrnc1jc+0oFgeC7Rvtmz++y0ko4MjptdZkUHHbmTmwg8vkWOgY93mGp++jRGoubhRicRPOoroF6T7vhXmSUaafnGRdr5NZ9L2gLYy9/xy/OarNzF7TEyHV7h6m3NqMJIpzmKdzPjGXDxWu+0nBR+2UwU3rLSKGtfIPNYL6jF47/bDJX1wv0yq113/C4TDD38tTH3bZJSpSubzbZsaKVfHifsSwCSOpbSvoczzhyrgk1LajZgL3aAXaCTGn9OIqCdZ6LPT7pPSXLxlgeWGC6XLtY5MpoLpPku7GQq2FqWAmf4Fh5/bIlJdwXx1AroLLMyM+XsLuhTxx9MnoWe2PX10ujbTYjvy3qzureLRePd3sveuA8gvPCYeFrpNJl/ggnSLM3Uec+rb6zGavs75DIK1uUT0K/3fAVz5h90fD1XBkhKL3FLIlG/B0tbkFVt7QTbbdiV7TSnu0//nozGplv2aYf5WjPGrB4m7bLzII/k5aNLA8aCu0wYCA267dc0F7IcUvbhBEMAyl7Dlc3pbQXBdzaUV/u7brRlD1caa4GbcRg56NgF564fIMtIxMVq7kis/wmc9fFkFXsUK0GtTX1FafjoGqfF7qv/86Jd0tDRC6/8nCCi90nkZmv0BMXk3vgtrDRunCf6+bus8ZY0ashXUV8FygTKNgcaVk7wpBWqKS+myXaaTVoWSvu8qQ4N1qVrIMJG9Ndal3hb2MZpLtlDi84j3dTzeGN3Yx80vZV95T5c01zv79BSA/GbKZrcSPWYasolEbSMYXzajJumOr4PODihoMbLT3TQtelLnUv3/g8CTE8z/aGkjZYnHQUtFKju+fEht3s3tbc9Ua+G5g3vr0jBPZc4KQgbb7bjMJXB74sQm80NXG4aYvjL2iyVHr+4NpIuYpW09TL25o2T86YryBVHNiOpmhSVbEFQ/k2bEcUd8TjHSfTZpQMmgK2CWmAhNuxbHjukh312XJWoj22FE7T8Fg6upE7IuPx3vCiIOkNJDF5FOsc1UXdbUZt/NXesPtp2vT8MDXrLePdFVVoxl7sDe5sBp/Xq7R5c+O3GRRf9YzZFw1fbGImIm8AfhOAf0lV/7yniPiu1dVOEAPgWHHTBNVxZMq92dLEJxs0rEaZSHfwZj4dhFSpkzf23QJRuj4QAhVnEnnRVB4TGGZaRLkK1VW7vKJl3fTBBAsxFb/r9YHM/dWYtpVjdNlraa7K93QfLbRq9pvWHbuwLM9Vhq1i+qpm8qWMJp1PypJKm6SK7QwZSGdu5dUN0KRAG2CopFtYGBtNvj7xcmOmaWZiYGDWVZqWtOTp/8nrhNf3bTRXh0mV1c146c1dIQX54VDfNTtttdRdCH0taLk9LrfAw4hPu8krd8KclZSPcy+j6y6FYjKfcevkqemaIiFDrkBDnM8qVd4q6XwSc05T1kpqa5ua8HjGJNt3RNMd8LT6OoQHhkwrUQ+HG+agReOztHFI0n1KUKvbfcvb2kPseCidOUEmiKHMTg8Ayn3CG6KU1l3lucKNEds6zyxHtRk3uOh5tyKMaQcZp+e7cFm+p4gbrb+aoAOY8UqyxmaDdc+3vBpsUeIH89Ww+yN2BrHu5ZD+c6hMQZNRg28M5b2txgKVpZRBf8i0Ilqegd1m1LFMVboP6Pu45ISGe2K4K1rdpLcB1XNg6loYgsvWbJ+6l0RgkJoLN9sGwM/xhR0RWS6XURa7ETf46lBOuHnKNkVYPeM+ypk5mG7yo9dY3wxT0CVLEhMfutoDwGE2Q6J+Vz2RzaD6XvZGbfKTbumB+0i3ey+cy+XyL5uxPDmgWmjja2tWfymD2RtZi33udVI9PLy+us1A4L5aQ6i033IQvOvxONkPQPiSO2Z/NYDfAuCHn0ot1EH9nY8CtqWTimSTgQ1sssjc6u4JhsBR3vGvjAfz4ZeSHTJgkrFxwPcuUinXZPw4Ldm4Ynee4cO0V2kvyr/ZpBs+V+WTKe2UFxArm2XH4gHtqIOnZUz3jUdpy4AAuLO6N3LMaTe7L9OzGyvSbB/QZNO08UPKWJNKScvdLt33pTYe0JkysGNJGlimPVyzZghPzhOV7yHAuxscuCf8or2C3kKLdMWwz4LGyqXL6btA7y6v32Jo+LGt7CO/V+YfvfWxiki6zggQB7Lzt5dAoXrgkJNWrF0zrr+cpPq194BvtKxzZu5Ec+AN5sgTK8NJ62mzXg76CyRfJdr0DMyJtteeYsLW54OXz3/XH/DDeQDEJnAeL89jG5R2+Ijvl8KNIZ/Pob3FmUcY9Gw+H5FxoqVXDxFus6cSE+YNND/IF7jhzZg6H6C65nOF7WHAr2mLlCVukLRjedeoZl+cnHH8o/BdcL+lMRcAfac9PS/WTfCeaePb27PFpqXw3Z/WqwYVO53X/eGTMqE6jEUhoiJ7I0ibkalywfFoE1IXJ2yGVNx3V26Azq35P8/mzPO4rBuBny82l/Wyd1QXJBn3fRfKJ2jLRpxx46J4yVxPVucSufq539Volp1YKK3m2J72LN0g38D2xh3R3WYsm9jPpaXNCI6hLbYZn+8v8b0LirxT8gc9fJGJmYj8fAB/LoC/EcBf+yQVnY0iI0oTHIANSUNDzbRBUJBMwFe88jC0f/l9p+12MfPZDCb7sW8lTCAKQCJ7BGnPQ/aFby1ewdSO1aX7lIx2Wg7sLlJXrFp2bIM434bbOtFiq83gPQ56qFyRZwujHnUTveR3KWNZBVeq6934sjvFMipd2cy0uRhyYaTS5MSQhrHqMlA81rsYKNt4ZDt30J6jWGUMo5FWkP1kat5lJxOKfRRxPRbiHTN/m4YcRcVh5Im2eQNlGVhYK5/aaNTNp8ahm9N2BbO/lO+16bp4yKXzK5hX2nMf+NsO4zp4n2kBtUHpUdyb+FL8WJW20ibtabpYB+FPM+Yq7hJgVybrEXIX2khr5YXvgq4ppkZ79WcqX+FD9dL1/AmBW1Xkzm2t9KdGSyDsLoUVUxOPQzXEd8OCGzye2m4Vr9qFO+yeIDigo+PdFZYNOtcW17F7w2d63nD0wr5cJtOLdIOtStY7uO+66CBf2+CVyJmSYm4qMs9CoQkBYOvfF0YMmd5fVmxe77Tx7e36skCgPiCGRZQ0s62tOxYzYxcuMw5MY2aOTSB9KFHZ89ZeldNazoKcPEpoJF3oLYEC0GGHQ2q2TRncRA6iWJGun7QnHff3TBn3Vd9DZpam46JPulYStUpquO+YCqPVpD2RnzJxB0JF0sJsxLI71Ub6ghrTgnB/9X2yN15+e5E7iJ3vZDPc3lqLuXAzf4UvG77Ujtl/H8BfB+Bnf4iq4y+9L2GNmsrj5cBgjVdq3s3Q7aaTMpOd9sqAZXeR5LtZyUbT2FUZCSwnvhfGued3t1B4ZXCZ16Pzk30wcJVm44u9Th7SEkLHgPzYU1/ZuTvdXBViLp8JcCV3EXjIVkHWqmU/5tnT6qXE11VBbZPa16yCrsEc3cXuqjb9XTJOPitJnmvrPW/Jp8WrWZvY+Q0bpkvDfdcUtYwS6sCNvxnm7iNevvINmMbLXYXyiGzm5SlV83D7QeVR+1EPo6cbSqVN3biu2A0F0DjIvmReA8igtVS8L5YrpL4DpfF8jLSe95LggODd6+hTQ8G2NgRTZEMT1IonnXGomNrxl1C6tTEpciQ185ntQBsoHXdpW9zER+7TjoHVRn+frhbWRYO1B9B+LctE+wj3E2ZuZRyfH8nT/7YED3XFQNMzH+3DwO+qbT5RCN9lyvzrOOWyeNdZ5k+CxTubmCdoOWR/7c1X6a/j1+7tMuOxPzEeH6RIgavAsVq2XHxXaLQZWvlEribjyl8CoyOF8B5Z7ri5TCx/wX34OV/G39xRO0+BXzriUp1+KQfhk7tX1iYttoOXevULpNhmuIQ8ZGJ7kxeXPLIZ6eb4LYfXGTMLIvLnAfjdqvqbReTPvEn3KwH8SgD4GT/0Iw+QhCyFWVDfzvWocZgazr6SPfHiDMB+lSGl3QC580Ft6cZXs9c8Hj0PwB2A8KhtNVodorbnfUS8G82ediiPAntek7xXMt6OolvcFd+S7mJEMPDZ2UrRRTUeLR/2Gx11ozcyDjK5HY/GTLUw5M9j1bXjkb79opSe0nqhcuC1nk94XuSyYCurvuO3XA5BOyRLPr/auRZHYg1vibDe5tXHbojWw2H5Os0hOSmKCR3xAdaV0oDYGSfEWQk/MO9lrG4+5sihgIg5oWgaHc8LpgvBssAiBiOarjQHBKIn4kIY0o27W7qs7rISeXZaMK1/08Z+y4F3nOR6I1Bdq6B+Vu5d/SzFctQEle+7VhcuT/M8NahS+HXNbyT/He1htJP79F1g3P/pP+NHKYYa7IQHjLENyzdg8NebzUCxGZx2yuohLmapCh/vyxF1h3F3fK/oL55HTL3Cpzub0fIPXd2FCz6TvclzRlNhrmXcaVu4ajdXurvCco/DkNZ+dwy9w/YtmvlyvNsNatq54EED8UzcPBUIL8Ux07DE8InLcAKl3Vf7Q/kVe7P6UeIkXwhluB/doNJ6Sc9To22w2n0vKSY85KbprvHZsGxCo477/jt1tdrxmrL4TYPdZnBat4Gn4b6KxsKTuDyGt4Hlxtd1kXklpjJ2i6ZL4VreShvguGopjTZrfn3sOlOqnuTq6HqXcHfvtG5vlNrV4bT2+5AD39Uzbis2FcanYZyWF/++1aD6OmPG4U8D8OeLyJ8D4GcA+GER+btVtXxsTVV/HMCPA8CP/MyfW+xYpIkRkWGFwHsP4xoiweaSWA1muKRpTbq5MhZa+1myyvRsDAMw3djbf4s3W4nL916+JvJm8wvfnq/nrZNuLorHBrSD82BzCl//2fKaQp/3TvPgjbalvdPNxk9Q9Mq66ivl1dkdQRjV2Qxy6qadPSuGjw5Bx0CNBPVINzxcAfkCnYzLPxltlJVDVNmABOeVmCZ3bkj3yVnnC4/zIpQyjCLXNqQmsc0g+bpisXd1lbLXpxtw3j2z3sZ1hFq1pY+qXcfMfElXbexkhlyi3CfWuQWLpXZkNS206qjuOrKEOGWdKlg3IJ5ZpnB/8ZXL5TJ5yBH1pWInFMKVcbnAnH5+RI7YKVNoTHoXl3MdFg++CnTaGNzEx5TMbDut1w/T7htZV4Fx/2f/8M/PbnGF3V4JHC0U3zBVG05srozUNphNyatgQeY17bAV0sm+DB2hQJ1WmRl3/fkSf69w/wrrnqG94tvrd4ofZHd9FuyOvr8Item866aWJ2nv7E1JH2m1xJWtG0ViALwcbBcozhIkVNeCS5MZtlg0pV1NmxbxIAwjdaJklcRibGkpL0dJwW4z+sSPn7fuuNmbVQThtBqoMdKyaWPaVd9WR+RnAIiBLplWobI3H+q0f0FdsFzlzbRBu2duwywtl2/h92ETqaPahWhHifuleTRXRsfud7MZjvunuTV66Q9F4L6fi3Natxn+TToxO+H4fEDjMzCK3WYoDmsTC8fjUzQ4/RoSKDR3JdVb+GlnAlf9HNaw/LziwX3qGwznLUD84ITPnl6q6t+gqj9fVX8BgF8O4Nf3SdkFZTWEQDwXg+JhM+SRcg9knLWlzf9e0V7L0XB6y0GLTLqXocje8i0yDrq5o990NbO9LU97vtHQmNcYz89XA4YHtKPMt+VrnKfyXhRMH4BOfPB05K/11zCwuQ46/twF6Am4TT8qn25daNMVmjEurO9aC9HpAvGdVuk5+Svyo8+1NDu3Xs5lRuqzouWllYb53pcoyXe+vJ47u0Qp0eq6lsuer2j3hrp0I/yKkjhIzWCwdJOaP4MXD3b82c97YEvfZfwiZrnjJP1agyobDPjNKpxCOI8Ss4Wn8Ri7GmfM2dvNbKsueExybrOwy8c9v0cy38j0IdoHgc8TFR5jah0jHunmkc14zHfPM981LOuZSG+ld/lpHfDrMFC4kbTQXpE5nyHh1bCpl3DE+VYJHXk6pj4TKh7TO126yd+6pd1oCy5WnNfGYcuLaLf+G9RrstPYEd+6j6cDn24z/PmEWHnXzY1X+i82A36zooSdYxzvtKkbo7X055m7nktvYjo3niFj+nno9tvL/1NjR+pbD1/tO2Z8fsX/rkUKtYkVN7xqvS5vBKMltQCRcGU0gIzlmIH2wpVRJ4LIKxP7itV6lDE5KO+dj8s4DMa2tJkprx5dnRfg1Uam3cqrg9G+ob0NlG9dYbrIw9/JIOPGt+k3VtRaXl6eO5ldj82Hv5SB5Z6ew3XqifIhdc4uhzNtO0zuvcSbq5fRSfpAVrPHRJ9wvm01tjQkS6O6RVrccmkpbpMA3JXEd1YkdGMuhUX+fvNY9sFsy+Y6Yyvt7lLnmecdWWvn8LS0vlLNZ79ENK6991Kmu2W6S4fcWO6B4T4yNv7luqh64o3OhBzID4oWGcHtxE4K6Ik3TRfIaArel7W5HyrgF4icSL6On34Kwq9nlnDR8bN+bnBPe17OnWe4NtqNYEFrLjq2m/cO3Sbfnxr4YgBI203pnb9tB3la9aRiWG0vVhOvmJr51dCa/krGfVGxeVqo7jKN46WOqR1vp+L2TAZcLDI/om1py27ihPsd56Z8Qapt6atto0L21aGHutHyXMKk6xBqKMP0fGFPez7dkyCKwo3GcDAuhJKaDYDqdk5jlUvstrpiu8FeAOzaONptkjOrIDHY47vbY/5Jd3Hn61gOw2coAlfYyggJxq7mh7oi6AtJ4aq4dC2Q5arIfJDYndOD7IP52ZHlYXCwzfDkjseBv4J3FbvjUMylO6/a9yIcVItqWvBTZOHSKOaOqCA8dtxfOH/YQa2FudVmKFBovYLELnlSswMSeJzni7lZJe3yGjtl7c6tuDecajgveb9jXNOP96hrIXsDgZ1D/nadGRXA+0+RieMXnZip6j8G4B97KrHMj+GWpbZ1u7mw5Fb96A4j1mmIdnOFmyyNpbXxTwPCTL/bK0JyxbqSlgFOWnH9ufGpvYoBmPgyHxn4RIfe+XbXmaKCm7GFtng2ILeujJ2vv7waQBBRd3ucdLO1n0gr1R2myzyx5fJvtEK004guMxZa4XdIpZwH0hY/6tKVUiNrfepev0TLAw05elZa4gtPpJvk1i7MEEshXspjP3oFED7qkgbkoHzSxSgvCWGDUy7KsJ950YVf57sM+RH1t+Q4iObd5PCLPZaToIQchwBKoyBfqfRzDZ12cRHrrEcc3HaD7N/WOWWZPDHaA3S5hxntpHWHE0DM93+52axr8Y+4zUsbLeVtpT/coANB67d8+vm+U3zgwLR2ab6oDUgWH99pzIvzPzGMuEj469jGIDJhqg9cS9yQ9gm86pi6uV430hx4IgfFdzI22oIxD/jc4b608j1tMzzqju/4wMTZ1nfd5IOWOtFNxnvdCMKVEUPiXh6Ku6qTjcAHx0UurrRKLB2rZUi7g2pNXzkNbFrFBM5f2IFJk7RYyDczahMxJ1VOmfjd+dAwLNLC0ccaIFX11rYBboOOnbB24TInduciNd9jq3F50TqXxjZDQiLHxXeefLjNIBvh3E7bRpLjCJsBdVysNsPlyGmAmA2RwHaBX2rvfMJSNZshluKMi0NY/2LYraLgBb6Fx4pcVlvhQF4W4t8D9Us+/Pzb4pv+EAK3GW9kixZff85a+FbD64zZlwlXRhIdzqrFWQB9Taz992isZiu908oYd2UgeHft7nbDDtc9rY9VY9VE5HJgceHN9JDvZuiYrz/rXO6JdmMi+buXt+7GDHnp8H6asA2y8Xu+fepW5s7Xae2d3wZVE1zz5Ys07IVllHnX9JxfV3oX0RILAljD2PJ5DJZtKJ/wgAeUl5fUhKTxS9I6nf3H67OnZSPtz9zGxnGT1mfN4o6DupKWFBvzPZhJ8WfP33fyim6SWR5LV+qPrjvWlufJtF1XQlduJ20MYrXydck1dOcG9Ala9XiJXLTzjbRZMeqDK+dr/04o/MRGof3EcIdPe9pawxtOItv+U7jvDQAtARp965/BKOp9phuyTRn9+Qb7ar/a8Zg7TmjF8al1Jj7X0wUdcbHL2Mt1Ub4t+opv9ClNKJz4jgUmTL3C/0lGbxsynA+eZNzeadHVhZA1jnA+7KWWxyxdqfuK3TwZKnkOYjBbCU5KeXChtSwYSJdREjFIgJWv8Pk4kuGqWgot8WltPpWR1BolaQuPRnRnM0D6ODqWNz351GzHtnPoj9VmsF4T54H1SRXGY252i9vbZjPIyDgeO7FW3H8jdWjjk7bXSuWzPWieCWx9stsMThDPn4n73+uwbNVrYvb5oS/xAYN7iGbv57/RXGhtwXt8fLLBaajPh4HtHdt36Kgjir/3527pF+DDOpi47xLc8NGBTV9J8nwZ20m2VrwdeVBldKMRbj2y2bqimhC9GaiGlRmmfJn2RuaSlvUm9S9PgLa0rJ8u9pS2y9zrvolxK9NuCyvtlYGXprCxPqsQaRQbc9nTZlvI9rWyTqdFdztZ7i6+IqzBKyeOat1EYxDcu4pvH/gZZ08bB5NLf/RG4XqsRnV966seUBewu99Ks9xQNNsFZlr/HnEOMhYtrHzutiKyPiT9hrzO+CR3FwHC5WORmyOHwlw+hivuvahWwEM1aEFyKdT4+toou7tI3hQZtCmXa/WQpaV3vFt92aUkE63A0p6U1m57jL5qaSHR3ARaZPR+4LuKb4GFE8I8F1RrOy2jQtqdTVzQwPJoc31RrgwyrG8cNa+573sfq5HXmEpGQ43X3UoBY1sX1+O4f+NCzgG7XexpflDc37S+/1xcnPLcjqomrNS+32Uuu9PVvhS9DZh62QInGUGjhIty7O81y9cy9+ju8LDnSUqm+mPXRMdJSMNy8UUS4i+E5UCxGfFZEO4LxtbFOoJvFSYmy67ekMnxGNHec3cnCy1QqI34mY9fLMW0XZNvYHdGd13MaRS3Vy8LZNmio9EeapcoRfrlhvlesPwInI/biTUvZDpN4DdNXH8LlQnezWU9d7bIVol9csS04h+WXu3+wKlnlCFsijbsBrC+debO5uvu3Xd5jza38q79wdAJsAud3rCujvedOMf9A4J31fUR6ui7vju52wywrfoM3P9+hfePrPp9w+HrTswGkyX0IUBVBY72EUGhG+k4BzfGYZQU4I8KNiStE7pFG0YQaNeiEDp3ZFVAD4mJibsyhiEnmRcfe+VZdKNYVNIsMvl3CQA9qgbDo6Ib20EVXL5uQEumRivP0DbSKe1W5STz9g3ILhMbjlYlLIToQu3CigcI3ei7XmUBbZ/cyi1tEzisnwNlbXNdRhYwJlNdZjLsJOj6G0aQnktSumnRVt2W/Zco2xWtG5sit1jfKQMtHpWYu4Z42XOAEVZetOTVbYx/rLlulYF4SNnBOjNLAOamoTa9kOwXorCrkNe/5XbCO2ZH0AK6btGyNhGroETrboGiy1XEPzC99HnmZJGMrjf0dBdZhnMt3NTdyWX012RJ1dxi5DvwgyqH3bTo7ojhngj/xo3LuNIK3uK5DjzZpWWZ/XR7TGcfLbQfN9ACb/KumFVa5T5o9RTY5k0qcL8ByJo5FhyhD79VjO39FylD50vNqWBOpBOguH81rGPajqlb+UDxMdJs5edkPd9n8Mn4fgQXhUxvx+4iB1prYD4OXccks/f9tMZdxnQptHjiVOqplweAu6EL8akyUuJwqTNakSxf0ArpptGO44XWVoN4l5HxNzeJuYSCcLl04JNmM3iIoxoyLkzVUt70AvAFtjrlcl1EdRkfJdxfMhmtJB8/1+nHQNyNUimtWINatw+6UGQEkB4BZSJLi4fvILXbZMnL7uUz78h1F6FV5kE2aN02+LbSq8K/DfYuCCx/Jzd00Te48Vs7eRrtVwwEnI+oT/7MzT7OpJmeNpvBeLxerPKdOPTAebDNyLRWm3AXyUOA78Kvz99x//DyEe4v+1NdF9fUMWnNCuAVvvfhK0/MemDgQDGaHByXrmYE2l7wc+bLlrbRbnn1uJ7XHDbDIUO8iTE3dy7fwEf3lD2fsTw3z5stmXTRBhrb4OKKz134QFoePGzyewqbDDzFlws2N6n6Qi9+l+c0lhut82HhUmTsw89xCBKjhhjwcF4sD/GXIa/Nzcp/j64ltKMmvfjU57S+KbtxZeVbS9kFKG6Q6jJHfQoZRmxqLjxTRXBztm3Gs5p8AcUHBRttpvYBSuqNy+67OzwA4jppfOTIySuSdv1O/HJXwzxnJ4Ct0gI+CDjiGma/FtlPNjg/L1bKmHWU7m0SOrBhDtEOu1YfCNzeigueh/5MDeISU5XiLzBVOeEUWt/vbao+a+s3167mD8v3iWnn8j2X12bXHtB+2KX9Ahc3G+KdmHFKM8kYrozdjRyj7aodeM+wl9lfN5uxkfJz46WtJY2mq5MO9jXYXGA3g6pYJF/Y45tzgcp3dg/VtTFxedFKK3xxD2+l7Y7AjMG9fQpxinNwrkdJeqeVW1pQHVw0nWjTZCWJb5aZqliZK0OV64zP3NW0/XMAu83wyezC5urS7stwufPnVxZo2CwvVMf9A9xwJtz3UvSpWD/j+C0Fhbwu//giYeuI2F0Zh7TjM2dkLVQprW6JtuFbybfS1jRjXs7XwQC1GGWgtw08sK+2bhwUo19MyHjxPAxct+eLAUUBoLtIuU770LhyVh357tJeydP5PhicrDrRWa83PIprxsUgZG9mN0NDin9KFrIUY5eJ/KqM01kXX+Graat5HYvnht3+U2/v4rTJOPoFl7cXmQyo37ToH8AsAsCNnett8cm698FyWu9wdTMh/VC0yxjGzEUmGcMu+k4PDaHW92CcdunBD4Gv7+jYZE7SpHoL8vKFESXaQ8Pk4zS+/bvL7vojWBu2fqBcS9oDb3bj4yo3ogJ54KBW77n7xkOLlZ/f7vjREAOiglc3jfhZTL16M+AiNRxuiLuwnc8tXy4HCpZfQcMzYbMZxIJlvMS6geGlTXyCltM+Yz86pOy4WG3arb3ZZHxOk3NeAy0njL5/w5dsxpbbhvvXfEdaAN1tMXTVZCxdRulHWTXbtdppuZ1t53SbeSzVWHRgMkecTYpIGYzNQE5T1bCuYzkofbl52e1NKKPiceaz/tMXTU5KGZTuoqh0FgsAn2s8SYQ1GdKaU9iuxbC4W4JsBPDAZmi4UCrMRbPZLbpKpLpmRpzpNbWxrr1XxRtjguZFKeseRl7MWyG+4PkJuP/9DOfr8o8vELyzSOkzK2Sv2BAku123Olqvf0OjLXyJeedT+9oT5Vh8R1yRB1ltxmoP0hJfnsl6Nv8ny3dpTwa+D8t3I89WltGoZZRexM18h5HJFV9/viuQpZd+hswjr0YXlHbxrYL4oWRPt83BH9VBt0mCyGSbLPGYNP5Inaj5WUm0bjHp3dP6eKB3u9LF+qCG/fLN0BQ5lnRnyKg02fDzZkJphYxumG0AYh9mXnm4q6PfsOVXNMdkRXPgsGjzrJqfx4qcxfJRd5/xe7zM2Mn6toxfN6yxUlodiARYHwo1Wv8cqepp7jD+2WhDLlmnEE4r/9ohcxcWM8i6bvryAYB/bNVL5xOv5cxzmhwrdvFFSKiqlpffcfaJoWDRBUAq8p5rT2Lda8NUH1DCXcYHLPfAo6pCi3IniA4k27PTcp9uO2cdY+KZM7rAnGdw8elhUqd9Bk8mHJvS3tHf0nhDXHobdbPJQsooBDvtttDXcPEpGbf3MtL1JDN9O2fu0dMwpWCqRHmn3R/ZxJK0Idaw952l6pYYCy2BpVQ3yA/3lomi4aVjhucV+KvrvV/G7sTr/JThldW7n6dyGxjnmQHKPTS4sjolJiKTE9Ty+E5XfsfsdKW0dKEaw2Mxfip4g5grI5LW0yovfq1zwGHHUd073Q6s+vRJEIrNSOxervKq62PQx3LEDEEP4+87YwKflC03zcO1KQmhjPsHfAHVP4Sy8vf9MSGbkbSrJqfu8a0Exeu6/C8buEP5arSjlfWEgslB0y0ZIbII5VWTjm44zVDXrDL9jsnZYXxFwwewjm+Vz/y8uYpsaTufrbgpU3/2rC4GBNrSFqJpjDMMEEaRB+NeNjhQ32929mIwIRtxzZd1A7tEgfPtfLOBef5adUO//byC2aREeA1iyqvWqBQ+1Y1BmpK7ywf7qbidZt1seYXOhrxNxt6FeGKVusi0/o5pw3j6OQIvJ8nvZ9CSb5rCrn6Xs8pI10X0usYuc4jpad14mXHyhtXUZP31CHcSFZ/OKNFydUgYyFX9B7zzq+T08Ywj3Ousw5qIpiFckzFLq+s5ZbD1y2iDakKskUvw0TWtOuQwXazzZzC3FTe/a5JoUzLJVeoTZ6NF0C5JAJU347PSfjR4s90xNCfFMU8rTTZTJ05Gw9twMQeAldHmakgNXpip89nszVCg4FPl0JauHG/q/Yr7M/Pj4lGeiW2oCuW+wdjdaTdDU1ly2TjyEva9/1IE26aKx4Byx0OWD7ixA912AbAmPMuBFjfoptsmbnTSKrE453nDKjLTfk3JEyVtvCOzITRxYnc9pDgkl2Od1D5iON+xW4ku9NB0M+68XdoI59N2xpypbSkFbwFivyX4rNg1CRCLygbr2OfpEsvTbpTdNHh/lVbgZjNcoWf+BBLLA1OtQwrW+bKCdbFlZvmTHThVIeLLabD1epfztL7gslt7MUxdduAtL9fXE4fdhRtyws+t2bX8nhZ2No5shuKwtDmpY9wXIM65vYlYsdZnpA/T46JVohUqzyt8L8PXm15O++P7z0gKoAJVNxyFWIa0SnndNC4ykp2P0l9Fy4UHDP73SsZBgnkCx6l0+HUhI8m/lfRicBGPF/Uw7mDflK+HuwnqbVfvgxxtf/fk9xl8RDctQ7fVU90/KMVNtA16BxmfC3zWRct/i7vZyP/uKG9vb0NKGlzwpwF0q7RK0hcNdFdm+eVGP571+gqK9Y7PQ0l9pp3AU3va6RklL/97hgxtZDjIfuo6Un7Gv3zW8q8SL9qUd505cF34AlBrLJppT1BZg5+5syBXzDnvk9Iyn/3fhxppitdwf0Y4TztkUEbxlWrG4057IdeTk7BRzgeY6jS9vQZWX03K7l5NDf/ieeyKn4jHo+29shlT2k5X2mDj/IReZ84PIPlhAVsaycgRMe9s0iPjdvfqAhdTlvZmpH1OqIemYiDfxIs+ty0r7rSzEeWsLDQ81vzX05c+tmH7mkwm5hGuRgdOfE9aw0HnSzKxvag4XmX2PM+S/87vtPKdumQ6kdidupBaFsUCILKJZ7HFbnMY9yumnw33Mz3bjOT9rQbF+lj4p/77lsJX3DGrq2a5c66InTJ+BnKHYlsy9MeWFvTM/DwfmsDttCTbaKn9lfVWSbeqFVfTKyUvxpjE0JIwBUha182ednweBZj4zGlZNSXtHe1NXrcyNp1vtFP8xKfUCRE8w5et+QM+Tz13497j3G2ux2vLdqKNOHe74LSUb8+LW7Ot3inrObKVQuuXblATHAcGq2nbat6pLmKk7nS8yJkF6AmML7zt58dHw6VDso+LreoK1m//js0hXvpFewA4Tw13vfTNT3cXv/Le3VXOQgtzS1kOIe5CaKqilW012MqzX+HCggOqJ1T4g9BnXN7hC6wHbKUaB/Q018bYg7Oymi79RkZXO8u4ntc664l1LbTrRUMHPukjGXEid1/fcOrHXRmjBZhOS9wG5Q3nDWO5jeTlatQoPbPAY2IyNdoSRXyKraC//me7kKTLeBEcg+5wooVb/O24OJjEp/BqK1+T4QHNh/hexfV4grWx7qQ9kC4i6hm+Tz0nfpXCubLSF/sDbuiE3buZYrbxNtx1GRenNgOUnSGFY9yi3a7ibyHcEUWghpHBluk4LyvTqZrpFOH2n03GkEbSfXE9AxJypZdEXJVk+cLxmrDed49c5nfYp0/ALoOGC+oyIGjhWG56dTtwCPDufEGXc7hu1G95zKZwWJzvcPlYc53PNd5yhKuiywz1m3zdJXLVwiHAd9X1oaGrg3UTy33LoT1dJq0kinC1PLGuwD/cfhLtcllPF/YTJ97U610+Cfe/n+H1HbPPDX385X/JB0LF3BG9k/voAwUmKRPvIG6ovUMjOjSsgUUIo2AdZI1sigG9dGVUmIwUeZAR6/hNP/oRt0vjFH/kkraUj58pK85XZJZxLh9K+VT2vAqfHm74Xsp4QTsOajxpkVGwXSzxjG48o2aM+anrJmWUWn+lAHtei1UKvZefhdRhb7spQyht80spxRG6yoFnWSaFG9EE9qpo4bQXoxg3vvGsTLeM5DEsvGTJKm1MwFwV3od1XYhxkB6FGpZr3Mcn70Z7QtYBb5G4dMMnezG+8rRmoJah97NeE+2R4yDVdZ4tZHL/fJ/4pAti0q7yHTSpXt+fkchL9FxlJzfJtSJqBlsVh5zhJumfVbSv1rSrkK28kjc45gdV1VxYbHBhOZx0bbJ8ggF0mB3HqR2DuMFwG2VcbHHdlbEwEgQ+d5lu+ciQFjsuQpCuVgPG3GJq/6oLGu0Nlnebseux8r2k7eVDDf0eoY2gpbvkO/BJ3cielnF/JObEWqq+M2O80q5oTjvqtdF2GaiCB7U0Pt14cWZbYvo9YDkfjCwhGuXqz9Jo0S4WucLy3h7NLmS8Rl4RJz7t6XjsMhjKKE0UDb9AuNhLExdlmMuzcTbcyxRqrsn+rbG8Vr/dRki0ftbtsPFDtxkJIAko6ot+DW7yG2f+rTVzdWxlgNkMV+whR0wwc9lNAT3XRC54uK4Sy5cdWK6PB10L4vYGbkMM609JF8i0e/kdNW1pHfePb3jiowq8vy7/+NywD8haLP2uaReu9I5yRetJcrjIzxvtlREs+VJeF3wA/dCV0tsK8o2MJd0k4yjzc3zvjDOAcgA/pFPUid6QWV9F7M+CgplbGVgdW1qi0U2GOmEIfPVouchrMNybHS+6SH/5WignnBlFWy6CaxvkDbSRdysQKKtiUKYgsULJYmRVGm00aYm3hUUQUw8hudgYFxm5KJoptJTJR7IYcsk62GSm4vPQZaK9kpldRMXi3Qj6x7WvaVlmH4Tk0MSdoo7IN99FGs0D5DnQMh0hJ15csupSmkjlkhVaCMVXNxUF6yblSr7PYxuHEcs9tG7QB+mX2H0Bk6OL4VXa/rs1ltyd6zLvOM/Y1nveJZ9BtjvaLWLCY2742LH7tnxX1as7Zm56vuKLe92MabtMtbN36njJfc2TehdVwrJdgFYOcaEyQuQgygYiXTl38Dsk6FnVOhpwkSjjrNdgF8oHqNvhy7zsx7tml2nCctCidW8MnZZK6nUqGvGBteOsmjBVal7c7oOPpox6Qdtz91sopefFJd86RYKUNt0oxZeuLRnn0ybbo7JdPS5f4gpPv3yNVjY+1NYl9VDdKvO2xrQ4jTbileg+H/e/P+Fbv57k+fDtuDLCBzSGDgEyFhN45+gxoJ2nPaSltcaXTHbDw66MLBCs+RJw1IY8xNlzdmqNwVcvM7J48RxunUh5hPnIJOPwXMpncTLxGZ4nWk6L3QZNZFP5/LnnfaebarF20aqro1JeUnUzyUu6qbSDjGMh3UAN5bkjK/lWmbezftk8V2gHmCutlrKWHVWtz5y3GyhWZd3QovNs0ox5L2sifDSUNdHQcAFxw+4riWtl0y7AsNXz6EVu0c16etanKF0VvNIuWjN9SgOBnOUsFYp/D3zl5nx9sJ03tVtv1FT7FW1eNqK2+7Xa3xtV2TsWrci6BORQjZsV3wXmHgPAvm/2Zu46y31z8RHJK+/F9Oj1dMAnWktv7lbzbjtwQWuKdLdPQGJF111Y1k1eVjtUX7cd/yKo5e3VObqPg+IC96OTWYrW8BWZ1jMr+JvNp69u887Y6I7Y8Ys5O1/U8nSsQ6Pd+/6Qlp/v8IgyDjwWSkOdWSl9WQt6Avevnm9tRuPb7c1EqCT7pMee98aUcHCTkXjmBOEi3yJXY6SWmaScU/1dmYxb3KfnaPYuhVLa6Dfe782lMLA8+Yj3obgsJfucIPsE29GO+5FvYHnVE6s9VCNrN/+g8sY5bVmXIC1cspLr8hhQo1UQHhtOhgeFJnt3ufNPi6QbYaOF6zhd1NOGmB0K3VmBJYpv1O5dsORwTAWWe2LuZq00eUOw4F1PvKnEBDsW7GTtSh1knE+Abis+8F0o3sx+rrNiaQeyfSyZ1jX8fmRBS9qO+x7yev20GevNu9mqT8f9V/h4+DZuZURABYRuGQMAHEf2wOW8a/EJKP7s94HGwDTyAurZtNUtNlpLtvhSHLX+vpXPtAmaNWs31lEGL7Mi3ViINo2Iw87ORzYZiW8zOKo1rWDxlUbb7PhOiwRyphXSDfOdynfn4tJpma8WofJ3gBLnC6nldRTnvOiBPMNuaSdI4gmZQneXwyKz0GstcVrcYRo3BeSQGtfzvRkF1FsZtZQXyNsSfRCVde+TKIRhllYHmXWen8ry5QAAyAEDrb3EAspp7dwnWEr5RuMktWRbpbSaZxfShQdVz8iu4q58fnU+JL/nwt+y8XMM3hvFBhunjW5jrymW+zUGMTFAYFdGSRdJX9l3VyOxAYKftzjEvq0TI6ADONJNZdVfujLyp6UPYdfFZeAhTOt92QYFS/JFa26Pi4N97U3cncUdLz8WBKiDYWof5ZJHwvIJ98su+ICLOuAxYxuwiZCRV1g+YGrtR9e0dZBLZbLfCmwYW2ivcBBDvk/gPqft/XmkLYLV57RVrYvSw2Rv6uYI4aJvCbBMlNdJfLrMdBi0ML+0a7xQwzaiY6qCcnD5L3CfMdUZDXqrmV3FG/DyufUmE2M3wIu/ZLd8AD/RksxKfPnjx94eWQ3ON0Tzdky0ZeKn2a290SR+psqdp4ZMGvmcoXfn5CVWQA+cpHN1XLS+d3Ja9HZkuG/qxpF8RNd19UKKjo+KqELwBh80+mcA3N19TRDPsIyib6Godc7M/iGyKLQpzgnRhcdQSay2g8zLNd4saNDm1fsd95fbo9uXZTNOq9w3w/kl4wnFd9Yipxru84rxNxYUL1fG71FIhFr9sj1vv9lCtfiNVlqcImYYDRjZ2Gx8yWo+lFFbjAyMLoLBAr24pp1102V+ji9Hj7QfTasXaa8yGp4voaAbZiKdVpmVEwwyRhkuGIqtvm3xQm1scmPpA7wSOT3VF93rRu6E7LT+IBQ5uC+6bGX3q22FaZdZqXiS4wFOG8WOVcJJ9uYOolUzvuIbJ818MJBi92LXMZa2InFcS1ficuy16cYnXcyfNzG5HEs3eUw7zlZAM54aX3zmA36uLp9P8d1UN861PcbOvNHV2mvuL5KH2U8bLR9Ufzz8UXA5pXyg9GMhV71DkhvsJnFp4DjjbyQufT/j73rNc/aG0w7x2p6dL3W5a/fMiUmljefr5Pf5XpiQp2gHzCuPA+x1/C39lstX4rPAUzmPJvgVZvZnYTrU+dvi33FyyGt4H+2m4X7iUIt7FDr+xi68YhsTCzmcmeh5pIDHDtaHr3AftU66IjuWFxNIfOUJ2oKlwFjHPZADeQN4IdUmH8ZuL7cMHYdJu3xBi1w0LNjuyYRxnzWgVk4p7VRBGmrnP3hHOXKyAtbvvdEiJtxz4oh1oXBNp47FWM6G7DRlHZQ3l4Rtmi8tfsvh9R2zLxyiwbblxWhbh5ZzG3fGzPdlldJW48k8PGHly9kpdRV+n7FpcTZD4anEukc/XHVRjH0AudMysHS+G+DVItzw+RjtB0zOpW6u+OjFe363rUZfpAnLMyS+LIO0VEPd1UFFZ4xmaK8Y7cC9/SAekzq2zKSlvJChLOhKpS0+76VhqA0K0gi5m2JnE88xfqBdOEqR6YVkTyFXW6vGeTL/zDd26K4GW+CPNSNcKhOLSC2lHa3IE5OZMt24DQTMtWTl67tjvoK74n2zRT1r4+urs7Dv1tj9iIq48OS0C0FSVT6JOtZFIEqXpdh/3RXntMrPMybpiqmdj+vJ6M+PdPyqnWg75X1p1Nzm99be8XfE1NYHei6OG53vHZZfy8yDn03cErxdbeey7sJNhy/yP4n7HMWCPU072IxLBqVtEo7IkIaqfQwfHRNGfuQ1QHGjPWLMHnEjse+GYb55bO7HLKJdk6BbXgGiQxt/YF/7Rp4GzV6jHcv3wvOJpR7jJDQ5omKlWfEXxRLAscjd31N+2zlybFPSQYC35d5p0a4uIjdHkB24sp/lFAHXNfgiDQGkjVmVb7sEjqKvZTNyspVniMPdPTTtOJwSCjLv0Jp4Wau9Wbtf2V5ExXYbD3On9Go48AYtl6cc37Aro0LKpwJ+kMM3MzG7BndF9UeiqDIUW29Wi2L0caCsBjyBoqIdu+n5gOxh6LODwVrl+KJbq/VYFriA1mU93QwUoxF59Ix9YPJ0k27FbVHNeCCRY0xwL2OhHUIfy10L4ql9mn1RX5d6bW3qlu+Tyhn4CloaSFY7yVbE6Fi5yVzzvJzMKieVqoMykOkTkpVW6YOv01mRxVeavFwnF1XdypNpvQGTaiS7iXvznC6z+MTEDBbRNk/n+O26yGucycBRAQWIsxS+o+W0h/g3ZLwvrymXwN1dclDCxvbAMppqE6xYt5XTJnsSBhbw65A9LZCTMzH3Q8TA4QCM1lLKWhte45d1bb/ThM7UBxRHG1Q8Hzq2XYZopFkp7Q4GTlzSbf2Ks/J63Tta2gkeQF6wKCEa/Q0wUrE2bJkUcpWNPoh/FK462hVGTLINNuMK99nsPVpA22VsmVziHNEN7wMnHtRNEfa6sneZGXw6tbbn60bcZB/SKI14XC1qD4MuNhGLDncCxn1Wl3eLxPLEcF8w08AnqiTPxx5qF7QJg+RzMloZL1q31u6SLcH3nXiye7bjfk5i0uY7/zz7lTbJbyF2N3aSLLxIhWTyOJ/kVZuBdeaYlu8iD8tHidY/WeIXiPmnpTONITfxOAOPc6/Lz0W7hWHcj7IgXTnz/sa8MdLz8nKIZvrixfUNhteO2ZcKxfkZ5MbTnhXV114zruSVkRkfS9A+EBtWui1tDIIJ0a6uy/eh2maXL+x0NGrOxDtaw+s+GI+LEHyA7ID2zCinYV4pW0vaz49hsCNbeSfD6jJe6Cby5bT+fiifNj7S+G3uflcyDqfVpclRdMUF2wwxyRFyCsV3q1z58pajlML2fCqht/08u9UawVZhydwPCLOM1VWKVoO5DZR8UNc8AJu4SCl6oUXqmUXY2h+G4IerQbReSYwdNzKLyZyDhbz1SipZpK23W6Val6HjzklNy862+ZX2fLtVthE3lYrcDcwBwSHUdMTXYT2LdXpgmc+URKDrGzPiFxqv2HOdGrDJWF6Z7FOu+D6bnoC8mZ5Pw6O8Xlq9AtVoP+OsgfDsxNsB6TY7P7ZGUti63hrttmAhWYZxQab0M2rUF4GP/ADZrthWXY1fyuuOx7hgPXVn6kd7482/2p5HXJxYDh2zqT6jZCgu2bWS3xXu+yvu0pbxaLsAusyi4RPzJBzvRe11oY3viNWhRy0y1ckKx1VczMs6WAZi1Fdoi4j9YpnmyshYzkVoPK8C45RjbJA17I6k3KZCQdnISjuhflHKcSuM4zGBYmnkNX3kG9guUF8xnNoQQGOvVejx5kFjzdfyI+rDL/Jgm7EuJBE58rhfxzLHL6h9++2IGxf9oydLaT4he4MUY62Gx+s88VLPabtfb7QIl7gf0qvCUhfadVTgMF2dBfcB/abPmP1UCl93YsYTHuFTGC0O2PvgFdA4YInB4WpPcL9bdNp+KUg3MsXo77+9t93JqC1t/VX59Jwnui3tzXPn87B8V4MKrbRb92ygx9nc1teU9i7cDHq2vLbC41Y3D/VKBPtu7QOZp/yeJK3eXBcKeMTjiqw2/3tJBldaPlOWE8Sunb3d8180Gepk+rrPJK2bxxVqcTKO21jsmEkiQ559UpNDooBiNJ7DMnhES6lCtr34AMRcBFMDycdOU6hdYOJpF4DF4M9vDsvri53buovLj5tDl9ukn88D/Nlp2S3HL242GZseTwBvgXUPOuFd4HFN09OEd4+wreNvUMZAbcbnTawLXCzPV93uWdsEbJormPoRbHuQ8R30jbt2d7jYwz4efk6Oie+UR6RtmHMh1KXN+JTyXch4GQZX26psYVhIWSahb+zNJNA1dnes1pgQ5mKeJUN93sD4I3buUqa9wDtWDzbDVnIDdQiPI9o6HN9ByF01cTl5HNXA4IRdeqEVZwPxabHy1MTQmBZLltFthHEKCRbsFasX5XGa8j0xPQBZSO77V1zKLJXpSNN1Ufz2xgH3Iw+yR4q0kGfIiXh+Iyv3Le+YKYDzK13+ISJ/P4A/1h5/FMC/pqq/8FPz+3oTs4tR8XbGjKxVNPGyJDqN6JA9P/6SoS+okJ2QXRE468uBiMfrHW0v90rLg4cQoRcpfs+6ubW+G98m062M1/l22su0oRtUQzfQjgOTjtzT803ZH+ZV7VbIFrq4Ms5M2/J9SjdXZVCtuusyxkiZMmQdo9iamqSUbz14Vls71Au1+ursWel494DdVqrIpNxeJ0FcYf88XaRm1HlwYYKc5rsXtJQ4b0XMCY1f2X8CkNNvJ6NnrEHMGfKI7WIp1g6XXZrhkylThptPEXMzsaFG+Ry02BmtdS0W/ATAAb+xcT17LYULIQ1b1BZQTxG86WmG2CaKeprLjO3cuR7NzVFPL5vTgmjfbTzHMuQO3tLEWtlVTS1/OChQ3NRMN+HrAy/0Bba3vIKW84+/DfdvZj96xyfkZr6Zb7FNd9g09P0NNzah8DGcHPB2pH2G7/RI/X7L4xHGPhPI7hXddEMlu1xFhk4rLfqRLji/KztWLtjBtS6ZN6165CURc/nYIPWs0wUaDbuX4sO13NrkmZ5wqysg1EzN3rHY2du5U02boaeW8sSOseO+HUD1c2Ger+/oxSUVB/LsLvxCi2xI8a3IyNtuWSQDlCpzV0bDY9WAmLVrlnIAC+cBBFYyfnta4bzIbi7oy3OLYlh+4MC7ngiXyFWgeFbk5GzZS4WcNnUSc80Mm6AQPdZti4a3Oc0SiJzwb2MesqZ0ayJ2IG6jjDpYuB91AKeF2bIzPLLE3dmFbFe0jQN8gcy3FwTvT4PMlw2q+p8OKUT+VgD/38/J7+tNzLxHswthXFO64lTMHdFtnbdgOBi0SrC0EkZego8C/mW+/AfAekuVQ8jwKMmEht0KkzFE9kWe+hzJq5uNHpm2u1CONoMmndrLMD1zHld8uoyTobqR8aofBChy2pv0wCDHbomqXENcwDqVrw/4tjEcPUsv34UIcIMlLa7QdmU2+UsZBNtqYJGROPPVzkab0YPUvZsUOZhRzzeNbTSUKN9wvrM9f4Q2TwmkEVyk9eA+T0J9MCyxsurDjZwK8YJ2XrJBhnqjTXw5zBgBwLuua4ndoIaBtbTa1Oh8AJvgqV25rOYOIlle/urMu6pduLEGC34DYq5YZs2svI7obO+wld+gjWFIpNVQiE2DTc5FexiNXzOiVPYTLsWhpw0GPjFQu5N4ZGzj/gofYdRnrGLr0VwXW78quA/Kp4XE/TsAZr5NJJLxbujSMXTE1E7TylMw9UrGTmtttOIidj37nyvMwKyaK5k33B+we8uLhNzwuCW+txnUjqADny5zYs5tgVnGnu82LnmExzfYnbOSi7y6XWv4Wxpow1zW3bYY0dNq7WMUx1i+1NSwm9Nq4nbsgMH1XvE3ct5sBu3Yd7GJj5b+mAts256aKkCXMR2OqV5UNUdyyeub4LaKsNwx1B3JC61xXdMntxkrr4PTSiJ2XkT1BpiLupdEsXbU/DMqyx4dphJ2fPebOHOvzr+xFlpQtfNtC/ePuFrf61LNmy2fv9Wg+Ho7Zh5kNeZfBuDP+px8vhlXRgClX2p5XXtgYsOEmGRcI62EBRybFfOVlmM38kRQZRzSypw24v2lVL65qnlDeyHj+My0bcyzyUwybbRAzh1uDO0kKG+aFPqLIDdpWY5KtIvjkJ8RgnTEp3jjQ3OjGjmzS9qJr2DnW5Q/ZOb1zjciluS7QCVOLnTjKdqAWtnoNt1sHaE0kNZXtJymygr3x+0QII0HxgOCXCpuPHXQJJ0vmt6kxpQ+S3xX2vZMYNTz2h0Y23NTo19jrxGXaZehpFxL3ed+vYaMU1oNObgpFU8q9aGFDwgm2mWy/ZtAAjbri9anzp8atGF36MubGJe42YiN1ptFo63eBeTKeIFXHfc3fGrPjE+rz2l5HhveE3x72+FGy3gdSTjfnj/bl/bccbF17T2/G1wUGWTmn1sdNbl7X4m0EhfprHeK3YANtBjU3YS8TCuAD7qfsWuhzOjPWvrvIyNSY8gdvBdA0XCRKs7sy1kmUN5/6Dka7d6vKoQ2vEWlrYtq5ZDINXZvxZFKqT3FTSUjmwKrgpNos58lJ8K2VaRMoa2Npl3AUAeDDdkwNZm6fVn4u3wgTkPko8hsSEayaMi6+JwQ8wCxr1ZaM2QszWIwX+MjqM+otoNUUHO58ib4qRF+TER+Ez3/uKr++Afz+DMA/C5V/ec+R5Cvf/mHhRhAxOq6uzHwoMD+e+lqcpFWqMNcGVxyMYxBTPRHpU7JnW+I05pvX6fTkk8IWjvESMu6iew28N4GGJ7E8ZX5StJcDRxwRUtyPkPL5Z3c7nuexSYMzyMfUNO4MPyVuBq3STd3gyqWWfjdxHca9JS0TcjOr0zqqiKKS4vrl/VJxlsUhS+3jWlgVxdTm2uJahlQ89jHDYS7j/j5pXAnofJSl1hp1dwP3QVEkW4jbYCV7oZAuM5EUQQEJ5Uf4rPJ8NsRYXzDFQXVHSY3KpdSD0WcjY0PigZtXmfs4xp2/ov1T5P5MHdElz3WZ624fuh8pU0YcCMvwDjW0hP28WrBd7F21ATrli0F8DZgxtLbafC5OJw48WZ8CwZ8MHCX4ufSpmMEUsEgvrtG+Blt32hjcEOeFrcA5WyV0gYffBhTleoFJmvHBrYR2yJK74dUvFAT9jSXxZuw2p+VyAV7lXbsvoof7BDzjLr29nPTdopNlNTj5Y3ETHuHx73h0buSdipfN1YTdhPGlrDpvTaogr9eBm/6mzz0YnOpGOG7VsspBX/dZa2UqbGK87tn4m/UyQXT4hYJbXYA4T4dF1JYA1/r50rF0yKHIl0ZfW/JPSqUsNvtDdsF13PiuqYdg+JNJcd7mu6WhxkykwqiKLifDobLxXvZhSWDf3PPy7B2upYX2DvW8pbjvpcnbuUlUBEccP91NVdHgUJPK7vp1LFc4TcEr7QnFG+OPYblh7pO10ej1/crl+vkoTDvEE5ru33ftCsjPteV8SdU9U+8ihSRXwfg5wxRv1pV/9f2+y8A8Pd9jhDA156YdVdGyQFYtObjyM5Po4++KrBao1hn8958ZBxd8qGRmcdlvgzGCZoJpAlmlP7g3yRXMyiqgJSPDoG9rirtpCriY/1olJl1E2WgtMK0Hq4MsAKb1xKVr7tUbvaixWnRa7NbRCvAtiI22KJMzzK18rG9rO1GNlo02i7X1uiaTNLKcKfXWgfSstYaVXaBaUTlBaDRxXYevbvW9PLQAKNcZy/V7ZMLo0xq7ZxvHEuD2UR00a0+w4z2FU5rAGvykqMqHRpVuNJoGkkb32Sz1zyOHSliIUaSlgxi6MqMeMAI1iThJMOe6pWgO03G8OePslVXkpWfDSywXFp8lfNwVxvje4TebICBPBC+dm38Pq91Bf46XA4s98S3kPXQczkrite74g0nTj0gflNXuLAYrdhgIi7//3jgvl+ej7QD7IaUaSUnMTe0qWSiLbg/CZQ/txXhJzH1ymZsWNdlBOGcxXfc2NYhH2Asx13i4oXNICjYMZQyHt24J5mQXaroYsTjWvbUY4wqcbJL3kQbAuwy9gsxcKNXIWVcujaO+Lv6YiRV66us2ELbZOS0u5WrMmz2pzgOrqdLLPc6oIrgnbKy0Ky1vrbyMNecLKwXebYsmpSYTo33lFfn4wtujp2BxWZjVn0trNWQl8oDx02txsf05O3qVI3vTCZ2hwPickc02+QLei6+mIxn7IxJurBjTcJOOv8FQdiQ3D9baR3LbT8M4UppdmCdM9OwR2I2QzQ/feKXjxwQvJM74oHDypt9f33AeskYNkMX7mvwOW2B8NsMqvI9dWVU1V96Fy8i3wHwnwLwiz6X17flykhBW7zexK28HtFKi+uj15qV8+NryxPoe15XMj5IO+BsjfMh11S+UfQswEee9SYuxdgHNlLj+XmSseiHBiqR9kaOsbgXdisGGu19H8T0jHX70diRzItWCqNxDFCMwo383VhfpQMgwl+R0prGVzT9caw03R/FaMvOXE27dVcfoA0idz7FpUV2mae0mae0v7VQOjyUImTxNhXT8MDi5vpsiTevVKEyVGQhI22x26JjTBDVmhThBE3iPPMyLhR3CUKYd9eeD4aCQnKV2g/Z8/dtTj3C8PqHqkE5u9hnGTx+POyTn/oc/be8VqKlyAEnpkW70XV6qwet77ZVFlw+bzajRW4tt3WBCeAmPNp2nBi/GFMn7H1gM6Q+3u5ssVwfcQHfFua8Tw5YHu0v8ElxlAI3sps63naFB9fqiTYXCUiOCx5TXnxpzwoNuyc7FTZDapo73lInYvW2Vq12y/JKPjTOIJximTvTIlJRzU3lYy9KbctXtGQR7uwpy8D1W3C/uY1fStq5V1MZ77XmlUVYnaKebkPoVoHi3q/Bwcvny24r+I6a6yFlSJvhC3aL5kD/hE1iKOIIwOKTH39RsES87Oh5fQbwfx/C+9c9Y/ZLAfw/VfX/87kZfYOujGiDZUdwhfYVL6AnXsE/v8O7VZVb/ozVOA1DrJQqByQSL6vRI7kGsOh8tVkILu9OWzvBw1sZ6dUGOHdGRerPsQwTPVVBWQhsg6JRRn0irQ4G9S5sbWcoz9RsrnQzyNxp78pX0t4Y7y2fLnBuLVE8uQZe0tKgaSuft3ukkiYZuX3olZp84qFbFggZtaRd5TI5tO47cVHcTaXI3IUMwWrFONvMmw1aH2wx96Xz9RFnLzsPr5ZS/QOfAsQHn502BxypGz9g7psAfmX9oWcY3ne1yz5M7tP1I1REggHRnPQplquir/Zmu/HVUA3HgaJj09Mb/ND5G055XzIaI7t4LJwD3p8Z0Qxh9efE1Bg69Ma8uTZ2Wq66hovx6mMAEvkGSQ5sHmFqkUltJ/KG9g5zHmL3M5hK3fs2r/nV4zDAx1WmVTf20Im6GeeM+8DgStieH8v4ANuuZB7z7PlcynFndIeoBoAbrG1KlixYWSGzdu/sfQeHu0nBdSnieF+/a3PeP3wCWFSz2SNL08cJhoUaFV5pq7rNvpDMKc5gOcR1kvKZxKGv/XzngPtgq5FunOJ6Dj6LVV4wpU1GEK27L1b3SwFiN80vcjqJf2K376Wt8K4SV+27xAeAd0mvioLlZMi10JL6Ytevus6PBv4bCQq+1fOrhF+OL+DGCHz1iVn2wgSCghgI4/zImjj62mBExomc7LSD4RZbLQ7QiEEQtpXIRP0EN72Im58HtVyW7+bZZcdg9KdnT9zAdhwwTNa36+wJGSdbeCvj3ZjqihfJeLWqdpvPxbsrmfvieJyjuKJhHreZU2QvmxDvMoqpyZ3PfObsCQDrtKCdn0K+mBa+Qrpoo8XKWcoYAkCZAEpQtAYReTbdRLSf93Kjk2fESt5mWNn0eho26W6YOI91+Jr7fZaP98h8Isb5LsNpmIKDrlFmww9zLTnDZWXpKw38gfT79zMDK3+/NSx5q9RPo3paoWf/dLV/R2cZ/XUF/wHgHe5x/WkGkM9uuW72hpPPvMA2QtAFtsXOY28iN4DgE5vevp/BVLYZJc8rGZ/A8jE081H4TGk58sZmPIWDV7j4DO4PWHkpE+Ndmay3tHf5VUh8zPfOxl3g7yObeFmphfam8h1D59i9oW4V7q/tyh5bMFrdorsG005+wVj7WeyAR80o4GdBM53X33o6iVZ6u2APJSTmUS6LVvyTJPl80IJI4mUWKfAYSJw1lofWc14xwBezCUrWwME00jvA+hmxLFC5EDZos9wHDSrpcnDjdxLWmh1AnpGLj6oIwoHdz+y9hx3IMvrioZgzOqCG6yctFFa7oMhmsJwqH46o/h0bVPUv/VJ5feUzZtiBnnetRPJZUc46OTAkIXoPL3mV9ZXJQnS3lW7QKSqAQ1xGhIzIsUDhm+Uh+QXl+cq2ZVopzzd4HoRB254zo5bPA9Uw2UQ72diSnEF3ypdkKjJvQj147q+LkalGXhqT5gVRMusy5kt/l4C/D2Iq33JWbGto0vhUq8hnwUp7bufE+i6DuOL5xQXf/ZIWGhxv59GyKClj2GI0EUe3wqmipwHx3cS3jJ1IryF3ySuNbY2TAjgC2rWzuvC1yKRIl8M1ITpqXhRiI0e9HzitxsCJ2xBfgLxq8ojyacijwXfle6Kc9cAy9uu8wBqoZdplflXW5SLuqrjWbNd0bQ168uyDTBj6KLgKcyySOt3wNwc+Rc9Kz3JFC6JFpd36JInGeNwaS89rwlR+7s2s7NhwX2jP8chYvemqpuO89olufR5tGUMY42/LY5tQc/kabcFJlguUD5eN8bjbhb7AqvlzS3uF3S1u1Zc0mRnpBmIu13TWJvIasLvoQkramlOrUAgXF2WysRnXbouCqIx/xOSvWJ3xk71tqsu0OrGteTvFbvPLFR1bo5mcg3o7jWaje/0mcYKtYMCAwIWF1Rt2kyDdL6QuNOWimUvLvNJGpCsj7/8n7ovVz8GxWJc/gS1A2Jv1UbgsLsyl78RpO2UL4/3UWtgwtxkWu8rjedlpZcmJ4PEpuP99C/K1XRm/WPhmzpjtg0B7H2nn5y1475cb2mIFGrpLj8dOdQUug4wddDdXxisZZZdXWS4Ow6sJXKdBwFS+AIPB8G2J58c5LQ+Mbvr3BsJPpH2Y0YWO5O7NZtlR6ukWoj6KX3cZdiM/JpxqvL/WekvcLV+lERcnvOGzpX2OD18a8oRmS5Z1EBajEDLYbuT2utZCJXFTVx2eaeYfde+HxDOdu5aklvKGSBKQ0uZEjr+v1oeH4VYjZoYtbSBCAaW89KTTsoyRlvpjmm6nzUP0rDcBsG4Jw6eFDTdyNRoxQb3A4zUiqbTUwfm/STvw1TpIZFycMKcPKFtWIeOlHbgKrTz8envxAAOfYTV1Md0inwi9fB+lZ7JHmHqJ4f3FA+yeUm4VeU17eUZx9hO/EOsCFzkE5CSWjRX8QX1vpyAe2fby0JBTLuppk3nSTRZIw41vpaXrKLJ+RlLr+a0dPrJrajkftMjmV24cRDM1hcBF8FRSaKJjcvniF5fEZD7h2L1Qi8+NOS2vXOeE1y88yQLld85WrJ9hU6INnSqKbaqbAc1mgJcB2a6ZlJ+K+9+HoADOsaP+4IVv5oxZXrxmrYqXLmnX7Lb3qcbNjK2FDtgWzbSkvTM2BV/ZoPbzabdYTeDV0l7TDpaL0WiiGVRzZ8ewP87+6JMcE1A3Pk8Zcc+r852Mc+f7RPk2PldG/3Iw0Pg2i+A+5Je0nAfzeaZOpxFjpNVRN3teqyJK1qMv5korQFoPCOCucfkYGcX5Ac08q0jqN/4GrTgfSeAHpInvZyOk8Anz5pdVRCQgp8vE+1qybqsKt0X7b9Sn3XQVtFi3bInTwtZwNHSjp0ZOAsTO5ZJxoI2hR05AxEu8rvrCIQfe9QwYS73mbWdFj/CrjhG0XkdhjE1uHkCsD0ifIQdEIKfT+iopla00IylXGHxSiD5YwUMG3A8A4QJBbEKXSXr7HyXs8HuLG1nXHLqHhKfccHIKE7b1+Ku+zBk/wONLHGIZH2HmRSFu3d0HGcf4AX8nLN/LRwBUQLjRPrIZd2WYZi3MZsDULW56Hna0onyelvH2rv60qbnQ7kUDdF2XT1lzBjzg9j7OMsdyEYMB0SaWa1ytn2XIxIyLftxkDfckz4XC3dDJKghw0nX/63mld1H5nJTjbKjG8l6TqSy/8/NLkVjGhb/ixGkjQjX1ZDV7TQB2XT6XFwu7vTzrBsWl0HWh1xkYfZheD6IH8UFwslsW9TSZ7ezciXyGTQqdjuzLpc3wf9Q29jb17YX3aaXrBzB8vYnZhI6Shtkvurh0ZaQBYNKTxTkaLSUtl2q4wfdBleUbNv9qgK2JsxsfEqPz5UmHShX5npb4mK6a6mra/tyN8UX5Rtvc+LBuuoxbcBBrfCfjfqmbllf7ucnIeY18Lmml0l4XZ8VvdSAoE4UHobb1JlRvc2W2WtMKbWuM128Q7WNwbYK0WXLENpn5kLIPnuuQNu/D2gc+OpQ523o5Z+AulMUI+mcxFLhIC/jOVBupyRWfHGwkrT9Xvt0FKnei+rmoJfMRoIN49u/hvOuanOV5BxoymEGNWjT3Qk9RaZcuDrjbjIJHwnFtskul69kdYBIzfLVWEWurcZbj48H1wy53Srifff8CUyMXyrBhN2NOkfMGc8INveBvJi5NdsRu6oN3uDjh71Hj7zCmyOhRrJsNN+zPWD7ic2XnhtCTbYjzALsv89O9vKV8tzJeYPeVzeh6LbQ7k91msFAtciNnobSk3epg5zQL2aW8Mzhe9+W5MZYtecv3pnGXrHSD9n2lddevKsdzXROWN2z3vDSwLa/sGO5ARLUZzIfkooGmBl+2XouPuAxS+RyUt5/HZczlnSe/dMNdChn3zyjDwv31PUktfBwL3w3LPYjyFzpTpsB60MX85vmRc/oz+SI/1yLB95mRzSt8bvhmXBkBpKFucdoQLPHrAqlv0tZhc7dwiDM53pnmL52nPMWluBvjkW/3Kd8N6mRg19mOFNsPm4fMOtMyrzvDPT0WOzKogRe7u83pNPsNSM2mdYNKcbxqM8qsmby0CBn4dF7jqMl11Ud2NeVdiMtnBr4lA1nAvAYlusfvOVO7sr/Ex1fMMq7SniabjdbrrsPEizJod2+hn1vQMqoU4t+MOZoq1FdPvVwXIyaj5FXXPljrU6HebGqdZFoByhXTMtKSDMLlcxlnWoKTRRtmLg9cA274En3WjYx+hX1ihzKfOPvSaEv7MjE0b+46sL7DdsCMsz2vWl7tUZir5NCCBx8fDQXLTW5vsMqC+jO1pxG/iluS4+ACxOna+lmmGvfU8xbnmhps1V1w7Ob8tUSP2HYp05YITTcYJ6tbm+2BoYnsTZdxIxl4bYm4/3Ys9242YWeh/R5jN5IX2/xcfhqFGsrcapTOcAi1nQWFd7Xi31HMJPtnSFiMupNQHeP67YG1PH2BrS/+1XPjNqnRliBkJD6bWWjYXexaEvsEVuQ6rTaZWSnRPoLYpzlaNzW12dPAFsqa6mi3GVKqsH7CwOtEC3bD3hyBiasBnZTxEbXXbRdiwsqjzBP2TUr177BJcD6w3P/8GRD7qHYtotuIeTz8bYR1xODble8j4etMzAbdBT5tboENcIdBXmZynTZ8fTspDwZEslObVZgN44oPw7PxRfTSejEDDUwcAEim/ryXD2REdZex5zWrphaG/sYZ2Ym/YpP5kTHvaQvfSZQnZCx/h1D48AvWjTYCco8p7oiszEmvmwEk2mlSdjUwASrfQeb6e5ARLT5eEaFbcV8eo8l9yYpfxu+8/c+ffYNKWvbc9sOgnnS+Tbyfs/iSf3l0JjYRa90+2QgkXAr9XJTFSE7iYvcrJoDJVQofN/gSAwch0dzwRRzzcbccwK4nRrkJ0Q1fVrM5EoZLS7oQqij8o6K+qhkG2hQtssz5cnM0cx20hhJnyqQAuUQKRN9t58dp3aivKz+8/Ygc0PPEm+tFWh/6UGBsX3oPXETDRddbB4dtJmOvg9bLkbT9bKWiNjPTaIroemQZWwbKaYOW0noj6eJS/xovBemww3jb+ma5SGMKm24qfeE91anLwjDzBA4rp+nlu5Ax+EzlZRmLnvLhI9hdNolcyXfYfSFztGbme2N7opAhY6UdFxGjDqkRetshXrGB48F9+0Q2jxVpMoY+PF9JWh6TiSAX81ivloF7C2QVKLnv2WUTkZ1hFBUzXcurSyEIy10OVW9nYnZIM232yLpLDLvS4lyyiV145FfYL74n8U09x42Ibm9MiHCZF2EVm64c8Q/C8cX3PWgT9w/f+TNXzqWrA6rvhmF+OclpNyymHO7SHjbHdv9EFYe5l64bM09bDOX9s1XYU04cp+E+Dpw48Wb1d4rgUHYY/fbC+XJl/AKBO7x3yO5rQS4i1gojepugWdpYeeo+H/HYjDrl66STK2PH50gSfLlsadPzVXVlLL24yzgZPUorUldypNFug1hKO7lxhCFsUcVODLopfCZ79ogvvdrcf6SlGQxsz2Oj7bq5S4sFvrwEOLrWXNDWRlDX7Lb63HSVtPUjz6jtZOMTkpABF4rRmkyklafFs2zccLrSTUZhGYuSlVVhJSTLUXhobbPbVizC6AMKdunt9ZHP+85aHC/3iRvRqZqroqyY3Bla9eHrxiLsRGJp3eBK7mgt98SVsdqkVkxZfLg6Vi09P5PjxKI5RdY5AAASZxCMf0w686za4Rcnq+KUtdvGejlCd+TKaIOHdGnxODvnoctIu8TpFvnx4GXc8WnAaiGqgm3SaOvDht0+KRuwvLRRvts6WN+0td6fb2jRku63UmILEy5WoevziIs39kbb80P8xXPxm917hKFocVflm2xiSfZB7O4CX+DixLfb9Q2Pb+R82mYADQubXeC8vEJKg654fMcX209uVLsuhF97pXHcIGNsbov343p9DzdCRljHZ9mUY+MpWq1YaflcFtIdUXp7k1CpT1FUFW++SEZCL9raiVSVUNH5khOh5202g6/hF632x9fS4tSargnbIQdET0De4JbJF+JOUuwBdy9f7od+cRPcG8JyPmMRr+L+kubEoW/Rh5a9qXzLeaJvLKiub7r9VAjflisjBW1P2ozxs7TdgGj51ax0couXcz0/sBAeEnFu5JifxxXOi7CNY5/l48Xgl13mTs8DZQLoy102Tzu8uxJsn/Bg1+PFuHB73QxZ0avZ8d7Wkk6L8FzeyOtqfCpVyGI/WK7OWhAri5sRvgplkFdldhCOjJoM1aHlGWaVcW1PbPx7JZEu2jm8fr2C9vTMselkG5+0SRcrcUURjrTur0q0UuUrq9UUX2nTbE8r/5dd2He3sB03ivYm1C652y63wzTEbO4lZOKBC9VJDILOoPXJr1L5FbCL88n98hn8G8KIT8/glau/24EprT9HE1TDq3uZEwvM3lzgInDf9wtfeH++zqsKcS3fhqGfQtvTOlx0LJ+UK0TLeN3tzw2EjBh6Jyj1o21CcGV3+N0Fdh/Sktxgsw+UrwKro/PpeHwb3GaQbmroJ3w6vrI7XHVnc5wYhTbA4/5eaftgPFHE3eKv1JP4mLh/WYSbjiHdUA/ds+bbcB+1CXcpucx5Cq1NnrYUnDYTpm6qZO5+WLCbrfO2LX2A8ZrrJy5y0rywI4u+VW5QarwzLBfmu3buXBfMj3XwLYeXK+OXDt7OJldGH7iUg0pDw/PlnAMxwBjdUIqFDUaEhMlfNCeF2bFb5fuKOvWH7hboKy6806c105bnXjxO624b/jHH3h43u9r51NHd9upR8IFmDKwuULK73vQBwbMyPupvt+VjmSZ5JlpqOzEYflAnVaD20K3slJe/vxucTHx1eMlx3W3woqJHkaYB2TTYmBoNpyWG3ZhNF5akIS9r12ncwuhx40j3D0i6GGaeQga+Nvo4XO20Wk6aIq705wYftCi0y03Qk4ndmCX2QVTBuyy3E7+IJD/8uXbIRPMjzqc1CHd5OZVcXsSv7V/m8tRlypd0B045relZPFa5Dr+dzFZ8/aYyX3VVHICetnu3Yt+xzj2IxAWSnx4IU70O+GxW4KKpmm1CHVxEdg9xMbEciCFRwyzn6zucHfe3Ig99suN+bcGyp53y7Ek7Tk3YeSHjM7g4YvkFn17up3Xjr67wGPR+sBO76+EUvG8/gd3adNPLzXlOE/qmA6775EMN4SM2o9P2Im7t5iJDgt4CxYXkmk8v37b7Cp+wMqJX7wffkYdk2pW0K2woinKejL/aqsr6qe1YLVDWYBXeDpZekW7n/iZyMZuRaSstyxLoQMrNIrk3RFYq82U8jp3DJnOeJXvDO06zGYj+4OHd5BO3L+ZZ4dPpxQdhM92dXaBrIiOV1nF/CXOazUDYmFf43odvxpUxBznNIh30sb/BCPKztx4HgrrtWpFGG18G38AMJOTAqSdDd6SrDNmDDd/38qF9l+cmtLSigB655iI9bVPjdqPloNapfJPdvEo7YfzmQjnkFVn1wchF1d/ycZkvjXcLXTfBTKw+GfoHm31bf6Qt5QEaLt06kzIjtYycKOvA/MqnSxIfNFUg7tG9bGwkVHd/iU5B2ih677c2Sk271XgvDBtuGVap9/U6r69QhRs69fpzruQiEmMlNT5WFEnXmGqMV56pjlVSv9I4+Ng2CvcR99UPt0OjPWOiphA5ywDHnQgBu+JeEO1n8dVFqxquikAOJtId8S3OSbnjixjtAY3Jonvm+w1hyw0z+RzwCdk6j3Co39v48SD0XxPbzrld4OLVINajJ5g/sp34EK7UJcnCWLEwdcb9cYKz4XEdwAWvDdyWzCFjy7uw4fJJlZcDy1h63BWmPqK9SPss3w4jW/xV6HpFNoHOZx8SNOwuA+7Blt3q5nns9vz91RltjI1fy3pSQhHUMyRae+VzmZ1Puy+fxzjuI73x3bF8icHKOdOGXMpI+nJcLOVtjVbtXFXvVGSbMgtfSKGFFUVMWzztgt9cdImJCNJlMsuXMvrZsUWr9q3migJ5+4DbF8d3cqcMnJbAao1aUkrrWG4ff/ZjAeTu7uVbKrdbFw+7gVf9Q9FR8pWf0R76BnWXds/D7IDbG5dpXf7h9u4Mm3Gq26HDbIa5599g8dcOCsH5+sD09zasfp+toBuvOlyuP/3RB7Q97cObZVq2ehE3PncZNpnouQPYjRw7X7mM2gzQI76s103H1+EO4yfBrgY402Cjy3xbyE6rQ50x35u8os5kiO87RXJBO714RsYeYiCy34Q1pr3LK6Lu3GHqm/jw7yMZV+IF9qGisfUHjUhXTQ6jZCyQDXcb7djYL2T0VclsCk3G+OmXiFCU64IGYDxwQEysiJYKeCXmksXXRu1wvLRhHXXKHB/Z2QsbYTjfxLZ6yYlPtPKZ1z3qzlsMhJk2SG3a9ghDx6CoSsmBFqe4xfmmSMay2dVxwMmrrnSD+x+xA3VIV2XqaSfs84iI0wdpOdttUJuRG/5em88df6fAE4ZncbA/32EKp5Wh/potua2j3qhbGG3iBabu7u81HK18j87GbTI+eud8tqS0mrH1k5vCM6/xdVt95MpWwy+TcUVlfL+JsFd9ZXmFx8Z20itR1rR5AYhuduyqARpisGsfShMsG6Dd0dHtWtCOnY1cGSU+ZrIwnAcf4mfeYL9T5EUhSTvam46DXA53KaMPSktNCxjuEzXbjG81vD/V0b798M2cMcsdqhporDQ+b6EDmWK5NpYI+i2lNw3xd1m3FZ8bYx1pbWS54W3nM/EtRLuMD3UzhWHQ+Kw9vjMioz1pLzc+V0bopjyzbp7L99ZedkSGZiN9RPsoPwxt7skMtzZ3SztETDMEpbQ8EPQBl1zQOn3TzcdCd1Mp677JZmprQ/lW90qBu/uzNHKJMtTJ7zguk04rUf5trKhEpDnJ84mUUqZn7KYl3zC+qnEeRoIvldGaklAJ0nCXTWdAEUbYx1e+au18T011LT75nK4xbVT0BUJ1V+wY8xwerzLQOvpN2sr8CT7P5jXyTYoCAy0t05TnJ3Bxy/cuNGzr5XsqMO0HSbsYV8/XLz+P01NZTomusPuOttjEAbufpAUUeT/+RWhnd7dsO6BtALcxfSAj2QyK2tIWGfuDXmL5HV+/VdAjtGSuVk15JqxsqiuLYngRAD8sgRJ2H9YZNcpf+bq7vGM5y8Al9LEg42vaKrenWS53p/fEbiOF+EacNdHKL//5IhyrNRcG8w6kgvtC1fSNhmW/PhssvonwzeyY5ZkMH2l4b0gg3A1UH+mvtAlCQwvttO2Kwe55NWJXPFcZI63TFjsvnXjmM+D+Zh+i/5JuhqJdFZcxdQTSC9rgc4ehHasnWivDtRG6eddCH0/dhjYgubRFY35S4gouW/Smm8t8J8UPgY2n+4KXNtd4BY3nL9SnLniwTEOd1GMANyNEplXST1qdco1yuhSKPZOMfdAAxXnOtOK0QQicfJ0x0iFEIHhXmOFcBTtZd5B0XbUzSn5mQUTXFcu2q7RgRUPP652GTGwIRWC0y8T6ai60psnypIxCevWfh8nMbi8QrJsU7apnP7MWN3UZPsUtjA6LJsMhQrS0o6aI2xqXwV4fQvXr9D8cGOf5BoaeBmh9p4BpjWYsY9ynyM2+DLR8PmhjNz0DjS+ykjZab4NDWtDzozDxGWxGL19/fortE7h4ib8dB9Ge5UKv7d2dbkfBO18FokPe4f4jhdxhd5droxVL1rB7koNlkaTdBB1xH4m9nJ/FFTZdjzHpI5vROO9BxuL0+uHpaDk7fGjRq7sipojVLbw4Fgqgtorki1Ci/Kx2rb3hPiqWA8XRdbg+P3H5JDx2N3G2r/4ZmXBZtPIcZJsk0jqZTYVMxkO4vBI2w6/RX8d0yN7QYp/jcaeF5MUg4UYv7p/hujCXek2Xdcd2tgNuM77ty/JfroxfJnQjCcQqiK+g5jP2c1LbDMaapnf2sqrMHX6AmkIrZWv+4SS88a3b3fdp0fk041VpQbR5VibUSMy00xXa4ZlDM1LtMroiY5lgSc2qHFq3omvnezPA4fI9NYhh2v66D2JYV+35ki+767HMln/oRod8u1GXNA1d/Klcu8zZtrtryW707/hSv/C8SH6h1H29t1aBlj8rgdBrcsjUTaQ9i9LmVuGZ1sPZnnv7W3qToorQQGHUXRdBFYo8fxBcptqyy+zjBoiQknQXo0UqVQ47NPCmcXKDTK6YK62lUKwLOgwk8wyCmJ7O+BbaKs+yxvGJU+20GifdznKW7TB3y88wgNQmfXK5+gYBBaUt7o5P4OLEJ7K/2PoqtMo1fAE6hIEbJjYR+x0H+819FfuKWXuAk4w5k0ksC40kZ8Hf0E1N1+Uodzd0mVp3oGZZbVqjHe9/6HwuZJjaQs271nW/2a/jM+NQtwm3GNrTd3tSRRxu/FT0+rkOvR8kaHb3YqW4juUt4VaerZ90A9m6xVgl0Ub5FkdHOq/35NOxvPfCbgOjbC35Slsv8WC+87WjSVOOc7itKoPAjiHOR4PPws3cPePM/PzYIn6zyd/C2BTLyq0CyLqQYx+3rsuuTsLu1Mma0J3QuGQKhvPr22aZVsSv8lf7gMpsB/xM8yt878PXnV5eLPPtfU+3vlAtW0svKOk57W5sB1qGmRug3OQcBwwMWR+lfcxXp5d3tFeGexBqwMA5tEGJTmknmS4y/FD5PgUnPpXvjbKuDN5lAm4WPKr5YHke8r2Ka3zn8nLa4bnke1cp94XS0m50k/GqjLrJNCDHDevLttpl1v6Y+eqNHiP/sgqM0JVqkvai+N+zqEM3mVl3iKmj4MQ6yq3wnTIxMyt+DQhUJeKdVlVw2j8Fx3d1PBxBXgfHxSGLjs9bL/sIHve3H8bFmfau6XfbpCTFl8TFa75z4rseOfb9m6A3abd8b8r3iN1HoPCptE/qdXx5hYvP2IGPifNpmfX0Da86dpc6/wjOf1YJK5Y7LuoW8zi7iuvXuD/lquUfYc1Fn5nU01UzpeUfPa1jLvMtdtB/20RvYXXK7L9PyyfShE3x60WS9gw8T7uw+KY3xalHsQNuT5Rov+Vwhu37+L9vKXwzroxxxoxcGRfuKaIB+3+v/Da62yOl1Ra/3tAyma9mwAYdio1PSmJhpA1BLY3zdzcWL98uhtLzzlcyrRDYPjj8EK/8B4Oyr1bKTNszkfYcv0Gi9Hzo+ap8o/wu55QXp5OZtsRN+Q/vt/oT+0/JWyufrpuJ7xV/ch9RR+JpMe9mcFPGj4+wRUx+90eQvJGw6NPzFgVfwyQCokXQZhOkTJyXEUqzetEVtzqz/nJafzHfPr9tC3YjVnGLDP8KKV08XRkprSJd+WhFMz8CLSC2lJeXd7m7CBR6LpOlceti0pqo1a3RViuXm42ZOxG867qKXoG86VFIjatkOLBcMdflsxrl82/axC5FuBecBDcH3u12tVVek10BP4QumtfwAwo982r95Yq63IL8lq7PDl6PjNXcz5Cune2q3JVEkAf1TV/FvdTquITJRUBbtws2re8nEvPjiN3VCYv5V1r/+RFcDBlNJc/gYse20GuX64Lv5jVxIXOrvmYLaxGu8iiY2uillXGDvklXPQy6YSy/TM8hvgjf/A+mMl/YRIfIaFGMmVN5+rMbyFL4JiMSBwPLXY+kvOKO2HA/AMMLyDK6TaAidMBNrJbs86XtO15R+T0+cD/7dqHF0h9jQeB+uJAupmGnCHP8egshmd4Zt6XyFEhxeRYa+7ma2WaIlcnd0vmKq3foukUYSePX4QuQNyZa5Bk24zA7ZPc/+o3Bpqhlt81miOC7AA6yN/55lkiLdW3+cnc/cZ4S9ua7mpdC+c7etxpUXx+Y/jKBRj7he9v986x1e+cpE68+QeO8DhR3LyGjX1Z7YxDEackQERD2Kp9dJjFehZ6gJ422y3HNt88py6QT97TlmfhstIPMm1eD7ImkPu5p20B87N5Nxju+l3ymBBymwcQFrfY6GRIVGVvaTcY5C/vJ7fOBce5874xzz6e0fd3rhC/LuDsLQYNfxMC5xXcLWgVpeVLa4v6BMHwc7yZOCEO6kH0NpA9EyuuWjRKf9ezGVdLNGn0ArpH2kKQL1x+fZIrgQC48+TXEAqxJWpx903A/XObTXUvMUKquSRIJfQD2LTTFKUe4IMaVyyHjOpvgfFe8XbFMtH7lMqi0n+3SQm2jY2i4FG5YJqlix4nWP9OVXCrtZR9ubePIF33hQN2G7EXYsLs3ydJ9teHEZ+Iix0+0d9jWy3eHoSOW3cR/Di5e4v6Egz2vzqfopmHMs/Zl1I1QWr1OO9xktPHlhw3LOt+750orVF7t7u6c3Av/AdwvaTcZq5AVu4lFLLZI1ElvzFL4SGB30iZ+l7xRsyrXrRGmaPvvwsVMln3ZwKfporvoH5TW5YgbIm3ys5JqYF3YAcL9ZWfWdfp+ds5tBp9pE6L1nP02Zb486s5mxOKkKg55i89a22X5+GK4/30IrzNmXyJsViODlt/V0ukDWqbvabX8YovX+HnnGvlMSI0bd5h7Wa9pL9LGf3aDgul5zIBoWdlP8n3EY+u+BcwG+rv+LjVNP5fQizDSehZuUx7hy2Af72jvyguk7ZlHIj1tux7/Q7qxgfRTzY6MDczYFaKLq/XJiGZzuK2FoY01F7m6ZBsEbDSDtCzf3/HVwlro+apXc+CPTE8wsI1X+DnHES1vPmNgccLlrQONvA7fBgq9vNpoWTXUDDTi0tBme9TkZdJ62bNxrPg1OQQ+x6Xl4edKMuWWNstHGt/Hc5R2wPkH/bfj07UN2TPISUhtt5e0fdAOrpc9/g6773bBep69nT3EY1ZjGwxHVDaV6x7ZMPQjO3edT+/IzHfk0wW5kJLXpgrtVaGoXcU3FL09PrA325X3RRcVn694zs+1fHHxubpMvcXzWeKjln/A/SrIhYzorxetRD49LeXV7a/btSf5cmOou3M1CZCYmmeIKY3TKpAS7EyL+i1ttm0rtwD1oqoB91uudDoPvmPongujzUBdLM1SKXEgnI+8s5zfK9x/hefDN7NjtrkywhubP/vWtCaaW6MRyk+Ftqxj+YO+A0GAVR/dVQdwK+DuTUor3RHvLJivJt7H+X+RfO5lRk87PLucRloGIGU1vqhqNLSdD+jvtvHQqmk03IwmE042Pjq8n7xLL3kgy3ApzzO0uEhLz942GEcrrbdJgCcp26UmwK6nGxnr6GIfBH2ofNrSdtoiFzU41LShCy8fZ+j1SNnESITdzCLt1LA7T43BQzko73oXcyMk3USVwNuUrzpSwyMLna585s4o6zzXocyHyg9PD/gVyP6h5djgUVsZDbwC3HVwuaW4zIla7h5yaF449AbvcwKVM1ZZ7Uh5uL9AluuhP6uAvjcmOEVxUP2t8hluCn+bzMvoLw68y4k3NXwVAfQ02jzr8ClhNQFNrDty1TdxUWf8RZv+ByhSfVleicdCdchXY0fS6AulaXecjCESE9fHSislftNXw98JH7grVdyvtBPuTzZj5D2IEHJMtK0wJUnHUFa1P3esm8LAt5TxgtZ1M/LpFTCVr9P2+Cub4R2iuduSmaj0E0b38Kk2g5+HdlOKFODZGk2TMTF2aNBFPwSYYbz2gpwKiPtsWyMVxnkuruXlk6IgIftVXdYNo9Q5Em6oYajVk8Lz1uDlWB6ujsI35S4+sWBnNqTi/grl9lvD53esKW/YJ4DcL+0GRV1Si9gOmhL+0kBJgHB/h5DNABbuW+nTZnjZl42IuhSzCQBE/KqPSltw/1OB//sQFPK6Lv9Lh82VEVit4HDfY2u53Z2EH8LIW589qj9wHZjR1cUW53mJAnp4v7e3PX1JS7Qo2Bwvg5auiGY+aGk3+6XAdhHalWtND0YbhoL/dtrBWLULf2qctPQcrShLgoX/IHOv+om2242RtvF5RNvTllVO6XlXS827TDEIYh12OS5k3NOmwBJW/rnyLXc0St1tY1GE7IWmtJFcQYPaYq33hs5xd3x6w9+ejI/f/at2LE+pL7JBDKNm8poV54kSgDJ+cMOp7j7C8heNuzE29xArCiAxeIgxizqkDDeDuYEsgwExMPAzZ5ZGFbJMrmljrVvGd81UAT2jfGGELX/+cGga5lXw5R5DtDGQWXwEb/CXoidOvNkkEOHq8imhzP9FEvejTVkITPXBRw6u4nZU1wzVf+B+YWrv+1YIkY6D5d5XHuATL3wVrHtAW+LpA0XXuN9IB/ydaDt2M59th7fLOGH8BS3HAYijBR0O/OER7gesdjxujVBYb51PK4IvfHgeInpN26BqP6pQK1x81cjLTnah59tDaTd4Ass9nyKgx1P5QOVTy7dg+VnSd0WMaSk+5ao2QppwOcHWWHiBXVEfMpcymPQtGqFXW3wL1JMyLlG4h4KlBXdQz4tamSqNM9XsSPIpRw42Gf2sl9kbAwVHqgNSXAhXtqsgOdmTfFa/Jd86MnVOxxtPy3YgJopwN8sjXBCXG6SdU/PyQaNOjrA3vk/2ttxgHfcnHPiGwrd2icenhm9mYtZDMbj+vP2+QN32rPQi8+1oNtMyDmYc0d60A+ue12kf0rag9Gcr34PwLO0kk5Y/Y/zVubqn3FSGuCvabXAxZfdM33ykNK6y0VjtgT/LVCZpA+3Yrnp5dY58RFs/D/XALbIb9BvdbW435Xeuaq7n7g5DFA90E1OZqIPk7G4wOVZphd/akRt1GygRbXe/rOK0ODe4ZL8ro2tMGfsyJtVLMfZjcwuja+bTDKyfJ3DXv9V/ZGsni4/f6uWDp/VGedSjXE1S9JYXKn9aiIFSVwKX1fXcaem/3Uaw7Jlv1tlWD6397fHXHUJ6G2Cbodj0vl6YJaIV/U67VToJNWLbHY512imQbvxZp4bXVdF+S09/Icf2PJXvSq8oapzL8iTfbYNmwpFn67eHPpOm7bvLNjglkN7PGpb3fG7tXuW8Y7kvgK+U7LS3jxGOpptUyCP0Y5iMvmwVnxwv8qI+t/KRjNgaYCZ2bK25Era3/i+Ur7LMg4zX27iGrVT37K3PC7yTfVjtMx35FYL+vc7A/YLdw6ECbfkUW7W3TW1SecrPxf3vdVC8PjD9ZQJPvNxwNoBhA74Zu8t89+cyQeLfN35x0Sk3qiGfKQfJtLGhfuczuNFWLtreXA1uuv6mjn9Jy2l0MGBDmifUcUEMHjdd0z+QwUk/Gm7FZcUN5Rtp3T5JL9gjZkP8R3Q50QJ7xU/57Vhvz0q3Rj5gb+50Y0PrIn5ENz5g8y4zyXg5sgdilZMbl2bCYhzJL9IHiLnzlS9ycbWeeShH5FgMWR/wjNsWm9nLXTXZDugvd0MeQAj80845qFGSETmwavIJ3PXSTLcJ4O44bnh9xbcNMQBNo3xzPOdhGLFNCZ/57KJHBoZOeKTYVsAjMaLxXGM5pyV62m68pZ3CTVqyLHc5bEW47B+MRxPu37FqXfHpKh3q73Nw/5ZvS+tdROl3l+mKdov7KO2z5ewF4gwuBo6jDewyXj0zpj5KexUszUfqZBK+HC15QBvfexwz5XtTsnyxoUbJo517USTjN5PRcd+B3rmI3VpYyidRvg1mNtwnoaBlt2692TVblzQXscugui5zOtQ+IU1ysEnMnbkVH56ixWZkJUvRQdq5cnZfDuPrthsPGsbXD6/LP75wKGdTCvJzb6xRV2kTtIm2hZwo+SDFaLPtb4OAPSdCCXeDYtoCHhdw5ZhD0ROuluJK5XsXdtr2fCEPiM1TkwYvRxfpCb6XJWj25krO7ZkN1E24NLhPDGYYECstm7ZWqXxD10dA7lMAkWnujL2/izTethrBVaNUxKTM3QEB1IVEFiOWJ7tu9La+xgGgzRCUJxJCxq+0A2kDrStcIBjy/FQSC9yoyTKYK41PbGqens8halcwT5zp5JRmvBtJnhuv2xLZ/c+nM2J8EM9S3C0Rv31SkGfP7FkEouc666C2DmsFOAxTT6dFfjXho2FrRtxd2Pdym40PNdYHpvy+Y0yUt+a1dRHCMc+3m6WtfXhSMG1Lu9E2uzYUcGyhnLZ1oZHPBU4XPh2yrCk+M+EKPV7hfpe5007Yy48mTzdzl21hSPAQ569oHZLkJu2Q7ZYXfRYFAmyfDrmin/iWBTCt7zjDOwaDLUhMsag+geyXdRQ7Vsvn7tuZbhCOy+FplLA84liw6tLIbuKM7bmxVJbOYheqQ0X08cUBAsFZAM4X9ySw2XWy475Guw63dG/DII+GMB0rgVhR471kn0r3aE37Q3ks3E87IiLrEzIiOHR9HnpPmxUkXm49ipv6obVpuc14he99+GYu//Dggxftz4rqL89WNonXH++hfPaguEUO06RCm63x6k6EO759a3xKm88zn36JhAoVx7GKdNOxTx7SYqZ13k4uu8hFzkk3PECY+EyGuhsgQdFNV2Y/U7zJ2PmwEWp8Ny8WmeOmG7ZG2lBc49MEvJtT97RbPykm5yZw2496pQqe6qBxqkySVpoiBUctp1QZy7ogDU6E+VSyXYRNxuq6MdGy6FeeJ7zC2puNG3vpckSi3rBrdbnx92gZZFLO4w5vrC3ELpOfGRPg9APi1F49sxNqu29vNpjIq48FarRHprWYFecryEarn3dt8jiPMrlz3k64T3rpLqWWutEiaLkiylkdp+syMR6PFUGVmGIVbOtUvDGQ0CDZV1rzGSc4JLJepNVSxj1ftk23fAQ75rKsV/1oxMELmRlTm8zlcbILN+Gyr+MOq50v1em2e13TshhbffPv3h5KhTv9BZbr/rLKXCtfH/ZJArBNj/qgfMIpm4wkv/VP5eeCiw38Sr6E5Q/s5aYabc2k1fU8GGtBMI+HUMwVvZxx39PmeboqVMlPDtpVw4hrEL6Qo2i74jG1Lb+O/4zzZTKkdTYaSudbf0+cdkGUn17+xq/L19flH18m8GSJwKBXfT8QPGBbTS/N6IhTDRdm8zJFyEHW4Gb03Ptwv4Vqydws3g3tFY/tuQPUQDt1n4e0JtSHuh4XhH7319vLD/SfGHBclPNhVk8lasmGartbQb6MGoxDpL0b3DwyLGzBLneUBwE/B7fuaOlWwcJP6aEPyDzpMIjaM7p7c8E2zFktBE9MhStcu4xuCPNaYU8bOUcdePyFu4ukNMs4NiPtbQyZT1ZvSrGdcqDdykMkdnr8/NghVd6DysODG14rzbT04RAbQad+P7UhpdI7Fl9jnWH3VvHXLWHExWkw6rzbYPSONi3JY9ptAPlIxirW7eveh25t4hT9KZg6mbML3AcuMrqzM5T/5KH6bPhe2YyS7xU+0+8N5+Nl43OH+8/KfBkGZU58e9oL7L61RVPaJkq+6yjUEt/amyZzK1y/wVWUXMU77rthrIfASI5ncH89y5YBIbauvBx/e/eJy4lilTCN5YnqDu87eHmNPd0yWYYEaQcS9x1vc3ePi3QwbbEDda/tWwuK1+Uf37MQ1+XHimmOaqKBX/nY0bJ2nOdoO3CUGNkhe1qJTnQb2Coyn2K8Mk9paRm8YseMjdxQvPqs2JaRblTDID8a2KvByBXtFB7I/BRt4zvi713co+cLGS7zmmRsz0nbRkt3adm1UR/I2D9Uyu4xqrU+r4LzQJPRw2R8uW2Ye0TGX9MqsC5TtBfifnnOXof0JS9mrCVtX7TTpoqUWeqYRJBuNmYg3WUldv9MRrHy+cUhas8CjRXh5YaSF2+sjfYlIHdNvp3R/3OeOc0Su+0w5Cp5wdIu2vzgM+AHv/3GxdOs7CFevqQ9IHgH1nlAiO2w2a1fEDsnaLKYKfYmdois1dMzXXnOu3Z2G7JO4hkNy9SGQBsee4V73I7d0VSi/eaAaAxX2H1XgiZHNP2OkxfF38r7iO8VLg42Y6NDo0NLO2HOYBseVvcNHt/qZpLdsO5296+Xo8XJVGYd4q7wd4oXot3weE87ybVhtKDhYsXUcN2baHuglTHHlUXs2EY8Wa4ig/c1rc9Me1keq7RTSjS7EOWHlTu94Zre66LaCOYL8jog1/ON7yI8TxbAdOV9uWA3oOdqHDPup56X62Iu4i2ctCmT5S1n3qjoZ3u99IBClG5+FK+Hleo8b3Df+RjfFbfsyDvZmwPtOn0vp66bGt0mCpRshud14Ny2Dr+t8Nox+xKBekC4EpMfyvommYT9FR8VwAdgrRI4rwN5U41SvgB1hxXH1/B3d8Q7g9ldJgttF63L6P+RloaM12YjSCYlXcVgtOd1Qctpp27GxrWXpcs4E3J9Utom1OaacGEEGWCHn3veuKe9EXuTY3KfmPhcyfEUnyHBx9IK1clj4Ky64QJorQMO0/Pmyphx7EYXo+WSd8osU3zJWiiujwBrey0XK1h5OD4aVjvDtCZDWp7ZcLEPcJw/MnpLCdd+wppk2QHiq0EH+LfT/MILdxvMK499RRThQnhYcXIQkLTrsDZscndY3FpZ1bhMn9Pm84oV4guswcYhR037RDubgmlkwKdslHpUbKNqqrg/4O+i5WhptF2ga9wvfZufFajfy3Q5hrS9vA27J4zdgveTARdv8ZhpsdNy/Ja2xZX6GvT4EENv7NomMuvuTjc3cly699vv0UZ3XKRK27DtI9h9J7P23xXrSv2OHeeOLytda+StDI0Wlbb3iy7zpYycVilyou32JTCUGUtLn4l7f91xfwhq0fkxy7QDuML9a13kJwAOw2PHffHEycfbmE2OxFkZHrtNiLTdZsB1p2luje9Bdu0da/KXY+NFuyZzVzbDcFTbpSiv8D0L34wrYw8VK2pnSuCfLO3EB8OAjgdw9FO4y/E1pF26/f34eYw7GbWm7ecQhmTjcxRvkGM0fDRWTJCk54lWn4zbgBjXk9yL8nYGXcStfDdjxI12YDWwnOWQquc7XhufJsht2pt8H4Vyu98DIjb6/uZ6YveElGRYw/M4KldidX8ZjeSjZvQkc6JGSn0/DF+Wry+QbTdctYbK5x96UaubRuWz6UprDdYbHgE+PC+NWIlWAPiV9/FMMvS+faK6GK4PRE20WO474Kv1DdNgl4GQGg6TS7AWx9/E420w4RetwC8V+TQL7d+W44FWOx5Rn4ONPIX7l9gmA0nZjkA2Jhkwhvh2PNlwccTJx7QD0SUuBu0dhva8+iunv8Huje8U/0iOGyy/xVSp9Wlj0THfgXTHfSpfP2ZzTysFrzaZbjIQ1rH9dVgr5Zlso1TFLqxwWrtoSRu5xR9bG2wWp9+ie9udr2l9NyjKO1yoni7SWiqQb0Rc4eiEmx3QeE/GZJOyN9KK+3dz1FRy5iVhAICK+70NGR+CFbYLik57VCxn3bQq2mwGms0g+cpuIdEWm8F2gMzr22gzYLgv0PuG8lWD4rVj9sVDutdm512d0JpT9OHauWsmFidJm+dE8nkfBSZtdCbFSCuFiGRsLi0+0VIqi7CMlBaMkYQUm230uCYzC9PxtgjK+fa0N3wn2jvjW1514H+Sz9XzM+W7ex7HLk/Sjpb8QjfRTgptA/Qu06Qrf6bfbq+u0m5ugs/kGzJIKY9EX+GXT+TjlUUyI9wGLT3LzGOQdWo5jVVLC+WBAMCWsO6+mUHybuJGUyNxZswjROpWqbsVH6yE9qtikOCFYL5iK475HAYRaydKddGaiCGWF9VvW0xzKpEXsD5VIKZDr/s1QT9xIDFL7XIQAfB+rJ06d6F0t8WVu+Adp93OuDJ1wywA3gXlGv9PDrxYNuG8Se5upLuHBOUTmJp9LoYjjsMbbtU27Wlh5dxcyxso8O7diKEXtGwz6ktUfOe4y3wxlOs52tJnR2BstBO9N/0b2qvnyzNkd5j6AZk57Za01e2dzCPf0sYaHl/ZCf/bIEd6ukLP7VbDPbxeokHwRe+06JFdCFuljnYATReO5b1BXBU4+aaMhOUkvlD5ys1pna9q1WObpdf2/Qj3SQ5V+yi9L+sxzpvII+6nzOstfSjbyxuILXapkruqr92s83B39nWT7tolPczlHGGL3qF4Y9z3MWfDfSC/N7Zc1Q3Lox1ZOc1mLCx3OyB47zaD7MC7fLqnxPcrfK2JmYj8QgB/J4CfAeC7AP4LqvpPfmp+364ro8cfR/Z9cjnkPuzPdGpxkRx81bEUIC10PiIqtATIFl+eLSz3GWl5YRs4Ryfre8HdyPVnVtWRcQpg21fexzhBy4tRPujg8vBAdHNVaLRdLpZ5mzNT3OgWecFnS3BXvou0lzL3pD3uUV4XaUc+FzhxK1NrO0Wv2vId0vbKf5oWQ52UAYB3joGnF6in5Z/0fKK5CZaG19zEWl4775uBBrfzEEZ2ZQz9DZx1uDa6saVj3jax8kLGGTHJj4KGKosK1zfORAT+AWePXxM4Lau77lISR/fUzyPoGlxACu2h6X64Vn2PPCpyLmvsgwtRwRGOjmstN7BL/fyC6SDcMT8eaCxT642xWxALWnEupONIKNVy9frCwu4SL3J5u2688uIwlkeG+zhQGcuDtvOltDe2arNjLBjjfhd6sBm9jDvfxuoCu0dso8gvheVhf+5kItpytKv12c6nR3WMbRtSBTc633r8QdtC0sDkGYwd8Hh3wWO5uqIaxpI+dCufNFwkbWTXrkIOso/vyvcuKy5IVSJOqbqTItcDnEfjc5Ky2E5Z2sXHO28qpEyGdelG1D/ivPrbJ+F+iJh8vIw+PTvR8g2Zl1CO3Wuyh1jgPyZaL4sVLRcIgXes59MmeoH7bidMN+tTN2fQHuU7YArBW3jgCC1MfotB8VVvZfzvAvhvqer/VkT+HHv+Mz81s8+emInIHwHg1wL4w7G6wI+r6t/xJPFllLZ4vYlbefW8pxzZHeZOro/Eecf36Lw9rF/Pyz4Qj8t3/bweWydhfUhN7vh0VYaOhSwMbyRwYm3P/ffUf1mOvlq6yTgR0+8w6k57QzoamQuCLa8b2i/Kt4187lwG+pint51KWaUcZe51ojMfhIGZQuPcP/TIGW95VxeJ3DHx6DS60vLZw17CrAIeufotkjxA2XXlKVY/kC1uT8llmscrfVEYQB0sXIwux7GLZMKFCRJkfPUxl8/VeWrWg4i7SXpfXCu8mX3u/AGffvvVJ2E39aF9Utbawo1NKXm1fP3PtnteaDOy4+KGk7iOE6nYzefgQqxtUD4+VvE2e9PkAC7tAPf97QyVD9x7nhNuyJNYTvnJk+WDNNzQm7RdVpZ5eH+Hi/tkoaZ+Co8n/TGt667F34+DyRgLiiJ7eTYs5wGsALdX7feLTrpdKzLfW0W/qNqxV6kMaz+JRETiDdDULoOyrnBfTC4DTB3SloZIfz4V9zNW9jaA1gxdNBpXdB1zF2QbsOJo08A6YFkAdM8KZNq4X1LWLlPgvjTc11r9Z1f5Nxa+4q2MCuCH7fePAPgdn5PZl9gx+y6A/5Kq/lMi8rMB/GYR+UdV9f/xkUz6TaHx3nvxYYOObaTTLJoMr6b+G+Mze+guhgPtnc1GZLPyUcua/Xf38tUBeIeK0VAMwC3061bGKTsZ+NzwvU3r5b0wQjFh/YCMoygX+d8T0e8naAuYfpC2ZxIy39Ex6rY28SnF/FBqudDrRWXvuqGGHv0KVV8xUvuc2u9V8ESD4rZ75bs7hWKQE3vUjV+RpjG0kbiz8g9UO1822J5HrKqW3bwVwwvDJs2KiR05CRmTfO2tHSqBrYcBUpRc/Lve6e7iu3IiRovFm10XVcS+b/Op4Tns7pF1sIE2mUW2s7LlUFpKxfaSPaWlagCwuaUT2H+6zdgFuE7yRJe5LB9HXOQRtgotk0G6opsJ257p3p9qBz4H9/l1bzedpOuL+Bac3PjcYHeMbG/kn/rUUB9P0z4bevku874YgGAimjKhhfGrFRAuRyt76c2by+O1DP6pj6uEOWYxz4VL3B+EmuSPsZK7Rxrq+/jQ8wnbSTcxWj8sOGIkOWHiDlivwF/lVdstW88H6x5+Cf7676lnpJVmM5wTw/K+WPsKFv4aAP+IiPwtWGr6D39OZp89MVPVfxnAv2y/f5+I/BYAPw/AhyZmxc+4G+wDmHrd0MUQ6GLP5bA/skknO6nsZDVhH+R02jGQINFlmnDXtGbpPmWs6mPAxmfEyq6sHD+OWDuJsxnwi3xvny/yvqUd9Lhl+wTfy3Chm0+lvSqvX64QLwu++2ihjgoux26TzFOUoDYQOETXAeUlbQ8++PfU3hjCyIRVavQ3o8NHtu6yPtzgyg197xykZ92HUuyqsp4pD3ILvRZXQg1egyKAnl4GN4mpeb+m3hWxnmtboWN0pc7SyNo7ktHdHNf5Ncc0jfbtfAA/2G1X6UPNOC+ZDq3na/OLZ58QLgdyO3Znu5pJSt8oHjirgOVCFux6Y3F4ZXCzGdSsI4cyAEtc7Jg6mbT9lijsQS5o6V3H/W6HCm3r4I/s2kTqvyfa0V3zGVzUXR0PsftuMvAE7t9h6lYGJlBGsQlXZuyO8UD7/TAIykTucdGmhvJscsnySZVxQSb1x7tsB3uzdxZLeFTE3ZaVvUNVQUiOrpHrysv2KYanVIPUgVW48B33y/7dxqPz9RQ77qwYlinx2Gk1zoiJ+CdPKl65zVi0GlguaxuMbBVfiJVn6TzGaf39GTajYuXhKv9Wg372GbMfE5HfRM8/rqo/7g8i8usA/JyB7lcD+I8C+FWq+g+KyC8D8D8D8Es/VZAvesZMRH4BgP8QgH/iKYJhxBXXJPdnRfG1j0OQlXh8rqud6PZ+S8sTpTDKDApFwGTrZ3KujBXjjA/4mHbDoMbqamTSyzfuzlzRFgaDkexpiUb5pf3uBrYMHlr5OsiXzQJGBLZ5LNNAy+UoiNjT4lqvvc48YXf1e8RXmgy9XirGCaGe3JenlenWM2wbVNYU0qQoYVjd3dxJmNXVyGFSdK+TZvKqjGyQUFSlZaK462KTgzKLx6CpF/hMbS6K3tU2jUUa4+A30bIwl9sX2QBXPgwae8H8VsYVjoE2UMg+eq2ZBbm/nOvEWT7rp1+bnNhBoMI7mfGacJ+IxzZWaLNzp0aU+t8DwYvNoNfaqpQ8LYToKt+Ur9+4e4mhyDiAZNhHd6C5fCQpyTstMv3UXHle0TGEZe18Cx/P/wO42CFo2zQukfT7xFadz+C+y9oxlXco+rmxNnzgqIYrDbulLvXcwuMQwenHltt1XNI3fO6cLnQzLyp3o8l8qbJGG0DlL1i3zj9xZGmqmnZBPZ4TUIETYT2rKkSpM6tPpedINPSNYpq33FrS3h/b844/fvPuDBzrMZfNanAsR7EZ9WzyAAKhe/fSuGpEWanLDnzb1+UrPnti9hOq+ide5q96OdESkV8L4K+2x/8lgP/p5wjyxXYmReRnAfgHAfw1qvqvD/G/UkR+k4j8pn/7u/8/fxnxrM/e99nIaHuewuYjXyxdtwK1J97VqzZ67XG9DF3mjU6v08pOdxmmgcokJK7L9wyvuQyPXtJ7vU92G3cR8ZR+2sAkyvoMMePZU8xu8mmDinh/q3y9eRry0OGdPWtPd5v2Cb49QbThoQff4WWRQ3e5HhLSm6l8j2id75DXnFXupEW8/VDXM42gNQCpTz9z8rEOnkvQKlYTWfmttUyltCcXk+sWllaNPvKSKE/SJh9QfieWa0vy8WcUvs8Exv0/8Ad+fxadeFZEzPrfcLH5oI12og9AOLNHNqMIfv288ZX2dkhbdbbj/ibPwOcq4efYjMv0DbNv3+v488Nhy/JzB4FPCqOXD/dpn6sfqpQN26httn/KFXOF15NwnbbFfYj2ToYxi6vGMrxS7J2O4hiOB2R+2J+TR+fZ62AWdy6u1oinJgE0GL3QZf5MnD+V8F4Tf+s/WVgdvw3LFXCPAb8QY+UhYSsY953vaf/YZjjefxT3v1Y4rZyf8u8zw+8A8Ivt958F4J/7nMy+yI6ZiPwQ1qTs71HVf2hKY1uCPw4AP/IH/9ytfnMBUsEHO/MMBZmz4QyBJSa6njY4NTJfOtFYRlGKYja5UrjS1p0yT6rRMVLmKmLpq/2cwh3g9DjXmT8QXy5up+18bjubRwot6LAcFzLNMt7Tdt3c5u118oDvWB5//wyffZFqXITaVtX66te2GoZ9R4odu8syHmXjzbfndVf2M5N0N5WSULBu3IOt41GZpJdBLuSXRbuatRNLTTvppgpRThlHm9to/RszpLeh+ButRAkpzvq+UFkbbe7OmeEKV5KVyA8ei+EYf6Tad6jcqcRp4ravaM+C93e71RFiF55pYg6wblSE38BIrovmwuKlW27OGuVRCOTMojntulofsULtrnznaa4uLre1oyPZPAyM+z/8s35ejt1cdx1THevpYJ1SPFeuRMW47pCNhXcSg0fyvRF4sBk1dPOTuLjTbjkNNqPz3VQ7Yc4Flm90XQjSRewYdRzkvy2ry3CDxw9tRhNTJzkmzO3Pd5h7gzmbzEoY2eprkzHIGLuvZPLGwqBC/O/w1p9Pen5UnrO+uGzVE9/zKjGwtSvGfaQNAZY7tEznwYD0zaOuKiSHAnneq+vtVs+IxXnhF477ggpgTYZCKyQDY3lkm/gv9hwiRVqyA2dtkPz5g3f1KZHzcTxGca923I86C9rEy2LHQd/jlXVeWBq2skvl6V4ASNvg5XkW979G+Mq3Mv7lAP4OEfkOgH8LwK/8nMy+xK2MguVP+VtU9W/7EHE3ZNYAPW41eknbKoj0qsBmQNkd8aBOMqUNGVCu4Y/OOAEdbHBDtCqZdbhXlufKqrpLDK6MN7QbsnqH8YyvjP6Wlvhs5dvppKeV67RbuOG7JS26uS7DGOamMPOh33d6HdNeBW1pH4z/bmXc2qtube4jodjDqcJLArJm/UzV3QBpyLY2yAue8a7yLXXAg6AuYx89ihsje7ENCLlTKXrjFo7rI7FN74lFQkKywVzPi08MXMBptWJGxOQVy1z4wmeTIw922+XPlo8U2jquOmwAZN+oaYY64kTjMv13/czv2Yy4mApQtwNC+hDWdafNBz1Y7yjqu7MDiU/XwNjx6UO4D6YdFvV4QFfZ1hd3eNz5Dhj6NJYz3yewbcOnjqEfwOMNF5/Fu9ad7ya0Uxv8iB24x+72vMVfgGjX86O8J9pJrl7ZAy5+1Hbd28gb/L3D1MZ3k6nTNlalD3UFXFVg2NbaiTbzEtE5qSllAhJzy+ZAxaOiVvYYC5foI54jjeOxskg5Iay6Uft/3pFADvrb+GHJxLpQQBzdNSyJRNk/A/d/CgdV/Q0AftGXyu9L7Jj9aQD+YgD/rIj80/buv6qq/5uHlN1IWsfUFte/GJ99YUaQ7Wx1SWurv9uADWlwtefFA5ppYLQD+/jc0z9JC6CccZjKt0E9M5CLtE19Y5djMBgGKpsBGGT3qNtrke/K26OfNNT7qvTOmB/H1iRD2kFRnXYrn14xaDaTkl9JefCZHAy+55y8GV9p8eMZliiQdwrqA/Gqnp3ofPt1+C5pStwaXlHY5GHt5qiNvuQA11+voH4usEpc9cpXNyNMkifN78ZsQQA/TD6pcZk+bnS9dUhacbBD0NaKoPRO4tlT18+BaKNX9SVq7RKtlKarE7BVbqK1vBS20P1gV+k6aMFYbY2/4uIF7tsIRzODaNzleF63EV2dVFkLn7Q8Z0QR8QvgvtuTWr6SyEXWPY+Jjz9y+yytm22GY3drkiOWD6HziZdO9ojWBdubd30l2OwAjz93o5cZlGZ1hXUXfC9gepYR++dEdSrbUNa9kmt7KLt2lqcnCxmFnhnrpZWnyHQxYJBGyzj/LO6XfGVLq5tSemi1EPXZCkVxmVO1MMyH3+xcW+X0Plfa4U1LEUNWoicTupVz02PHZOpTSnhcb460FKGboZFXEeELdeWZpCq47x4d8A3OT8X970/Qj65af6PhS9zK+Btwj2PP5eP9bHPty8YfRu1y90vhqx3syhhNzXfhIj0ZLO1pQX2fDDS8mbKMLY5QcjPMZOjHtHdW4UKm6DoFne9ou8z0PPC/NDQt74kl871L2+O+FO0jGTlu5NPKLI2ObWen3dxhbmTeG0qlk+Jj1y3zdV5jsdnFRVELwc8Aih8DqutF6JlpL4J6XrLM9aPV0vrcyjulhdumahWL55osfKkDHqG0WtIKl09RsGPZQGKcxQsRE8q06Ip3W9aV95mHNEvuu3G+g3VSnmLGOPNK4ZYLirsqKkQOvGO5FQmVTUwWcXX8/9n7n5fvtqZPDKra132e533bVgd2pDEGFEwG/sDJi39BTASRNsEGf4zMwEmcioZODwOKILRRMC8BR0rMwDaBBGIaBBEMpgcZpBOEqAHjRDLQmHT3e8597XKwV9X61Kdqrb2/132f51zPm7Oe5z7Xd+1Vv1atWlW19l57bQ/u6qdDXgnE+7hTfH0IWz/+vqVltYduoSNbvz/GYY6x64pgBZSSfFvn4Bxs0tVhK6N2gSWZ8ejvGGGQURLffJeaZAPJcecDyhfTfDXfOt8GsLqC9RjYOQqaOy19lksW9DY+tYjs/himcjcf24Jbpt2XPfSxH4k3IROaHPJSoO1g1Ka+bbusjgcG2IhvC1Sim+Qg2WMKbP1+5j23FGZ/dOv3eWy7cTLJRwwu/HFu07yPjmhbwbVEV+HORGzfc9jk94Fv2A0sJ8eiyHGtwU1xgGw4lKfHeALlqJpil+v5ikkTVtVExw02fxKnow9TVeN6bKWfpy6KKnR3PnUbtcln0A+/LyN3/qjf/x2VX/A7Zt+1fNdTGV8usAhzR45bGUVE5DjA8GUaf+f4D5hUsD1RPPFRSD7QiQrActU9adpKg1FW5g1+4DPr1F2EFZJZJ/xuO6InN5nvFLrz7Qxb1m/kB1MT9gFkDLQFLrYFbmV5taGMHS7WjWQi2C1uU263tHjxoA/2yCa4HDNp+ovB5U43KRBpqodzHX6d747vkos0fjZNuOB655IN2h6X+wMyn+jk05F1gIBBOdpNUtZnmaeRjPnx90g0IOBmWDYEqQPhC1RsHHySzsVPZxs4JumkQ8f1wD5FMhhAD75+KAjI61G/7PP0LSzToXiA9+Pzr8QCtqkOvMtlwpPBCOJzCwvXXy0a+pq6uhaQeOSuLH25zR7NLgOsqusZVJP8E/l55Ilzu/GpZScFkgJYJt5OwZVfxC1MUn72uCsfQ7gr/8TdWMIy3KJ/rW9bxQxbt6USfiPDfNj/dm13uoLxL1vLVr6cpygLwXMB/VkRKvsrXvyGblgMa/giQCNHLg/8PoG3dAX875j3hS/LkGiR7wbnr6xH8vMso6aYAgX9LMcfuWRQoLva+TGf0HG8GZMhJuf0qxEz3P86b9wKH7Qn34ghfFNPj+wrRcZiDRZ17m5k0NX5lFNja3z++1mL2Tefyvhpyi+7MFs93RF3dprri7aLVq06jsUEaLz5AnfymVdamdiZ79pKve+fNxk27IIz/LgLTiKS8+BOb0YXsHBy0slfOtP7+gK+yPWKnMQUx7otGERd5gVCtptNwGGZiGbhcyfzBne9sa+Rn49nfjIWIOKyS4R0yTiJ+V221I8FH9O61fHxl7EwsDWcVsfMXjaUt4CY30V00o2u5vjZkPPqQNRiXCdw+y4X8m3Y5P5liJRUANFxNMecsBCXu3HkJF2hQel8eFxEGhDP9dfL0u9B0hk+qNHtWHnNyzdxIKmyfSIBzeA/07a3pqvsJ9lvIB9VguU6yX3ZWHUy4QdXfhL8BsO2uOwXEbYQB1HYl2GsormdYhjhpkXlzilB/4K2SRmbopo0f0nmDUsGKHFgDZp21nof0USTfzJoG31hc87+l7xbejfARqvWMW/4sm7u7D3jNn6/k5kupLg24kfa4fCkhMz7OKDUP+web8ONjd0xdmRUQDezq3FAM6II9I+3CSaVU2xi+QNuXLDZG7oZenXWbP9CwIxV2DpvACbXi8gfc/u/lhfLL7sww+LG121lVJ1JVZehxCWHnQHBT6gxMu46ny0cTtlmoxmYExNMIuLeDPBL2JRl2crrN92TxAfrGzor3Ob6LS7R4G/9rFA7/JQ8LGRZ+usb3azkd5l3uIaXOtiGbnt5kRBsE5GVjKtETGL4KYmVdf9O4NOTXTCZ9ZBxqX8FwIbcnW4SIAl7J3hM7ms+pyCc3s2r9ObP6Qv6CEVyy5B18M3PxHyr4jR4FfAivh3GCRKfa9ugB/4ZdOsbYslVynxte0pzDjF88X7KeNiET+nME5VzbnscMH4qJXjn14v7K5A7hKfsJo2HzCTIcS+xhhweI4aC0pZ1oFD4EoyLEm+lhL6hxyVpmmPOfnFprg8m4FLmzbxin7p8zxZ+tzFxJ+Nu/hrxZXyUsZrwktdjf4Ww3Ffm80A3IlJv2GwEYt9WcFkO3nq5gy3tOhms/P5KZvaBA9fdQSk73Du/b1nUGHvG5RcqW6Ps+O7KxdwK847PjBkK6AGz6V/8BOPznKwVU13PmmCn7gExXuw2InZNMNwSOWXQ2Pl5bXych0Ghg6qfKs3P4/yj0h4zns7BX6r8+o7Z9yj43L6ZaGpwzGcbiRZ1D6RwPHXQlH3QCJgVsx1fxO0cR4v70MMwn5TDvaAbIR28wnfmbluf2eK/Elk73q+Wzp4eoLlukllGxibVbjCA6wORKQimJve7u2QCrjtseufHM5JFUE+7R5T61xR+gJOmGejpuoCd8qcwPW5mAsI4HBj48rAQxzVumwA8/1MQM7lWJknGwcuEOucIgy1PAtXwNwVaJX0MN6UIwYe1oxMGArbvqvYA5O8dOI7iewshh8Z/j8C14UOATrxfcOnNx+/iCXW0t1fLynmURGf47p3fKn5OQ19802jp83D+yrRpvNF1y3foo1v3awe/SezQx2gHv4g37by647uTsQX6QFn5MG5HPjwmksdgFfac3ialWPrFxEzq1L8z9/ZG1aDZDW/ydS2AzL5C/EmgKvMoekINwgaw+F4Xyw98+MFyK/Njv3/zbhK++2X5nSc+ATHVh0/leZiFBo2A0LoKai5LGcz5m7cLKmxVz7EXnEESi40TZYTTcFOuMRKDA2402vT77q9CNSpipzXzYPw3YC+nNXfZjK2MBjeaDGKG2sf9/u+k/KLH5X/X8nmemI0SR4teFUlHjdJrCCVClW0tkNwwrBNJkwMSnARCMqEMmgNBwqUgUWBVk8jlThX7BqqvAlA3d4rP0DVsQVzYOjvrNuhzgDNqwwSqH75JfxFEkVbAc5BdtN3R4vdItnJoMw5GcA7AQQVxKalsbmslWCWmxoLQKC9xGbKxxz5c9eAMgUukO1NPwZCyG8PA38ZQnBg5mKRtniphkBak1lLu7hcmXA+w1El894bMJhd60sc5ULnW2aMnGuQpDQE9sAu9xC4TN59nBmczbrah7wrnIsHOx1gTZFo8zu419caX+5PD6K7QkFS3LwAeYzlxWUbEhWSNZCyMdYpa/GbTpqRr9kGptTMsqCPu5r5D6/fL/Ga/x/gIuvLV+mBMQK/pWmNHxXez3wc+r/i+4mN3MYT5rOhU8W93oOz8bxmDTduWz5nl5L5365qdlNmtzHnCN7KK3ychSxxoH+0BsbQ1kA2tkVbdTtebM68122IUFr5h6ecbQeYGgMvIEruF/L6gzbtDOJ6Rwyh3mpyWyIH+FtX2cbf/Oyu/PjH7HgXvhnSBE+va13u6wr4B6OU7sSN3mzA6obzOk5Rfgcwy7XBpPnSRpZW5zne9lUP6th0sMdpI19O9Q2joPy5PhHmxfAvJFndBkG3sZdxX+bJt77CN2sYkbPk0i8kuOXmk15DR1nd9G/gsOh85bJLv3jYENcPOxHgnNehmJSXbNsW9GVxrdJtPzS5gTFXwI9VTuRBsDRN39wzOB8VTORLvmQH7Lw/iJgZnBY2rAyhgX5q82Fl54Nug8Ng0vhz73fnyaHvRt70mY19f4T7z1a70RUa06UDwpXF7CfdpWSE8DSBP/SKY7of8om1gsfycud3dvFn47mX/GtwKZulUwp0crV675GEVb3qye5l2MYPjSyNDe4T/nTvHivvTFQ74/bonYsXXY4YC7k6OgeY5pD89NI8I9tBoc0yY7/Ch35cSb+bhI/lzLadZnK004T5nMfn18I/vXubWoBGE4pHODEp1K0qTDSkEaJx0A1bJiwTfU+IIV0M52kKJGgWXPS6REYJt5nrJB1d873gtcCsjqFpuQwfW8txEzOL8MEvRPW6pfwfYotcVrheQcYsL4MlMbF4vSSQ7aYBN1yGQpYLjhHxUIJRoc+oXIKpcRyo3Mkdyh4w5aQLc9E7BlH6yOm3AXgi4TanFTf3T8dMTbgo2JyIqyegBTudfgzrf2gfYuT1kCMgva580CMDX/C50vMeKuCZ2Dv+kKidsQ/EBN5BRBx9/ed4PG5m4Xp8qUR0fiD6nrua2R5VDZRyNfNVN4JtEQw0HHLedVPyRgkPW+kGos+Pw/rEvd1zw5QlF0pCgGOVgAmTJsalblMYlmtxIM/pL19q6E+uu7/wm6wL7yz6i8Gtgd+WB/7WufeEzO92koc+uKuMKwXSyPvX7TAN822RGaBtf/kpR7g+yRJfTDTBPyrR1T9Jx84k+xQwRilWNPaWxwJihklwo+/LpTh/6/Y4nCibDD6qI8qoh+f2+v8Ec27iOR4F6HEDcxDPDXvEGO5llNAA3qKiKnOflty95smJVZwy5YCcfj0UKtPDTH9fx+TNmvDsfjy86bw6q6hW7SKW/lp+3fJ53zEaZWxdHEFxtZbwyMiHk6487SahjItTN/bwtcE44FjHdMRmOMq8hd7iZzzqChiBtmz9OX25lbHBRRtFa70QIOSlAdNupZp8W/RkyJN9Kulnqwn8m3S0EJtrtWMPvO76pnA9k3pQt36d0KLko/Wtsbk8Lga207+ykwGJ1B8+dN3sJt/YPJ9xeRh6FpMekj0YXJHPltZi8yDeyuNl4HV+f/d6+Ewq/ZpaRXhxnrECbulKon+67ggLcOTWau3ci3hUeX/LVl38Cvw9y9j51tiXfJhMvLiyO7ZwxY4qURCb9pDyc/T7hp3oTM1Ii2ODWGIn9a4TdwO784l1Z+pwNMOt164994fHQ73djtPUbubqOkQ1uofXCGHzPgjZXO3QHu/ZtS1z/z9aX5/rqfkpQBkdSws9H4+mN7y51hHXfru5/17haYpdkAy580fibfJdjlzkqTJyIGVNmFHPGjN6As+/ynVYzZgzPm/o3WqPN65/6JTOrKczva/k0Wxmx1HmUDXrOjX4m8xG1lmDrgSCVbs8njLPBX+P2fUpOM2RsABZy+scD17rp8bpFWHlHheW13ObX+JBMTN7akdlkLLvXhu760ANNkXdzFdtbvpxALmgnX9/IwbSORqh0addHuPun0tgOlGOafUvWUrs2CvP0Nm89EYGDedA+bJ3/lv5hVgP1I0FfhrUaQz52/+LvM3W8LL40gMlUpdkOQ3LjeyUmRzGNYhx4KcSY77wZAMZCiO6MionoAbiNxS7tZmP4zIaHHecZ+4hLpR/NRMFfNT6c0g9qAyfj+vR3BEmc1k94J2MABqHIfYCXuma1pVXN14+7JkcooGvtdRxT0KpK8N2R67Im3ERw4X9QTp+fjxyjSKW/cs4dLc3qXrIFetvXR1e2Db7NoI+rPJ3lKHxQJo7PRAvS4Va0lrGAjCBMiSHZDVQZiVE52hzhY74ML3I7/pdA1S9WAyjv20HhOJAXX9rAkm8L3eSDQFg3RxqfGsfSe8mlQBzoAmpjlBBhoBf1BZOs52x1xgnDia6DLLR18m74sN3cRQz/vpqwINFSxuuDzYd74jQxPmf59QPT37lEzgdbGWfgxbQHAnshYsNIwSgVUhlbHaNMuVAcXed8yRE5luelYPuxp1dRZuik9LBTRim2H5eA7XwRHfhs7ra3d9io3p1mlmDRPyiJ2SQuzOfWT2S1Psd1oZT+dn14kW9JTBa6SYnVDhbbSe40HBxEuvEbSIpbWBRwm8So4FLdTsaNDFGSAfiWrgZXma+TQNiVLqIOfPGJGuMC/QiYcWIhAeOYOk8FZIEBVM1zhp0EThR1v+WJlubxctyRNBjSGgOAOywdJnYgnUPoQXduYfHvAHld5jxO3buSGj+R0mXE7uuQydtPVdFzphoq/vHRifuxAkY8+oLbzpPvHgo1k+TbUiLR2HsaOPTlOO5YzC9jooM+FgDRIeHcD/rd0pkq0xSyyTUqQhsLGbv+4F9ER5FxPm5wHLZcdvW4ybGNd7Dd3F7Q5fnZ6a3gUMFtdQZj1BaYgsvj3Jt6gaU+rNix3ErXlNqJbOtTsbCfT0+QYbeH11GQ6o9pYMHv83gq+UU8MTbhYqeU6uJ6RSFnn5SF1I1umGfqj/MhbB0/3QFqjyuCYqikRZvLD7iWYhfGDPwMypQj3SgFJ27n9OtuKFPP89MerrrpQ49Rt9F2NeI2SAp7o24iesDJ6LQw/oTlChOfW8an5dNsZeQtLOldM5wkadsKDQLcwddjJjARyHTaeqAgKk4SEiNElvVWRuTT4yIPCOiBC+2YW1D3ivCBi7ohUIDl7SLY5dZnosyA28XGLS7UW9ydrrCtC7ab+fgtfFPxJ1UruRB2E0ALcAO70+OSzqiXsWb4xsYCF37XO7AwF9PC4gluAwvzhNtzwpP5LseT5tuVw5LMq74nAZzWpG5d/7E/xUCzHMmPlfen4HRWs3CGFjIMo7P8DMl9oMsZ27+jexN3fiZgHPDhdf8kgdmkI+NofYEtLeO9Ax2Mj2/Z0oK+jf2+uMjsF6dv4zmX/aJKGePuJhmwmpUOV4Jv63PARxvjdigcMxCvkakLc7sdEltc8l13uCxTiZtPfKrJdo4Wn8m6YcFWDJNgD2VEksXn5HrxVxvYQvwbynJMHsQXXBTvnqbJdDmz/WG86fzi7kllyIx2sfT7DSLHAZSjm5+DVh2/RQeNmO9yKRFJ349tcPG1mBQkW8MesLitMcaw/5B09AcyUx8Tvyl3dXf6+dEadQ0fabGl3Qah+Gh5wH6D3/+1PC6fciujCOet2ZvbDW7BV7TyfSn58iqI3NS7eedzLl0IGYnWRtSdbkQkbVtgPkyg5WPwZ4HbtjHYJronGbnvTKxxjC19hu+c6kq2ppSXnm8CztH145VAvYAtuzCSQ65JHqKnrSRAp5ihvYqrJfDjc5SyhYV+c77IZT08OUXkhDHJW8YvvTl1bz8AEwskr0MPTUROWW/uq08NqtR56BWUpFIWeigjD+SGT/vhaxERtfk5t5G0XDaHicSg5bnDhzNP3ALLiUpn5wQLk9/IiPJ8M4AFerfJH9BCI7rp7lwyN1uUKvn6ILcxZGuuowUb9a87aGFlHrz97Hbug94KH1LzzuelQ1Z2uI3QacOJyT6k0xjfxcTob57meKnCNiIH7Mq2mNiztOTiu3OUKHOTY/BuPGiKG7VLuTcy1lhM2kn7cwFhXMPtwyXVQJsTcme0es/bILN9m2Y+B+sfZlUc4b/1E6s4Rz4nAuslj9lBQw+HbCBu7tokZqmWiwarfM+vkf/aPSHx3ENEYjHnfi9ihBMO//BRv/+7KL9+x+z7FLz9GQYyr1mCoT38YELK9HTWbTwy9u1DvpWR51reDgMWbjDJx0TzxHTKCPI7Lsz+dJeXnM2UcfJZbSnEx9xTJg0G8QHGLvg0ASHxgRyk9UOF7/xbHgCsCspl+XI8fu9kXmUXq/4xH07IVv2DentC1E1gXMrJxf1viZA9LLapyrVlEBMpW8jcyBQ7u1h+vubjirhC1xwc7TuEhDQAjAMDR80QZCYYj2AhGgXbi0jbR5IxAuPK7lIdJkeavzJPAERljHeD1K4PT8shsc0q0U/9m9tGnEwkTdDfsJ3Rdh0eYhMQ+MydM+MMR29WkfndtfFx7OH71FTOkaDYKaLHpdFD5vbON/lYuewHlsfuY9FOHBANViT7chiE9BwxbV20+Mt+v5+eNv7vJ5lNH1/gSyLksULn9p9m67zTQ38bF8n+eV4U3IhrEjGkZdbiVr/fqaO7pK1CFrzhd3ujq6PR+PLi216RjeroQysBgL3TDccMIT/IvBu/X+LAJtbh6Xi7WJTINH6TZSyLbOh/Ggfqc/h9nXQT35gXfvw74o5c5ZDwV4HiU3/wSDJjf8BW0voPXPWFOy6cAAv+158ihUxO+6x8ZgeorX2ULzlfwpt7Csoe8zfGwB206+awS4fH1MXp8wHzZRsd8pMcw9H7JHLYq36d4KtyHN7k8WX6+cOjZOi1mXifqHT3MH8fy6d5xywGnoPzMe5J2DBUTPI4sB2zTUXEDgzGmic7TTI94BrSCgCIbjwB+RYa3PlIc8EnsoPZlHFeXCQNLqMADfDSl1htCCkyqkhZhOF6NqEirsOw/8E+EdtSmsDlDrV8QLwLcis+K9iiqz2u988vpfjdbGXMhKDNpCRKZ/aLFbejBcE26Dbsi8wrGRmflQHJSdn+QgEtyWYCCS0KpIOnpbEuMgLfNAYMi7THb2xjPml8TUQBNz31sfgPyKMJNydugH1iYL36G0FeRMQ0L8o4Ww6b0qznZuzT8R+xDSUnNTYHQeZhETk5Mt8W6Ujid1E9FMMRSaN/A0rUVN4/uKUF/a/fRLp8kUZ/TST5ck9i0rtNTotihrnvxoGPJ4CS5kls2fE6+GODcVnFDDnAd4mIHT7EwBf7kPjkcQ0bAPuf/UH9aepD4jNVgwiJrxyMi3bDyIlFIsfb+fipfRGB+az8cZpjEvZd/LHe4yaloM4aH3oXB7Z6xb+Nv6J8mJjmOt/E3eEmsyK7Ke+bEeyqL0HHFrDgB2M8QcZ+SyTMg8AdW6r9WHfmh+NPuCHKCXMTO8KxiuMa+XmfPe6DzuOMa8XvT6d5FTZIWvGnb7WlbY/cQdTd8F/vAgtX8I9mIIdNuQYjU53vFDLfFBQvTZzvwxfyjSS7DtMIL+mx5ROXX98x+5nLZTua69y+8u5Uil9jWJzsLV9dtzEuX9jZySsyTwYLvh/ns6LDfNqSMpsbmTZ6Z6R2zJiXLWA7vgs5t4c1Ca3P3Tdy4N/x9WJ5u0zn327H8SHgQclJgHd4myB9NHeVEy1MICBQ98lMHoSDHglbRQDY3LY7BazcJeEB1gXkMPa0fY9lSnw9Exm0SB4dRyn6HDK4lWeaz4W9ezLb3gVMycBlUPO9sdEXzLCKL0IZ5tP2AEv2kw/o4NMSXyo2t8n4n3ZqJxY6E7psNlcvQNaKOzsznzpKm+jh4+RLJqX6II7JU2Mrsz+QfC3tiGUlWroYfyLR1UsBvre43K+iq9z88tZGvsZ6XgiXTt8jmXZbDFdjFTLzpU28KYXGj7dFphtHBFtCIuvjBdydD926TCP1dLraxOrinxGOY4jDNn6zxERy3WULLfiEMoV43oCMB64E8U/IRBsUV0lCN4n47jLg5q2o6XzV68FZitvZbyefnKOHiODBHDNJQb+YZcqw059ygkPhTrTq+RMVM/l1YfZdCi5yFkEVDaM4ziVdag+rnomH00p1yErmXU+ef3wgam3vstm0t14bOA50XG/4oIyr0uYopJvHAX6Tj/UyPsN/lOZ9Qy74c+BGMrIJ9iINrsN0W2kWgUm7tqeF+SxkTGa5KptEBXXxbDxhQsAdPT6AeEfwNbvJAm5xS9J8Y/hSm8sBAZj18ClfQkkJBme622nQhxgCFfh8xqgXPigMscH9X4EGg+nMRr++OfRxZ2G/T9kF4UEBF43YvNsnjvkXJbnb8oSvX+1Mo/juCdSBhy9ZiMH2w34/J0/3XXPYbTx9oiMXre3QAmcO9b0PBdhHci38E7/X9qi84nNWg9rx7PzxatzucLmg6W989QZ1HQe4/jRmcAEbyHGt+sUiI9pcdln3Y8I2t5Otuy6L2PSEBsa5nnQPi9u4ZdxIa+eCyvz+2iWAgl5xsRI3skAJiWSbkrqzsJeG+tfy8fJpnphpmuUQRfkFpt0qAwNpJBS0XYX5Iim8UVJenNnxHdXwblXmkhvGNpdexlbmwqfp0K5/De7tRIvsbc/3Ln9N9IhOkXFVX9H5CG4S/AFthwWZt05+hSuL+o6lZj5bviolgO9kjB0VXZtW3KijgONvHJe/kLm/5XspU8d58fNDn02/KlqB7Q5AQATsb3l/BLNMFUlPRxq9ZlhplCXU7rQoSKv174/E3SrNDX56YifjwInnUo7i77yByP4fvz632l6+aeLmEyLxtYWXikm1G9xTnegOYSIBs7CNBBs6AAfVLNamj2ElkHx+HXxAem+p5Qu4AjT8D2SSirCdP7UOt5FzyFO2G69gN/1b4mLbomjX3tFvaOL8LdvZvlU26OutrbJ+unY8hv8V+2/8PNaL29jECFPJn0ZxGP9JvnzjQpcy7oYsiQjjl/IaaXRDRP0miUVlAHF/xdoULOwG37Vu9JxMqPF7CRCVB67ksh+ViE1C8UbcLzaMU5Dx/tFgp/dA0GhRtuHTYZuhdo8JbeKa9HyDOz8UCd8+b/x4OLROrk9afj3843uUZvGTjvVUhbrkp8SYRE3k6487Cqjj3tjOp+b4iu9iZDbt5xYBtrysxb852CcZAZSDbsMn7UWnSV/eu0DH1ckx2rqXnU163K7wnbpt/GI6q/7ewbLMoQ+A5YDnBb7vEuiMC3QxEbnbelEMRTZ1Kql7lJhsXQ/L0LQXPgvdaLMNpdC2+SeB8uKQWZcgDMRjEbCAxXoX23C+KtOd7XHzpisRlbDOMhtdm4w1nbIyfrjdpCeEs4OtX+J653zgEIj2fZR0yYNu3IMVETxOf8BDIjPdin8TpxHsYbnU4cEf9OeEg+/ol/8eeoyX1EGl/m6Ipx7xEjvHCK7z3Ad/mi6EjPwXBnE311f+Z+FHeAtWnqNa6UGFd3Mkeyj9I74s87Kx0mVx2A6N2zbMc5yj9p3d7WRscFEmjiGlP0imsf+Vz717wpzCKRNhH3qz+4EX6YnvLhbfxCIuHGvx790WfRV5vKhVSoBS9aTxNSLc2a82v0PAOa/Kyb1k69VlaALPPsJIxoxd1BUyZiFPFcFDk1g37ZYL/8P5QxsjNFCSi2TbZ7RPVn49/ON7lMUTqZLDcrIlsrWQtG0lYOdswbcr0nxd8rkaPPB3R0XfycTOoPiGkoH1uGvnChFvB7sKijvHDTKmILKQscWVBvdBgsfBsyW4oRP++ufwKD8H3S6J6hKqLumwfdsjcXdG0ASpYMHEd/a8ous/0zx5sH0EydyBdkmzN3zkxeYRyLX7VkLoqp84y2QOxNo+uBeT9MSJkTlRW4g4CxjaUKb7PE9AeAH3oYL+eOMXi/81iRc1rgRodmodM4CP39hr5kJ7YmAnFFdthds7uS3fbgw3xRKfZzgZl2V+gX3nf6fZvI7LlxcxAnPdNAZPZN6Js/Jt5FODzw4W2lsz2tFiOTon0fjfJayQD1nx5bKQcdv/Tv672MW4LINs2pGllSuV1l2CI828aJlJtfVdbJYujpGMhY7OJ1Um43RGwN1NsnYyTAZliIANi6+E+7PkUd+x/PqO2Xcu8x2zYXSeFJTjQMnLJK+9g83tUXQ2zQCRZ11diA3gBrfMWM8LVNKTas68YjI0k6q8f9d2Pyc55QV9CoClvislm1jLWPCGaI+mSzOcd3y7tnaf9CIZKP3oYJFYJ5P/3AUSrbDb4/L5Nw8Se1HUNQcFA9CmfVmaAJOOej7XsCVBQ5+uUp8KgIyXKY+QwCcJqIz3qSqt6F9DN2BdOEc4NQHvZCw6H8CqKvYOL2DPTsw6DXbanYi31VXSE7VLDviodrJdMnhF33XBzp00890Cr8eTNu+D+QdELyQ9L8MaB+0PdvptCzOy+ZlUTT94dWF2dG7Z1OhT9N9hux0CeGHunbr4uBzJZmH8XLDGlxe6zrMZmzg4pfMZaKtsaw1sujZsO54Io8wrv08+ovv0SXSfQ2U35o1P9fFLYDu/qYTrcq705XOd/ZLLnC4QwOL9ri5GKPnUtOXbaSH5jT8WxJVcT/7Ifze4IV7yXbl/Jfxg/+DpcGtzXDYyM+7ST7LMAv1d2H4SiTqkXCGZbDqzm5iR37sKIjp0hLue3LAa3DTlUMZkNw6rRGt8ooT3WCa+g7hfO2f//J2yZI/kFwWq6RRIw8+VcEzUGRIFfK+MGPEun7Zcx/x/S3D6POXTbGWMfID3EPr+WoFJI+50eHIBrUPm9kWHhWqgBF/JXp3ECJElHyfKL5XbYiujct2DAAd9CnSIW7Yusg1Ce9rKWNqkX7yI9L66yLwEqdeT7jKj0tYPZ3Iiy3LXn4fzNRydNLq4efmaD8BIhS9wMH5Bxkd0V/rYBWNG6GDRjjZibIuRnllmtA1qMzeUGY3LvZciP8usDayIpFUdLoZYxkgI5mBbyT4a2l5wAeg+I3UAQEXIRzRGBjKHbsz5ZFxlXEBV7DBIcLnP2XF+efzl0vo21KWQ3OiPrcKWusyYQb48ffrjnMMyYwZ3n/yzSPHdXg/cpn9Bzv/TwCYYaF75RUYo5ky4rd/f4cKP1rc9jCFbn9rgljiXGidSuQHFlRsHdRd/sHHpY5gX87k7sINxdrRWOAtY3LK2P8n220rqHummbKPz/9i9He3kLU3gulvdpBs3ddu2DjgzyR9pZMPYxRvuBMWbTo7dWKs7FTWxA1bWBv6x7W8EqMo38mrqXyigkmLUX8vPXz7lVkYR9lXZIixwu1nR0HKjewyLfCbuA194+RwP1F3jA75dfck3ujX7hy+Jbn1xJEEPYCXDPlRnprsJlru4wW23rMnR7w6HKIRYJiXYF3ATDv29e8/CGJdhILhxsFs9UBYbeWnXj0WyYcxTGj7ehP3ruscyevxoDNDgb4IFOln4q9BBx+kds3SHctBdLVTzhmcRfCm6K+WI5RLhBD5EjR0ai6VGDpOaUPFG7Lw9Jhu3GQ0GvZyXMMfToZJUQ1BObMrh5E+KyTUmuU9xh1eD/JQSHap64zSGlb81/OUv76c5aJKYBjPmO2iXfaCc/CjAcv+kKhBhoc9KYq1sdJqRxyabekS2FTXETVuYAJjrYrKlWw7cAb/RHcYz4yp2praHPjSLEr6GOleOywd/dBczuLslcSffnfwiEHDZ2R8WH2uzf+07P7uY0fluAb12pmbkf0lmrL8Ub0g3XHafMCi2Dbxx7Lv2MH33qS/hHskGL9cH/pjfbdv06EgQTbxZ+PYL9yZmREcHbGl2DJr7dEfbPYTT8/d3BXDZnQmPjUij1M9XVv7u9638Hm9l7KKV40rg+iKlrRPqlMU90OAbUeKqXaBuoDmpiK/IiybH021dw/5NGUEXnYw68bMTVcBlGQEWgwry2c05gK1817iFbkefgtWWLsuxo4P8AKHc6N/AFnhIpBKu4+Gg+e8VvyZ4Iq4yLsvpJyC6jdmsI98IUi6/SD3Za5MUrLboqErdyoi4jcyKpzYu+GHgjXhD7XV74pyDME2veUUH4oRNypgrhyRclyeeHkGw4wM9DLNq7kvClUvoE2D8I8jH6GD0D2RUGXfcLevIcRVmeqN3vSI6fBjdQlfquNH3i3jZCXfOwzTk8O2OR35C+EJxe0zbE0VgkBu/OGBN4SPTQAsdgyEtdG5py5+Nf+gYRHAL+9BG0mXyqZrHN+FG/1CXk1fAis4kN/qSQKGj82euT1vICCHYY7+/G9HO1Nv56NefxgyrqFPnJCPystTLdQeexgyZtHnB0PWvPEHEEwLZxyM8+lCn536hixmgy3JyK8Em3ijX8HGrrYxc5y2hZqAbxsW+DplwzLI/Jthz+N9z4np7WoSifwZdqcr1EWbi0+LqxI1pfzquxXorFlJgXEmv2vVvzsF8g0Kz75bpf3vdNDHDf58Gft/BYO7T9v4cT31gL9hrt5VvsUZcf69Ns27CCI77d/B+yWLy61bG71LutjKKiBxjxphck4e2rUxaMr/gNxyLHXA88ViweVzmIKEHXCNa87aWiwxB1uUa5UokNPPBwECBwBIfKTImXwYVE5HyhdzEl56aQUULbm5fHvjT8MXEguMXtnXtQu0leir93NG6w4Vyi7sqvpug6+8mOUntHa8OtsNd8OGk/BQKTitcSVMwxnd5B5f5Yn+Q7woXxwS2+Jj7/R0fqHP/dAFbtz2K4LdgzCS9p3HHJ90xUavzguUAPmbwbhae1OVMUly14BMB2GVwwQK2mRTobCLZyU7PRr2MV9SnQ4pt4/50pp3IzwouWvz9wSsxOjJM8Yt5UeZwqOhIigDXkxDJ3Y9raDuMi34/O+DIUypuo8sLFQSg+ML+2cULPjhGSrBUTzvnNG/7vGRc4yZT8nqyS/q98cffK2Ykxuan041rJ4Fy3ELhdN7jSACdX2bf1si5i03pJLsT2rt5w/6ZfHkZ/6VA1ZejDHf5Kk+PLR8p6kq+u/hjA/kAwIZsSTf8F2ktdGMrXO1xU+yRy4caXDvP6tuVaWH/0M8TbMSf4VPLvFjZkcEcVL2+xI1+V6WypAABAABJREFUnwbhxEgwfKriXc3Wb1qWUWTGuEEIDujv7fezld8HGR+UT/PEjMtlL5rr5Tdbtazr6E42sD1fXbdtaBV/eitj09RM4KCdgoymtiRjVwz+lIgLiF1wWiQfu/60ctwEiw7WqN7SaaP9E4GkSeCa35A87fwAH4jiuV4rE9Vx33sfBde4y8ObuC4URJDnoJvGfDVeo+1Y4XaF5sndEOKFgybWio+KLLaVAR0igqCFTxr/fGfjAl1IoiZHmki+9ayBxYSYx0NE+F2v3bsjJWllZ6SWEvD8dDIjVFFfmbxYbN6pRdHa9yL8twsoY03b+PHQl/IatOg0rtFcLD511UcFWMZtUK62TQxheaCBfQyu6btyjKzLEnHwzw8Tl2T7Lhv7wiYB7krZsga47bbADhf0HHOC/RkvQMgGuoNTt2Uh811B/5vk6OySWdKcV5kx424nWfIVaCe6ER/8jOPfxgz2UVhnPqt8yPiC9PrJbjPFxJBXqowi2eaWh141PA8aLxV3tLKNiSmOWQeL33tyPlNp6HLLjgQ7mnk2cY9w4C6zRseV+MyczfuUZZh9iC+3ya/ld1s+zTtm5eRBv+7/Oahtl9Rwm1YQNjXDRoH3SZRh+V2THO1tdIRyjyYpX3vZlYxLFOajIvMRNBBjvRLuisfKEYmsk5HimLpyE2i2fDjJ2tFZtD9ivwN6EihX9buDRHawC9xWnIe4QWBHMLY3NCQ+6LtjXjywgxfM5QGt58fwsxCtHDxhI/jRh5FFst36X/YJDr+bj3yV3y1ISVOJ6sCH+UKQH9fi6aOI3K4ONiV2HKAu+HeZ19eP67+aaTkg32Fww1r448SoM8LGp+Y+SIvLTzjSGMj0zbv3FVNhPS/Qppt33V6ClNN5V7hNjFzVy8VX5+8LuPH+4NBr2jonaAMLhiu+S+GgfEvMWNXPfLmY3d28+si8e4WmyV5+vsZ/2Q/yt9jmeuE6fOeQyn/Bu9uu/bSsxoxdQmx5TPapBEDy4SXsP+ReyQZvy3jPbRhDoGxzBm35ttS7CcG4mqvO4qN+/3dVft3K+J2LdsYiclkR3+ryppJcQQBPwQn4rAQwyTfBa/QtfGpVA1dv+U7YpYx3UQByEK+0CeMG91EbTdYl7syDetiH/Xkk4x3ug/JYzzsaTx3VInF/XDYBC2MiX/QAiJeLzJuoxe+jFVWtkuqOLMsMtmL0sV82g3QN+WjtT1JzcSc6+GpVBgu8sMdWXSa0xdkmn1HXlP0SFQXidFx+VpyRogyUKOJbtqdYtnxKm05ijORXAzafagtyfMt84QvLJAH6aYDb2UhJRBx3AuNa8mLHyshOyhxJcDs8+djwvw7T+P0mnF2yzv5tQw1f47Fk3WAsWsAyfRfHryfxTMpiqBQVOq67lzkleKv+LeplN2oni2UezS6uzGPFstOX5Z9L2Bte6HKwL22/KEbcTruVX2fd3cj7zWF4I3N6/fOg2KQNbmcrInN8Zda56KrS4aLtLh+teuyw1JhusnAMpPmZ1K6SOqjoqMF+L188vpWZ5G4msv/F/bTlOEWIGUzHnR3qOflA+dTlW7bZf6byad4x8+KJgXHdJD8JpkRoAF9/wqBnHU/V6sYu5wDzfZDyTpnQ4sc0v/cwDHnyRSZSDdtlJMHYKVkAET3x/oKMEFQDr1fV+olXB0t8O5FYufx+RNG9LWBF0qP9XVsIskg8Wj5w3V7ATeUVJ8U0vqMD2YmhfMeyi7orYkbNRryw0rwrsNtWxOO5XVztxoT5SCPjJtlJmZsR51vcnczT2LukSItu5iQzZcVnYPKYxHn+Pofvwrw6UWoeA5XTub5jCTdkfnpZl0mLXO/HgtNJYroHttn1QcuGHudieOD6Irl1qkg/EPKWyVSc77QbvAkYuLySQD8W/YVr/RBO+XLO1vsrY9hxAfTKJo4sEnuenxVlLW/jUxN9mlOcC6aFkFJ3EPXm6X+JqZs+8fzk99dXN41c50s3SuPaxkttYEXmAU9O85XEmHV1BwsytE/xHvItKcrKlpuY28YqFJPiDbrN29Uk1ld24zLtYmJ68Zgbh9AcM3YypaouQcv3PEXE2Jg5ZnQJW9DqAxmLx0P1mYuJ/GJPzFT1Py8i/wsR+bMi8m+KyH/LzP6dj9L7yJnH36/QVsb4zW0iOThTnUv5xlfy0HUjYvzuksOBO+frIsP2+biYlAustmD/Oj9RCvQPDlC9xSt63CTHtzJscL9LWRB8xOehMC/L/HN4K1v847YdLMPJps7zaMG3XcB3fBZdSjJ3AIv5XHA3vF4ZDuPKC8hxqt6u/xgzMTkk4KgjrVMq/Svq9HxIhuuwkcbjPO6jxkmfBv+w/uFCb+pv/eIrTnPFBvULiRfzKaRLhinJJxe/fydz4NL4Q/50190P2/fgk42SAHRtyhQ+t/6ojaE3c//R9HviYx7itHr9lnxu5Y9X8xhgQz8M2+FKg8t8z4mrG76FD+Axn7T4WdHZ0dv1i+nu+HZygm9K7YzX8fGq62o1Xqes+/P4n6W6UZ114+s78/90fbobg4bv03+2wv3MxUQuh/rBf99W/kkR+R+Y2X9ORP6qiPz3voXYp9nK6CWOy8e63wH1/672fdD2kAzrhe9wTNQUPE0mrTYj1bZqJEewQaPGhSNvZWRaG7YZVpPMe9imXZr6gDNue4rLfO05LNbjMjtrpTuTfOdR6W8HS3dC+eSo29LpAtsS8Yc0CdeEk/vmTuSCzxZXJb3zwP1AWM7r2sRusS1FqS4iOYFj3RBu6RP+bmCXW1wYVsAfOw/YyldlsvFTCx9TmPKebIOefevkxM20sj4123A6x5v7ZAnWYlJoxvU6HDedtnqp0nFyfnTy1MUJsPYurxcO7skmLmHmnWHwoZ4kxDZNcgy450eG/8aXWaAPsR2R5o+KpJPZ5kk21c8rXlA6Wp/8euB5f4X6B/4m+TKZ1xPfbt4Um3DY2fekZ7Qj/kt9DX7sbxbwLGP0gZ+ocx9AVekAy13MAHpdF1hOnEZIO8m8iiFYb+KHcjvL4D8t+8FOXqV66griNnzSkLBe+TMpCz6lvmt7hRbqUiV/yuMB366/TvY2vtBW2y4OqEgZ187uyhNf9L/0CY7ZBxWOIYZbqpwO8nVXoTp1hazxQJLiF6ZQ/P3O1NEEO2hhIEsxRO7H/t+/5e8Rkf/j+P0visi/ICJ/+aPEPs1WRjUROUTwuHzTEag9jqhIWnjttjIeYGAEm2zYAwpMhEiWsogDl2fqhI2dI93iqHPk0J+guuSLQETTpvzMtsPFebnbyhgJA+UXK/hOtCXfLVKua9O2e13nqYwdaKvnp8i78rtyaK/wuQugT3DRBrG5NcJZ0piukiD/SbS29kvz5u7GgAKcUb0mnuhDLNsgJRRpPjbJ89yybVvdmHClyWxDb51MK2WwnnaKczbonL7BoLsbV0DbDnI67idV6riIgN+HmIFsMMkBp6I0ZkjY/BtLncgm1/sxHZ+me5xQG3z2pcyDZh7RYW5EOOsj4aoUP4mvCrCdMS73vZmePV9pYFcy3sS5u1i1cTEVgAR8HCMZt6G1bd8UZZhWeR/EBRsvMbJb9Dzk+1JpZML6Jv14jU0XI1CGlUxY1SnTElfIdeHR+xsXOuuz8+lVF+Jz+QyNeyinWXW5HHsTLQW52KmsZMpkr+bvNUK/m/ILvmP2N0TkL4jI/05E/qKI/F3fQuzTnMooIiUXmJezxU8n2htNOaacYD2+F7yg2/Ppx9zpzo9XZ75QVvZtWeZWjk3xj0qLaH3i2Im64LOSrYV9Zb52fF+gEYlNw7/VzcqBdTBE925v7/advJXDnyaSjQ8CAQcGBdzle7vYz0U9PVyWB7jwu9N5+rjvaiJJ85k81g3zBBlRjy6vO1zm243XYmivru0CIeMubO6iNT85bELH4St8SFR6Pc0qH0ls6X3YYmoGfFd3QpNumNPAVvhA9mjF19hVszb4htSHTrREOdPjCqJtLiP5ikuwPnmNcYFPAATZ5j272JupNKZQIMrr4axGDPEEznFt6Cg97pHIjwxJAl0bRuk2ELL50zR47w+7H12HNnxqwNOSczH2AfzaCX/uDBPQzbTPMnr/LcuMPmnHNzFzPbr/syrEwXMMBE18qT/cJ/YxjYn2fmLho8IPG5Bhg8Sx4MHy9iYWtIMBcvs4FN2YVL9k8O87xfqtoTDZb+B7Gwc2RpuaCC5EWPhwfvpZWOAY+QmUIdD0EzOHI1rjx+Ef+wSiyTunlzGzAg7WjknshrgOh9Klno+UlLxiCL9QubG3m/LnVPWvQ/2PzeyPvaKqf01E/nyD95dE5B8Skf+pqv5lEflnReTHbxHk02xlnMflD48RLypPY3BT6k8DkPA2M+5DfbSXxZPkPOGSxWDyiORtKtn6cQthx6c48Im6kFFwvlL/qC0FfiWZn+F27QX1DnY3X3d8GWfTv7Yd5EvBs6PbXV9d2/VHCQxlIv/WnWaWgq6/3K1NnXG5D7AlLSUpVO/OVyjbbrC+OsHREwsP+hyFKMFKW0savmVrLxTDH5TQcCLHfESyjGFHzjcxmLQi38f+EW46Shnm2nXABp5+qIGT/qKcmkHnlhYIhAQ7SQy+1iiH7RZkSDdtOFMk3ZhOvySq1xYc4PPhO5NseyLTSH13BEz+8M0H1JGOTFjGvfrhBHTY3ZwYcUKnX4oEZNyp9hfAcNyT7CjTjAcKcpTDopzu+D0PDgE5RcHOsvHi09c0BQctPrTCXF6RFG9Swoh/oWvazWGgt/SrKCOYsgj4jYYv8i48pgoyK5QJFUL+qU3Md/GG+7bAjS4ArfRuF/bXyF/JvM6Lu9QHy7DclnTCvk2vvp946q2CjIDn/TZsX8UMlBH4hhp2uAcA8nH51IdWH9ykxJdE28Yq/+1y+EmRxT9D/yxQa3zhvrjvCOT5F6vXgYtg4DoYnSKqJnYqzFvNcnBQVNYN3cATibqqzrgmkheISYGojM9aVL7x8I9/28z+aNVoZn/vDf7fJyKiqn+PiPyXv0WQz7WVUSVtZRQRkeMgY9XZTEEojjn12MNbGd2RohN1+APpwQTxGbDYQqki+S78kBGdk0gmnX6W7ZhEy6vuPDZ8ux2UK1zkw4elsFp1A1sQuJT+klz6EHahJpdxK8OT9oewr/CN7mHA7uAxiHO9ZCL3uM1OsZ8HVzJueTek688CFwsnGkawK52WrYoEK+YnFQIv7HsnU9c/q3OsbH+GTD66z3Ihq8QHaJFyytDg03EL5gCMPjFnNXwMksXHSKNHIOGdIT4sZsPf6tSlQpt4spCdQbybZSbyRpLRXmtLMSWPy1StlnFQiC88/5IGQmadajhcTsR9FgcMLl7hZn5a4ULtZQo6Cx9EoQo6Ods7XJVmdC33P5lWk4wuc7ibeMMXeG7wOGgCbOTFuS8kF8qAWbI0MZ1FXMmIKEoyNopleyh2Bv4K1dbtJi668SnGdgO44eaQFv1u+brp2+QVbAxgGVckPgSuIvm9TubNZaU7tkcmOfDwRh374pDDv60GtNt5hDJwzMCflvkigOMqt3kfXM+qV37qi6c2fmpStAJj1k3pA1y8YBX4fNDP//usqOp/1Mz+36p6iMg/KtcJjR8un2srIxSj9uI3VguaVb2NjhW28pkALd+GlNO438poAYy0O0e/Cr6TtMV/icMt7gSU9NSnpfUdStB5IlfD3MiZHQzW0V0Jz7C7ThIsbw8pxwx3NDv6iNcE0SUsMEJ9pN8sU4fPjnmBm5JokbJ1ajUmQQuYJJ+vkIA0+knXuyCHsnMTJVshl1XY5edrjGxOE9k2YTDNGjhgrmM+L9xvzeTSc3er7chfua0E8CyTUmaH+st0NN9JNZHyqZIXiqkfvmFDl/7dMBA82aS6GCnLCRzUC8sFT8tk2GuZK16F7ZVzfHSON+jTdRGXbPYhLTRdZiiJFnWbB1k1L82DT1PKcfBKfNRoEQXxlece1k+ErKVMW54PoM8yd1lmbkZc8De8YFjODWiO81x6MbPMhLyD7bbRoY2hbywy029FXLfZRthyKJPrhtxFkpH6riJpkRUyKskIcSCmm00YmMoFtuBynGOBurrHHfSVm5gRIIiDMlaUgo8yYL1sJSVazpff2XvCtxeiIir1iePJ9UQNDziaxNQJAOHyHbYEO7fOt7nHZyuPFfzdy39DVf/h8ft/KyL/y28h9gm3MopkO5lex4xmiQgDhzMzusQgPH7p0TZhZdiS7aTfc0tL5uPOLFDBuTj6ni8RVb6kBfQOl9uKbhoZHxfm5871G0vRI1wvvB8TfAGW+D6Cf9K++k3XTKR+v+cVPk/gH+KiCEUl7SSDvyR/l3ws5fmAHYXddHLJ5ro389xlWdzGpQ7NcjHc9YPn9sP+Muxraromp2En+XY3Mflo/Lu+Q+Z03VFD9ofXoS8ohIkICmZlbJot69bow4B2SW4kK5F/I0uIGc7HnKYNbc1OS1osLplUXhdDk3T3rBE5UVqQxCi1mxZxcficR3bF/NB3bWLzjn2YHl7g+bb4PlWCWTHsfBXDPpxQ/PRp+TSq47PATXGPcVkv1K6aVVO6xjKezRRY+H2sw/SrcjqME1S5nlLhVsY7PMmwu5ihBOsXV/PC53HkoCzDSkaaOIUvB0lb19P4vI8LePAPn6rJfFg3XeIrIvmOqpLgNxPoo47/d1FMvnUr48dZm/0VEfkr34vep1mY6WrGRLUqvJrRuBLB0eYeWucjG9sCG82HaGROuTZnO75X1s3BjtcaYFNArGvLZpXqCS6DF92sEsdV2w5XK/1npxjl30iDg8tHEtrCh3F2dLox3DmuFa3uuvXNCheX3Vvg7kRYkdniNlP1KaNyNDDpbUeLcW3XX7CbAtBlshgoqW4ycY3bVaTcN/I6Rv1os2zIjaKn28uKVHrckvkq4RIfLOhbw3G5E9SK6/3oaD0sl0g2eXP/TMa2QJOyAFnNrbS3Kl8SGv/wDY1xL6dva8sYLCDexPULKdlD9A9jiYYfD2NGQ+sUjbqxHkrxB3Wq3WzyxFGsfM7Gdzm/7ulGG4pgzGgIM6yPIYvC8/WOT9e2Kkv7u6cVMjCsynrh5rCk9+4dtZ1ccTrnAbKsxhKVznx3sAMgxgYR0Ef6dZfpo6WbrBt6PPbFZNnQVrQezCfmizRXbgRhk9rcHx4G3ytpZCA+bEe2BBZJN440Hz4lInl3xLeM2e+i7PKv36Pyad4x84J761PdpDm+mCNMX7/i2N6i8msK812LyicBQnIhZTFQXsZWKYa94oOqCVtbePt4l8ImPC94yil4G3UUf0qwlhrzb3fM6IA72qXSJMZMO6Fthp7fBdo6kya4rAUGHMR9Uoz+Nu27WFDoUP0p7isL1rttkOXUsx0xBkCdm5SnssVOKJlB3G3c2NnULoPi9rtg3CUJmGCWcd8Q6JIOhKQXXLKujGw680kb4+gQCDzZ604tHysWi0ojB6W+KIn9dypp8epCGPwIRwD9CKWPZ1jQx/CpKiJmossXDmX6TDTwwneKlRSJel/54Z6UiPXfWJs/iA+/7LSYhBHXXI4qWp6eLqeJ+Ikj+RmkVlxOwAGAb2IsC+uG5Vr87sqdPyoxA5tpDvI47ebAMrwatfHcxbln8O8GPn7vJmnTph0s81zQjioeQoW/kZYCLCgg/CLC7/wvtt3tGmF5d7gDnt1NK8Orer6LN4zr7kbHbA070CZPoeDLOQbqnd/3SHrFCdsJ+HGP/7svD5ObT14+zTtmbHdxPWD7elf4+y0Y0PyuZjdX5iEZsO+25E9zljvFNghTvckb2vmA9eV06Ca4+Z0O9kIEpmvV8fy+dSQNgY88SX7E5kVZPuxKXu3zBxlHUHoRN23JQgf8hC877qe4u/YHSd4jmhis73AXfL5l6NrxYN2sEoodXZP89AboJObMV4YXuptQq0QcDpBY8nH81p9whbYvfqf41+oS9bVZeEzc4omTkCZyDcSxdqoXGfadPd10Ncma2A7Y5jjqdISfpFPwdvZcTkXclN5Ga1y7j6c2RcaCqvzgREwyWh3ubaCi321/u/n7UX+1mmfS6IblpPy5lRvhV7gdXAPLcqvIPM3zLua8QruTd1XHprv4s6L7Udnh9zLccSz9YN+4Xeul2+Jj7YfkqMkLh6QMK4uOgp9ayHhD6dfyC5TPt5URjssXgfr4WW8ZYRSEwOpGqTmhKN/fATa+39lQjq6EjFkM43Zm0wVvuIbHNfd8B2yL22QFHe6q3mG2fAh3RxednTTXwIe8LPMr0XXX1l1/6pHuEuxdaRzlim05aA+CjIikI+458rRTZlV/EiRBkPQCOuDG0KIcvDAhvkyrBG+EHUGKYVmOdM1h6dhzPTNc6r5mWCG+8k79Y7ooI94tJvfg37IK3HcbuNrrgpPPlu/AZYPCI96KYTW0HccIF/r+uHjCo3Idj3mMTwzEggkGD95pSs4iCI0nS0fTBBeCbJecwLU5lzCx0Tzezjd1CPgk23IZdYrvJ/+yX2S5TnLzrnad7VMtNgWEsUu+AewOCx+tj/jxbpxVU7na0Xa0xjx+eoKCsc5R/CY+tDHFBg8DXfFcYX/1gt8oAlKbgpkU+EUc4NMKW9qL94i6d6zClyxkFJHxMXOZx8Cv5Ov6R3yWhfuzJhuDFVsrMbcAfxz1Tcx4HG916jzcWKcrHE/0hxTHeLtsawPOF97XYyWVk6bBvYZOHPnoaEyEGddGJ06A0TGXNzJineVYPqT4jOWVHOwTl8+1lVEFti5ebbutjLuti1cQnHXcOpPmtztYnW189PVq5vFxzHi8KRDLqGTjZStjqkN/M+uMS03tYR0k42qSFVrENzmNBj/hbviwM2/nE+vuaRtc6vR2Wz7qgF4JFlg2ge1l2A8G0FtcBm0NZV3KlpWOr9vVKct7E5wo7N5T5Fw/FkRdUMZ2lusBn2Wi5birtg43+SrLfmCXBBWfaEXlSY60dZozM4AeTINW519eKd4H95fokIj2fIoFcaD4xd7vi9l1LD/KHYcNXIZQ9bPgg3WTudXI2+BzK21sgn7jwSSB6/bcnICIY1ZwYZzKuKD/HTJV3Nz/zHTQPa9dJolUAs6389NUb/wE35TgmLHdwk/zl+dOwUWhdrBsdxvUylikGNIKh+cvLbhwrBXbRfLhJ9620YWoiI6j6csiYOWDpfJd+uumFJlBsPCx3niK2NtDPl3bqu9cbMqhQt90I/pG41A+BXEXIynOpRSo+DZJuul8uxrd4yiOHPBWsiV/ZEXGAks/F0ctfM7ykfzrE5ZPs5VRRCBQ5zYjbz6T7d5SOmePGR1uZWT2yeCZjwllmJluOQnMK32MXi4euC6DbfjwNkm6frCuCl/UTaO+8vL0glSbmO9k9matsI/m0s4pLE7jcnb57vuGzmNhepnCEsDBLlmNYUpOdejGfxYaEDwSrgANgQuUTGYhK2ypb5INlvmWbyNCwoXfxW42toYkGKxzEcb9AjqtjE7L7Welixs5ytMJktHb+Y6syjyuuGzD1rzVMV7PCj4a33Tw79pMGf29rsqnL1PT+tLJOlT4MYWJqFnWHWTM19H6Fm34Xpw5Pa+r5jvsSvxUxPwdrtNK1pVMWfNVVU22gzKLgs0mvj6Y2ciCj8sdPsCXqK0lx1zIMpIxdVtfm7mSdCNuOw3ueT3V5O24edGanYCWXSrNfM6St3W/iYJxL5Jsy0Q7n8I+qD2qHXyo069zcD1/u3Lnn9OwGcUMq+3xl/2tTR1lAapMyrANreLLH8SMFCp2McNgfLyZ9Uxmf+dmykLmLq6hHIUYtNPY7GQq713zjxIImjaUqYEv9u51GoMurpU+ru7GlIGcfsh9lSm/Z/rJiknv/34Py6fZyjiPKrUwngi8EJjCG3XG50/ZHE2gPtrL4klKjLqOjU5GTNkbGqxnCMQn18nZo3MyrDNf7t8Fy4H9+qmPcVPHob56zy/zaXClqRNsx/cmvrUy3jqfjk+xkyxDYqF7sokMw2LgXclEfxlfHd8yWgkWGDSM+oFOnB36gu9WTqw2QaXDLVufoA/too3oLGE1y4HzKhKolYxKulXg61Mc+HJ/+f2XhDvdVo+76u+KL7oefyI0MpkJqxWW/54olIGM2mwXBb/KA4a+ZXPj57b4gRtOX3Vck6EnFTst2sI3x5MwA183aI4YMYe+1v3Z2NyeZ2luxKKW+UZGC3rxwv4YhXICmnVqhJtkinmn+d0r3xYZMgLf4YSmjytCJXESLslWs0yalL7t1+GTeSCt6ZySzA7bxJ2k0xAYuqDS+kD0maZrGYXqyaf6nPOtjuzTSJfdYaFlgUH+OQDRV6MOqZ5iBF7jJ6pn7qCiwkTEfAvcuwBjSbrDOvJen/6YHUfMJayDDOyQ7SA/x3xkU0+cc/vOK3WuDtv8WpgQ+tA7mVYydLjYtrmh7EbtuuI29t0c10r+0ArY851bF4dNQcz47KU84fw9LZ9mK+PcUqi5Dbb3XUWnw15sZRQT0UNoS6F28WrOP5VsveBTjPnTL7wTdwUe5EtYizrK6N0vk4j4rNrvcGWBq0KTWMB5IhlyaqsSwbKTo+PTEfCfzHPnI9gsmM/P5V+I0ZINxytCvVPq7XHJTPc7Oas09kZkO5tbFY7bHSrzQduHOtt6u2Wy0bfjdgu/qJfsC/hKg7uCNSn0eGdJmdtIK9FWknEC7F6LvfxYnkSqlmQMvWKmEjKuIv2LxQazY9D3RVU45ggEAKvRZiaibyjXiBmOe2iKAzb6oSJpYXLt74KvP2JC6+N1zHraSq8w/hBA4l2w4KMlfqSY4T4Xx+WEieUJcjI61KPEN8OVZRx8+WbCKg6s/H5sn0N/tpuTzndHWJfVGm/0eQzZzX0+OIWfnHM8Zd+28zm7ovTOWOuPYby7BR7C6OK3iFFcuDrlWxnlLcDyX5ahk6ODB+B8Ew7l6JmoqZw6dhV3uciaVamyea/gffzCFVObQTv731du1m4F7GRb6NV5qox7a7vc4i7ObdqwKWijnQt0fm8Iv5bvWD7XVkYoVmqa215YvcdphQ+ml/HvF2dkwt8ElO/J1+K/+hrujUp2U/B7Ts9XaUWS9YHCvmW1NaHokZ3hBrcUm3+cf/K1TV8ewzZBGnFXSRE+sXHY7bcm2dkrycS6WtUXMi1jeQjUoFs+Bbgj0T2pRrJPzag7WC/hdhkC6xiuIW55Eke4jxdCN3t/or+GV6YM84m9FMVcT+eu/12YH0pVJLZUuiC4Xy2eDNr6PS3crzkWAJhUYVv5RApsi5TT5KCjzhTs0HCxpyCLGulQxhrPXKD8GYlk93xxoHi2eFp9WkMDwdvwE0kyMpX8VDQloOFEIWY04iGuk+4S1SST8KZYiN1kW7z9luvLuWzX7928ShJobuPTw6kDqfCsYp/T6aLEmU447MMKltqj/+NJWdmeCB3KqiYnSnxY5qlXo6AI5EA2ValPgM4MO3fkDETTzJfiQrgAYI+waXsm8W1xUd8LA8ZFZizAV7aBfGHuoIzl/S+AZxkTPYzT2swLiKnphpDjAk22V5zvsT248/kN/DftlvhdlJUD+D0rn2Yr4zREy4OPe/VL5giIDjueOnmQ9ncU4h0OafOOlKhaymAzi56vT8gJ7I5gu02DJqNVZiRkFgs7c/edts7xsTNY6Sbz2dBc8I2Ayo73AW7yDjv4xkl+JHe0ZeUDZNnRMb0msQhYJmUwXN3JXTBwHNg7mTq+5S5i5+Q8oHT21PBp610iAVPbbdvjAC6CWt03CQNWC9zOhiGBSHJ90NaTrhp7KgGRdUGJRHoPBjp88dHkItMTIql6bfmSvllgfP/r5WIulMxOtUY2+qQi8/tmIv6GneFABM3rqdspMuMALpZEYFEGcwn9/qB1bXcfi4uxXTRiiKnnlNVfp3hDMqK+B9PYVj/ek9PcnOZCihHD33NSWt4/C13PmIRxh2NG5/vMrtcU/VASfv/qtoAhOi7H4lKSfQOs88WT+4xoNL5gxSc9+aJklrtQ+ySNgAt4nmeg2/RON9Y7/20iZjYXF74QIjouXoikInJO+03yhq3lgbk+8wDxBvVi2X+4LClm4Lg4nNvn2/he8uhLzKlO70gPZOZtrUb6Krijw/2ckvjWlw5bFyUauoiJLDONF5tXiU2NvkxE9F2ubYxjIO1dBA0LcZexGGRnvoa4wJ91g/Q/4vJ/5+XXd8y+Q0nLfrmMX+GOoJnIMdb74Kkb33ldOCYtFRE7tMCmhAVwr62PA6YYIiNQ0PV93DDxi4zRv3Hdu6OL+dNFE54sR6a1w013DAduockyN7DoPG4TVcRp+tLyI5hl2QzJLe4GLvVPaiKiHfCrPBtwvhtcumcZhwP6KpCLwEF0wPepk22TEqK/w0WxWA4EVLjbmuzF+01jjbacnnSwzM1cR999KAV1iKTdWOOTCQXYkuio5OSSgx1eFyl39Pl1rpRjc1IE70BddZuwR4MLfFN/wQjrYSEyF2Ufjn023icbSyyXR3UYB3Tq0OsD0GKixzGSVpuwXtwRDnSVCxfWZGVxGxmiiejpCzDXjxvE8OWnhY7VrmQp4I/5YrwOmYeiknjl3V2b9GTQnlmwjRsvI6L4jcY03qNTblOnJnvD5ArfJbxi4lomfEgoCvobf+PJXjP+2afkBDjZLHYVup/kgPHFqSUA7+N3nDT3m7mu3D/ka4Tb+RugP4ElE/PrPK/IL0dfDPrkPC3HABGRwyz5p8MkJ9Vnxnc4lXGjApxuesrdyQ4XDxwj06RnxuX4qCAj0oqxt2t7nr45AuBKVlmKGRTEWr6lT7N9Pu0HPk7nUDnBvg1tEAwwXEQWZakbIbjSP5YZY8Qpco4tqKpXfakbxB1MljJmNllGmJ/Y59DVunuforx00+gTl8/zxAzKNISNGbAX3oBe9DawxQA113crgFu+VCwbOvNhf74lTjzucJcOZNEla9paWt9QXqLzxLMw3B3somAO96hskhYOEF1QZLTldpkFbspHjPg0DnWpEkg6yvSjhKoQwYRFMwj/TTj4l0h1SOUu+YY+5RtZF5GwNHx5LCnJE0omWQ5E754ydP0rfeBkDgJuh2sJcOD6e1Qb3OhfIqgJRFuBPlhM5FqcwaWw1X4C6fD3Zk0nBrKOjjYPzCaPUMY5nqDpHFMXbSgzTnlM9Wl8xUTQt8ckujhEm2d2WNAJvvslFyjOzwwCHPpCFrRRvA7k/UJaHIEttzHinPab5gYgOX/WDdLiMUltXleqS+6PFzUr48fba7ffnNJcZ511MaQcFtIVF9z/Sf6rImXxlaQO322xEI7++T/HNaRlRPfq3fVkirjwYx/Lv5NOHsSuiBXjDqEazikYI3zCF5MB6LwSM1x3wJfnMvfvgLFJvnw4v8N8+mn2181gJx/dxNfSL6uwRc9o++P3Ydfx/nbMtug30ChzNnQsRa8s3/R5JCPVH+0a+bV8l/Jp3jFbnggYsPMn+5kWVqk+LIwDRqrbhG0/qkfRJ1NsZGr8Dj+tswS74ytpkiXcllbGfaRXD54r2B0tnrQPJvGSzxP6z9k8BPpg2XXCiP1ywMC0Fri8971seYHfyCu9QP6k8OTYlY0ML/HkSclj1SRJiLaFZXp3Y9LJhXRswXdhX+Qy1kBMix2UzPm5xe2KyrVA67J5LMe8/PPdeYRBbvqdfKpJ7IK4/LPBDgpQjRZPPOgBrsgccJPxpEGzzbEdjuwm9F7a6drSP/HAYf/gko0q0i/+GXBhHlS+/jmExmiQr+N3fn3IFAsDhEfZ2EaT3HNsVvHjURzzui/Mx2KRD57ogm4bmtjX2IYvlzsf00uzliP5aMt18OP4gejp1+FzBiRb6Pz0mGG3yud5n7bNd7DOpIk3afHvftdzM5T31ZjBumLcTk5ceAj1c0wTGTo2TtLufG4/AetvW8CijANEVeZizKZ8iWYjl0nub7L1FW9oSzGR5ojB709ZNvr9fSuf5okZ3pm8nqeus5E5r9kRj0Dq9GTWEZdpBSlITNqARsGGquAv7vm2Qe2W74BTmECb4Lzi09alSfoY1vvYOYVVnYNjh7sqO9jRxmPwzeVbaCxw28VDs1goIEb9W/1lQ4MjlX0R96hbKoLnIdwdC824+O5HSWAf8A0UzbaYDjbQ6Ss8AUwvRWuWMSfq9SeLmPo75IiA9A5yaf4tJvMGcCcj65UTqJUQSpc2usEnEgnBRPzkQgXGKdCqiMbTmkAjOTbJypNiIvIO55mr/1URPUbf3P+Nr8CeIua3uumRS0q4dHhk8PsiUm6ESZoLJvIOGYlKHsQjWM2FzKkT9gQ+MurxQeurbarb5e/qFvPYROR4x7kwJ2FsCUTjGnVVvRI5fz9m91QOdCaDXJt0ebJq43t5fuCEq4lv26NtxsEPHgc3DrrzhSgj/vXuDyC32cApKwt82ihpTi5lWSS9XfxMcY3aEgmbcL6YjPeHoE1g8RV445/B7wvP5IitjDY/FeCoaiJvIvqmou/YgctZsXxJDcA/xSIDYDeaFG+ukyCD9oBnXsfb6G7y7eTMtwXmktFc47/uu8nnJj93yKUrGX4QX/XguEZibOMc28WD9pjn75dMLlfK95KPT1Nwyqxzri4XZ9y/AaMN+N0xBr98UUlPYX+Py+d5x2wUjYBqM2iLLBwjB5+rHgEb6viiczc/MpvpVUtg72YmBLjLNpDvgo87b6ir7vhK4bNUTYOLsKkbBFtQvQ/sNKTXYykUu1e5XaFFwXili7atK8nDPIB/UnbfIYF8r+VP9ZRTeELU4Q50BbjE58y4eXHn0R3nAmQQIxdOCRCO105v7NxRN3eGgvI24OkazylyIUVEyke4tLZObSpZbSl/aMaS5wwnbzu9Yt7TytHIb/jjRueYImmbqSzqO1t/pSwO+0i3sXgBY3gNlQqv9JuIuTGE//VBs8l6bIdUEZF3y4u70M44+iOOLJM4HCCSnTkLYaeBTlt2eeG6X/Y+o0wB8H7J7dRhIyNoaGRaAzfgzsRALALSfE+uHQYVWkBOv+Ci6bs1wz/0KpTkl/npO0EMjBXgOt+MppniwIyt8m7pgWM/OQzmRmPAHF8sX8604DfHNQYnX45kWt/d+HIlX36YwBO2a1HGT6hmHLB4B/IUg09OjPHiDlr+rfQ72Ufq2zyMxETkOE/xj95f9Zpq+IPqM9mdzLESQmhlzEbTPdlz2maWF4tA+DrcxkL97yqX/JZpYSdS/GG/uInb2GYidaEIPGMHmQ4WydCbWNDJxPZVu5/eURSSSUTmu98cXz5rWcS937fyabYyYqm6tQob1taEC83glmD9bK/JK/lkTpIQN2aPAi7UlaRZGHHrE1u+jZAsc1RcmkZXC75FxjXq1awd317GjrcuYB/NpR2/O4fxvR3KQuCwMIovxclvRNqK2tBJSHS3NbY8ulAdreLhN2VOoVmwzs6fr+1wGfwDgSBNz0XiEfnZrv8eGFnWxIgEXgVulEkWXer038i41U1HGPnS3H4sh4jg4oB94GvF5lMlF+i0kb3BqRpx1wq2dgfLSFslsintRQ+/H6c6XYBqlxzTH/H5ikM2dHJ8Yw/trFUFKtz704DjOL9fyXdmRKXYGcYmwvVrK76lzjKPP/QEhPmqzFMoi3m0fJrr0nShi6feLx+/le8KR9x1/p7vLRBcRtG2W4BbI23IG8GOMYjrY6GBujgQx9+5tKECWrRQOpQF2PlwPClFZNrFmBAK7yLK4BvbePE90PP6jpmRqa10k+pNvCn9QTz+BIVJpYN4/N6bSNULimNNvYuJFDNiTAZs86A3tzG9F4rRDdeg09nZSo8j/ii//P7Zygf08xnLp9nKGHcIbrcyWuOxpcCaR8+4o3hdjCOKG9Qpi1shRRFeWdS4G3x4hRP2DsFSsC4i8ztCnNkREU9EEq72uNi/XSK3UWvtn1TAVeAjVWWZAWzFu6HVXnqSDGzoPC4oNA+T0eVXnIQtxPLr6Jg94Pr1Ebgx0ZzOXmMLUuGgI0mNuqb99e3ipAtmXX89gXAZEgBHicHXp71pnhc0tpz4Gei9Pc4bu8gBkOwxyPoc08mzbBtkGaBNADf6sJMRULi4HNrwKlsXuQ47B4uMOOnqkIA9N40fKSYi5/vcDnjqVKT7Lid9nNdpg8eVWOTTcDR8uZifWuc2a6Ew72JybmZi51gAmYm8n6IIO7ZSRmJ0DN8qNvZd+XUbd6Y1ulaMyW3GJ/DqzpbamL8DCT4yfaHbdfKvG+UBce688Odpxhfd4Ot0dMTWoCrNmGuW+ZSwHzORI76dpRJP2sHZxZMY2FJ54RIs6qLz27t4Y0NXruuyfQ9pEd/ILSQVfgKuadykFoTN1biQfDbiuO/Gukjx75cP17kDwnFOWACdly58Ma+nRRwwMTE10S+XkPqT9wc61H12RbKvigvUl/S+Wyx+xpZXHyMx/35F6OY0EflicqiK/CRyqs5pwfYoN3X+vYiBJigjtAucbGgm9uXaRmw/qdibxQ6m9LnD5BezHFwP/bheXRcxLxV0O43w8kU6nnhfnsyPz58AOc7wE/BbvRnJi77CCMfno0ocTvRr+XnLp9nKOLfnzYzD2q2M6NAbD+u0DpnbFyHor1IM3KIXgJLjZ8ZwmTHYep7BMhOf0Zae7BGtJ1sZS0K5wS3bpSgIJrUSW+4f8r0tiz5w0y2tlS66tldpfRSXhea2uzqiUiL1RIwIEBTUc90icEfiBOOHNngdECFrO0oJEsnayD0DkGU5vR6/5t1vExE7TA5PtMdcbmWQ5EImPMrAQnE7BiQGQ92olAMT+IFIkoHakt5flREu2zFeY9IBBltcTOQ6gtrrmIPe2GORqQT2l2brohi9Yzb+HfDBHtGrk87vNJE3dDgW73H5N83y+1Ta+F93bgZjateThnefNOPbZZ6MHXbJZYOPScgRpA5QMDgitFnezj5DDMQj1WuhMRKst68wN8aiS04RU7vet7MZ5+wNqFK8KTZ6wHfuOIYgro0YNo70UxE53tGPjKzOdTXmRrA6hx36kOK8MSkxMFRCMs14in0YeO9Xsnq8zyZTmBvI13y8oF5006hxE+dKPMU2rBhcbPwMJvrou/32Maoj1O6op4z3/+RaoH21aZt2Xgvo0+TdVE63m6fxxfD3EN7Hc8iB8eaqX3Z6vfd2wet7XhAdctnH+7uI/VZEx6ceamcfiErxR+Ga2jhB1eV7zzKHLY8YaW8qx7vI19/Y9U4e6Cq9BsJ+9E4+7LuPr187YZEG2y193puIyCny/uWa96v7qzGnOL4sXDY/gVvlD9d2YYqBn718NDR9svIptzKKsH4twdoNLuNbZL33lmX8+7Ex0kdFZW/IlQ/37yHX6Nb14w632O0HJ1u7cNzB34Bz7p0KI36rg0AGrzjZByCQ/61xqR5bTrANHaeQ85QJ6072qs/gqSLljmj5MLUm04E7xxeTo3nq62xcBpR5mqJFvwTkcPpx3ZMSFUoMbfKLR1eDByYytbnKpKRX6EzqHW0tCd0g6obvbQFiBzI2ae0GxwXjbDwQMpkfRI1GScBY5ZLcBvQHkxeUOb2u1Tx1eFxie5nla2EAYEwiZZFlbiwjc770ZqEnTJ7Ke8W4n+c00fdzysHKh8TOxuSIj06bXO/vlMegIrGVHOwvSqMzc94u01eLerE/GR7ep7n6u0LzY9gxn1wsqCcXwgkwyRY+x+R6F48OQPB57pJei7lRU6X44LFpoZtFcOD4GXPfLt5v7yZ6zicu6ePjOEFTwo9fs4L+o9mxGXa2DoNy0EB1vjzNKxyIePI0FzDs2y84OH3R7FpoxKIsbyOMp0OHXU8rB5yhX5U8n3Hup+k9nkiHf0rym5SFxlgsot3M2DTsQOU662f0ZZbGCAEk5CIbDx/m9FimIbeGjJOPfytRDpHTdDwVt8CfH4GXtnB86eKN8xW8/p5lklPmInX4SFW7ZHK0Tgb086An5BVVHz/UG9mjAoy8S/q+qOcIn7ZcTvGXluK7lE/zxKxsZWQY/ivuZDQ7EYU7MF43/+r93MrINo53GdKWQncCIRZ6+zkhJh8FvhJbImAnzXQ4/p+QTSrfCT4ryrgy+E5aydki383f3VbG9DkDwuUhQ3ED945/MyaZ0Cg4eJy5vDInkf8OtxMqDUqFjW6Z1PFrfmOcXqgm6InIdfcc6Y8ESU84IvuUuOvnyVy8WxneeX7kN/ah8xc93R5dJg8mYcwSMIp1h43gczXokAMVcD31uC6pXt9tmXe7bb5+lOY6BUEeD2/3wIIfsMaAFNvINCvZswCd0xGDb2zx8mBlwHMMQbGxoTdM3BJLuO51UH+eaz5nRpIT9tA9XdRADz+gDGb52kxsJm4K4h+JfyZi7+9jHTMUdaionSL6Rfzpmb2fIl+GXZiKnSrydoB706m7SKKygzJfSMUBHu7k5Nq+eNqYJ/DVVh1bJ01EDxObhjfGFHz6KVfii3zZyaY9t/Oy3/ww0TnfYBvalUzaQNEhyyXbKRpbGfUw2OYJT/w6P4PzNX2CQPJdMUQ85XoqdY4O40EOetFxSpf/Gf7ktPFh89G/U0PG6LePSRNLnH6Jn25/p8nb+/x97T7V+dFiN+g4ZVnz3PB461tR23gqVTYcTXbOcG0VQxMq+NjLT86toGYmh/tuWLDJ+Bj6cfr4+BiNhbPr4v2ybXu7xudQlffjFD2O6TTdHoZip//VsYaauxh4Z4bb5rWoufx+LAxNLpm+DtnOc267NLts5hgnN34V0d9Mf2jx1Bi2EnPuAHrknSGhV3PZZJ5G+X7N/cPlGG3gyuWQ8WTqHRyuDDsCmZIL5CmP8caFcx/q+vOnd2PLsn71LaCXrvyj0/bFRA+T41A5fhI532T6G6furq2RhWHiBrAPu+cRLh8eBOLvu/rEsBEjP/k7ZmWnx+9p+TTvmJWtjHI5h/huTWQXOa1LjtIDhU/0AxK5YdCYnAjgKmxlcFqzmb8BBFSHw9dx3ZOOlI/5XHI+SWZWhKbm5ORBPhXAVfor9Zs+KbkTagQZi15R/tFf5GtZZCaZ94/v/hLPdn7tYBcytKUoZwPLbWVQeljdgCVagBBzwOJSLwYHK3Gc6y7+4XfjhuOP7T4KHxvWq34ekuYU3iEzEXq8k+dbzCMVETtHgJ3I6e6bCRztfI7gNBaKhwUvU5HjmB/R9VcWcCb7YrKbUzznSvBEfdnV3ytAXQE01oPH1E0stpyuzjmPO/BQJjaAdGAeJhf+1+mg3jygjjGxwdfQV/lCQiB5BT2Ve1zNws1B+ICxFKiN+vqRAGgm8tNPcuohcp7XVsDjEPvyRfQ4L19/egLpsgyHY1M2T7DDy/m2wJFE2HHMcSD7vsZlBgL9iitPHUnhpez5BAjmAiaRAnzUxDfgzuRpWm2oy9yu580IH6dDTFRM3r7G0kXiRMOxCLvIHhHHDPiQO0lJnNuFHXAiX8xdkTTwMm1Kx0Q/fjzl7acLzr7I2Oo4XhN80yv3xM/NyOxfxIkhk/oYNHHY7RzDQ7opqCJvJvHE84d/97KH84vK8QY7RmDMnIYziMQ07VGTJhYX0dq25TUcFPTVCebygv5ulnaExrwz0bGwkGur3jmPy9cxRvrTV9H39+tp1d/6Ezl/+0Xsz/5G3v7sD2Jvv73I+Y0c1WSXYVSS/QjGJIcNOf0JldM4bWxfHAvKryZvX0+R9/MC+/FH0R8O0d9+Efkzb2I/XGfB2+F+deZwSecYb6A+NaWTJ+jn2l45TrAc/+R9zLHzkul4t8uWf6Mif+ZNzh/eJLwL+P2QCYYnzArGqdRdn+Tb5dR46ismcvxoYOcm8vV6Jfen4bf1PCJ+8/Zh9MsRM9GM6F1MhcVilmnc9/GF9vuM23bMG0a/lp+3fJeFmar+l0Tkr8j11YV/0sz+h99K8zLOzvuNtnaGyLqO03wDy3yNARi5FzGajC8kPlSHVOS2FNz6uytPaG+6tOT7PUtLdzNmsZ1rBbujxcyaJOVRcQfX4dr8447cc6JbEa3+TY60BAJNF/Rdo6oe2Y5ex3GHOmTwgxX8QpYYFxoeqDFQBTS+eD2cv75fSKoyD1UQGx/VzEaW5hELTpOMtwl2vy8Z84dZ1QOkD4wnwb5olCvYR5JpdWgKK0jK8MPBysAgR8Izub6pYzKPaofgG3qHJMZVxzK0J6CR7tJWIZTJHyp5nb4J9FIxE3n/KnaeIl+uBCi2PvF2gjBdr8ythJGhQD+Nr0lqznP7PK9F2QkGpnlcA9Tlji2TKmijJVY1ulEeB8K9DmuQKwvz0wagP7GYEJGwSIsZN+fpMM6IJ934ky1Ml3E14iE3IiL6fsqXH8/rBsahYu9yTTSHo/6iTRZaoV8r49XO8VWIN5O3v3XK8VXE3nS+A2paxm/qZsZ/FU27ZNThtB2+pUzeRyUYrhcao55uXg3mCm3F7zttf3fL7FqA4Na4r6fov/M3r6fBaiI/HSICj6ZOuW6KgJxoH3krY/0bMox5m7ZYnlB/P+cTKjPRH38S/fGrnPJFrkeeb1OmxpnyVvryZAjlkEbmJCNs+/xq46miiL6/i/50in3R6+NqY9cJbtDyuRH2urCFVBpbSGN9XjdQ47TNr/OzA9cCfWz9fdPIK/AJcnowjnNacHwaEbtr0Ja3MvqW2YHzk1QH9tnKR+PSJyvfvDBT1TcR+Z+LyH9RRP4tEfmXVfWfNbN/7QFy/Oy2+mXYm/pD2Ehgunrwxr3qTHwKOMIYAFFbx5f6l30ye5xGyEX8T/bY4K4mcaeb9YWG16ow7mpcn9J9gP8h2G8tM0fqTQWK7mA7HDZWvG4V1j8E63cG9f1KqjQ50zMmmx2aTilHWu221rLNeP7wbV4h9gjUEchNIoE4zsvhh13qFYDMLrnNI5DJOIBAx2E+/ZzKCXftS9bbTCZkbP8RGx/1Pa/9nLG9U0XE5h13Q3paf+Nc7hLgTibc1ojJmN+txEAZR0xHcjXEX80zbuPCAf2Ey2BfNtquhJASxleKmdiPX8Xs9OXG+IDqcW2dgiAwt5MfMt/lykY5fexll/6EdXaIOu+Z1nmK+btc/u4HjrmI+G1n31aVDqKC/khk9TJl40NiBOWiOTT6q2bX1i60fZVru2Kw0bxFFu0usrEkYFxUhXegTdqnQ8aZr5noTyZvP9qV7I8F2XGqnD9chnuIxms511y/+HRzgWOi87Iq+MRFiYbdy7svyuza4nVeT9G+vqn49+Z8qFO8he7XPSXAaLNdaxXHt/OBfUbxSTJsQDM8tIcfGP0Ps3c/f15PpeTHr6L/339P9G/9idj7u4i8X+uN/+BvRd6/xILaxmcr0pj4lCMZ0c9yW/Lz7iDNrm/Muazvp8jf+kmOH3+6tjLrWAONxX7ohm8YLpNBl8WmfL7AcV3507GT9PaTyfF+3ZTRryby07vo+ynv5yH6JnL8qJI/FM98Yc7zWHHd4B/MqXlAyhUT9et4ojfG1d97szcd7XI5//fL59sx6bbvuJFMMabSxJvQJfwd8TnyiHgHrlfJr+X7l++xY/S/ICL/hpn9383sRxH5p0TkL7xKBPdcXxfcSVWPN6cMW+CcqJGEERRPN4yX2dHee1rN1RmQDB5JL/gSqX3hfKB1CgtCDLtyKF0TXej5Lsq34D4pCzpsRrdlaRCvFR3/+YBqIpZhI/dj2jTUS2IAmZpPI7kWaocHg1OuI29hq8IMqoBnMhNELDAv5i8ddZu4A9Qdvp3XP9wycb0cPu5kvsPdVg8GIqIGc4qTAmkKzxVuB9lcTwfqAra8XAFRQC7Lc34VlG+MID+VlDz+IiKQUKhdiZe/iH0ttiHZwOQDZbr7uym4wMagbe80fh8pdoqYib2/i71/Hb/P8a6X/xN4Wd7t2eC3yGXZuc/zyQjFAUFfbTL2DYq/UKb+7zyvBchplzzjXZ144vt+Qlwx0CnFKpx/kPAoOgkccLNxf8DkVI33cdSfNIzESPygAtfDqZmfkQzRXxEjvsg+6RFktNFPEwl9qP8b7xC5fJ4Y+/t/8R4S2N16QW/Lqqs64ulI+n0dqn/yVY4f369E+ycYK58boP/0rg/qgsZsN0dan2OL3wzsQ6O5+TLnJqNGMmw2Y474GInI9RT4x6/XWH19F/n//U3Rv/m3RX/8Kvo3f4qFStKLTD891kb15iyN29TXtL+5KJNr0Wc2brac1+LnHE+n//aPon/yk8hP72PcLMmUjrXnebIoyV856umHlmgsdvQUOXxe/WRyfL2e6OlP73L89PX6+/UU+fHMftV9XTBYyGQb0/H3Ym3KqzAGYnL5G4+D7yLHj6ccYyvh208WryawXSeTa3SRdNXJyfMS4onHnuvGpcnxddXBz1Fwa+ar/z5T+R4Ls79TRP6fUP+3xrVUVPW/o6p/XVX/+o9f/+Z1sVt0qQdct97mLlLUyfP5IQXW1ZfLuQCdEApyFEjiOxHjUTTLseQDdXQiSyEnH6Z1h8t8Vws0k6LVLd/bQkFoh8ia7egs63h5S+g7F+JVdLyRBXVSbu4TbUUEgkfY8s2gM7Mfr9zMOYZjaVXkajc4S1CGdAzPAB2C2qDjhIdM+BAizBHmbpIB5mNR641NLcRPMrqLSM34jqpN5GJjd/Pizg5ADyYEi+8GhG563Ggz2Yzf4vdCbKzE+NktKsgHft/+togew08Oj2UmehzXe2XgaDSNv85+zP0+U8i0r0fA/5KgZnGeuh6HyDiIRJzckCvqqllOJQvnlwZxEDsFNTJesMdlh286DkuwMZ8mwjzkpPLN468wPnP+MW6biACd6x2ySyY7RPT9kMM09GP4qQBn5eTHj3a+WkIRsITUhcBFH+hjcqicbyLHn7zL27td2+XerxdEFZ90HNnvOF1FRqgLGs5dQVpuuQrXM7Cki4lNmvuEOewIF3KqMj8XoeN9yHj3Ua/3NL98EfmTH+NGg72/i/zmh2wo/c+mo1n+MO1xzfsQW+xs+lQncMk4noqPg3f063k9+XEf6//hfG/xOksWDlB1hLVDU92fqIuK6LuNXa8KVHQcciOiX9DfCPk8drhZHG6ZffPuXPgGAHb4e8wzi4sFw1hQ2pvWp3g4Lzq+i4J96+JNDMWgO8/t2VrK5yimH//3icrv7IwVM/tjM/sjM/uj33z5M9dF2soYvzsCrcUveJEjzBEhu790l6VZpCRcyxhGFMrYLmS8W2OWNSfL1erKpeFkZM23yMgJ145v24l1KXdonsC9QP9FsO9bdkz5blQHz3ewpJhaxrPm2viteL15qhEkdAQmmicuLs6hVfcy697YYxuaA58+7fP1eDjX5CbpN8j0ZKxXMOoS25DRZiCK/sMML3MuJdnQ1iXlJluB8S44vteFCX5KgCRfuyuvzokCD7LzWueWFvp9/QMZX1mdsh9dCNIsx0iMDNqifWec7VZGuWR45z2vVGLh4Su2KZPyQKSMbOFESzxC2Yf9fT2v0/gQtdhkw5cXFn6JnXQnQ1O/5v7A9ae0PhdGIpnmYfIT4My6sVFusLWL7GS0q19vf/IeTzSvQ8LW+Ej/kjdz6/OFvg+v+JwS89gcSTA1gk8w0DieVMa1+B7WpQ/52z/Op1YqIj+89dn7Qq7SvpExxZuEd/FXl/P9vLY0DmD7cgieDqpMBMdkmxRQfDEysRPqZvFAHmUM1DcZB6NomHGNP3sLaFtx/DzeUHt2GRYXTWQcdvTCXL4xUnQ7+ekk0Bv6Sk+8X44kv5aPlu+xMPt/icjfBfX/+Lj2oZLeJ7guMES2rIycf7aPwfu7DmlniRhNHk1/SrBNuD3fsG8Konu+JPK6u2LiLzPf96+jlfhs+IZany6UO74PF6xbgB1wF+mf0HwkxAbeCH1Fq1nw3D1KD7MZASvA/XeXD41bubDzQcK9em519oK6HfO6Cg3pLh5EyNPxe4y96XXs95UkUd4RNmfzNEQPZqS3lRvAspRx3LUMGUdAPgdSWrTB0f2rDod+VbbydDIFaZW0QPWEN8ZPJbaumMq1E+/sia78TZlDnbth+9QM2u1wfVzGHX71RdkYYDv9MeoxeFskZ3Za5lcypoVTDTicHNdWSlERectzI20LM4n3DzFRSUYXscp/gnND5aU60EL5hwHYoXHqZJ4bflqkTfnD1oiWs1XmQ3W8zpdMpnIOlfffiJyHzPfQPMHlJ3JNwEnb77xjCQRkhushLo/1u4moyvmDyPsxDgwSvU7+c79xSPZtinQXQfGFWPXE59yiDicT8ZSTbZpnUxXwHp9vxxxPXczGQRZ/8IOcP7yJ/faHC+lv/Sjmx3qi3YzfluhnOdThwSeVuCAyfapRXeRyXF8OsS+HnF/erkXZV79BMumWOz9P7wSVmGiTroqY+rf+Ll35+7p2XP7ofBM5v1z+SH96l3KDO+TBDrZiFHBsSDERgr5pfofYn5fb28D9CrpwW9454Zs29uURu5TGz/MHnTb2aYt9479PVL7HqYz/soj83ar6n5RrQfZfF5H/5iNMs8gCdEx8hQVZeuE6nKROx9LdEXVaGEQIFsdg8hWYVTonUnHOSrgT1mnxR1ERC3eh4GEGlyp2fKXw6VSzwkVVGcBy8GljEfHtco1lof7vnGzyx7vGDR3dtP0sBfXIrLlDVC86gU5HPyzXMSdLZbwQfPpPFZFT4ywME5kHY4yDNEzd8QO1QVzh9+TPRgV90WpI1xYWETtNdGyJMhORryLHAd9cigA5f3tAMrmSLP54O7IvCQ3I0BqzyvW+25tdL8CbXO9PeX9RN+loep3th8SCLelKaX7xb5frgN8m5R0/G4nliQsv5zvkMhXRtxlcUYZQ7Wred3KhTNgvm3/tbejqI7f0VEV/8xuR9/H9hi9v1ykAX95Ev7xNX6oqOr5fco3/dHbmulMQP7Yk+XfFvNHji8cMu/i9iciXq02/wBnvKteWK487b8e1lU/1GiA9Lr2qXLYw7EEHn5nwgy4bX2Sjj9OuDpG3U+w3h9jX90sGmfgxNwT4OiOOkSGTSDouv+MLPFKssqHzNxH7zfVdJ/vxTc6hCxO5kv+3IddBcwU+M5F04Hx83uglY4hjMzF1OdzOo39vKvbbN/lqKm8/mrz/2bfrVMY3FfuDt0smnw+4bxv5+n/Rt/mP3fxg2FdKOOHs7q/taxbJshLsjOl6DS18D84P7xBVsa8mbz98EfkP/KHIly/X9T/7hyJ/+IPYH/4g53/4D8V+OEA3WvsKZpS6xxfc5Ezmd0CGnz8OuUZUj7kYOlTsy5vI8aPoD29iv/0i9ts3sT/4Qc7fHvMzC8ew9WCrN34Gndv4Ftvhvl2vp4Z6uZs3n8fHKSrXHDd7u57k/eYQ++EQ+80h55fjsqMv88Yh+hv/TMRLRWV8V8J9mcSnL5y+fb2G5Bw6jU+kvB3XQvK3h9gXmFMQf4LHwnY7Uy2+3W/yHZdNjnOwxL8eGfnDJ1vAlPLZ5XtYvvmJmZl9FZH/roj8CyLyr4vIP21mf+MR8mb/sHGtCyYPR8EIdsU1JiLKcMtnZlR8N2F3d8H4d8v3vvBdxy2u3S94dmy3Wxl3hfne4LbNfNHmn/iuEzunJwwYl+tPaeoILBq59lZ2vFFjzbikOsngdorJW/wc7+BEbIf++Dew0rZqb/M62FEkufF33Sd/2hR9SvJRB96ugHPdqdR5t1f1epJ22Egg/G+jCyQJfWAZ2uKLQU8ePTAd8+8cy5Fwh4zNWK3mLsCjTk685tfRbtAWPeEd34w6wcbSuOlCDm/Deidjo7tiy47zNv59pKiKvb1d78Ecx0ju8WUgiWTa4vd1PRZM6cUj6AexKot5f+IkIuYfnnV6I+t1Hgbj7Yujy17qhp7MJ8eqpEsSOSruTN/HB7FdhpBLp05G332RlRflGhlXLMpw/IG5cRvMfRHJpwCKiLy9RZJofpPF+4Q3LKDPwSfmsYFMsJAFXaUFArscBRFN5PzNcf374ZD3H2B+Dh9YfKRfb/pvRRcwfigXDXUp6Ms5yDfw+bLVsUJ9MLyP+fgdY/Km1wLtz/yByB/+Rs4/+9vYOhj2HTpq8pbmH8pVrqMu0SYdzmF+80Xstz+I/fAm52/f5Pztl7BvnNsxz7SXxf8lf+WLh/mfCIKa5NJkw+cXlfOHNzl/OOR8O64bEW9a7Chk3JVVXhPxhn006ArjzqEiX/RaJL6pnF9E5LCpD7aJzt8s9VTbQ1c0B/Ap2RV7TOzTfPm4L7/U4R+q+hdV9W+o6qmqf0Rt/4iq/huq+n9V1b//Cb3vomYz++dF5J//JhrqMcokJYFcl83xug7rxjWeuoU/h3qHOmUZ3jX4akyuaco6pNGA7figg4oYDJNKUp35spA7XE31tn8cVKjuY7DiO/t3QwsuI+4ONuB3hfvvl/KQ3JcuuK5wX5iwPLlxV1Ghhb+HYlNfGjGUYcHAYuzsClDvKtcCSK9TnWJbID41AzFi/sH8UTdYftqs3jaTgutPFh5V60Hx+v+8m5m2u+CiQ0Ybzg2auy4j2jYPY1Kz03KgsW/xFBH9IvE+QmwlGzKlY5zt0isvdso8H5Uyp2KcUDkz2KrJfA/ikHkioo+ZM/Agjv2koMr+RqDeyRhgnUzjn3/U9KUbM9j3L2+j/zaeSH2ZjFXz06KBZKeNJ1fZJsOXN35fRME2IGaYjOOwxx1of+H/OOYR4m/OaPA/sI6KmnOj5cNPkQdu2vY4dK3+5OGLyfnVUce3jFTiTv01vhduLFSUjsKPwcyDG7pxmf0/cXsWrkNyaz+8ydev1wlxQcsumexNEi2fO3lMdIiiuf8H8kPdJNWUeWQicv72kJ9kzIExXlfuMGwjnlha8M2G7lsI0W7mcLVxDsuqTdc+PPnuqM+FUZxAK9OvBYtjwML4xmcXVcYTomus5Lc/iP7B9WT6/c/8RuQ313aKU3Hs59M2jbmuIWYICt3FfoQZDSN0WqFff2p6mhx2iL0dor8Rsa/vYr99k/MPv1xP38XoncVpNzH+7ENBnSjhhL1swUSuJ26mEjnZl6t6fBWxH8a8fj/F3lTe/+CQ84vOMfHdFCiHVpl4zFg+n6dxgqLKOBB2zLQ3uQ4r8RMPv6icg/HX34icP4yjgNL4TdoxDFBHAcINwV8DOw0/MuLLOEtG9MvYNWzjACDVb17A/Ozll5PvXxWRf1BE/gm8qKr/abl2Ef5nROQ/JiJ/TVX/HjN73xH7Zde/u62MMgz3gCxpeLOYsImWzC0ew6HhV+TTZGenamMCa08LJ8RV5m9NwUjCUyrW/Y/zSTIjbp7t5Y4/5gYpoFJ7g5vWugTrzhT1mtABViXztQKc0fhuzu6mEw3JurG7vKFbgijXd7iMtwvWzfW4tMMTKfbCibvC70jY5bI9PeeCxV8U9kWbHXDar+9zjORk/p45pE37FUnz4KqPKuSVs39ZWS4zJvRio/6WDS7syEm8Tfp4SEm8A4a8aQteO7YQYF03+gYBbugm2SvIc909JBlhHlz+huyR5xRWis8A3eiENZEyl+O9AwWZPegfgE8yYt3pYndQN9hgfBBJ55ueFFWRH75MWgcI+zbeO5HrXSqLp2hyLeAO+E4Z+PKgG+KZmMLq0WnKSN0OEfkyVjjHIfLl4m8D1t6OqbwvOhcPQ9dz/kxnHgdjyJGTsUWsQpu+4sdY4JiJvY+FIUxQ3MqoKvNdD5WxtdF52nKL2pRr6IrsTnTox2UevsO+HHKKif4wF2ERE4OvVL8CWyplzB28z8kJZtZNvRi+Q0Xsi16L10Pl/G32T4ZP78BJXHNj+rYracfJLv2chEtF0FWdfDf/Vqx7sus6Oi1uoCXfN/zTAXNdReYWtHeRU9+u0fPvcH354bqh8UXExlY4l2/e5JC4aYY+J16rMJFYUejwT6fO91sPCATjnb5r0XEtylTf4lU/O01kbBv0XRPnD2Svi5MH4yYn6zTghh7fJH2fPV4phfpxiLz/Zgz2Kde2Rf/3di2E5G3YJ26HddYkE/tF1KvYzAVNbb4jfF59xWPp9W0IOnQsh4j94E/2ZNyAQF2RGaZ5TrHIi+vRg6FdOvBvo+Hi0sZ2xnia3OWcvxYRETGzf11E0vpllL8gIv+Umf2JiPw/VPXfkOsTY//nHb1fdmG2ydJt037ZTT+Bl/WySuphmW/lteeLfmO3sOIFDTr+3WJnSWv07w63BJg96Qd8n5cV3bv1zi2hF3TFAfelgri7znPbXd1pexst0GzBEx1vihF+Z91yIIuFQ8plht2oCNwdqWPS6dwWalACQPlDh9fbJdNeL2Ev5z8VHQsTBVJQx2Ja7SgFKtdHaiDd4OWRbKaX8xXaEHYzL/jJJus16Zj1CjaH71dx/3E7UbRt/E1UkY5NuKQLWFRfiMs9CzdFJe5MOXPYwhSMVx939c4N2PDN+NQjaOUy/bjNK6qw8FLxbcBOy7+W5YusqIcok6/xuCxsdPYd5aLGYf/+FC7GXyW2VAZfl434JfsR0E3Dd/7GOXfNzrizrv5jyKHTT4i6/WmaN5MW8Wr0FDppbBTjabgokbkAdxg6LTKengVdGj+UiWTejp9k2OJzyLcEHevbUh3pgT9wwmZww2u8lHS9y2vByG3Rt8ad8FTRee78oss6YckppbGadiEi8ZTpellKrxts/tjJ7Xps17MfZG5ldBlwDLDw2HQ6BOWpXrq55Dfxd7BFr62K6camythSfy2AZBxNX3YbSHYty90QLpNNPJEhE8ZElbhret2Y0RkTYRv79f5mtm1lPTX2aggPDSGak4QbEvPp7QCEFUIXQz5dWU7YX6z8nSLyL0G9/ZwYl0+zY3S19WZaMTc0szIlfnCpASlJXXKiwKsYYifH9BSesjCfqDeTXQB7a/krXJP1/mf31ys1NropF6Dhsd0zbtO1l+ZQVvNVFJzOU4fROfNX5XjadlfHJgOROgP160AH5wwG2igjGKVrvg0sCEE0ievE766+mpqEk7tECVJJ8ma20AUbpL+TueB2CRDBohzpjiHdLczyg2z8V5q2hYypcKKi8x+e3JeuE+6tjMxvFN8mFXWTa+Gywn1afNHtNPD9Ml8oQQI5F2nXwigPoQ7fNkYyxsfteuF0RlAw1dnPoav8XtdAj2uDq4pcp+Be9O3wd8OmWChiFWD0wjS2qMVAvZnY12H3LpjKeBI0JrrPDVylLP7lE/9yXEu2gmXA+s5Af78x3YzAvsI/ny8xh4RsVzZ8WUUAm0bylOvpw6Fz2y/PgTFGKCM+AS9zA+Wi36WgXjkuKcmKBkv+R1TKJ018oWRjf2GwAF5X/dradj1dBl/ptm3ntdX0B7nep9JBs1F68anUp/lhicknqaPRpbi9+pF+Pp4mYl/G9jx88qvzHJFHpcsHQIY4xVevuan+wfq3Cz69UmJyPSn7jYyn1dlWUD/FL0qn0SJOFtPHcsytEOaEA0fkaju/XO+YpffTWFeaVXDn2+c21D5fUIH44gtH18dLSdvvtnyHd8X+nKr+daj/sZn9cdBX/Wsi8ucbvL9kZv/MN3Gm8mkWZmkrFXtLD44OKxBfExXwXKOulGxubQv8eH7XrUvhaFaoCL5X1vngtqTA2TctyyroYq0Nuj3x0kTt68VzUxa4S/AnNHdsmgApXdv3LGyq+twxLMVpDLTAusm5Y0WnOSJkOF4TiROr2BHLfM+gY7i1H5FbPZfnKh0tgy4rtWn9zQsLlrGVmQvomAMOJ40pmRPJi93NvGV2O5kLPsikJAMnuV1CutQjyajOoCkq450GoDNr3zBZfWt6LMZGQyzINLXjIRaxSPaEhvuJ4h05MU8x4xCx009kxKP4VeJrqsOfp6dxrIcQF7ZKerzpVIQD730YDVeSffFMWwbFYFFIB5Lg4lGq7fa6sfaJ5ArXZOyiO0ROgy3TaDud7aWhzDcsn5aINwJ/XW9jq9cJT7qTD9Fxhcev6WPqrOuXLi/R2AZXyQYQ4ZtwUcfOhr4ghzlkLuSGHzq/yLW18BzzecCoHPPJ1CFyqqaFdUlSoB7b2YpdwZMmJKUyXwXx9+BEYssj87QvU6540oz+eFU2MrLqp450zCONTyhcb24O4/KFxxc/Ql/l9C3LTQIX/pjEwgovokNmE0nvgvr8Fh3f97R4Uqdy2bb4t9XQ32kvR469wm8WJJh0k9JfcThBJf5jET8+bfnQHvso/7aZ/dGq0cz+3g/Q/NDnxD7NO2ZefI8mOoO4QIZW9nMu6mlCLEp+NKyzXiy8oeOTlmSMxHnJRxKf/H5d7Q6zzqrZ47aPvifyxKWmFGBXtHaFcJumntbdXuabIXmJ1itlxReDa75cQEvjAGhffG9wOaZG8POLlsc5tkc0NrYamLRffuB2WzcSXwocS4G5P4CHh1uEjF0SrlOmCDadjE3fOhlLYmm5HomRSlmUbRdEVvvHel1OjqZ/T3UTMsE7ZWkuxx1lag+ZbKmLeyWvivYLM53X4x0yfGqF75uJpK2uIhrvCpWYEb8nrr7pOO7fxl+EnbjmfJAvLtQcVituyOjzGOAM2/3CSATNVPTdchvierfxSHF3OigHysO6QV/Y2Wxy2DYXQSrziWnIBbTZ7oDuPN218sW51MmI9q8i1zazd7m27n2dvs+6+crbWndzY6MbxWvN7zQVkD/GBJX49ls8YRoyK8IruYS3kajHguwC8HzBxk0390/O7xwLel/Ix3Y44JOEh2Dj0z+3j7G24TsGThxN7/ozOCBCTeI1NIfXudDwb4iV+CFNvZExLWixfQDZiIVil50YtOE8uU7dleudY/zsA40329hKZvSlqMcT6wZ5W9CdxHxxNE/alDgJt8hBOogtjAp1q6ClD4v3kdsY8Wt5Wv5ZEflfq+r/RK7DP/5uEfm/3CF9mnfMMNa3+RsbxMZAUuITsDM7jERVsl222wwRNzyWAi4gbWQsCx7JbSVwb5xUT8vvSlruPADf6hUCw10pME8c6xM6L9KjIfllyp3CeMHQyLvrggfzuiKTZJoY6NuiEot2I/zSlZXj7+qb/qQgJTc2CHJ122NKYAAZU1snW2NPeEd+yRfrGPCa/oUcTYJ3q1eed9yXJ7o5ej5Z/gGxS0pZbu8vyiAfLJgs48IMtrKmxU+z6OpsqPWb6SafG77BgIt0Y2Mg29xWNE8IRR/LtjFlgLvyKUY0uF6BhKuzyXIqWzNmUx4y+HauwORY6DU5FuIbCR/qifiUp718o0Ak8+3mM7aZxBjiOzRxaqsuaO/mxo7vTRzq/HbEJBk+Br9FyL6b+wZU0jfedC2KicQC9fSW8bQj3i/DQ2HGNGgLxBAa+hYuP1mCb1MOGL85jexMRc43iS2WaK/Tp16IbT4ygphCnU/BTiJjf48uNl30zmPIxTe7kKDSb2vqpKakL5SR8GG9G3MKv1vJ/rjUS8dJXhcFcwBqjq20Cz4f9vu/q7Ky65+5qOo/ICL/uIj8HSLyz6nqv2Jmf7+Z/Q1V/adF5F+T6zPh//DdiYwiv/TCDEqcTBRH6IC1poUGeI7iJSFwuVe5feyUyV5YwzL5thIGZrRSl72Rg7mWO3tbvoy8w9UtbncS5dL5rPjKxlnf4AZK46CWhZ1e08ZDckvnFZ5P4e9wlZobmHLUvl/DaUD0AnZkccpjdEgcdY7jsUp6eHzSyW0i6QkwB251OaAx8XFchnUZXY7xDsCJuNhvDkaNjKgjTMyU6p2MceqjUBvwdZYhY5MRIO5Sj3dziN4RtDeJ1za2uOgjxCLIq0EiVCYQ6cqovzZpXUn8ByLgwM0LMwXd6jhJdx6/PbnQ5NL5L05UjK1WE9YQV0ViNXGoiB+RH64zH/ttyAdoWCyOLMsI2wTrO0hgBJZxFcbIDpHzfaAcl+JP4BvjcOBC1kLm4iQwFtGYQseXQ2ZDjiu5npOf51Fcx7mDCzhwUEvL6fwGqm5UrgW7iLyZvH8dCbo/SRLJfFbzBHWhUpPRwpfwV/IL+SCb9P1a+PaxfSzaD7meQJmUhYaXE+jqCUfEHyLy7jt9LoK+Ldbe9DpZczHOic+Q5fSLcWgGqkUTrIHjV7PrExRDDvVDQMAc4+lPbHEdfiCNQR7DkNFE/DTDc5xyeI09fDJCJOVZ6orz+XHm/orJ+OzCHB+fU+q0RIqtTwGzfpK7CZklxcCQEfpXYojKGD94FXFhjzx+bewlEV3tp83raZcXGkb4WvnU5Zc6zt/M/qqI/NVF2z8mIv/YK/Q+11ZGlek8fKLxVkYFi99sXbyCCeLCpEUUn0QzZoqSI8mTQQl3wsbicrX9EsVwh53i546vFD6FzQb3I1sZ2ZEEGtPaFU1/Ki3gu8Ld0f0Q7Pcs7KBXfHlMsN606UrvNsc/sYKTlQRgY/+/t71J5ct2g0F50SdOYgouyn/DpyxSdnWmzbDdkx9A3doNyrhpV4K9k/mEuXoHKxs9hk3sZF7o5sK1PBE7Wi4G3DWOJBIdw0fn1AECle2JrtsjbQWcfl9zHxXaRER94gTdkYz6QitsWsdpdkZ8SaZYQIKMAySe5oGMhvAJdypLRdK7YcFXLI4gV/54dxrDjOtbKrsnVuIyCsICLsHjkKaE34/uxnZQ052NTt1CKAabRbPimFjnhsIhBTZ1RbG4dKjTDfb7kHWM7H43Oiu8urpPHZjfuQ598Ix52G4ccT7ozBsRkrc0Ygw45Hp/0Z+aXcB5rnMskps6GMIl1zQoG3YcMvI7ZiLxfc1TdcajpzEjyYwDhkJJKj7v8QmVMZ/h306fM82T3dAD1jfvupaY2OV0CAv44atcf7CVcasrjqccx+9isRAu1fkArE9XPvnC8Wn5NFsZRWROmtJmFVYBgQq/AmEJNm9lZPZpYrV8Vhl2/Xh1+x4iO/8t376kbZ8hzvXDOl11dNEZAgDvgkyVlTO/K0Zj0iwGbwvz2vH/Ds4j4p+Cejcsi8NGIqMd7zZFkEB8qO9Oe+pwOZng4cV2XdURV2vS5H1sxSbcx3xV0nsV2L6UEeTAO2RFZtIJFkwQjWBT/zT3T5TkWOGijMDvcf+k/sX2hAv1qU/LAZjlb3AnL88C80mZmwcrL5TRWVxoHZKJo29QjcVVxAUlYTzpJ9vIN+MsOqsjA/FvN1nIZRXX68eU28T1Cf7W2zTXxWHx6HYo6WmK+9/0ZGlOpjL+cKhG8JE8boyX7CFkyo6/+hIjmWb7rp51s4lzjU2nhBHrgMzfjYs5vZKpme8GMEp4xYlyf7sCsa6cHyaSFwTOh+JC+DVy9JZ+wBOwARu+RkWuw3sk/sXNIVCSy3iZGAox+uHEDy0yTr7QXxHp7oylXrjNHZa3FU4zv48ZoNdpU0fqT1KtxkylQR42KipyaJw86kfod3FuTPu1jJb5Bq6SzES3yHzA2MECDeeMUl2ATojDsCwzy8i4UnXxaYuHrT8F5dNsZZzOLAeJui0wB6NM5IKNCSpQH+1l8STgoEIWIy/PnhuCX7T1fFLC5HxwgqY68+X+SZ5UCXcVmaZq2o5DPTvYHpb5trSkwmoD+yTIFW9NDihAdrBPeTQytVsMF7grPQQtBDW4xkrXSmYGaxhLk+vuZKPISDgM1OEneXl9mEwEL+vrjstbFVOy5YkH8I3C2wYZVjLfNH5DEbHF0Gaw6QKtBxgRKdsy0nwkPSUfALYV7RCc0jxpgp7DxF9IYLxwQMW+pABqWU/J/kN343tTI8m20fn0nThKJgpfG35vTKZ0mm3IYeN3Y6CPis6tfmNVfH0jbWgaF2AD/jrg4OqP6ZFDg4ux2cJu47/4vo6f0JY+nK0y40paUEn25TCOkdTp5JOdiV0HHMikHXAQM7weB4oALzV8Vw3tWaev1yyr19VlhKdVu5jBNjznLPRpMfdxTsYpjImvZb1KjTdG9FHmdIPMJLb9xQ0smiuJrtdRRvRHaM7eH9AVy4hpQSlDjrYZ2hIv4I/NNoDmtkf4oM74VMD1W+I9NhPXzdhxNN5Puvp/jUE6WTH6C7Y0Ol+2CY54U+JAoTWa3e+naaHxVMrH49Q1bvL7xIf1itvQGfeE/iGu+5c4lGS04y4Hk2ZcYMz4FcI5d6vM0T/n0+Civfq2Xb8euCJ12z3xFaTl7Q/0ijK6bn4tv9vyabYyzu15Gm2XkznmDBiBS4UnuwxnDTMJ78K6N3UjBVyfxHHcq1/F4AQvXQNW4Mbj3Qgo82vviU/6MQMKy+iqKZ4dYN0hd+13uO3db5rAAe667GQWmNBNiWAIsIsb48nxtQDMA4Jm275zJp1+VmxIyJcOGuEO6rq5FIf3IA/Bi3K/FIwS8QUs2gkmPCc6fki2EizMxZQs4RwlPkI2FHBNgC24QnLIlKOcHCa5biij4wrhrk44RDlsJg9pt1QjE8sQc8DbG5lXuNiHVJrDRdQlCV8FT6MAFH0Vj+ek13yoXgV0ZWJ8x+JJGbSv3wr+XtMWx0tOEG78ZllDPNxSCLRF5nb4GFb3cyai7NdRPpRRZoLk43jZETBVTXaa+nJxFhE47RefUHnfTGJLGtowxwxf7E2ZAQbejYk+DPYx/p0NkyoiuRxy6YGTHGwH5wnSTTaqWS9CsChKG09hWjrfE+QjWK/6WKe++txXyVvuUGbUqUn1OZ0/6wrrp/OTstBDR+eAEw9NruMOXUamq/mfHZLff3Q+RjiuGwNFwlxPccAaGlD4Rlesov1pkB9Mgn0Ae+RtrWGj0N9lrAK2Ucd+ot83uTJhp/Emc1FJY4B20m0/RN2kp7idjLh99oR2GwsnP/hD4Tf3R7Kti2S+bYzsdLWQUVTy5zuKcX6y8oGw9BnL59rKCMWo3TZtF61aDR+WZmSFTYlQ4cMIe75YihHvYFu+m1Jkvvr3BPcp6R2tj9j/iu8rtEIm5Yv3jDrc7vH9Uj+ax3SJaw0NClxGdd7yggHchGAbuga/EVcRt7FHxd+cOHSwurBVwk1pHNdZfqQHfFD0Tubd9iXHRZlx6Hlutts4FNp4vmE70sU+rXTV9C8lACRzx+eqQ8IkGZj1UuayzgVA0jHqNPjSKKjI6iCBu4LfJcuLtCk3fmS69fv4ZI37uMINfgY2dmRc75zA+Bc+XrfoB9pDso1UByNq2q93dca5uorP9+ZAdP31m4Z5/OldPJFFHXC7PqD+JC9uqzwYf0hmIXi2u0531DY5AFGtyfFq7qe+NP6p6AbbALbbLp3qdaqkyzxrIg5YA+vyLBj6E41rSk0Ocyujzv7zzZxNzEh9UBHFFwyRl6JvUP9/wPJNMdV5o8T1iHrQRT0WGYs26XANcGWaZDv2RwxBLHKiTYnuRmZhGRcyr/q3mge+iC18oC9tXWQdI1cyO2/XQ5JjuVft85SPJKafsHyarYwx+Ljl4bogvvTHLR3trYCAdVyfpJaCCfseR3VyhlO3ZJTM18CiJzDzMRZ5AJRTGXemT2Ihk7vvtC2jSdPVYtuJz4bmAqc4fwB5WrYvKK94d3zucL+lWP35lA0mEokA603peyjjWstHr/fHuW0pE/HhAeoSlqe4LexijMr7dUTbuutQtw5WyHYb2MS3w9UbXO1xhXFt3858MVG4ZLQMy7jayBTXJ3WWIfVHM5/270cK9lUk+2ugfW3BO8ZvnVlOu5CI7HTGjAOcTvDEbI1PlvSkcTos3N4lSjYgEDMOiFsqFbcrgIv7jX1LagadMbGM+U7GEl/Gf+J9FeDDNjtg0S+l7cllTmrmCzIXvQnjVr5drEhPnOEn+s3V3N/6DQHddDbOuAawHJdYRjSDocPEnscHyfn0Y38a8LMBDwJxWjYOt7GDfAFMiydl975zatHxXTVozb4MbhiM96Yw+edYhXxLvtbUE1/QWSwCdzaoMp4qVp+KcDsZuXC82faPfHfMZX+/bDOHupuMy7KyfZCxxHLYm/tKzvZLlF/fMfsehd/iJKPRdARq56kX9TEB/M4j+7Tl+1buRHkBsluBpFshc+sK8ynYDbnkf3eLHpaR4W5wVwGI/X8Hm2BecQBPo8CKN12+JdkFzKYUMXd2dQNbAugTvhhACM2DOcNqIiAZmecQjjPx6UoS+cmYrfrHckjuH8OwSRYZGRbmFW4BaWXigMaBB/myOwKhlk/A9QEu1SdDkEtINwE3tYF8WnrwVymoSpJxPANhP6ezP5wMTFp3DmZT0vY/kjk9UdLQmybdL3iH754xA29WuaqDngi9n0nvkbkSVEIO5pViBki2va/c4F6HkBgk7fQedTe+YVNXDFWWUUR4UrGNIkAbE/0n9DFhdfOo+Zvmfue3Nv426dXoWupL5tvKCHVu287fHS5OIe479gn+pmHJhlN4ictlkt+Li0WbJro4SLggTiKh3gZv3CYYJNk/Be05qLXvOm2pCTQmkg62SHOI9FZm0cp2WEbne+S22K7ncIgbn4SQuRjyNqXxuhFJiA/qqOhVG1z47TrqZF6OD8ksQkPBfUdaKpehUf+vv+nLer+Wn7F8nidmo/jdwstYdNZNcOfJsBnyrGXWaDS1gQ7qycnjOwkFoZmZC1stvqmBzcGF+aJMe9zlJOzE3sgcjkSBzsIZ3SX4IrLdi39LZ6H2EjSZByjEuvZdYd3s/NCdj9Jm/IdQmFgwqaT/G9igt5DlFreKvC6s1w1wmz53SQI2qdStSQ1CScg4IdrJuKDL799xwlECI8AG7tHg4tg0vLt3iJx2OVmR+IrkepbRkky1f0q4eQGX+ZAcKdt4sdD7UbHF8KCX4eD9Ljk0xYW8BVMLzfSu8Rs4d4Gf6QkX6odoNbr2GJE+fp0+RSCJdrIzpKsT9OqHiL1Lij+IH7jl/a2NzM1pbo9xPUM/rUzoNLfg+y3lPVaim+0b+g/1lcxFJ0tH0sjYtCcZoY4ypvYd77CrRia67C7E+xzvranMxZcvkHjxQ/6xvfnLY6DXyX6YP5UNR3f1rjNK3YXFXeos6JHtPz7LYbSY4DrzJ10UOJp7Pqarra/pqRR8UsbBIxY/kbGzV/bd3TzpaBwSp0WWdyBRNsJd2UIY1GJc03t97KdMv8uJ17+W+/Jp3jGDmzCpsNNcLRYyXWpPRpyfoqU5bjIMb7EVJbyoAm7nGTu+ozp+eF6Q+5P5Lhcs1rXvZF4RaslOugvcVq5Ophu+u4XdUriHbS/R/l2XxtCX3WsCXdkO8wJf+16KeUWAD8zdJWxTX9rcK7DevuLHMmluE1nI3PWnkZH9wI7v/omZZdgVnwiwzYJM+raK+8HicqnIfDTomSnD+nbGybvqeXhipY/oppt8VQa/6XHRvbKSfnFwOevJl+oIS7xWTyaTn1eZDyNxvrOMevEOXOZLNy7LNlbZ4Lb6QeY1vqBuMh+Sif2XPKwvksdUJdV+T7+xi3PL+pPi8O1qDUhT37ptc8u+G/kJ+t4W9w2nUnldgRjRtEsNrU7pejwFwsXQYn62uuVrLPNqPDr/PklcbW9SbpYt6a5kXOm5iRnLPE8lLYzwu5Id37u4Vo4KJRi0HdYl2tEHXy3+3ZVPnfg9L5/midnc2j8cPb75Ck/NauKA1jkDpvpKKwLoBcuPYpOT8ZN4UI4lMHhNXpQ0uApwiRZcswVu6W7Ld4HDsNrIwt1b4E4ZJ19lWKw3Tn0naim7IPhKgHy17Wmw7WR4Wlg/tolDHLRVyvsem1hUE4CPls6Z62zi7htXVgFY8txWgDWqF76vwHI/fK77v85e72wX7VGmHNiW+PpYl3lso13XMpOMmNB3/e1ltDx3m0SB+zP3Tdu324/yBZmDNvqPL9ekLYydX3SdHKPifRwnNW6/t5hussHR9fwe206hDusIsXCkeOMydnOI5yfYEB8KgPYwZaydTPN+dXqvrAu/w1oOXEjCZbo8F5Yxggrb84zjDS7PJZHryHjWFeC97De6wu1Kvs+nSecQwdcpwLKMKLdJhkngNvukIuVpkInMhYZIWZQo0UX50R+kLZSNjG1c7vyITDq+0GC+7L9W/UvqxcU/8h1zjnHbb+KppENAEp8mTq/sSjrcxncvdcP9c121fGzAqiwfrR4iccPJnYLv2TwaGZX4QMxI4/UZi5Hf+j0un+cds1Hm1sWrbbmV0aQGat+6GIY26+l44kaUvC1wRqEyiXFbjMtAzt4yMcCd9fB76Kxpaw2/g7PKD0oA6pKRJiB1pfFZ6YIKBEKWSaHqzm4hx6PCutvRYVOYYnyc56tlh0tG1wW2LeuFM3/kKTlYPe1jZwyLMWlfgn6Iy/XybsQisWxh2eZ2c4hhV8flr+TfzO10YAeP7Y4vLX7KHALY+L5R11/+y7gvwIroFcTBrX3TPBGRuPkWCQEQPGabyjzJLTnNwBt195eJVn6CluXW9Da+Bt9ZL7pnecdvt1H0i3xwiAtw0QU+vCDY+H1cpE0ZybiQXyN/c78z6tWOEJiawGEVe+jsbCcjksP+dbFqMwfjWG+8zHbqMpMeW9oNXlffPWUv/hn1XtOfzKdZlJbE0zJous794c8QNHS6uvH11dx3f7Sruxwq+aaYyF7HN/WCz7liJ4cQvMsC2wYT7orOwm6Yb5eyrnBP0Im6b3nrYc2MtjfT4B0wf307Ikzt7vMrT2T8lOXXhdl3KIsnQ9VHZA+WVv+NpeA+Wa9P2HogSKXb8zGZvyfclKE7PjX9JV7gn++d0KZcfC8d8Qe6g1an6kZ9SSYCDQAPOIsAtD0VCEHnkNw7hLtFAtC1o+9ui7vSzUpGaf62QlD7Dna0W3f9jhQmR3e42tjoptweDwz826HRbDclT9kJojew2sOugl9SNcnVyrgKuNqsb6ltJ1fma5PvCpfb0O9AYtPhznd3Jp9ej1b7Fz50eD2qf+y4fDxOXbIC8Umhet3id67LhAeZRQBXEXbGEBOBb1HRNsnw8+hDh0XAd9ay7tzfKfRvMHGZIT5gW/DGedWpFWyh8AHJVzGjyGSkG/S/aN/eZVjFtLEo6aFvS3waGVt6LgP5Rj4K/a7s4mfMT7fvzs/vaD2AYR/KsRLz6NTMThWv+ZR2vTI+6g38ftibLfyruwLHtaaL7G+cr5J4MM2tw9NsMwkX0qy2jsXb2M+v5OBtvE5G578Wt+tfIxPzCRHBrh2w9EczX1EbJ0ZO/9X2b6Ub8PktLLwXbT65yLcubfLX8rOVT7OVMSYDbGW8JiQENv/vcqvf1aaOJlAf7UYvVjt1dG7mXiuCJ/Mj712cCMlo5IBxohjWme+abXVW+hh3VV++54eBu8PlPiHIQmbEWdK9CZKtjFL1XMpuOFmGHf87eXcZwU4ebarQJ3bO9cJj0i+LFWIYBFWymxhnIoLJFd+x3gVUbijbAAEWcUtAGeNjgLtKXIRwcTuPSa6XhRPIOKekpeS6HOyxwc2w85j3nq+BjYyL6gKDkpwrjg8fYOGw6CBDtqfGzfQU/ursv29D58cJWm+I8ZOsNmbg9neZfj/Q1MQoK5y61KyjA/QW7h4cprhqga/Mv2luqFxXvDvNhMwHDMzPxJRtnTz+Itl2nC/ZfMKFmJjmLxaeD5u25BKbedTJmAdGkm5KzHB8m+2M6iS7uY9+I81nkpE7cwsLdX6qtXTPCv13+s0UFJP5moWDqqQ+eEPUT5C52QrX+jaihTKhvKk+cI1hh4wGMqYHOb5tEPqe+jf6ey74JJlRNzq7wLCr/qe4MJ4mnTp1jLrrPhkRMgr1l/gY1JVxeQzcx+rll7vzA7g/rW4WNhoxZcSTCxesG+bKGfGmcVafrXwwLH228mm2Ms6DnTS3pS0skgPuYiujmIzHv2C1sTWmd5R5uzwEXMts2qOQwdmrMt8MsqqjjD1fRBr9IL5S2ba4wnWQqcPFXGn5YuyKPMn8JMgv65u2+oT0Yfm5YBm+6/BTejwoTBamSHjoZFfPaN3yxUSF7CC+rYbJxoovtXGQLPbKv3d1gG/p+D9K1FqZkRbasVIbywl80pzCQeLtI42McRm30gDurn/qEOjgbnTHPiTJeKikY/s/GqNxYRb8NBY/XjWIAwqLuNjyPcr1pCMbu8GWxPD73O8xoO3WohjzvpNxGQ8iEc36VISdbcUv8rzwa154W6AoLbIAj7qR7BuTz8DVLBPgYsK8dBkNYunfYNP5ZCW4QtcaXO1BubRzkhGVmjZ8yuWFn0i/eWytxtOtr17RkrlASLSAD54sGDpc9K99iheVDM8+Z/eUlMcgHUfv1+lUxoAl2y7veZFeEyzzpT6U3wK8h0zs4zs+S93AWK/4LnXDtA6ZwvhWxk4O5NvZ/NJeDeo8IYT0+rlXPSry6ztm36Vsorul33mVYje4Bb/sUXiIJxnlyZhnvtRY6hr9+Ba+sZVR6hbNHW7i08zJV2i9Ul6lY6vhU4ht3dB2Sc9dWSQ6TNPEk8IspzKsk13J18nayXQzkKuT+m63I94svopIPBZNctONSTtGm6C+CmAIxwseXuAhraK+hk+g3IxFNy9iyxXd8jbEaWgu+yfu9xqZkW/Qbwwk2bLJ3MrGtKzUjzRYeDuKYT9QeDtisV2fWLDSDx0Srl+TLrFRSVtzds4N+E5YwiU58idYLGSOBV38nf2LxJQTMGcXiZL/moNouZrqyY64nvRBR9ovkrCoOyGD+l1sYhkd9oZvKzPTxQVEx7spCW41nwz+dH6K5wz7jYVtoX/qZK43DNb9Uq6otE9wkp6GXuMJkF8uCceiCnhBEmIg+svW54MMiUdnA9y/VZ39oNY4AFMqLbI6GwtchQVS6YTkPku9jpdS7Gz4Yl+s4VFsBt4vs5UcIsL7YiMrXO2k4vFKc9eWsJ+2fK8k9Rcun+aJWRiDkRHBlw8N9zCMEUifvKNv08Q2DTPxkxZ52waiuhxpS6EnvckLTb42LuHiaPKduOutjBVWACcLSW1A12hfR7HPBhcDDn/ru+iGA09Doy0rvtTMlaRXD5ow9Evd4O8nMnZ4m/484ts0l/hphNI490QEkUt0r/VwsneOqnHyS1wIGmkbnYuFiUHDp9BxWuNnTDnLdf8tQnyVDh1BWJIx0VKwo1X/JI818w0/MRpPGWl6WgiMw9Ih0MVhRkVXkxZuYUlHrYduLJ4UGfYwaA8+hnSdpw35ddIBn2qht3OOzeCjmvl8qDgfcX7zgCdnmLcfEqzAtp7Qifv9CTv5iPD2g2kLsLXdtwwmfzz8v59eBjyd0twaP2Aj3gCtxHjIG8rNDiTik/u+sDOd9hnxZlFPupHg4/1LuvBq40MSHYXhk1kv8wroCsNSe9zMAFZhsvrgr9MRaTpPMkr93cXaiDea+8Z+0jYyJdJujiwjxF2vd4u0AFXYlSAEB3KGzCf0qfm8RUnukRzFppPazwYpZLSsDoQNl+T2dGTcEhPnpTL/eLveSfozhIc+l/xh4IZMIKPLzLgoI8cX1JVQG9cDF+d56GPeEPJtn0oJpI26e8XLr5uoaekfu+y5HR5iiOqIpzNmXH9n+6cu1syP39Pyad4xi9iTLNjmh0dN82NdCEaBDx8WVRGxAxdhGrGwW2gon8h2MADyncHWna+O2lXX6kjgd/y0KeNMghbqMUlbADLf13FLENnMOR6StBVhw5dhCt8uGMFPfmKjTKvj013nti4ikaxLWKhzfzqZ0jUMxiAXb9M4hcTu+G8j1wwiSrC6gWWZi01B30+CPZ3+SjduN+g455TKiaUCbeyvzcC34sN0uU8RfJGu60pGEmMgkzZ14iO+VDgcaAYy7FP+xhbJHLo5h0xw1Dp+GFZxXmAAnXwVlZO+26zXCV0Dd75HoaGbKaKKAuyUY3i6j0ZAdHbqi1bw8+Jz39u8L+5bmdbV5nQDN/GcBnCmhZKFOJM+jpllvnjTz2UCVc8EC+TByQSHEs1+KJzIq9MGDoVDSiZTt9Hcvzylg4fHNb9KtJLfJz+nNO8EYW/4ikjafnvFuTy/w+cwXySkkvxBVsJapq2MXX8dRjN/pt3OfcRBH4p1aE80yHeHbjocTzq7UwENVOm+DU8+dHEJN2TUTDL97WSkeuILPDvcWJDhb8BdxUTk47kf1hV9XRNPfUyCD9qnDvt03tCO8ab0D3SR1kzIF3EF+j7qHm9OnTIqxgHID+dWRku+8BycfMu3qcyben69myc2cHXAGMQxtF/+5uWv5Wcvn2dhRuVyUjmIlPbi0fvCPnKVyK35att2V17hy8X493O2L+E+mmrsiL5DebVPK921dDiQd7QgsKJMKVnZ8G3r3MYKa3h2NHTgYpDEYM31nWxL3Af9KFsZu+mmtd7pkZOell4zZpyI3/EpfcH+dDAYjKlNta93B3dkvWq0l7noMEgr8SXfk/rSzEC2dRW5nhxxzmVlPDFnFzFYxFc+ObZ/B0/gC5HgD5SxLdpBAJ6/aXwnbhczkqr0INxexjb2MN/O5yiN4UgouX9psSAiPjL8VLWXcbYr1JOtyaK+6AMnwSKSP1VDtHhOYknv7khWUerfg/nMuuQnGOXGSSejl01/Wr67QuPUta98+XJxhIm+06D5y7jJJ9ukY7rQjTS4q5jV9a/jy+1NP0TALm5o7/iEKeg+JibSxId3wJhI815n34eJIHWuO9/imwERTo4t8wJzULX8yRWSQxthfaeFjf+1B3fohEvyxRhZtZuVjX+W8qdk7fhp3jGLO+aLOzjF6e8MpJ30F2Enz47SsCL5FJw81hzeO8/YJKZZjIbOhOv5krDUv37h2hS/6wO4W1CE7UVu25pP1O3luisru+C2nYwb0i/jfgvsC3r8SH8+jPuNsMuX9FfJx4LW3WJriavUvgv2TIuPUG5x8yKqwGrT5tfLfLWCk2RK161PClKQX/G1vq6Nnhl20L3gFjK8UiLw56RjbsVpsqGVXrAM2/KniU9jRvFFiu+H0fimxOuSleNCGzMiyZGpfzJuE0l33JM/Oigmsi0hjaa/uJUxydzBUj1d8EXlomxprdq8f6kTG9oo0/j9su/u/EiD28qPfkx3gA3Oon6KpIW5IhzSb2Rc4pK9+LwocgE820VqXsTyrhRczX2KOeQygS4/zJfHZFxr+2ySbxJ6PoQyMU7DLvrT9W+Bey1yst9f8lOJrYqi0n6cHnEqX/blvUwVFnygt5e48InLhxPMz1U+zROzeVInRFmRPDuLc+pXAzPQ1QC6nHcjSDCtrow3R4oY09Hb3COMfEBcfLehuyu7Lei0g+9NZOoCys0kS3P2Dpfq3ZYRg3rLfrEoeQW2lXHX1zQmdZyW5Qltpb98neXocPQZ+or/h3B1/rm1S01/5mUPjJwILfSGiwQ8in4i9rghI+BG4Pc63x1fKcUktvpVXO3lH//S5wOYrorgQR7qhjaCrxopsX2jHzqrBMtbTYIv0OXj8tvj84muApn0kqw9MIxnRctgyHQUtO9r9f3J8PNdzGAHlI4OBQpdgkX2O4XWJCP7jd2iZAJMXF5srPxG954ykq58JzF/by7FxCd+sQmDW/dINooqL3DNtRInoR4+opke7UFFTZcI7TFui0j8kdH2yR3HLdQX6h1l62RkXJZp/Gbbno19n3gMlrhNne2zHXtvx3/S4HJ/kI9I3v7IMWPRN6EttYzLT6mTuTUuxbfpRkn+GLCPy+9PGav/TXHMx3MsyHj3xoVOMx4UluOpUswQ2NJOuLE3lDrP9U9afn3H7HuUZvETL8f7N8miLnk7BVreRL7+xISddbwL0I0drv1E4IV9EpGWZBddcrp+57Qka+yEUEZq79YdK6ejpIuoNhO+9PduEaKsmzV8m8wwLpPYwa4c9Aa3LSwTFFw8LEk8jtrfUL4TD9ZzZ0eF1Su8m+Ak0gTJ8s5mQ8dhfVwVYF/BxWB1bOqITwscEyt8M65lXD5Zj2Vm2kk3BrBa+aSj9I3apkMy1hXqRkQOxDW53hnD9zBQjoGr3RgMmZK7bQ4UeFR8UcBbGQ8apFGfPmX6WcTlbT+iIppwtbRH4eQTYFWk3FhAf122O+1wiY5xfxVsXzNLlDlixO7pbrI7ze+UAa5KnRurmNHdo9zFI+bDcY31odK0Q5tx/11XzJqdG+qcZSTY9PRp07ensNEP5DOupwcQjGsZNi4ZLbDGHDWos6tCvqfKzJ92Mb/hk95p7PzxBna5FW6MIy5qeIGccIlvGv6bmMGxKdkf4vq1zamp0S7Dr/MqPNmcEZ/s91s+Crhw7dRT9A2AO98Uv+kU3a2MknRzHRw1249dbPq1/Gzl02xlxFKSS04CJdcLfusMnEi+84qk13yuBhtX87fMGiR0Pg/AHsmxKXGymuQtQe7QV7oqetzIWGR4QUYMHiVYEa3bvj5ZaewCD8q0w31A41WeS9hXeW3Ifg86UXZ2gwkew3ZBY0XrDnYx7yNhW+B2CWAXbC/57XXc4WPa5DglEHXxs+ZjG91BoGZcnbgm0/elQ0IaPnjgypWU52QA+fL7Zy+8aptKLJbSlZxG6EI/iGuEWxJv+B1XNnyLfVLMKDIiJSX0XWxiGTv8hQ8qumFaKVatdbMrt/63o7OQqW1vhuCOJ9LhmLTsEuhvd/PREJbk5foj2CdlGVQ3bQuZsB5mg3132IVPfSzrE9w7PmTL/HRqW7qTJYmuah4j9bHHw8q6eDL+eX0e4tP3J2IGXENZwkS6/hPdlk/EjOmnn8bIWbeb9k1s4niTXjaVz10eO5PPXT7NVsb5jtmYUbHdAhYank1321RuYXN7FJ1NyWAhCtaPSg/gRgyWOfXPjQYnVjwZrIuF3WIIYdVlTDLn/q1wO11wfbcYug3kiLtyxMQnUF6R+W5x08i83br40AGlRB1od/G7dd4iJdna4sqej5C+lRDLVqid3oyCJ+MK9L+hy08jHfaa5zLH2mVocFf9swUf7GuSb/Cx8RTp4puPGcZ3hJgO8sG8OevChsxw5L3AkfeJliVawQsCctKcBmLgdgFT6SlZ3KTiYCsiGvKCctOEwANBnL7IR/eLtFi8NWF0qdxgahYa85MlF6z7WP7uZfHXwZvkC907bPapbYee+H3miTJiu7cB+8QncGed/fyMVUNX5RMyQKvrQ74UpJaLG5A5zeeNjLKoP/H7aMZFVp26UZF94g8+JIZ41T+ZdJM5rPrDzpqrNgUvfh3aCvkHMQ59Usg8fEDxv1637Idvhmlb0i4hstfkM11GgOUj8LXDhbYkIPVdZJyKePQyxW8cg2P6gDhsI52ye9XP4icz3xKbUA6Amb5LLv8F/jnFxKPZ7u4MwlGg31ea44PggOWncSkutLo5x/x4xRJ+geJz509B+TRbGcMplECt2SHiwmu3lfEQeOdAUnBKczr4SvbwJEaILPm7NLiV0UUwZMTzyesx8QiWaAGr3CbZAXCwxVN4OlzsX5rsCIe6WdHqHJIs2ktjX2ddtXQWMrdl0d7xeYrbtdnid1vf6OWV+lKn/JfbV3Vuu9MzBzwIRFi6hCH+dHyaubqUadcnts/E19L7AGlOdXTGv0gKui2WAsF2UI1TsVBXTmsnswdNBEpbCq1/r815o246e6BrM+HUXBd3xTAa33RcPi0WkGf0gZSjgCskX8LVpIMg6PYZ27m0+M1r/Nf+uPKdpMVxF21BweT6RAr46t2hGiwf+/k2ZmAXoD+87bedO8hHCL4AjXLQZeKjejOv+Cf1J/l7p22TdhRe0O38AtS1a+Oi6c9jn1NXuZJ1upLZk3ju452tdDKDvyl8hMYGE/NX651NIV+ywe7wjySXbNqQn8jSFyc+jUxeT3Khj4V3bS/Y3QJI1nXv+zHJZDkynzNuvomIXtvdddlHWlghrvs8gEV7Twtll6mbz42Mn7H8+o7Z9yibFXhOPrN3ssDtvF5DSx3rASz/Btx9wjzoo6O9CwxFxlz3SdHy5ckEjPE7Pq2dDtztlslG1p5vL2PByyL29V0B9d7isuNlXKH2bpxu6Jf+Pu3bz+jYujH4kMqfyMgJheN1uBumbQK1kOlu/CJHaGEt1SMnasb+1k78A1Orp9OFFvoOy3pKf6uMHLx5m7YyrmJdE+48EXBudFOHHXBY14Tb8PlgKf6pew/M5YyFFtdRAQL6uvrYnvLYzfMmQZnvpDit0ejtCXc8aeU2YbpIK7fhicSBeuP3exlf7R/xgXrMDR/uJ36f5wom4i/i8k4Lg7/a4VB/sTz2MVxejBkOi+P4YV/b6OmlQ0qARun/IiisdFzcd6f35q9BtbMxtMEtXSouDz4JTDKWRU/TF5BxPu21LN+NLO2ujqVuspSmUnx5lhF2c4hd7wc3u72qnO7359/JJzxZTG7UhSjs7rikDD8Q+0l+H56a/Skov8dbGZsRgG0bjps+GMp1QhWROUEha7M0ow3NWyL6YJJW+Ep7ohb2r8CCjOGI2OE0HtTfN8syAqwu+OyS54Ujn33og0ah29HH9g/yEdJrwdVyaS2DFwouxQEzrDc+jsh7OORTDtCjerITshHe/vLYrTbBNdVXgbxjgrQWts14LWwTBGPrGgg1Axpu26B3S5FW+J7cFpxUBLeaXO6nOaUx9dUmrbSVBHqoQSxkzDJzO+HiTIdFl9O6EkTGPYeLJL6NHM5HQTmqJuUDzi+U2H7ovnRs405+XmZ957vzOGW/X7aw8+EiA68ccZ/47Hyqibnf73DB96RdFFLjS3IZMFdmUpSvZ79IEzBsZnb9qd9Pvo3UhfMe5VgtFr5XzOB6gUca5JyrnTQE7nxOgyIy+4d6jAcoSJN9r1Vdbgv4FT0l+fbicxAW+KQPOgvYlDR1wtWmvoOVM9sriomHlcQHx5VwR/9Uat2IHs4RbE82yrijgn2oW/vy32UOQL5eDtqOKBQzIP647jo6xo7gDepprGccyL7by2i33L+rdg7UjJtjhoLfd940yX4tP0v53FsZRcaxMHLZwyFp1pVH8MdsU5Fry4i3jdkbdkq4Wk71gYkB3565RKbAR49+PdlAB9UFBt/WMvlIK2P4CJDPROjxPSQyo7/Jf0Pl0k1WwXZrTdFzbUdeybd1DnpFe8cX+FjXfCfzK7iLtnPQery1xNttUX+Im7ZZgJ14PcwbYNMD5UUgT3X83cgYQf+Y9WVQXPUPgiLiCtQT7LjOO0ZSe2owAhycRlQ5I0jCwgJPuIP5V2U6xbMuhE3yrOxVz+zbEjwEzaGgvB3NKl04Hl/LShxoqRS58lMwAztxGYH2AcsJFfH31zT4vl5yYgefDDmO1AXjhRT61CnSJKqgzmMOYvomD8KPPnb+eF6yzLd7AocyqxYbDpngDkn4fXaaPhZGuMutRayIxsdSV5d+n0p3E7CA7nwqngD4YsyoW44nWvrQLvNczUFbyLjQ4zbhb/yg1328Voe5dL472O5ihNdXJ782sHHiJgrS+G6xEdeg/jTeiF3j4biRC+HYS1MPvzhpRz4DYyBv0B+ZfMs7jByrSI8RQxxXheYUvLcrInY0H2QGWuv+YbwROYdm06eT2Hib+mWvEDNc2Siz98EuQU4dMo/kzaI+gOF4/Oy7zwFyMVe12DJpdsUHXeJ+vvLJxXtcPs0TMy4pEApMtvQboyoRKFEE3P9dYCt8dd3W4WKw3sm0CIotLhTmy8SUYdegqdrT3eM+bV7KodI7Lahzu1J9x5iT6Ba3kSlw0Ww4WXmCi7ygjslI24fd4obq2v1uYI357vT3At/Qsc3fZaFFdBTgUL6OXwebshnQeeWL83Eyv7M5ESO+a8M3sRkIG1r5ulU7iXqdJbhIQ5kSE8Cd42sSMR349mNyYanT9wUJyKxp0fHR6DeCv3hSVv33zqfigi4vkNE/W8YdMN14K68WyqcHpsIu855JFym3+gW4mbeE3/1+6hc7H7rCJRn1Ca5Pse6o8sanFstQSXy79jK/F7ZQukN2wq8DoS53Pq+3jf737esJKrgGrwsuguUY8zhmPPHd2L8jt2v3e0frAS4vSJfxRrPtsrylkJ3dvjPW4boueEsh4bu/ad/77LYjlv4pyDsFN2i++Fz/KzHDSaQ808SOM11jnR7BizJWHt8UM93vu37y7FQ8EKty/pzl14XZdyhofMOA2veeTK7H4NjW2ccqcdYKYl096DdbXIACGyu3dwxNhB5dt6n5REESI8bffnMMcC0x3rJb2/IDfktQYN+Wro1kNb6+Y0zBbftC/ap0Mi8jdC/TRxfipXzU/zUyLhO8b5ShJE53YwRwdzreJ6WW6veLrOd8MXC1sMk+8yJrSRdlHvhBe/lx6HFVRZT6W2ChzU9anFQvb8XvGTjduc4wSbcboX6EYx5Bnz9O+kohmcNfxTZ0K4lR+LKR2czxvq4b7LyIHuIY1ezkgitHcIOhsguHrCpO2mycwExOlXDXOmD25QbFyi9KtdHiM1e+s7Hvnb3fxZ6t3+P2VdsqZjyJWxz77xhiPN3oqJVxc9BEqT+IGUnmj8YMhkMfowuY71RQ1eUbb8Q3ydT4TmzfmtzOxl6NGa6rpS+nDO/pGJEtn+jLVzTg79wiKcWmLr9CRr6LxXiyZNKF1TrsDLhu1s2Y8akLdeX3uXyaz8Vp8nxQym0waCqjYPO/NnCJ4nJOsRcwxOr5lGo42GodtQueeVWj91gR9V0gpwrjLjtsDQkmy7CboFeaHvBZFia2cwg3zuKWb2ccLLPSP+Z7E2C6f9pd57LA3f4bvE0lb2eZvvY57QbW4F/bZ+wf4gvgMl2UOdquhcH8iKcvFGzCaqWjK7odXw9SEZwMYK3QXiU67ZH4iW6Dt9SxjW01c2EUui7f43EZG14Dzu0sFmU8PqQLVfgnvmXxoo/Xv1cE1FLJfnE/v7WvLjK6JDU5SvZt25iRXmJZ+e7pj9vS4N75st4fT0nvFkcJt7/8SJTtyK/84pM4QLA1qGwE1Dwl2rmmTVtHS6atFJvhOci+rfGRUT+ovvGzj2PGwtdFMo/bAxcybmV+CL/yKyprWJbZqE0lwye4Fjf78lXMwMN6WO/u+234YSPctJ1Z9zJe8XDKkWA5ZrjxphtkNj5KPRyaUp8Cl2IV0TLSRYJtbM/9fizKXP4uxvxaREREVf+iqv4NVT1V9Y/g+n9EVf8Pqvrvqur/7Cm9T/OOmRcPesZ1k7ydwiBATuTrjwdmqBvfUZUWNcIpvuqWHyvXEw8RFrcyDlL5N4mcZYTLVK8yTlrmjbDtZsq74gt/yFFy//BjwoVB1x2tOm5xFzIlWgJ9WMHCb+7vrczUd4QtKDbhTbKumNZGReuyQOK7kIu8s6XVutEFcpesLW8KNLTQbspL+UoAXkc7V5HrAIUM2y0CEy7Mv/lkqOGLQcnGHczm/Yf4kWwDFklEt36nzDIuBk6jbY/uAvn9geBjmW65e2rSLYJlLMKWWxnNRN8W7SZjEYYy5Xp7lsbDwv4KfXXwO2YcUGhn2zfNsKJaYkjQdL7pAsmVtnxNI0a/Mn9DXGAb3eESn9a/YcH3IBn2dksl4dKWttv41Fxnn9rKhTLDoCnBpbnvPxu9PS6LOHHrBzmGLGiF31/w4XK3AC5jv8l7W7+/4/tBPX4o9VbwvyzfakwU2qlz1ZejH+SYQXThd+FLvptPKL0WQwuZKSeLONfFF+prtKf6mfwaH2sf+GqXv8VYxe/y4S4G0o2m4/9F8jbrkfF635Vh83z8pt0SP3N51VV85/Kvisg/KCL/BF3/2yLyl0XkPzv+PSqfbiujCATuVJdlnUueLDIn3LDUdDobkGq3UQ5cA+nqvtsHMlFzm9Qv6rh+RZlEtPIdhB9PH+JTcF8Mign30QpiD2ZPgZ70eTMIj/SlG3ke9nUJ2+AuE4RdedUzvWovGz67hCbpuU0OrYftkscVXYZttgmm+cK0rMoY52otgy3ztUUiXfvX4vJvgp2mY1V3fAhR1K5FlcUdqzPOVML2+ruvH8crxp7Lpdv1xEHfXf3+dIRGuOuEl1cFlS3bbUlqRx31mfhyzDhcWs+M6Dh7or08LEJIF9B4GxMf9u8ONxFYzfmFL2t9yq6NZX4i04NSQJUu3uUWdzHxe2eDN3HuldL6xe9Ubv3ipt0XNckXKwwNTwg/6IJ9foeL19GmgJc2scDAdz+RP1/jRZdsaFmqZzkM+glxC/xi0U3EhXm8fbQiXokp4Nv93TQ8odf90vCjx6x83vILrRvN7F8XkfKwyMz+PRH5P6nqf+oVep/u8I/yvgCsliIYl1viATwDtzGsF22ruChrj8vPUsq0WqEFXcZNoBjgogsUuDdJe1k4lmBV+xsgHPQ2gTvx7YLyKkA8CRwIk9XYDmdKRhvcR7Bd3cfAIEFa4XYJCcq9C3yrYNXoyh00qt1Ebo/Av+ObchDLQ9q/5LwW3aDNNrA9bQ9eCr8vwBmkTRTqqatNIMOTKDtdpY89o06OGfdKcIYepi1uad5CfxpbScE24Q6BdeIGR4RJuFQXooe8INgqqltN1MZ2FNQ19D3V4ZjkeAdM5ppq8eWsfWnnSTOhzccN/SL49tnTa5Tch/rcSX5w47vddkTqOIvbQp0FcSQ++m5iZ3iBksOYgyp1UQY0wlyITI5VWTdMI/wi8Z24ErrgPiRaNNzGFZobLHPB3fidW3+MMrGPX1cTj66vrVzIZ+FjCu0XyhKFdY520vkCBmcbAz/5gFWlxX7fC8emFS3Nv9Ff5TgA/toIF8as+O6mfyYSp2WGTGOBl7aq21jSHNd1pV1PKYbIPAL/sgXw5djpCbCIA+4j3B+DlIfksT2An2ZSUy6brAdf70Y5YVV8i+Lk60/MLtAzaBuCBfHPW349lfF7FD4u/xDY4uPfuNHpEMNC3Ng4GGValqx4wrLTEZ2Gd1XnxCyfxBFF+853eJ0PT9Jm0vbbLQEWgk74o+SElPg2+kDWmq9hIrLcJrdy5qtoQl0vc+SOzqKur8Jy+0P5H+Hi5a7tLjgr/W1K6E03fJ7waHBLYrbDXSVEREdkbLfc0Up1DmS4uNBkc3dj38Iu+o9JQQubAlgTbLv6ghfPqQmr5dhrXdFu+MbONe8z3N2cAXbipq0ntKUl74Kbx/S7K1FIKg4P9B2fVws6VXJuc1w0ZLECK9Nng9OZ81cLrPc5tYFq3B/nu/gN3/ijUw4nl/hAf0FZy5ssjUwsv/NFv19jYoMPfCpuz3bvyLNchS0f78+VlX/q9LyZ+ztdVeYN7q59MR/vfMz22pPyVP4bHsUvdtvzHJbrpJttzGBdkFx8EwEXV7Ho8mvdNjnki3TRVrqF8kL+aMNtgHCzqr4rzLQs65XjRMfLy8bvl8+i4A001eSLK+3utN5ZT1sZC6wJbocHd3LVVRLvz35c/jeuG/+cqv51qP+xmf2xV1T1r4nIn2/w/pKZ/TPfxJnKp9nKKCLJWVq6nFcPc6J13lXKXUgjWJ/LBS/o9nyKA3uEC+XOkW7qHAinTLuVVSNww2eVExhXOofbOeaGVssf612SoA0M1RMslg6X+KaEmenu9Nhd38CvbG1pDttGqTr3/qz6u6OzEYG/eZTvaFRxPe/NY2IJJ+niJqC9AgtSy2rrGBYTVDMsDFl/Ld8Jb/BXoW3WYXqO9vYhPuP6L0xcxLdVaqaT6Fpqz9tY8DTBrI1YcAnjDhnE34vzQ0DkwyVuKuEcnFI24zD7hIs0hs11Y8XXp1Pw/aF5E3DCJhpBCurOVz150aBVMxzq0xiGsu0e4HvfNuw7TrGUPPfZN/DvBvbOl7e4zALHE0RNfFCeZg4sF4fAN7k4ek8vnRO28xcgr+PGtV0cYF12C5gb370LgXflUcxQqNeffXmiqwXLFqb5zbC4bRAP80B31doj2ED8Tf5334/rYI/GTlym1TxY9S/qtm03mR+fDz9Pcz/m0ZAjxRTwa6EafMoGPjLoOXz4ovw5FIdVnb49+2MDN+Zx4E91+bfN7I9WjWb29/6uBPk0WxnLNhRPrrZbGZnI1aaOJlAf7XNySNCc8C6LpZluKSLEt9ynTOBReBtkmeQJlmQeF0MXnYyB23ijD2xl3PFdy3zTp11pokvXvxa24dP17xaXA8Fd/6Spc9smGJlIvVO+IVdo2pTZ5TUAw+1YS7poJkALk5LO5hKuEl+kNzppCcmqLhR0gYSgv7tEKZQJfDygYuhZ4fpWmaspy1h0lQ7tUOBrgy/KjbAy7yzqkEnrwklE/Cz6yc8UcJ1PvqMpcsLTohlcHcdPz8JF1uzjObozvluGQThOXRSge9H20zG9/tGFmWleGk6fQ76rbFWw+PhzPjDC6k6F8kTOCt+rizPWxA2F5I81+cWpqew3Muw+3ki0DdzG9p75X4V6zyfhauaLtLZ+w2XCic9/wR91vq7ls4oZRJ9x0ziQn1aWjWga/MYt3ZPgjcw72Eb2DpG3oT/aln4Hi2OA7k8zjLeXeSANLnWh9fsiZadP2X6I2L5VUeT6iLMDJd82Smw5lHBzZdux5Pbw5WPQIi7AFsny7TCV2KYdspBtp2vIBydGZ3MQb0qcgY9Du8yGvlzhJIRjavxyc76d0sAopn/OseqKIPkzKg47+Xh7gMRviANdrPxspUzq38/yubYyqghuZRQRkePIE2W1bcNkvgAxyJatjO4sADfmTHrUDxbq3gf4poltQo/FM2775Mt/mogdKCOwXsnY0QrnWGdN0OKDAVL/Jt/ikBtcoe6nPgm1dfJSvTxZaOiuHIKu2nd1SKi4jQPa6sX8li7zRD76IAFCOgtAo3Y8CSuNXydXkzCFTHZtR3TcohsyDHNymnWWn9DAT83JY9wtRJl0ouE3pnawIrY9ta59aRqDTmcnDC8ioid0UKmvciXmHkCVZPaFFK6Q4GnN9C9T8bhFDd2YiMXBHSawkBIYD5ik5ZCPeOfCj8N3xPkkzOkdsLVIReQNt7x8cEsLj0VUcUeE+3LNSN1QmeOijpIBX3WcG8GHKpfdId/J3qge7TTPkoyLxdLl9yffcucc9gV3/jXHFE18S+6Oc1CkfrtNJemmxXWZocltLeC0oKRrvDOj9U/NvHPdJ7+BQnDp6DalvDYgQnH8+pcWGtrDFn8l1L8yKJvS5TWdva3i0JAxnXhIMEbo6Mt5gecutsMFNzPblXARxr+FqCoqc7HEC6X0Wydqk17luJB86iTjx97r4CsiefwU3m3TC17R8Pwfxc8Y/CSzJ58ybWYoqs1pQGb1xHUYXtyQ83kEh1kdAIt+3yJfzQvQpOJgAb4jteeJdRw2u/+ZtzKOUPpLFFX9B0TkHxeRv0NE/jlV/VfM7O8fbf+miPyHROQ3qvpfFZG/z8z+tR29z7WVEYpROweFgsukCmle6fSwlc8EaGW6xaW2hw56t6DbJRiJb8OLE/uu+MRtbXzX9oQP465kvKPLuA/0msZgEbCYVrpLWRxzxk2xsoG9vTvaBOTb8VISh+ykbNsg5eLdbWa/2vLhRNCh3+Pm4BsqvZu3iU4WfndwCbb7gqad90v+sMjChtF/vvN6qFTdxA8FXv0AhIchPafATLj5Y6Xdd3Kw5EWXYp3eMRCxtC7yhWV6uiYfLSgEMMUnQFwfsGkuRH3qhBdlCL/zZUvckfzc+VS/7DxufTd+W0qyfDgf2R+FZRVdAasdbunvrJf5S9f4pmDhs1hAFL2HzS3iQIerFUxE+q+wNrq/jTdK/dUMr09hEZ5o7OTb1se1MiadPRpcM7rMdmJNXcBvwxiUVAtjU5JnLrwCF8UDX4jzzTa8kP6UK/vY5Zgku9GFHsGHJr/ZLbry36AFflEAl/3vkY6pp3a9OKtm/FRnhCTvuAoOBPvBMuroe74pXrcy4vMK/Nj0py2/kHhm9ldF5K8u2v4Tr9L7hFsZhQLZuKAm1t4uo6hHAaM4Byl+67oO5Pg0LkoHOfWqJzrCrCzOKwQYk3Sz/ZD7YJZpYEpylyot35lKssu8O8yCrAJtQ67FtUUi3eF2bXeLmk3/bvk2/WxpNm1L3EWAfVqKzCs+DW2TBYxfVwAkuCUuBETmV3C7gSTdbJOlUs98lwmdJxeMu6LP42UDm3zIhLWKFzLBDGzps+4i9RfVs+BEEkJ6v2AnkKa2C1a5HhfOeV090OqAmXAHbGP0tlBLavv2Uk9SvIwS62l7qux9d8Djb8F2+G0L3+10n0xY8sUr3x1sh89o51nnq5KPuXTCJxcnWCZZ4um+K0ira1vFT/Yp5d2shzIkme/8Lwv4LfFm54NQr9/o118tywNlurKT+cbHoq5Ozc3lYKcyJtkvIl/GLTJ1vrKrZ+zW1ncxb+vLjeorudyuCj+KC6AH3NJeZc2xSVkGjxGap7sVv595xEehZfrwCTv5atN+QJ+8PcWBT15+D0R8VD7NwmzewWkiSWQpuVRfNaNkhHTV5HTaoIKNDpOC3xOvKGHsMc8LClzkxdhGxkLG9WRpdq049cUBdrrpY3/7InYLSHVOWArY3cLoWVNuXCQYLS4P9ypodNcwmCGdOx6NbG1ZBYobvMXUicbdIu7CtebixdWg0xy4O753TxLy9qbM1xQhCZh14+8xFBGa0ecF0yrYFhmV+F7bYZLO2CCQdrrUzAzAzYFXS4DM7RTs6X2w+tTMEo0DdIjbJPP7Z4+84aNS6dCVpyvA5Dfcdy9Gv5lD4Z/g6H22oNbnQDJkBu+qdb3p5hv60dY3rGPGhwah8ftdWYUulTqP06xazfEnvrzxF9v40ig6v3+4kLGRr/juDngHizK0Ak+Qp7njE5+KBW2rk/FuoZpQwMfcoWW+edCWMmudj128Wcmszhm3OW8FtaWMMR908Oet0OhT037WJMzoU/a3NWYYwD5wbwf2ldild5GJj1S/j8g5hjAsn9JoDc6v5ecsn+YdMy++Pci4bpJPYbLZBsht/XpxdD8DvHmY4KwTHzwunx2Lv4Qe7cZ0hZy3wodsKc7YPpEV1US7zUuW/SM5IFAnOv5j8W4bi9dO20WgQ0fKMjyB56BV8Bb9Rd/FbUt6XiCpWeIu5GAyy9PYdrSa3zudBx/kzbbBAcivUSZTaWlp93q894YTZTW+430AvcNFJJRJsD+WbbnwRZkzbMvX93EMOgfIPD/ECTLefFBUG77RfxqT+fDIpt9z2PR+BPUf9JEXZfWUxiPxAVp2wR6EexDuhwuPqYrwZKifSQFUnIOqFDOM6mCxPqYzO2nkEMCajRgH2F+xL2da3c2PHF8afSS6rBuiuxoLJViZtvPE5y5/r1B2uAt/HD+1ysR0kx7Jj935cqR1B/soLix90L68ktqm+N/4492YWAdLfqLFp7lZ+rdaYA8/kt4xY5/KKPhe163fJzFVIiC1caDrH/hU9r8prh+2xMWbVWGDQEspZkxc9vuN7072VWNGvFts7Mun/C6j45rLHHm0tcfno9/nmIHHIByffXH2ycV7Wj7NO2arEwH7BY3UiYM4ndGOmWJjaeV0cP7Mgy5222fqtsEsU8Yt/UkTduN9yDmyj9ZbOSpycdYL2CTzg4BjnZArwC6YcvuC1pJPGkRp9d62PZH5e+ACyhL3JuBxfXn3c5d4dLRRMp4zBq27JKXji+27BQsGxA73jk8YxVO+FTYnLha4MSTc1snI7YNySdoiKbiEj0UWP/Uav7Xle9UPeBlcEh8rScq1BpnvT+CL5KKwfXHIMrtoUB8wB96e+kBJPmDQio81g392f4xjfmRf7J4QiSZcdCrlVjZUtZsuC1/OPuwuZnRxoKFV2lzm2Pa+lqOjUeLpCrfxy9q073zqsl7i50O6BFZk7mju/AbCL2Re6nWh56XcH4gNpXQy2EPf3sG2/mnNd5kD7HSz9KkMO+VITzhvxq/IWOAX/bvz1SpxIuI6Vk15lfnw3w2fITnJaLexat4ItLk4KnzpMyciVJ8HRym0R33w6W/mfePNuN9R+ezrxqfl821lhCOMRUZ9pgjVoFNEgeDr0Vnz64oloSBHwvv5oy2VAaS5OtlSEtB2OMu46pJImnd5gjPfFR+RvCBc8CmBT8HQSa1d8tGWopte/laOHe6KD+EmlK5/Hd0uuXiKC3ysXlrjdkmHO02t9SLqQoarbUqSv31Sebd8H/DBujnLMh4WRNKHOgG2xS0FcNPePJvKbYOgpj9iAscZS8aFbXuONBNW52NT7tm1xHd2wYLuhesnNU7c7klmqCJgc0D14Im64UXZ4XIC7gVyynVSmcsKB4IYnNrYvWMWZ3h+W1GepPQoab4/1vnUrCQ+cCb7PPDlQ5dtEE9JOvO7GiNECMB2fpJoirzgc6ITcH3l2x7EDPblO7+YaHa+b4Pbybjs3wOfuvT7WuGWfuPF+q2vs8Yvbnz58lpTOGa87PcR2bd0q8QJfC4sb0NfxirZ6BVlBl/uT8063OT3QV/P/H7DOXBz/8j55o4l23aBZd7I4SfpGENM4cY/4GoDW+KN5f6Vo/bRd2vQ0rjBZNk9Rn3CRlvIeMUMP5zK5dYk2gl5gccMJwsxJJT3ScsU//e+fK6tjCrpkWtsU/HJpxl1tV8vtqxAHbcyFicEk0VDkF7EdK/Yc6wEu8OFust05zyaNh2EeCdV8OkCtea2Zt1bSucoVSTdqUp8bwISJvooUwTwXcD8YLDdBVj2n4/48uUHsCKNzljvGxnaF/gf9K+lS0cJ75KI8lmJm/H1Os8pKfUckPCo6RZ3y5MC4SGb/tW+521hRCvVKWiyjIkvLZbSb018RcYXQdK7blPx/m5XNB10umLzvpnrUFMA9i0sQEsBXvJx+fO3NXw//h2zKTj/1tQcehLykzu/T3T1kjTzhZJ8Efm65Oemsns+sPhpZcSfK/+786mlv73MbT8XsI9OiL3zfcsLEz9UspwP82/nU1PM4P7ilOlk3vnFTb3t9p0u7nzqkzYq5V2+J/644aUitD1PEy7nsoVPd/plwydkZhkXujl1fsushd3ZKM+X4rvX8NlXgz9WmQvWhcza8VmOvUm+KUoJ4UHvCyc+Z1xT+DfbsX7xialEnzmRo3mHDEVWgRtuma4eeVH2Yb//a3mpfJqtjCKS77KlhZRRXYbF9TO3vFeTYGGrTPKqWnCZj6GQkh0aLyzaevNbhIKzLrtF/Rsy2Uo3UMLpEB2GvQvWhByL0i54rvhw/xq5XsGNwnQ6PhvcVBiWywrX7XfFh2k0be34cWC0DSwHhkVpcV+R8XGxTa2HbmfYrp9tP2xtY2NO85bnA9oCruVr2eAjPivw9XmZF0IB3/LpYb0tm1Q96lgJF7ehXAHXEl88ldG3qahfj2CNuO4/P35cfuvLZ6dIH+y7BfSkFVcz8pUkwjh0C5wyXy5Yy8rd+o1rHTaUbZCc4vAzL/QTxYdcsrYxg2OEEi2nLf3vLr5w/LEKgqqp/njB69bvd86gk3HUyysKi+PyH/lf6FZb2nGBPm39Ll0HXNbrKyEXcW5jU4oR4xuSTxmBHRQZO5tleZIvq7Y8p3L2A+z343tid7J2v4scMseA/O81f11WiZzmUf9oFQsepPjnCBQ3fr8+VbQKC/Fn+nslWtfvA32guH+HevLtWTdH+PpLhrs1+i9eXktOPm35NFsZ67HJQ8e8lbELsEHkalNHE6iPdvzIbTh76WCD7WWaqU4ycduc6cVOMAgmWHSo1L24BHN7ykS6WugmHwvd8HnAl3E5LotkGnd8Cu4HZIymOz5prF/kK2u+bX92sYT1I6THXaBxvBI4wNE7NR44BdyVXE3Q9SSgjHWXoNHdRA8wpX8tH0uBDWXeyhjzvIH1ORa4CjJCpqkgr8AU0hWuwM0RCXrpRC4ViS0irBugmxZK6lPYn5L5e0v5yZfDMq4CH41UZwE72lWuRdnlSsbL3t6XwJ2wOpzrx++caugvz1cLP4i+bOm7BfDLtvOBq9NPMm7v26ZP3fHlLXe6lLn6HJ9P3RyYNjv7cql76iY1aOWzize543tc1k1uWNBCmQlt62OLLfSwxeRIvkcxA/RgIn3/rPJN39piOWT2l31diwsE7qZRkrEFttY/4WIoLWgXwuPTYSXdtHMu2dPO7wORJmb4VvKrCf2x19cyF7sBX55iIvBJF8EnxmWduoi1C/p9ZCHuV+bo87tbOd5cf9UdK25Ldz5eHz76+m1EVyesDF+uJv7U7Dod1oqfn3PounbojGPOC7fKIyw/sfuMZajqT0X5NFsZ5xYPzW0YkNygxQMOWUrgiugh866nw64CEOL6tSYIXtXmtfcEO+W928rIwbYkK+yXALbc1QGh26c9HAx2fBmFcJdbGTt81N1iuAL3FRk3/Sv1lR6bOvdvGzm5P0I6uKMD5nlH+7mMFIDIFtLWIMbnvyzjLpkquFb7t8KF9naMdnw6WtTfaX8QrP0iHIKhhJt/W+ZVEoO8LSWCr4io1kNA8IRZDHozKA+aMg/qcPQDEoW0LUWFAjAeEHJdO2Cby5G2PY67owk3P4VL2yQ/GAFV3C9OZfB2vcu+yRi8Coq85lv2odXvyxI3/4B5lWwMnjSksZHMV4FvFrv6NYH52yaYCKspZiT5uH+ze8FjiQvCdNO+XbRU4cpvftDY0UJ9LhdHALv0dWSCMX4dbCfzqp3aeKG1o839OUVmbrPC3RXu751/Clj0EezrGh5kN1s5NrjF769iBv1Wwn3El9vjt5XrKQ5wjBRJ+tOVnF09zd8aQxT+k2MAbS1Xkby/eG4t90sHHp0v6IOz3xa/kQbXDo43MHnSgR+aT15UsYgDlnh+0vLJxXtaPtdWRihGtfKO2AvLd5u3JIg//e1k6Bz0g/p3w73tJm67eWiXY7IvPz66SBTsrg3x6fdyMbCje4erJPMO9y5Ir2Czr3xdN009AhaXBSy/FtZwzjKAzMvjildjvysQgFjGBLMhWBOxbecq9iYgm9DND4dXQsEgyrKrhMInraksD4z5xojN4F/EgoWSTtxexuoVUsDt+Kb+DBnbJGFxhivIhPUjwZ+gxith+OiWFvbd5kzxiZdKW2f/dLd4MIb1gWhsNMPalLHhYyLpPZXK56auhJsm7OCdVvGVT1dHePZlT3ysdjLzb0q0ee4bgQTuSsab+eylG+v0+ZxO5kV9C+sL2K69KW1sAgXgHDSR+8+XLGmZ9Afg9H6f7aTdLZIEkfv+YiDisV+V5djvffleRuvb2W5anwoHWwxo9pNF1lD75WN7f+z90dSGMQTc2oBXklEh3kiKC0caPz41N/c3qujbA/kMOeJEXOoPyoiv46mccjyZFL9g0XZ/9O9f+TRbGWdcms7nSmC9fn3As04gjJjT2B3XVEXNynYC6ypjJvH3Q/IdpNjwlNhOpzAqTXBpYSGTvDWphCsT16zerX2E2/SvIbN836ro5gaXfpdgyzLh+BCfoqsXcJcyrv566XTD/Fd1lnkX/FdjEjJZqhc9MnzXH7eFVf/aAAmbeDkw7+h4f5Id2IJHxa3Bh/pAMrLMEcIwcLU2AXoVkfRmBL+kbRPeDr80319NL4nDu1qXa8i0arfx/QSL/h/QLuptwMZhxb89c+Y8TSE50PmuGD4Nmyczury+zWUkJXQYycsF7Cj5SfDzIuPd2WNqFfEzd/ChOmDNxI7Gp+KxhBM7/+58Ks4VCjezP4oZXJkb6zhAyXaXeJMv2b3/Wviu/BLFg/ZJesenixkNX4RlwFdiRvuEsON557sbUV6OGcy786krvqs+3/CpH6tf0G3kSH7xJo5t4xH6xTu/37mGpGfqz4pvKyP79vz7Ng5Abpi2ofPpiLQATk+15JRYzhDulZ6eglswcQvi5Z0xDpzA46Kd6slfn3Dd/fNQKsY1QdH93WFYyOn8HZ4qtrDP9sDReXIvxpdfy89bvmlhpqr/YxH5r4jIjyLyfxOR/7aZ/X8eE+Dj7cMKB30zsWOmI2nedwEHvoSnImIH4QjMpeKscDJNHGNmRkHMJG0RCFyrtAqsSSQQCbfrn+S6puSj9jOVlu+k+QrfLrlnVunyTRBuZXSZVnx2Mt7hdmUVJBoayxsyjTxNTvJMN9pUHwa0SD01/93hcGDLOFZgPcBcsOHeMy7xVcCxWFAkg85IiU6dkd0ThckMgqVAYG1xGXY2ZYka/UeQvNrTk6qa8l+woz9K41lkBFnwDu9cJGEd9B8Lqwvn0LSsGXVLsPEbcK93z/K7ZIee0fYtpWKbwAfdsi9v/L4qL9Zmh92nTpw5inEibSeUXv3yxRjf6KpJvWUZb3z5OmZwfxtmJc51HWgKw5KPTbJ+g9/nRF1lDftqzEgzX0tzxfmg38eYsXwX+Qk/H2f2qfi3uD2e+6R4cKqrRW16L8pJUP/2Y5GNbsnHs41VzNgprthNjiFXpcYb4kSwPW7sFBkgOQ6QLNrEjGW8aU5SPGSuj0of0MfKdTomsC+7LNKY5SdYuLX8gvWFnC+i4G03PeEwq2Z7ohrA0rZH2LJ+1fEG3ydemP0pWjd+6xOzf1FE/hEz+6qq/yMR+UdE5L//LQTdAC7nNlM3//hzau8SuQVNvut663lTEIBUC95RcAfMMiWZdQOL/aNulLRuI7NLpA/hq8xZxgJOTjjJtaC7FJRpLQJ1K/+TYEug7TwdtJcyrGRiuTbJTNFlp5uFXrMMVmB321KU6ljcb5Wb8i1u5Zthleqz3URoi45VXNLNVNCQst8XOOfxApa3YuSERGH8rIzfHneggz4SbGOvvC1ltaUl4/rdydnGsAfVZ1DNW1w6WDz6+NCsZv/CiC/+Mm7eTnN8OALC3WZPJIpf7P3TbNeZhLBPKeOg+VfeG0q/p0JUpB79vZNx4cvRD+gSV3LZ9ufGH9/5tga2LeznNrg893e+u8jlumhkXvLZlRWfrr70bWvcTsbiU7X92Vw0ApiV6Ds7+4USyhgwbBoTq+2wgNnzyUpivtml+oFIbMBXW/i91YIpiYcMEd6m+OTL0NcX/4y6sFy/3v0iQOBbbt7t+BB8UQW946zUv94fJ1cVDOdOhyynCsJOvw9TMMWb5PcF/b6lBd5nLJ9cvMflmxZmZva/h+q/JCL/tZcIgJUuT5UK2L7e06X2MHYdd+vRwtdJYJFh1BZvawQffCG99IecQHY4mVaxMcflBQHyZfm7xQPJtbXlRo4l/IIXytTielDY4a9Y+vCRbpYyYhvza/gvYRu67uOj3v0GWo8XZCu6D8vjBWgJeg/5LvuT+9DyhaC2bBeWox9dPga57V/x3COwHwTOyVPb/xEAj0yzC654ilbCpfGuiy483CM/lctbGfEp2oAVEdyyo+l0L17EzffGHC7oHfMds0N8S8sHDBEUMLUz/DJvZfSmg+B3/mj48s5m75+CcFyglls/mP3vK7CdJEvRtv2ntp1f3PnjhSCtL7jzt3ftSPfh4gBhU9nhdnpexdNXZVz5tntq6xalv3e0b2Je8pudLp7yacrW77Mc2NbmaQvauxjR0OaF2hJWwOMkeR72Aa71T7+s1pXNJi+6Jq3p5/GADo4Z6Ymc5B0Vfj19jxLreBKkxxyUQya8Hpz5fsKydWi/P+V7vmP2D4nI/+ajyBHr62fL43dN3OmCzcCsHtk1P3zFw00vHMcfsDhjls5uTGWVOU8x0G33zEzapX9Nl/a4OxkXsCTzrR13utjJyG3MZxFQdzIvaUvjfBvdLNXJfFZ8Oxnxmo89JU96h1fYWQbg4Mz9eeolwTaV++oBaQAasgfYHpflwCCkxKOZD6ug50YKLqBs34o+zScwntenBZpp3b4F4zUvXbD5sBQjGS3pJoL5wM0fH8UDNTTq7uI4kPNXq7K6znCJ8zj9IcR0HwP+pCEaQT9gEbfymd8zw62NF65vbcSj+D9SMmY2gnk0/ejYGMK8dZCojTE20Y3fR+6VTvC1HW7TEcUQUnGXpfg2GMhVWcWmlZPD66/EjJuy9UGNT8W4tg0dFJuCDvNxA1/Fh52/anz8Mo53XWyEn/baweGgMYGZR2zLKk7tYLEOfrHzsYXcEz4Fwdllv6/ky5NMLHOSsdJOsA1u0NXhy6X35SU2p7/W8AFfnfiIqPHOCvTrmuouz6R18ZrwZ4t7LYgyrNk8YdftLz8FOwE278IQk7nI0gk7cQmW4sCv5ecvtwszVf1rIvLnm6a/ZGb/zID5SyLyVUT+Vxs6/3/2/jZmu2VJC8OuWvd75sx4gBmhGb5mzEdMbBNsxYkm2JYcGSeDIR/IhgTF+TBC+UBR5PxAxuCARSYywo5DIIotJRwrlmMSkshKxgMBGzGykkhJQBocMCD+mPAxMQEzJsYMA2fOflflR3dVXVVdve77ed699/vsc+7eevdz9+qqrupa3Vd196rV61cD+NUA8M3f9G3jYuOM/J0V+yYMLcrSKUx51Bnz+OODJ/LpnYEOcAovx7On45xpEEtmjWOgU550LrSjfYX2gncHSkv7LhYW1Vk5qDQOCWhogXUXu8hwNTo5tT18W6oOGzDfljdl0tBW17izVSvnlXKvbLXqmJ1DWiztdMqcrY71Xq9ySv5F/aRe0awsy7XTvVq7Ck52XmhorVwBkTN3nKPSNhMmb1PZ5ZwvOne01mIv5nAXBXDUuhgyzsR7EG1aaM3KzHmLlRnuqeI48vrkOLj5OUySw19kOuMdry3gWC6HLhpvYN5jHjrh/pe/jQsygJZ+xu8uCjWqlep9YdLR5wXqUfxbPVufQQRL3xK/Ed4NFrm5uTF2xO+pJoLgT+OMNyXujEmRC15c83L5KUn9pNM93quyFhcnPXeHpP/u9lU5F7apqQ1TrXWhz5+kI3Y6VkxF5KUS3euefE82cq58vkLXvtvdI/RylrD0Oi6sLlsNu06S5Rbc92+LGe+RG5GmeGV+lHyXzQ13cotfy5DQhKwnbFewv0HFW87b9x27utU2tsR5cyh5DltnnyEyNv0O8gOy49XAZs8fZ6I9SvtYjxQyaQs4G5sz/5bTN0woo6p+71W5iPwqAP9FAP9Zta/T9fV8BcBXAODbvvVn1K2CTLvk8yolgLJDIyxHhGui7XkSL9NeOHWu6R6Yc5uaKezDvDudU7oA+nqwJefvhRKmhWW6mOu7rqBZDFEd24nXTscr3pfQVtYL3k7Mldx7C9hL3jv35FKPF1C/hHelLVekXJJC27Snl6/+fx+5zLt9UXxTo1hd2k82rnTe1lvb045u/y3sqRFOT1K5vWDPu6BzgkDW8F3Nmc8PBtdQxcyrzhs7phQ6U3gP08nzjyXG/Z/0E79Le+yO39eYeoHHdG9Hpjmp9lFcxDWmttCwNmXJa7m4LGiqTvfw+AK7L3nv4H6LZw/KvWB7EbbdxfIr2l2KrnFd1+be3/NNvjChvvyh6eE6tu3p8fZ18pq6ZPN7yWvpY3rNW9MVxt6TC0ZJWxjLUtZiOfkIn1fOFU9GrBrKyAvwtd6Ot/UDAkjjBzgON05enD7DzTB9hi8I1eUP3tN5jb6e9sj5D/lMyueWPo1B9wbSh57K+EsA/DoAf7+q/tiH1OXvmFEoowIJRX0Y7ZxzDXuctN4lzVkzMEvm9SG3zAL3vuGRI/B9GNmPOSC00j640GBaA5xO57u8ssrd8ba0lSe1by83JSs3xwk3z6fC2+qBF8i5cuQvkZMAWihPoFl5ZdOeIpKrXOy/OEVQv7ngbeVoYUCajKR+kfqIZraujwjpQzp7Nf5Do87lqDa9yEcgc9r1tLpkvIMqTpB3PPPTt1xPypNT9aakp2K0G1p4hzMd/8IJ5hDCfFpX5E1Ho1Wq9yBeD23kPDSHKmo8fTuc9lwODHlx2mKMskHgizDHnBX3uyHBtNLwMqZe8noe6/uHRecFF3mslXGmAosiLbSrjtuxn3A/l1/x3sP9rW0E6TTaZBvpbfMQLt7jbXxIUk6vsXyRS3/be98l1pn9S7c1P8GitU2FqY2cRSnCxVrXyks6qcAWPwPTrhVwWmCEHzL+7pTeYXnxNyzXF2TmM4TLpFFv0uvEZsb9Mta2/nTir4kb/SaeIvlot3EuPe7H6KyLMKtrlQvGfa28I2+n7rJvso0z/u1lsHuqdiAk/D00ZLliIevTNse8B4b74ymfRUOET8i0Z/mO2htN2g/LL2L60HfM/gUAXwbwB+Yj2j+oqv/dh7nJYfo4jefC1kOjRwjCeWn89sR1HYgdU6MtTjLKqK4pll8922FaAkoHsfyeTqXlyZqKpHwCqTIPqXVOrFraV3WuCtRQTZ8PFKfZKn+PtgzeRWchnisdG7kLCD/K+0LaZNd79VzUvchZeNl5NY5s8rTtucp3f7dOsrl+ISfbRoty5Gg7HUUCNS909fF5Yffog9LoTHIWXl3GVIRHS9TttPye2HRSVMGRtg/5GOUIaRlq0uLJqOlF6uUQD8l63Ch8RJBDGcNxT3npaVccsez/qE1HouWF2bh4491XQXbeXX99IAX+djc1sBsNdtf+IjU/Ly7YneoKkW5Vhs7F32yGRKn30mfw/WoXHY2QJKcrQI+LF7xp/Da8ua+XejXK+K/VueDUFV5tbLPQPoL79fIjtI2OGdsa3qrzPTmEZRWeOtpe0VzXlV4rLy2sWpzs6zG8Wu79rr3Vllf9FWx7Wzjy4LvgTRtb0stNCu94sURUBV7b4ifjfj2W/yiPjdJCK9mG3+Maf+mLTgEhYjo0UQ4SJmK5R1lsps+ieH1TxgGve8Ar47wWPwD3NwrghihX5GP332R64+o9mj70VMaf+0HSL7y7pt95laJ3eBf+2E5uF001H5/R3X24mT2vNLqZXCCf+hi0uX1Zhza/0M+6GjBLoSZW16a+hZboO96dTilJo/POYW90dNqr9knR+Yq36tQ4l1RX4a11X8nVO7yt3M4pNcn2zuQhHt3nHmifvRLQ1bXyFE+e+j2VLDqHEyCfPZ8A6V7HNin9CufqI074hfDsjMypiiC/KyBR7/jAMslhh0w7DlWuO0i6adWu1l53xElu0B5Fxzg9MZy08R7oHX2aBBRbiMvJT/gOkvMhIS2PYPdCy6ct1v7AO0XYY3fCmN0YrLi38BY9Ol5eTCScYN7eD6TFzx182sspvE37L79Z1rSf6+3ugRDNw1he21fbsGtfreMKX7Xwdu1C48uqLdL1FVOXk4E7cRu5LRzeGx4ZmBfebr4Q1ep6L+4ls/OVz3BJG5WhC28+Rn+GV9M1sf8tci9mH24bSe1dcH8Z3wrH7oL7eAD33d9ooUXYnaFKSA/jXfBYIu9PrHToylhecd/lel32JI3eOSadmDdwfujofkDH7/b8pWf61NOneSrjyxOHmMwO0oYyTtRTf8QuPgDT4+8ZqhhPoWZeNU72osWMD9Y5M44TwUZh8ErUZeUmguXQRQt/Ua/L1KY2G60gXjaPecXynsMa4pHbs9SVmIOmpWUdl/tUdCqgzlktbJ3cbV3VWdzTudPxQmfjhRSxFzpWx/CIbUIOv8skC1tXv6fkTEiuZJpE69f1cd6ilPqOGHmCzjm2Tnp1vl4i8VeSjqOiZCLWv9OTnhCN8c/5eE9K50mJJic2IcaTr+GK1Z92zD1cnyDwR0bHJIIP8eCeEE/LPJxk5o9Slzlid4pUV+zaEq8Z2xZD9GK3lLw/mQOHHwri+HvKc7mVCWDvk0Gs7HQ5w64n7F2GVyfDbgXWCAmkMHSzVmCdum/IO9UZkCp284wiui4fxTB/q8YHqrkvz76Wm7FiecIJ7XmzXwueFlPNHl29Tb5mNelAhYaDYeb1sBPSKd3tylvLGzlbLL/yN9S+Bbutrh3ugzAHDe6b3AZ3t1je8XY4WHVsmpfklXzt2yNPY0GKHqbKxBKbi6T2OWaqV+AfizZJkvNZt4ntS6Mkymq7yJ+ov+dkmCuub8L+RXYjlyctk1mpnmGvk3A/FmkJ9zHqlXI64qO4z+9tieg8gZI/+jw7j8Cx25slMKBb/IC/MzZtdxMNXll52WfUTUH2A1FH9gNXPmP4HRm4X+/RG0tuiq+D9HEXZpTaUEYgnt/6STudg52Zw448nn33SDAzBiG8CzutDXzGsLSwIt7qCAYt8U5VE3wZkE4d0dBafgEoa56CTmebdeftD5dTfGo+blxWuel64PaWdzeBqCkBielVdPUylpMqeKB9nfwdbzEZQF1KVh0X4pqa+pOc1EGj8zDNTk4CwuovL2jtxDGthmrqauV3DvPe36Vuifvp4xF2avsc68GQwwQlTn+iiWW68Z7X0m/EwcSd1JQTL0PbPahPt2yMxUXbBQVqiGEOXRxy2PFhTjrFf7PjryEhcfQxhbDMug9zkoXWTSE7XuCQM92qg75JJhJ62OIsXiQ32iiPkBeltr8s8ZhNn1Sg38PkUvp/tMKnj4TdTkbY7R1lgxtZKQm5nVie3cPwuADhDr+6xQMvFCsvz3NLWYu1HR43OgiQsJwjD9pUMYd+5MVDaV7xGbu/6R5eyE2YKpv2XeR7PL7gLTq63I53Y0Pp2m0dsOBiy0ud1Z5YMG/F9tN5JdZgFRfLqYdSVsXLibSF3ZWGGriF5I5XJurSgo8XaM7GnauTO+WoYffsENEH16dggc/XuG9P8g4O/ZTAblNhi/sS+Bsh67LyTv6E+zKx3NiF/dGMTCBM5BBD15lo09q1PN3KfiDwWwqtLLThB4z2Taf9+YNfqPRmFmY1jc4nOb/8fgRIqC7hejuP0FerSxnx7pya896hrWBPji/r/0C+EXOP9iW8NfHCc2HeyWnK26HU2eJKx8393/LaDxJ+pcfaB14oxzLS2O0i/zJa7Wnu2YZzF/d7SeysSx/L753QonTxvTnefS8jymMzwJ7qUF2lbp/YUGVziuATLubNC+mdXlr6nO0yFr0FkEYnKbzLCf+koz3F2ulYu37mLY4+0eeQFWDKIZ1D9/EZAV4sPvi1rjUJhwLm36PmJk+p9IC1bINtmqjMKKlzLDiyQgTryL0u8/XYPeTew/JOj11Z296Ovsm3uNJ3pJ53U/4SLNem/EoOmbHnq1he7+UD+lcdK6bc4+W817PbEbjC2oI521NCq20mbR4hupd9F+87TBbSKStQ38OtMgKvCUNN+Rpjm3SUICXbxJMmIVWUyqKiRa7TComN8hXjHsD9WVfitX6U4IawWEqefeLUkb+RyWGQLMJsk63fbPQlu61yVp+hoRfednrr68ZH08ddmLFzmx1ne3RvBf1LUFvzaYGUnLMCFUg2i6m4at20PPqvNUhD24WwuI5rHSnvCpCTr/XseHf5B3hTwc75Uvm2ruJUtV7f3fuNqFb2PR0fqcvSA21d2nBBvKW9slu1TUtbncA177Ig65x2nQBZPtGuC7LsTDd6Wdm81j29XfSxusjpjacW5xhZU8exq6rX9djEhXcG2cE3+vvOrA1hYITATGerduIWMJ/26VI3P8HjJ1EcynIUWn5aNpxxOMm4Zrw8IZnvBExa47UDPIR2d313ltp7eEij6XvOBaSSDi9P1kfqQilC2MffZXFjiTA14tMGj22mZ59R72n1AZuB2/ibOm6abYANLfeGggVX6R4u3sO5Zhw/Ire4mVZux5OZN+Xo7mfmvdsmlnNPxw6flC5c4SLVdY93w7nqfPVyZoOZD895gHywyzF/sB3uDdrUHt3i/qrTHueTeQruTxDNvNSGNFIaLHc/MPEpj/NGR8J9phU6tbA+ETKs7XAfMPqMu9xe1j8thiiqovMVftDS/HsQ7vfhillXg7rAdqsvb+ZVPXqfYb7iYeT6OCluxRc+vZknZsKAEL0YSyB7GnQVlcOpj766542FEiGByHLMMN/ndbxnHetJh7zIbBdwVrnJIfpr59TY5l6qAKub3y/gbdmu5Oxk7WRfydmlR3S8FnfJ5EVVjvcbbXgL8aPt57JlotH3EO/Xdg/KxIx5L23zQrlRJtPZgfrBfN/rYlKSdlptAC8TjayfpBvRNUYbXnZi00BzgmDvpEVTlXgleN0mxYmz82Q6Vk9mvRKLMMOLMHV9EhZHKqf3EmD3m+XyEzgOTxy8cfKXrnmfEASv/YPCT5K0/GtTN/VJBmLsbgdkM1tkDOVqC6YKM9DFK9zfN+S+z1hTwe4rDH4AFx8FOH9XCsG7w+571T2EGxc+Y1tfqbTqnGRUbCs0D+m4yb8OF/dpLAaQdU520URrZTYOlznMVqZ6+fKu2N3+xQsgBqONNbZ1Sc4rZggl5WsbvHmyVJP9TtM5feyNzpJCjy9w3xY9XrP7m7GVczS2qbhvc7wIQ8fYYEqh1Hkh5WGU9p6c6jg1EToOdELm7Y6xdxdyZNwPOBEAJ26hFD01q1hu/KAF2bXPeKbPPr2Zwz8s+QuivgsqQXpk1nXmM7ulD/4YeZJe/m6WSYk3AMDfM71KRS6/x7R0403oTJUjpZyb6++BkW1qg+QuLx7mTb8pX51pd/Ki1Hp2tuzKqpyNHvzby45CspHL4WyVttNZuvId7yJXrnW+cpzJQe15l56d7KaF9o7MC7n1tx8aYi+Rpfg8WcI4XC+elUkpIzkLr6cT23cWph41xFDcs+Wy49Ce1uVQEU8CoDhYjs25JWhdt+mI05H3nNc4edF4D5KTeRU3ZJ2Ndzx44ncHFHLk072svWJtIOct4Kd1JjcmAvXI6JekOtcb+CSAgt7nCWwTMkgdkyooxqzYRn3D+yUDY9GJ8trGmLKx4/KS7/BXaN14UHuItyYt9bRyQOWVnn1mxboL3rOMDRD9p4nHnW2SnANrXY24rW96iY40Vq5sU3m7qcjOZ2Ts0ksdfbrPvBtbrLhY8qkvV1qqf1koNgftLO1AsnsK1xOkd+pcD5PjbdLx5IrHa5VTn675H804X/0Pz3mmXH5fX4qPuDV935+Y3cF9zytgB4E47kvF/R67B898r8vwWBS3YteWVzGfCJofKLiP4ud40eY+w3pewf1Z11tOfvbKFzy9uVBGwICQysruB0+Iu7R8p0KMyx9+RwUllNFOZ3P0uHgiVdc0KSTLdaa6iLrjTYkBWEu+cxqfIq8ywdYRZJqr4brIaRaDVyn1jcVwjY4P1F1t05Y3cjrb3OW9yF9NGNb89aKsVcRpNbrhXTkotFe8ura3TmJqG1pangyQw3VecV4bycstSHLrAo+ccTOJkUrbldPvIFf4xzynjkkOkJ/CpVCSwZueUjW8WW7gSQ4rjJ1XIZleJkYrlLd2TOfN+qrJorBHjFMaP+xjo4GpFYsrhuzxaoYRyiO8D2J5bdMFb52ILxPzRuek373xq6s/uDfW2Vb9BH/DJBveq8TtewkeF9or2yyqkq61ulbnl+rIhS/xr7X8Hu7nmre++Srd03lJBcvu4n6Vs8Puhv5yAVfxl3C/w3ILPuFPn+REMlrcb/C4wXn2PPHkTLycaR/DfYCf3nFIoh8/V+7JGo7IeIzkI2AYDwFwJtwH4frg1SQ3fYiadE6LQNKh+ow3f1z+QwD29tObCWW0pOUpmueVhnDaGikIzE+RlklAkgQfZguteYA7vdDVKHLYY1CdwrSlCVJ5Seft+3f1ieODvFVOa5YLudeOrVRXHWojd1t2YRtPpgfdzqrjTucaguRlF3K8OufVa1tUfSjvpydy9Z2TVCBC+wZjPrii1zH0Uv8r4S02fOQ0bBvNr0uiTd+mKe3zrimJmq4xL3u8Mt2ak+/8XbJwdICd+kVsUiYISSerJz6/4aEliz36BRojSt65tKdqkmnn/Yv84LXwRH5ZXZIcLbzmlGPxZXr4u2OJN/KH2KcbziVc8ZiD3I5EFpjMeHI2aE/ftX29f854HG5/g/tGm/KS6yohhSte9X6gtmGdiJIczVknpjG8xcWKqRrtbTFIMlvCNpaLIlcLr/nMKxzc6LzDaq6G9UDJO+7vMLbRh8fvTsckTqKu7iPXd33Gwttgedf+V2P3KIh3gjcNuxhcgeU2TgtBV4/3G93qWJ+m6tIb9rzWvnGfJx47pjJvqac2XwjLEb6CUIEgghi935CPxNhEYrkpegfhB/zBHeGxbYh5eLvr/Bjum6AcQqilDYMoDjDtfcZhA5l8iH1yhXHfbCXMCwuRnLhPC8DwN4T77jNG3Tr9wodtxn1+qbxd8IVNbyaU0cYwH5c/jkyWAEAfPQb8patwXQegNBL5EblyF5u0VY/0Iu2mR9aQycRbVet0ZLpdni7xgFey1dWipONNjq+2T9afde2XaAj8l0kA5Zf2clkjO+WtmzCw9rd+cTJLXd2l0ubEf8c2iy12OnZHaSendKFvao9s7XgvL4vBa931dzON3dTtiz62W7KXoF/8IL+DUB0u6qlXyLZAgYEUlrLutArVy6EjmPrl3UbmpDK7BdSeGuKSY/41lddTsoaT5wlJftrF7zAISkhh4uVwxEHMC6kIadGgZTnTHuboj6JTPi4fr0+MT/5XcjHhfiLM67eB5R3G1JvY6MuTb7PX3bD1KofyW58hlXejc5VTmvBibJNqq41e5V5ssZwr4nqlIb1qX/lNw2ZpX36iUXi7dc2juMj371HepnzLK811U5qZLvoKBNtyqbT38jUsl8vL33W/d7Mos9/pfulqFL7BJCvT0hyPuXfjCPlbnRn3q8/Qpd6E+4cWDOWxoKjfH3sE95mWx3F94hQbblGX6cFPyo4jnqqNKWuOtDDct3F7kP+Jegb/QTorNNFCdHw3bdpYjv7gkWf6bNMHvCnwKaSLu6zp9zqAR/7B5THRBgfx8s9Ur24cdS93CT95gY49LyWJf9raotB2vHiAt0tT5tWRvV6XRt27BY6XFd2W8g0vKu/GNtX0ypcqb71WdKynvSWZAFQUJ8vYtY9tuXGMmVfBsfhXvEp6jn+K9gj9xq7Dae77qgLUvrXm+EbMAPQD9u2TuZtHYyo+tBM6uM3sSc0cO/FUaErmHT9a8MTipjoRWvgU3ooyNYwjlYnJm7wskxY43RHD5kBDriQdl/ARz5+Jd+Tn7qzLPS94IxwFMzRmCU/0ukJ3c/S+6JP3OMqpjAf2feU60WcKrsa3NBNCZEztsW/eGMjcmIs6tpiKjA2BP7qOOcaCdhw1vC5r6LSM3w6zGpqE3ZptlXju8CadO6zr6triBmUb2mS3IqfVsf5bfPMqPynSySl/E5aPmuN+dTqW/tneP6F6UP8R70bnnY6B5wVxd/ezTSF51c7qzRjrvkTovVVh3NCMfTHsHMeT77J2ua6a/xLub+tC6AH6GzYf9bnPoHo5n95ta3xG6JFxsup3hfu8MZfyXK+cjs1C7Y/wds3/Ju8hsRAD64ixILsl/2M+Qxfa4acLbfHZR/Evr8f9zyEpJjC+8t8HJBH5FSLyJ0TkFJHvoeu/SET+sIj8sfn3P/NIfW8mlDHCUBS2YFMA/MXjGp64VjLLJHi11mXO2pJk3lE6KlDPR12SmHK9QYsIWSH5knQIWljbmZe0NN41HLHYgsrrpbuhjA2vNbU7ICS3n9rbEVzJZdILnaptPk3eK9qVl2dOJFeaE6W6ujdyV1pyNJAXto+cnhHt7rUvknpaBV8mWqVdSa6rGsGM2MlJItk6ZTfUaty0L7+DoJ4Xp5nl1knn9YidHw5vaJDDUgALOcyLGjAv4n7JHATmAA8Z70PZB0wHLb2c7fVRHsHrE4fqqAXzZflSLuFA8wSBHHJZiB2k80HONxZho338TttmCN9NYXUMTD3WUMYe25TwmDDVHGrB/RXL72CqYJnMG287fgVrmUYdl7zIvKnOCucFfx/F7o63TRe22erY8Hb1Yo7BFn8ftE0N61z0qFh1DycRtgkceYDX+gg62yhhnKR+xHZNSYKV83ssb3i7fCrTxY4tHqdQ8kYnCt/r5WrkZ3h48E5sn5jq4dlH8IyQQ6H53SxwuYG3rvOUK44bpKPfoMzLeiQUWRZ9FecB8wtsi4z7o7Ey28P+CBJH0CdeO4WR/IuFlqsSlhNWW5/iMPXqB0YL58LPfk9biPumEeYpsy+I0Mab0frfD8f9zytd7C1/1umPA/jlAH5Huf4jAH6pqv55Efk7APx+AN91r7K3G8po5ccRY7KcqLU8HTmiTAB3+g6i5vg118NlwYuFt3NWokNOrmuDnayj86LlZYfqPmQJhyu2YGAtvPxs1LHpDq/box68gkLD7ZWoXwudlHq3u7iNztweWqv3vJs8O8kdr/kWadqXeYuzmv6mDVncpa1DRThKlcWOO17X0e+BrLTbPDlUjh/i/gmZDnVaQBTtiYiV14TInpeHJCDp9KfsIEnWvGb9U6eOR+IlnWQ6I+87sSiy2g56Udwc3Zxu0WJvVHjYccVqvDzZCNrDHBvdDg4TBIDbEfksq4QUTjlWfwqFQeykWvturZxB34Uq8imONyFaqOsofk9envK4kvUEXewwVaJbjtkFYU6AwRaPqUsDoHYjaEdDKYV/GlVRf20wtT90qoHUim2oBIgxfIXdiGFZk/fLK+w2mxWsXjZculR5KznZVUD+FHWsl9TZlehXJCi0bJvOR/C1BvcT786uhTfhoi8uBsGZsyuvlHzxbUt7d/V0qdqxnNDJm1X+aoQJTPMSwuM5kd8PKL1ony147EbYUx9Zae3U3ANxYxL+zks+SLKN2ZdYJ4z1Wyw0jCZOSBQK9RsMpqL1w6P6DF/kRgihzvamKAtg8U0Vg01vOxE3QtUDf/35A/sBWpQNVeibmOSrhOobhPNJG9GazzC/92ng/ueWPpJ6qvonAeT1y7j+/6LsnwDwLSLyZVX96lV9b+ZUxpq0lOtF2air1l3ofaoCGqEb+XcdUl355GLTVe/QPuL4urw7UXJWj/J6nnmrc3hQ7lK3ORS5GB+7sq7e2j42o5S6HrUt6Vhpa121va1TvmfH2t4rxypAG3q4oV111l7HbdJiR0Z2xb2+O07po3p2sslxsaRwDvxH4x5RhYuc2l50ToNalXZOrUwSbX7BOWwjRQ7c2Ub7pNSVF3/cNWiSAAAzRDDp6+U6nTfpCE30MRHodUThJXSCGYdDWwBz6ur3LT4uHW34oBj4C9y/W86Dv/yMck42vaAyoSL+eddnXNAueNXIbXirpi72Co8bzLnHu/UZgt42F3Zd8Jh47mGoFz2qc9FJSn5L28lh6o0t6s/WNul3rl0lE8bGw8qr8PVHLis4ec9nrPmiExS8KbbWJyHWJ+173I8yLdfrb13WaQGMvOkVecZUx/0G1/PmQVnNJr+SN7W8XtYxqZ9nmixHlvasPmT1GepYPrA6elati/FVhN8T4w8/ozy9mgs+QfIDOZS++ozBq1R/ugd+6/XTxf3POAmarvKy9B0i8kOU/4qqfuWDaszpvwTg37q3KAM+9sKM0vbkQfvfMU9RWwCxEBcQjFAIrpgBZV5vTu6yHZJafa5HUkniVVyGMu4S15ryUQnGsDHdc5u7uirNdkHT1bE2cxFQdd7pci1oo2OV2znbKx031bjuhfch21TeDcmlIvRXd05uw5N1vrAseyXuDCZ3ob3QY3G+muu/qqurV/iSRj+i8hwKA8RioZfju5N2H3l30xabDiMjn5y8h7VkObxQSnUZm2jhCTm+Q5nyU0/Y0zRxB1zrdKfJvBxyg8HLOgqmY1dyvhz2aKEwMMc/6HlSYSEy/sQP9uJ4XQS+NAV2d6f25UzGVgFyWFnt1wsItAC+aGLXOd9Mb1MFS4hh4s2CPhNcbOQurDts+0C5HSnzPIyLUgoaPL6nYqfrwNQqR3N7Ghz2+ykb2eyMGae69tT8rn2LU7qSu+ra8srssRt8Xp/gPYj7wN7fFNvEybya6hH7H2F1vpE2ts/CtC7IDA/Gu7aSagjsLvoW7Oa6/LAPwnkOs/fFo98DCiGUwNSgZTwnzJ8XGZuZJ4WjU+g562k+Y33XLeyaykURJ0MKlgUZ/4X5LML9D3wP6wuQfkRVv2dXKCI/COCnNUW/UVV/4KpiEfn5AP7HAP7BRxR5Mwuz2NCp3kDjXOmSVmyq3mdMWroDPEKcZHGzY6pS6IzpuGqdxcqKnZbb+hfi5VpXuc1kowX2VsO93Gv2zCL9LXpETjchuiv3gfYtyWg3OiqT7RzQMkmsBFhvxYVtuKYktzisoJtPYDp9Kq3US9oTNjqnXVQW5d0rn27FZX3iiU92qHMkck1tDS7bnQlLJ94ysUi1kVPlfHLGM8+ONl56JoeabrkW3rwbK6n+vBPrvFJ5jY5esgaHFM4yoXppYTdsdCYdki7TwZtcP/p+tvdGMjOvejiN7d7eysTj00hszwX3RXxjy2hfgoscsWC8bc/jC8mFBPXlosRwf8GNC0sRtjHvS3DxkRMkPRUsufSJV/reo3sIUzdV38W2cv87XLzwN5166eIOY/nyFa3s29LW6z5D7xt+K/eiZxLtQ1jO2L3oo0tbs3yJ9jv+phYEbfIR2tpVvM47iwEhWl+MVN0aLC+bS+nAqYLzzBsYGWMoYzkt6oze27b6tPRki+T6NVqU1c3CYx7HJYina4F3Gffzu8iDV6ktB+nD7xmDcf/TBP7PIn0Kh3hcV6/f+xo+EfluAN8P4Feq6p96hOfNvGNmyY+Ar3lFjpfXKCPmPl9o57S3pRVDFhtc+oADTLx0GcAyjdmEYFY5rVzJGQY+dkY1v/JmuWk+RLxaaUt+kUOg2OkgoPva6Vyek+/a16bNM/a2DZv23Zc7d/B2tqntKXWHA8oOaq2r6SNb2urUi1NN+le59cbazh+xFiey67/rIjPrZU9u6ELZ/Zx/7d2Cq2Ejua66eFvKyj1IT5a8w5Y8IjzE6q68+VUmTSGHVtd4HaPy5g91Wpk7XOMtcsyJHw2tyeXwl0FrzvycdcVE4EYLvGUSAH4/bT5Rc7lxpPKrUpkVKjXSa63vl25w0sudVwqvlPtfDV/qOqJIqUOMfKEnWgDxriMA/nSEN1fW9tV8VYdltrRdOf/eYEHHW8fKDuflTjngZmvvZ+DgxjYPymn98j2cbOS0vNv2brC73r9Gt1anDW1c3+Dtgvu5rPvsQMWyPX+Rc48W0ZZcb8Hy+T5b4H688zs6gtJ8b/UDXvfE1LjY4P4mnw+GirqY9lblej4vrKT6DF3tnL4ZudyD7AcOskX4jPE9tkMUN3/vj56kuRxeENLhUhb1kHCf7EeLM/YRo57eD7zl9NZegRORbwfwewH8k6r6f3+U780cl78c446SJyDkfJcWBzoHlfOyhBIEvRxxf6lXuSKpsPBm2qX/XABfaw/+/5VtCvPVpMZ4/fdFJ2/vgRLvvfSgznfbs9GjIXW5r2rfvLBt38X9igvEfTGp6XlrvbOuOw5z4W7lrnXl9jfOufJudF6ni5q/qeNegXRIjl2jDApJ36tpdCQ5ecEWL1KHk6QnTyQD0HEIiHBd/AQpP7WKnU7jjR1KzKOKMy9CLoLWX9IWK5t/S9hhcsaIf7ciJ44+Pmeo4un5ePo1rt2OXB+f6nhIzvOhIK9Km7ESE9cV25ziapx5P2Jewv27PqPH/VbnTX6VqxlzOtpGrzqq2sUEYyhh3j1sW3hrvVvM2eh4j/eqfR/ibxaC5WdI+iDcTxrn+3dPL+zk3rlBl7i+x33F+omfmA91GIs+f6GjjbDL+U8np3xLzTDYcD4tWorO62mJVFbsauHWGfej3hX3Z9nEwYTHEl6fF0PZD0yM9QNENPQgfA575usHzixXTsLg2JxjPGaczjqv/iZh9xH1yzwe/3C+2LizupPPoG+pvdmkH/DvA5KI/DIR+f8A+HsB/F4R+f2z6B8D8HMB/CYR+SPz30+5V9+bC2X04/J554SmPWMQ2wiOsklMfJl2tbvxSqCm08pSNdZs6GFhN7VqqsN3aulIf6ZdeDu5pPKoaiO3Y6Yy7fJdHQ/wLsnaY018iVyTSaZKt2Inl3nLpUtVH9DRU+PspMh9lNe2/ZcjmFtaq9t7P+pBE9TJ4lqq0CYUWe5KW8Qq5umJninOtueNNmmiy6FJxDsLeDjxsfbVFu64nXfQjhDkScq0VT1ztgrAvgtGvOkJVdE587LOZTeVeEVj4uFx/sIwwIs15o3JwNBLp9maxZv/pbBHWkAeolNHnR+dzhOPwT+dM4aOXk7vJtiL5LYr+/qUB7cyLk7z5m7OuG82zlXZ73z0fh1g1WdE1qNgdhjDuFjwasU2Iubrs7uu7WPeIppx/6WYU3zGI/7mEfy95zOcd4exDe+L8PieXDD+9O1Dsavdk2t/02D3Vb+JVsz28U3cNCxdIpy0R/DMm7qyJrvJrMuewsRJkyvviseBv6rZ4+SQ7aLzALz522xleC1EQ+ZnOXIShlZ78OJN4v+EYak9XjfzVtw3OI5TDM0WJMHxFYzlQPNkr8fy2cKM6enofU28XhcwN8JOt5Vg+mXC/SSX2ndMv1Zxn+uCL76GMWzzkP1A8D5Tl1T1+zHCFev13wzgN7+0vrcVyiiA0GhREVhIiGKS8sKrOGrraTZYlXq5LN3dM+kYfl8gVvBukmRkyby7HlxoXT8tfBcOswu35LraF68LLbePzVjj+usEgvF1kcN0dUIwVeb6qtx7Om992IW9Wd/6dwV+A72GJymyaR/IrgtvUYjvfaVdGlB11qx8ZzdyFIm27FouelZZ93i9mDrDYrtpM9ptk9R+TTrnV0qvebOznl/XSLTZmYgv4uAOyHmF+2QODzG5Q7T4bmnwslONBZEAwBE7nwJAjnzSojlBKXJl2ia9b3bkXVxeWHner5XDRPypGLzMfpvcg2zD5XnX9nx9SIv3DfE/A84MVHgCSTh/Mca52w2fwbzIvIvPQAwhkRfifs5veUmm0bY65uZEVVRv6yMueHfYsGDVlc/oKqff7bfMim12vK3uZcyldtzrdxW7dnI5X+/njpYLHpWztE/Xhj6iI4D8aKjhTb5AU/tEQPFRHW+RwzresaPUNhKvpggHDawHCu4L78dnvRs5cXpk1JVpNZlj8QlEu2Jm1hmM5YLkU6qPsG+W2b3O/qeENh589H7+LIrVY3UdAgofn2U73oND2pGwnH1G5fUnbNTezg+85fTWH+g9mt7Wcfm028VlWkZoAHXvPTV65EKrUUPw8g6dd1oZktueuJNbHOMiN4u03r9MIC4mBTs57GOS02Q5rEMjp/bpqz7eyuH6d7TN31buTsduslV16HgL4KfrVQe7b6xjWlFmWq31LXJzC2tfSDoV3iVcpKYkVxebRPVKuuSx1JtKVx3XFgSzjZopIz6Do75j63KqGSdP3k0ucma+8nKYTtI7OaZcV6ZjWp0LBFrMtHI1laHwhlMDoHTMMcz5M6+Fkkxe3wkd7xb4UzbnVdJJi1zeRT39vTDYwgsnDpKzLAZJbhzLP0JfxkQAgJ7LYvfxZHhsxlyfaSx3P2GoIm5qHkdb3OOeXbGAhN3F/RficR5RG39R613Gfpa9IEHh9QXtlW2ucLDqVWmrXBrXrY8pWL3gZJcusNvtvNPZ5Wrfniq36tvJ7erq9G/b9wB2d3Y1SVssv38l7t8VjhfeYhvHQTV8gttsjpIey5mXaYlEocCRMbaq4NjO7yc71o8L4vk9zhPcBG2SmRcedkoul6Ngu/sMDexGwpDTsTf5Bdch4z4M1qy9rA89LbMndgeqjrlubtPAcpOTfQbAfuD0xWDoyD7Dfr/RpADOr4+V2ZsJZYyTrWIRpkBCO19U7ZbtF7RrSMtMQrzi0yOfQXrXtyd4xORdIPEinKQiHLw5FwrZMdrkBBsd/dL84cC26EhydqZp5CSdG96OdpevbEtZo6MD/QM6bp3VhZw238m1qxe2Sak640WO1TUnlrNt9X5aXfw3QhcNRJu2b+QkG1pdLtu+DYM0lBynUwghKctOb6MH78KpOSNqVzjy6P/pJe4UpsPD3PLWPiWZcdpjOsLeHV2UjVCZCGkR0pHfSUi2ILkcQugTBOLNoY+D96A6YvEXvPZtMQ6lsadxdjKWv89gv42XnbyFOUo+VSveM5j25zYwL4z3bHgnrdY2vCYV7Ky4aGULTlRsj5SPrQ9cdAEJj4OYu5dgYvUl7oc+Kx7XPMklLl0qWfNbXLzgrdj9Ibxb2qb8Lq/c9wPLpUfxd17PF4pcbHhx7W9egt1r+woeY23rDvcDY1feOmYS7RJmPhtoehPmpDh8WW/EUF1JN950i17seIxMy7jvH5kgTFVgfrCasdzGR/gIO55dil2lYCr3vp3PSLRKuO84iMByw3NRiId1lid0ht12PY3zFcs5/LPifuJVipAgPzDsx4dzBJaD5ZLfMdwftOOgFfMD0BM3Cat3/iZ0PN1W2/Dgt5LeuHqPpjcTyhghHhJlwIxNmvTWq624Av18Tuw7HBQew6CVwiA111tpubwCso9zPiZt8oZqExgMO1kOEOEFhheNB3G5RCuYckknNh1PnNKJljs55mBpcuFqSiJbQv0mji5jwq673TeOOWG66QhqL9eFVU7ibXTeOcW8C2e8AnFnAe+Y5lcSOd8Ta1KV6wZziuBv7nXVW6qRNnTJQHXWcxTDl77qjbM+xDpTv5lbhCQ3y4n2zzGdjhYqTmQJExwLJXsyORz3JJVcb/6l4agRvNyn3NFLOGBrNNMCEiEfYjpZCe1aTrkHyzFZ3B6nJ+c6eeOkK7iztXwNi7x5+4ajfHfEPUihjLYoc53zQR0C0EmMOQwndlatS8wX0s3Rg5+qIRbUL0wVQz1bB3A6IIbutmbaNOasyxRczHhMvBsczLyScDG14ai0nFfnZSUtrwWPu4Vu0/yMbW37NrwNpnY4mLC8w6dGbsXFqqNIxv4WJ4seXiSZfl1GcJr41GB3xysFu1tM1dzCDrsZLjF/x91evMY1lnvejKJuBEHtN0KLI8x3uSRE8r3mOYAvPqLTpg3ARqfufqX2EbbxXIPD0t2FMP6CbZXxdfERrQ/xG5VPuq33wDB1js2DMNRxX2xRA1/A2kKNHk4l3Hd62BSUfYJGe2c/upFcw+CoR/1u2EYdL8LeER77yb5qUMTv5o0NNt7Pvcm4rkD67Ikk3nH9Zu1Tzn8Y7n9e6Y2r93B6W6GMlLSU60XZqAstLbA6Bdq+WXgta3X0pxj2vKuOcITQQlwdQcvb6BZ65ILWKd6Rk5gLqLnO3WrLgPaeIy+gjI7mirYp14aeGbbjUkoZ61z9kbcvr1LlYd6shfchnrlvddRLO2ZhqyxXwuqq0xHJvMnHtvVbvvRQcgJML1TeV6ktreuz2DrLzZO38fxPSnt2qLHyZtr2ePwHeWPCEWX8ZMzyOhc/+R5oqmfRWczO47tjuX1adIpFXOz+zvZNHUa3Pt0+/BTN/sYCDcAMZ2F7HNiOtMv0ED51eOVj7g6Gdn7BNvMuxl4dz5yvmFOxrKcdHaLFqw3etqmzzZXce+3jPF/rsJx1utCDya50TFU1eIxCu977eV0KT1OP+9uN3GWBV3DRfxGedvbIdiQvX4F1Y8vKa3mtxFK0buoQWDSElmJd3g9Wx83QuT3Uo7cWNU8QfmQsIqNsg7+cd7uuC7xYFPe4D2vvOuMrtJQVRX3+fVDbE7ZLx5vxNx8wnDfjcv+KxQ3LYVukaArw/ZhH3Dv96a1XIayWrFNgddjENxgR8jIvyZbwNzLlvulQxq+j9GZCGR3oCAPULszZhKaYBM2MzHzYz5m3MY7KO9ltBWIOnKhE432DUE2YIsvl4sX56HJoydLeq5RoR6N2oSRLvmLrirUw1a70yLbB+hQMaG/JVTISp61/Ue241+tK5y0tydMZEpbCQx7krds124NAmA8kt6bufrGx2Gskp1v6N4gXmu3KTWz1zc6Vu3ydUPKL3db3paEd14N22Z+R0QavShqn7rQ2ceAJETk4fiok5Oy8nw89hGzjE5apo5gO4Lrp9zyx0HjTe2IlpMR2OXNYIDnIkj+g8S0aAOOo49Fu09n4/OmZxGEiLkenXnbqFtnVaO145tsss53Uwft+yq8hNK9LWjLLe8QV6+xGeO/uaQ3s9bB7nbG74kia8DNh6oFEy/ktdq+8rQFeiot2/QU+Q+vvC7lbbHuhnKpjJbz3XVD2Aw9/RDu54l5460MucHGh3ejox2wWn3VP18Vn1PYaDm30WJ9iVVrNPCS3ffJRMDbhPEC2WnVx8JUTtvRxnE86ZzxOWA7A3icbcs8kmxc2ccx+bg9vZAVt2CawPHjDD1nkwUm0wXuwvoa/JJdx33xDu1gjXll4Q8cDjPsKOwrfdBSIf0Ta+fhkXSGfZH5FB80h8yPUSa75g5PyoYfxvumkTb/+AqaPszAz2/GoJ4doI4UXRQsSVAC0PA3UdSFXZTX1AGlOzrAhlb4++p/N8a5RncRO51zFVq9VxwECVw71oTzLv5IroeMyyenSI04KnV3vVMvztHuym27TEyO17yEvu+jMVrE6pSVPSTDvo04602Bzk9Lfax3T/qA7T9axMeQmz71NOrmtbmwC5m00beTe6z68SBCvZ5VjZayP0D93bkLOkxzl4I0Fk9XPT7/qhzn5RETwSYbTUR7+OxZFfJqjyU/fQCOaqGfqBt4tDR3YeUddp8sFIowxvn0W39FxOWKO/wOd3x2M6S5tJba4YT01Y/e9zalX+Rvn5Un1y3h3+QUXO7m4g8OEg4n2AVzmxO27C+tXOjeMXrwZ/9f3PrA7Md7RUhadKnbHQN+tRRKv63GBi0n47voe8x3L+T5cYTe1L9FKtU5uIdN62KFEU/OBVPXuSMFjQTx5qrTrnc1yl2a0D8RBPJe0Ei1kDB1lgXvxvu+kXXiz3Ir7+bCma7n5W2dGG5tfvihCLKICy89GjvmPcZCHkhzzAwPnT4TPoHfi2GcASa4sTxvfXnqGMn5Gyb/8PjKRV6wx4dVDlS0krisdl99t93ZIgMYxUJl2cgkcWG60J/OmPDJvlhPEXnYQjwRzXXcucoh2SbLy7mir722d74a3q3unY823cjcOassre97QQ1YdmRdYP9F+j5czTquFbuWN39Wpy1oXl0vmPS54s6wqR/11h6ALvfO755r6nJOX9nCoH5fnCQfvOGZ6+31Q2+twPKTPr7S2CLrPu9JWB1yOYDbbFN6RnbuSFDYT75iFcx4mM9qwcxxh3/Aiv5/G7yxA57sGrDP4qVs+Ylms7kl7e6UHFGzw6RDKZ+xGpa+gkV4uiWIBjdMm3+Fi3ieMeh/BVGloAaxPfdJ4LcRUvsMY84OtbSpmtGPuPsbudPKiylt4qo7bJFHffTy+o2OiXbEtyQEexu50LxcdN3hc6uxp829NArVvJ8k9atkFbZw0OItavhhd+wVfxozR3onJ/o2vzNz7gfXJWaZVnvIg+4HoVVyX02pz5D3TYv1ciSRsyzpL4V0WWkRLX14q+d5nXOF+bLQNLPb30zT7vSGnPKFzPascxc0XWdbe7DN4oRnvFoecN5uma/t6SB9vYVa2e+6G5F04gYVhbhtvedl11tmm1HKsXJKvXOmY21Of4l23r+qrG70Sr3ZyL+zWtE/rhV1q5CyVdTpWPUznwnN1rxcdy99LOTudr+R2vFd6XdnN62oc9Ubu9ih8t+umLmTebeii2177fCJEPvSEHJXnmdc71QT8o5S1thrlR1kAVCeeT8rSJOdwHde6pNg1nq8YrzqvzLqPIkvo95hHTdqDQkMQDs5S+pbYYTKmE64veAOw8BHfQTVeueCF0tMvzAmTFh2JVzL9AfjJbIMmPkKavpnzwmQT2wXbPHqiw9S5jDZsN07fwQ0eDl98EdaxfkS7x/JKS+GLD2BM0qnouWAM4+KVHl0i3ErtfdSfdqnxN7X8kfbv7kFHx3J7otF/HvIZVv6Iz+h4+UptQOPz7tHWftSmisdXPqOySin2/rDWxQc25nylndhQdKqbb6E8l8ViyEnN/xf8FaJPTah+gDeRKi3r4O3OPsSxjQ664Lo8T82KExdzmdk146QuZeYzDLuzrxm473l7WpZ0CnrG/YHf7G8iNJFDFyNUknzGkj/psykvg4nPOwngJ3l+0dObeWKWJ0o0wvkY5cUJ1Jm8xjFANsjrU6aFN9NqKW4x1ycIGx0T8Uau5Kzr2Dk6JrDRr2vRpdxabyOnsjqgP6Rjr/Jix40jvyf3Ud5Oruxol3oz0xVvcmBuG32ZbVw8hQjs2uN/Fb4Fz3KvZBTefAocO1xJPLkpc3wUcF7A2hxukqOpnHkjKdgEMRLrMfej82e56nLsG4b8LRYhWbFQme2j0EXr3Lzg8addXp91lZiYDI2Yfs97iE64iKdTlo+F5pmehJmOg9d2NUkfWuiJ8ypAtL54JLn+3RphXp6UTKcsOr/XwxOETyHVPgfE0fRpoi2BuQp3Fj5mGBcpf6Vl6v4N7/h5ZzB/KC7uTnXcyKi432LqTocX2GbLt/7s8aro2GJ5w/qYv6mrhkbPO3JRr1/h8S6xgDx7b+vc0eqW9t612OTtFkO+F2flOrcsCAeX+2FYJnDn5kO04G3HO+QyVgM5lCIvLKwufnLGCx2fKslKm/yAv3sSGKpWzrRunqHHYe20BVKjo1S5SthOmJqeooGa7EfNw+W4jtTeDvdNx4G5Z/IpivBlht2hg7VXk7+5zWgJUdDpvRP3TQeP4Mj5ugn6TJ9tejPH5VuK0MVRtg1lZJQJ5lRv4iXStN/rTnF26Vmvz31pHpx1HywKyWLpmJ5ObgxwpAnyckDCwovUnt1kopoieKPeK14eerL8YOBey9rEoM5yLhZZtkjf6tzJ7fKN3ES7tCE7zSXkn+3Q6GSnJA2lG7kb+R662NFQWzyz2IL59ZJXFl4Wes07REXHaXdHzeB0/wCBHFh2SL392ezpGiBjF5Pax/Q5lER8KAvVk7or6XUUWhyZ3mjNSdYyDkuxjznbJQ6lye8AiDtFpz1AiyVdFmUpfzRhj8i8/p7ZgVLXKid9TNR5Z+gM0ZpjZ95XpW7smXLgcRX59Vj7AkgFu3n8Lif41TFbMCbnifACY/0I/5TPrEs923GWi1LbC28ZmnmSv2BMliWF5uEFArDgYvsZlI2Oi25du8v9advlwgoT3fvWzvx7k+8WZcv9dPra0IvfDa1IM7+4ypORLrG82va4oEVuX3ffl6CiOoYkfu8WXrU8HdhhKnP7Dt3K5ad9cchSUDK+VuzmcZ5wcdIsp/NSXRn313yVe5T2Mv4OWZppXScNXebfG+l0oByvn3gjukEA8hl5o05ILp/kGHro4jPqlPvNpTd+Nsmj6U0el1/X5cuJXcDs/ZvZLzvJQqtJwsqr3gllSC46Wn0VTKtj28td9x0e46WymnZALkRffs/mrQC9kbF1jk0di5yqU7cYrE6m0tbyewsfu//WFapcA8RJq5W/yE1PyBcnpgvv9tyZ7t0ctpHWvG5ptQtvFF6IK0d+Bb/V28jtedV5+Mme0Y6nOHaZHGa1zayLnWI+QVJLk9enTiS+1K2pOYl3VnpIUy7MSzuQ7siGlszLTm/opDg0aJfTuSpfkhtHFHc6R5hNhJ348ccSdQL8krbxIrXn4DJbZAkgml/wPlwnW4SdifeQpl89kqw/pJV4Hsh1WGulEWB92ZF5L7B7gxdb/K04WTEoYerQyUMyK25IkS+r3Dr2L6NyeGNvwbbchrt4jOY624J5LzbyFlm1rGJbw2uXV5201b3TocXuTq4U/GlSvkfZZyy6XGH3Vm7f/3NVulSR9Ojkuo4m53QifohV9x8Yr9iy+UueRNvg8TJ+HXNWOal9hIuLHGpe1qtgJunAmDr+ZjwOvOW/BbsdpxvbCBIuOh4XOZnXFjiGx2FXb0PFfcd/a9/wN4fdE8dugWg8/bKTK9lnhL8RxNM89j9sg9VnvAr3P8f0DGX80FQBXmz8qo9QBRKq+uJmt2y/oNWK/JaEeIXgZyIWwxGfShW8+Qj8GsqoRSA77pBD9epjvCi0lq/v6jnQs7O6w4sdby3oaO1CI6dtb1dJtU2ns5RLG958P1lQXLxqn/E2J+dPp6+tHCl0o2j2Sn83Zi83JgFlUkr1JNuAyaJ91od4B7C793tecqiSQxll1uUnNIpNnnJvSA7TmcORDbfPzsE+nAp3HPZ73rHFgfOTLeYTaJrHc1jG/gAQcrLUfnbgLMeOJk4hhmmRBNjRz+6c/QVuqyufBDbyMani3VZbUB1+l0r4JeVjEmD3PvLDNuWAEJy+KDv46GWMyUAc+vFaB1j7cg5djPHLeNzjfYx95rVOwtid3/9iPNFS3zIGFRFeWeQyprLP8Lqw4rG3+x7mEO0W23Y+hKu9wNBLbHtEx8bfXNFubuMduQ1ecVH1A0DvQ1o5Yxx1eLz27opta/Gqc0+b3wcmuYZTwqIauemeKNVTfIaHWwcAdjhpvHXhtGB58U0t7ivTEq4nXAzeeNKlRJPbExgaOubwb9IJOX/IHP0SslULdsdonboabkZdjPumnuEvFP4UyjG4wX0OgzwqretMh2/IGVgtCqjh8Ww7fVQaht3WRYTfDwP4GH0OeQ9/Su9BK8mdPiLybzjxrfyCp4+3MDPPZoDhziaNPEYS8CxqG8poAyi2X5JjG1ni87KgFQnAZ2crRG5lKjk8ES8IZWwd5paXbYNtiEuL4RdyPDUO1s2ebFd4hWjob6djsivW9m1pdzrzJcnXtNTV6x/OqtWDyKzORQWut/JufreLskbm4ritSKTsvhc0Il6uIhqjmbbVZbUN2zHzzGP0fcitvKDFlpX5qBIeglLK81BOfXL22IO28cQcduGdqJGcucBe9rZUyoTbEE7ULt2KHA4tOWgSAXeucOe+8kZZhCeOum6k40G8ajpQOGNyzknOfNLl4YjAjXZMgXFaF08YLJTR6/ad1Diq+VWpYGoAF2JOueD+jpfyzovMO8fB5adAdrjfjHnvehfYRi3LddhiRnK+4heRvwgXhdqdXOQLfEarSM3TeFzWb0172u+Clb9pbIvVNSV0OFWr3OIT5bs25CNlM6uUe1CBqJPldZF1Unm5w10/B9KrGwGS2CTNSrMNJz7L1jaabC6pXFaVC1GoP8cLd3ZgxX3xEZkWW8B6YBNjaBrWhy5tOhKm0u+C+0PHvJDj8ltpw1Hk8Im0cdT8qgOk+gFQeDgmjhqW5xB1w1t+//fdUcvHX+M9Cq8gZEU9OVQRJCdwn3xGwf0P/lTKMz2U3mQoI5AXCH0o46O8SCCk6VcPssp/aaa2r+slcjd5R4hVx3u8i/5702Q6duzS1Asqx0X7mr9dXYmfQLJd1HS0pY7Oybpe5BMvda76mS2KbRLLBLHWUTb5Vuctb2O5dA9sW6go5cDapOIoF9sYr/BlXmgFtzmR7Pu1tGXtsS1tq7MW0yy9LtNKpvVFHC3QpNDWfKdjdkDrbvKRlIzFTkdrTtDqzo7fnlAVHadtOPbf5KbdWC8vExdzqMXJxtM6TTrFAg3hnJ03Qhlj9/T1Drr9XIlbixu8dNI1tHHDm3xGg90g2qTXHARLqPodTM3Y9mj7mtGuTVmHbR3vBf4+4jMSxlZ80lJGf4XoO16OLlpwv8Pj1D4lWs2KdhhKcrp2psZ0ZaXLpU+Z7G6r6VFCy2P6zVdy380HMc3qvI+/og2EG4nWdQyeLCd92KfVmTeLE62UuggXo7oN/hLvivtZJ8ZFz1tdkMIbtpCFtsf9UT9vOK281TaBx71fW3nZT6j3G19ILby8ScZ6RT38Xhsv2JIPEZ0bV3yISF68RZjj6jPMNm87lFEz2HyB00c+lXGdYCqNfh0XfCai/pjcEMaGpFU36zvs/mh2tC7OIZ+q0hyyophvxqsVZ72cbIIPf4cnZrCLXK31KKBHYGbmzair7WO0VV5Ypze13snXrO5o519W60qu5e1Ew2Sb4jR0Q+unIcpex2obLbZ5uH1UXncBu/Z09+JKbrajxl8YA42FBfg73qndBN24KZp0ko1cfw7TtH102wngwhUN3hQrTw0U10mjjnly11AxeHc7rcsEgsNhlh28qHcYItdlYTeHtzOckn1A0xc8tjCx6wheAeYihXmx/p3tsnBHP+XQyuZ1c3wiMo+mj6dSfJw9oPOp4DmQbzrLY75DYoux26Q9nDZ4DnnvvALgJpN3hkze7N7ZAk510OqgXXbfX5DsHd4Y39OuhosMhEfGe8PnZfuhDQ8fwKTzL29rt2OQwCzkmI57TK3vko5hoTT2y9s5U52wBSuDaENuxmP4a5hTTLPDxRf7jHKdD6y6i/t26Q4utjZnRgm7zC4eOtJfqToChFd7W4RN1P/G8mD+rvjr/XdUYJsHCnHscp1Reas94xS9RVEpDEsbyA9MuWm6MPFqnJzYYTsbK+6opLqKHiKZdgii+hl/Mx6PRdnqM7weXyTZPRhlx5SbQ9xPr9f8n79HRXLjG11w3A1/E5g6u7Vj3foELmwWPIFOETrItiPfoLMew2fC/RR2aFjOvkNDd5ETouJH4t/IZ3jbWY6dXqnkXySelAH1qP4TBwQi7yHmt99weuPqPZzezHH5jj0ZSeLZtkr+el/jFG3rwDpu80Xq+Gm8Bmy0KBPFWCy5jOpBCjBasC6srtIwn1zDP6TqbTgyzudMNgXzqqL9QKZYWXXGJdxr93FNb+KOt7QxOZzGGXNe0EwCmPfoaZf2yVL1avdqRwkn1PLaz6LH4lA5Tdr2vpE+3mWb9sTf2XHZ0bHguiCPuAWaANglLbzlb+I10uxgnZU/Yg4DZtN15U1iC+9BvL7zOn9IsU18Rwyxq6oAcLpcrjfx0g3hUJklpAU1bBA4jpPKEBMZqsvKb0Xuzb+9E+EvLIdP4EqhjIn3LLy2GMq0Vu9wxpmXX/S+pW+bRV28E5t51XnfGa/AHXfwvc4D+sQcCMxl7Ibhsw1WSfisMIaCv4znPn6pg+sFbswfA/fXhdQVpnpTCMuVGF0nxgN0vqvUjeCVWtaO3z4JyTVzVpxkXGzlFBZvEmN3Yxvmpduw4iKxu23cVhNrZi2jngbbkO9BldE2ZIfZlB/Tf/XfLQ8EOHiFhNJfWY9dHYRzZgRrlBlOWQ7ZbfLUvsD3HmA8ztjttRGz97l5w+TQ+ZtxPvV2TzZl8/rn/WP8NT0yttfTXsnf+KImNPa6dJrgyJh6SHz4IIehj/B3vj/xxIpC++bi6ag6HgX30wLyTO3LYZDES5g6shX3OfQchOWBgbfDNs/OFDI52j7qs/cZ/URdqeGJ8S4xY3uOnrDNOCWLvdH0fGL2KaRuIk9FDBTV3AscyEWZ3SzpYKRJ1clUx0bA+KiOLW11kgtvldvnO/W1Xtjkr+RseRd7vICWwGOn47Jo61SqtrvsR1auiXcrZ6Mzlz/E63lz7IVua2u50FFLHu6wvHxrGwNjcsBNvf28Ry/eheGFVtSVenvT3rwTC7dVJqOFE00GbFSJ5DbQ8My8JKLyCvM2qb6P0OpI/ToTh64DSrRMmHgxZLyaeNNEBuwc52Kv7Oaa0w96kxtP9lwu9Uvm7UJaUsjlBzjosThjXAx7VJxceMEWBd/AC1zU+HN1zn/p24o+v9W5DpwdPt3D4w1v618umnOFvy0ed5h0py5tylsdWQ7rbbdvh3VJrqx2afG20JS67mO3prLlneAyfjm5jhXLNvefx3eqqzI2GyEV647S1uoTlirR0RfsTk+YqvBadoHdi+6xCBGWU2zRD6nKu7bHMJaQYtEx8JgiHkCHXCz9Y4P7pHPcz3ovwxaCnOf6V1pBfJtykgmFuFPbwzYF98EfnM4LL4DfpY5Fm/HGIm7yfgDuf+ZJAXkel/8pJF6ozI7XHqUOZEAF1kHDDAc8pCR5U94l8V5+sTp0uZmmQrEP18ZJLLT8onED1stCyX/JGspYeJ2y5ptmbXW8Y46q447eLt9bZCVarmtDX9uXBG36TQVJZaLKe+W4Ue5JY+h6v1+eRr2rjjFZ6E9RWxdstX0cfRi0DR/YJO10MDvx4kwrr6SStWz8rWXTOe1eBmfHRidj8sIj0QqKw5oy6eQyDy8BfPfV6DiUBUQLo2Ve342MCchR5HoYpIfD8OTAaOZOLh/FTP+WkxiZ1/NDri+0yglbTOunLzK9OWY93cHLMkF5QVomO/MOpfFLmQtss/6rNCAU1Mft71H+FhHthbtyG3xueNu6mrItUgjZpsOYDWa2mMpy7ul4hX1XvrjqWBvc6bjQZkxqdTY5d31G1LXFfde5wcJdR+cj6bXquLmb9V64C6r7yLEAAQAASURBVOkx+LIur04X2rj3A2PiCeRV+4iX67rwNXInf9j9sfxBuG6YW/Dc1Sp9IfmMguWsF/sAoWujDsJku5aeHNmTtKCDMGzQ9aU+dbsxDS+IDqI9Zthp+Cr2GUifLBHhw6FWneNpV5S5XLFPuSCwnGgZ5/2zKeab5tM490PlHj3TZ5feTChjHoiOJIxe952pv0sg/YKBrzl6SXgwkQCijn+X+L04G4db3ph4C9FeT+GlzzY6bv0tT845v1GRkC3x7uRuNa42b5RcqpIX0lKq3egxJXu511VI1tGyZNfWoW1XzVxZMzH1v4o1JmvTe4oeMv/PE6/dJCzdanc4dWa04V3unzrLsptI9ZnD9gfcRpsggZyzVxrx97b6NGelquPj1iyn8CZny3niHf9mGCVMn8ZRu5PMiyyAX9KOxREQi6Vw8vaOmcniI5PJsdMkIC2kkpM+8wKO5I5DPXion7i58z1TyEuEwER7Xpvy9JGvSlxaXlxVCG9YLDVKro7LOH7afAT3USDeLzY/QDWkahuV4TF6ZXw3acHjWtdFeolvWlzfS3k7H7D+3Ave+JsrHVe/Njc9K6aaXhXcFp+xx8VLnQ3r7vmPrOx9n1Hx2NtIeNTJZaxeZMdvw2phPhuv6eTJmW9Ocqi4H7yahO9MuPiF+TQq6cv9ivDYcMHusSJvaGXsRpIzjsAP/F11jPfG7Dh8P+JeJ4YadutJuC9ACk/MOO9tgNmq8vIGWWDoFFp8yHrYk733BVsk+T3BcmqjpFt6xgeppbw7DFv4BW8s8EbY4o3sZBt3+EDc/1zSM5TxU0i8FThHo8WP29OhyCO/MtbNKGkxJxynxE6G/zW8oqVcAY5pX6cTwmKHjpyXTGsjJzmYKbe+uM2PyRXwd8y86x1RhkK75NP7Ptjq4XVbnnWsZZVXUAjTLbnUEYj762WcL/Xy705HubJFvf+1bGOb5Fh2vK5HobXK2jZkWjU6Lifjy8H9aqNTy5v7pzuU3TBKO5qTvtzbbejJkWn59VBX0WyVwljGruVBdj2OC17k6DQpcpejjwkWrB6/RQdSyIjJtVHHbYgnVhtemkTEgSAmNx9JLEcNF2HaM71nIAeHohgt5ZlWzvSNsir3liY6o4w/TsrvlFXeAx8YMzI7j8D62ay5zi7H7CwP6NmHB2/BX+77Pub4hocKNXRv4GTtaFRGfY7fgzJsy23YN53xOMnapYptG1xs8Zh5JZvxChdPFFxo6lp8xk7nCznIP5POFQcXE3Xt2dh1kav7MilyF0VpkeI68vtbjbKBG2cDuNwgzueF1xiXwbvsAUi+lu+f5ncVF2zPOHlFm9lWnxDYrQvu8ydI/EmQzGGtmnG/6mS8mjFVC67jgtde2UsLLcJuAXAr/lXA9PldYUH5TEryGbHggVJ7ketyXo6Y4HfBVHHI6e8hW3tqiCH7jBwqmr8/GT6j8mqi7XH/jS983rh6j6aP+4Hpw37ICpRMWhwdO8m2XhqhQTsqqWGJKHVtD2ggvbp7X3Va5cbv/CvkrjqtOrfOuOpxoSfzLm24uAcLbannin5vmw0tlW/rpW7zarlde7f9Spe62MfnenVfT69l01+TVpFSvfuFIqClk2kaZhbmwjWJ86+9StJVLZsGVlc3KanhD3UxaIuyWJzJjleVys15FJ0qL8nh73tZkRBve2y98bpuw44xN2OnZrRZT3e29Dt0pne3lHVseCn0JOTQU7MUDhNPwyqtLaz6xd9w6inEhR2yTRLwyqRYTkhcf1PH3eBi9AzG15LfjH0tIj4EU1+Cba0ed+grr1zp+CF4fMV3sdC8uwil8bzD370/vfbViXZTlsofLZPSOTZ4vMi1D1bPSy2mtv25+X0520CRs8Fyot1uoCW59fTIBvcTk2bait3D0Xi+/8RIxWLmReG1J5nrkzHG32Fzs8JJvNMWLitjt4eTF+wGWFaWk/KLzyDMXfxafmc3sFscu+1aPBljnRiP2RdatMW4VnE/83I0Bdy/RjsVgaw1/zaTPJ+YfQqJ8U9iwmhbGsOBqiNFOgK/VnBFKzTEut2qUu/quDfexyYJhGY1lNGHgg0sOtqZm8BqLLyQZJvuA6PbyQbu0F7xNma+K6eKveDd0e7eN+zk+qV7OnZyrZxskSq9cqhN+wC9bF/LzPcgyYkW2v3PXT0vjpxXAT7GflSuqS3Lk9yUD9p0rhi9VyRsG3OQFCojsBCksmAzNqu/lglgoSUux2ygPJ8Pp8gTDXY6cSw9LwTDsVTeFBooUS4K0pMmBLSLfMDukvEXWgDCDlNnXuK9LvH25QXRSCMU5fB32+xl8KC7Oe9JHxvVJGelXXnj/TMdIT3Ee2h+ivYhqXKvY3DfSZel/g4XgfjuGWM7rLvmd36Tv3kAU1dsKzp3aQ4ptd91/Hap2OYKUx/G/Tu8wj9kLbyH5S/BX2dZcJ8q6OwUUNGGTF7quGAuY3cnN3uc3F8z7pcuB8bUHFLY2WLxbFSew9B9k2hTldEyXrcLNApVdCxPfmBtj3i5eL1pEk/+AWJ4PHGFdBb6p1LaM/MJy823TT9ndal2uK8J991/KOG+4S9ymDZ3Az86nn2HFNwn/yO+wdaUzbrD32TaQ/ip1Bl5HfgccgHR+nTrdNy3BanzSonwQIRJSlnMxeYcHPf5QJBn+uzTx1uYSZ/1R/W0QDMQHQAjXrwusiTAhZ5XpxAXmcOuAv2k9bksgWf9dCFjG4fSQAHapk4OVBwlOU+V7fL254K3hvBUX6SlXrH2NXLX9uXKDMe5LrbNkiptYxunK+1b6q70IJpOx0rTyeXy2t5Fx7ggzOu2mw6u6Lj8reX1niRayf3Cfu76jRTedG3qTjrWxZ0UuWueeP2vzGOcwzo2pKTwuoOq4TE+1KUpE8R0vO5q0vHMTp9p43TxlffWHLFsvIdkp5pDTcKRAUinWVVae0fMw2WEJwGgxQ/cObNc+7joWLxZ3hw8nC/vrmrm9fYVWrMTIpQx8iQHvCg7U9tflATwUHO3Vh2Da59P+EeXGcs77O7GD9eR9/iirruYuvDGhaunSIZNW8zZMVH7+vGKdS3LDW1w/2GfUdOVz2CdaZyl+qTQlZ8vso3xNLa5x5dtJUjvUVXeGMyNjpN3oa3V9H2x11mos9gVLbRZbjcdmioiFilU5m3lrQ7BgvtgTC28tFiyS8ex442nN75g4g2upIeVM/6S2AW3Vx1ThIBk0/JTpoHlgYu3ZCsteuVPhfCR9qO+jL9rWdZbSG59MjYWVrN9R+CxAri5vdR1chtP/fnkRvY366Ze5n3HfgwcOm9P2N5wej4x+xTSxU3W9Dt7nOFwBBuXUHiNxOCJ8s3uppfLuhjQ9EvuyLHFIVo5i1zp8hcefpF7kX+B3KXuO7zkn9ZkAK40GRHk3cY7pmknOTvniXz/wI5M7uhYefnULedtvO2Uk96vY53bvxo6VVtwOAyJqzudSY7keoNXV955H3gSJ1TGvDnFQsMDySTL4fa53BQeMcvSfQvny+XG6yanuhbapKOuZe6IMu9ReP1bMBdyeAfW7QYLS5Gwcb0HRG8fgR4QQaGPfghImVDQDrDxJtrCiyLH67LwRaZ12+S8h8AoMD5ibbyn6/yaFNhN+VreYugGy2viDbkWUy/0SjreyVPOF4fNeHbamm/qrbiReBe5mec1uG/kD/HG4O8xu2tv5WW5xRYJrzs77hZeXZ5Dycl23N7cDM11pb+NNbg9E/u3mLrTs/qIBfeDN2GrIIWhe1VF7ljQBhaI61jxuOjFOhuv1d9guV1gnIxEm1MdhlaMhX00mhabidc2dLhdAj/YY4O3HW9aeLFvEIYQ8/rBK4n3TLhvctHKPVP4OwxfxfA498fgnRthhs+Y3yhTts2Z7OhP4ITax08Rra3Oa7YaIeocqRG2iWiKN5vG2vHrIr2dUEYYPsVgVyChXQ5lbADT0PuQJexRHfWszoZ3jg5jZfBl9Mv7J02ZIk75mnX7k7XSZssL5eMQsbCDsJxWxyaf2ofsPJOcJt/x7mg3zvpe+2rdV+1ZaMulPrSEJnC7CcWWt2/vyqvXOqa8pstLGeksXF4caltv4tVEVMMe08662HsFlTc70IV2hruMuvwuZBulCZI5xPz3mLGCER6izjvkircvdluJ1gzl9yccry82pm0qL7fPQlpYDlhHr5tOSGQHarJYDws1cV3pdCsNuSNsENNJCuw0LD/IQyPERczBp5DD4aytfeMEruCttDnPT/eUjmk2ufY+2ZwM+MeuG/y9k+adid8V29OYC+BosRxXuKiOv2n8WrdlnRIuViwn3qbF+oDchLlshwucWHgfoP0Q7H6Ed5e/y3vhbx7BxS1274Q+qKNPvB/E1PAPs5Q37qyqLU6ual5iN8sFyBY2fsMG8X7ZxGOTa4YX+IIs2k3FpAePKiR/U3QsGM74Wxdd9gmCfNqtHZ0feByybXMMI7SReAM3zTaGx7TgMPi8x6uB3Uwb+DyxbvomD6NUM18NVxz32o+rLz7jxvjPT6gYjwsvhyfGJpy1064Pn3HQgR/BazhffYaFLtonUOzUxiHXFnLDFkX+K3D/80rmz74e0ts5Lh/AGJTl6EV7Lq5YTudKmKfwuB5x0CTehGgBQ4kXPkbjdCdyvqZSAEPmdUyrjkBook3NEwU0yYGDlCawXuXIomOoVJ2TaqYVDLlSeFln6Xjn9RSKY6Ypk4+lfczLcvgeyp6Xd1rRsKSFBxydJ8DWe0+p2AaQcrKXbm3jmU0bIM01vpS6IOkM24UVw/V8Shaqzlyhkq1mn642K3WlBZBkemE5KvP7XjEemLc2Nx9TH87YHbdY7w4nErRhmSGHnJXtNM7yW22fTwLgtMa7hgnmxSSHNsbirfLqJe/oUmfmtYlD4bV/Nw8FPceO6AQBgeJ2xBMqASikMEJpwoY5dJM/JrrwlnfVbvSOQoQ2xuSHeTmk9dFkE6e4MO+C9e9a5saM/hYTtoKLZmsF9Fg3NhIerypEIWGsMi/Nz1udWW6pe3n1rGCOAgvGJn9zZNYOYwwqFjwmfFqwm+i79t09OfLCrq1cawDpsNMxiUw42ejhheIh1U7NC+XONhuds2NpkD/FdGkqEv6fNLxJLuN+TDcsL8mZ1/bxvZyf8hAZOA3uN7Mu49Xxv3TCo9cnpd5ROjA1ysZiL+ct1YNND76JkvHJ/YDpdFTewK6QM+5JLI5GuhVe9hlH4a1hkzeKLrgln3EmPwDhEELinW2ri6OMx+YjbLmafUjnb8YJiicEJ96Zb9IsN+sYeM1yj4T7fNjIPZ/x4bj/uabnwuyzSDFUBnCW/PK7B7ueV0oZAd4F8C9yCWSudASw7tB2jmCTDHrigqwEOx1bnR+Ty8WtLQSr2auju1N/JdHuYkcvhbaxbadjul9U3spNvOsgX2yz5WUG7W3jOmvhlcgaEO5sI+vdNyeWe37ITD3WBVVaXsBMOckBmzOi3yRXmrqKGn5XXE7Lyzpry4uikxT6wbOOjMp7lHITlJ9Adrxn4pVkO3KYYnJKORR8zmDYkm0xTusSmkDkxTAtYKfOvpOLmCTk0EazVSzsjDd9w8x3TUG8r3eAPaYiLYbSeF74Ci5eYWwjc1tesZz0EMpX3Ogw9i6Gcn4TH3TlizphBB+L/vfwqm3fJrWLqarPhdy7ttnouOjVYXWilY1tKt4WxZa8kG0Uae7Q6VGwfKl7ozPjF1/pMRUFjyX+L1psxePeiVaMlJxPOlE+6B/D1M5nMEaaztlsYRvGOteZ7jMvhlbevj3MW0+LjN5D98fugbINeMFHvCQ3tTfVfeKAZLsm7J510FM0tk3GcrZBLLYi/PIK903Ozmd8erj/TI+nN7MwM6jTsr3o4+BADunoHLD1mXlsDb/3k7pTkuGSwUDOzreeylhBz4cHyamhb15DwfQuKSo4z8FTKs06Uuqc607uIqeD5k26cuKNPJ7eSqNzvRVbHRrDXr1wf2mbVt7aqp1tru/nxjqm8668Osiq4+JAC+3Ms535b7eYg5VNgNeuLqJnZ1nrEuZlJ+whI1zGTgs0MZnlWmhFU/6YYRpGOyIsWW5MAOJjyYP2gFJ8f/4bp3WF897zguTQMcjs7Gb7jgk9WW4sgkbI4giU549+Hsbjcq0t8Ts+GEpO1eQYD/11p0//RvcwefO9gsIbJ3+9LMW0pMGYMo62+Ms0dk92XzGu45InYC1uZCxnXTq80kyxp+3au9Oxo32Bz3iY94H2bfW60CX8+J7uYf9Sy1qfrwkXnb71IVov9PhffYFI5mUcTgJDh7bpbJwkd28Bw400JxCrgkZTEchYDuZ1sfu7kMIRDVOnjHroT5Iz1fCIpYkxppwURpkfPgYGmdDTwGgqP6mJdrrfcPw9020J7KYTEDveaUfHNt+AjKdLbiuFY61jKrU3NrjgvBHpED7E5dIHo7PO87CoKbt+TzLbZsX98EGndd8W9699hoaOKf9y3P9c00d6YiYivwLA9wH4eQB+gar+0Lz+CwB8xcgAfJ+qfv+9+t7Gwsz8apdU87NxsrvS43UvTDFtljdGIUrjlbXYZNxxhlVHh1C1D6cGyb59o7DScveSSrzJPpTqxKSV09Mu+SZ5UZVD+W4Ccanj4mBJ/K79yellCz4ql3m3tvE8GfTeza7tMYdxOUHY6bv9mMOq4jIsLpwza+xOR4ptNjI3k4IYyuG8eIJwOC/XFY4tnFd+kuQLRHd82ZkH7ciHHHNSNMEgOY/zTlotJ3Kl5oywlKyjkqPjdyVicRgOHuFQLcSwdbB5QmFOesgd7yHcnHd+L8d5z/TB6iPxssP/jJxfgvKC+26ljrwAlNpkOtOmhYUQG5A/Z3KsvGtSZ/L3iedpkw9Zp/obxtdHeS98xpIusPuSt/rEO6k+GX/EZyxp4292vqXj3b0T3Ct9peNqnTTrWOgvGtr4DIUQ7u95I/ST8co4SMfqP1LIno3l+4nbtzyRQnOfnSlwc33n2coz7nMoZOC4tZXxOPQKX7Dj7X1Gz5s3x+J4/GjPAfhGkOEtY3m0yfA3+4GwS8bygzcRk18ceP0uYfxJ09l7uH+6jmbHwP0cWn9Qe8MP2CLYfIbp/IaT4mMe/vHHAfxyAL+juf49qvqJiPx0AH9URH6Pqn5yVdnbWJgRHlmMs6+NMgIFi1IZnJgLo65Cmw7mWHiHnFzVOgUIHQPpZNajlF/82ZXjopncyrsi6jrRXvNex9HnlyTr36WuO07eaetkg/JS8trpyLboeE1WN6nxemUrd7WFpny3e278XfhhzhdHSV7Dw2GmYastfFFTbdfVC1CoQb2g6f6t+dWW4SRn7y7v21VejokHQI6uyNnm44OaYk5E1vcUmJfDRzwUxfQr9jDaNT8dmZeFXKe1dszyzMvhJYPutuHlkxbFaWcfmIs5jvm3dxwG/Vm+VcPvAGh6NwKIo54z7ain7r7eyHbmjI+FNyYUtzRJePnizLp0hQ2FQA5rgdmT80EtivHuad7+LoLoRnD5svERHckv06cXUgu7ObOpELsXRccsijFHNlhX676ivYexC3bLC3irTvfqqjpbWV0zLzrGpkrrq4i2YlWrQ/l0hqVVbkNUcDLqFspnH+ETb6FKtnU32J0wVUo5YyoW7E5lqdz4YtNHBMv7W5FYh4rdefFjMrtyWzTW72WlV/AdE/M/LLzq0QWWKu67LovPiE0x2fCm34TlgonjBCG3pn2GTtUP1KP1+WAlkfVo+hvdo+QzEIunEVZ+0jt0sy4Eb8b9/M7Z0Dnjfu8zwt/YbylteOuhjB/r8A9V/ZMAljWJqv4YZb8ZzZKgSx9vYVZ2RNcFD9NSoaWaT7QxqhyQbVgpkB9NlMo7J1J0qvtn5lU8tMbc+mZB1zbpotB2fxwOpNiq0CYnd+FA7/WQy3tSdb6gu+J9SKfNvX5E/67faMmn2nZ6+G3eSJVC3Npmz0t396IvaLnUyCHa3I0qbXbGQHbq6vlJC7ZJ2YWdcuvizMbBfjKRnWv8ZjlZT3YSeYiRAzTaI5zt4iQLbTowJOWHXisvEu9xwcsOLX/DjHdqbRKzto9DZWx3M3SebSinK4ryN87iSZl/LBoabfNTH42X3y/LO6xH4X1pUsL9MT5Tby60mBPgD8BUHs+8ydCEzNdJbkoLHlNeGrkl32HOsqDpcH+DRzvc79KreDeGXXg73/yQHMX6C6ttHtWp9A2mWdt3oXTBSZ4/rHqsC61eR23ElhaSrmLYfdHnQs9BzThYafMmH2N3xef6RITH+Uo76g4eSfyMvSPvm0AeyRD1R5icFLmTt2B58hku27xUwf2j4jHVQ3rL1mdooQ/b5A23QitI9R+F97jgHQd/xEm7eTEYx9jnNoTPOFJbz/JkbdabTvuFh7DzgU/8VC58zzO9JInI3w3gXwLwswD8o/eelgEf9YmZdGgT75h1j4OU8g54xUvQUzIG6wQ5ipgQNHKUsQgd1OXyzOvo05J6VRtnfO0zymSiOqcdr5KDkTu0jdJXxzU/zNu0N7km1nEnh3nv6LQtL/L5HaZL29R+amG01dkuXhFLGkd3SyqXwus/Ux+jknJMf3bkBsrTzfvRx2yEQlv0HPpM2slrVaxyouoxdNXHX0tbdLT3GCzM0bRLYYPghYbtsgetOTAbvJW2Osk0KRCbs7NT14b3XHhZTuY9l3rtyZgd25wWaLDTJRX2XR5/n4PePxvt03jiBoCPvAc9GRu3YOy2xrH8mp/ApfDL2CEdfdkWnSbndDmv2Tn1HmBdC4CHA1r44bSnjV8fx8vRhqXihDExkBj30tisuP8KXMzj1cZvN+CJTgbmmF671+NcDNMi28bbd6Gz21Hu8O7w0nCx3G7P3pPb2ACbvlNt0/vIwGpoTN+Nl3W6+m7dWm/Wa2+bgovUxuXWL3kLXcxYzl2bFw/uoKQxBfW7HcZ6d3TIZz/AeaHfuR7xe38m2qrjshkH5EVbqZsjExy7E4ZG2/OmVzZELEIKLy54E35PnEPFwRyOGHWFnMpr9ZrdRtvOrOP0xbG5FaGO9i7x2ItSYG7aHaIQPQHSMZ70WXuzz1DEe2pIuM9+IHyVHfZktKyz8Yafe8Ppw56YfYeI/BDlv6Kq9n4YROQHAfy0hu83quoP7FXSPwTg54vIzwPwvxaRf11V/8aVIh9vYdY5ISAeBer4JkxalFmPd7CslcgEMXO2YlUFqdiwwlrvzPMxyFehjAOjxQHacIvfp1rBef4pjm9nl7gkPa/pTPn6ap0eWAAtOeeNA1vWrqwQo2qn/vRfu5CWxTZEu+hVeXFBW8oXuVVXycTC969lsJ8S14QIRHvbSFwQcrh9g3Tp2kmG0Zsz6GhZHuVzGEo/hJw2lVtdxdl6t1Sqex6vTGXj/mZeVjNMZry8e1gcgmTadKTyAXShJSlPso+iU3pHbOFFyystLzlysVMOe1ohWkm8ACj8xb4nk0MZg2/kzdGP63wsfz0mOWhj4cchQKyHQPHO2352r3/dTdb2NPTFxi+PjfgnU7tuDC9DwvPRoRIutkpluVvspnzFXwtlbEOqka/1vBs+FNqscuA85Zd6ipwt74Vcy/IiK8HVrs00ri2fsLr87XRMelwspMRWnkVn+5Hl1g6DlZfbVxsmSEpK4d3+Xjsqw/SiR1f2GHaXcg08drmEme5DSC4f8nAczaKG7m2whs9gU3NdtkASyjvGpPbVxZ2mxRwOfloFx9Q9L8/6OIQweO2p1c3rClxM+lY/JiDsjvaNxRHhvjItyS24DyjksIVVHBjFWC/IPoRx3heOfm8q7sf1ivsAqBwIH6J+795u0g9dmP2Iqn7PtnbV7/2QylX1T4rIjwL4OwD80BXtR3xilraJutKe1pIY1cqsZSHFtCPve1yr4ArILUBTXUmuXZ3D8qIXe93VaUT12LXP9RxiYgEkxZlZ3YpWDjvanZhFXzR13bl/7eLvQl47SeByA2hp+onRd7a4WgyXJ1Bu106n1SM1f22W0fGq37O0W8p6SNB2NvAyiT0K/gi1EF3drbTfLHflJT1UFx0r7bJjKpVWE60gXw+nHI5nofWQvqCtB2wcC2/WIzmvIvOKdwlpmbxxUiGXxeSFdRzlZ0xWmJfqCl4OQZn5eZIXiDZ4T7JN/TDo6S+PVzlS6gKF0MB5Tc6ZFtgvTWpYvsO+Si+Az2iuMJXr2mFd6qOrHCn5Wn/G/dEBWkx5gXGW74o9gMVGduWrPi3epX1FP/cvXAfZYsFqotku0qSTq9nGRc7SwCSn2Syr+MqJeadcvk+MC1vbUN2Gz4x17JOvsBsA9Q/FOErjAeyufHPBsPobG+dAOkSE6yn1spxs/rI4EMauZbYUixhZeR2Xal1TaTezY6wm/duQwoRtpEeq3za5cn7IPXFoia6wNjT+5Uh6Be5Xn5HkTj08wkF0yDWa6jPcX4Yc/wbmbG+H+5f+hqIvKu/uaII3kRR4a98xE5GfA+CH5+EfPwvA3w7gz9zjexuhjDQJvgxlHBcWOIgimgybxxCCEJK3VMHhiMg0NUwl772oe5gBfJNGMswtay1Z5WDJC10iHQqvy2E7cnXs6Jr2rXLzpZfwLrD+Sjkt7a59QHKS6/3r5QIkuKGVS172rKwgYIuyek8W55S6ts4uyJ30npwNb3oaF6EyY/G+Ou2edwJ9enqnxbFr+QuInKGY3xNydjLqtbHAu5wwq3F90wHaBEKL83Vd5ZqXwwIhFEoy67Ud0pVXE68Qryy8Vg4vv7GNeAFHji5CCs02uoQc2rsAB+yleFpwqYUuCg4LS5ltOdIkQOe7ZzRpqaGNoAnDDIO8TTkR9ui9+0VpWiiN9Tx+C/6CsAu6wdQ5wBD1XWH5Cj6Dto71DlOd17u3DaykUGpwdzpgleNJMn/YhmTeyS/Jyl6Ki7jG49U2vdytbyKcrGysc4updhu6Lph01CnXel3TwGLzlXclGbA4cbG991lnCrgE4zHTMv4qrLwYX4Zej2A3VFxHkx8LOPHmH4RPEU447hI/DQJiLGbcn3gFw1/m1ZZXQEfYb7Ec80PywWN4LH4/WW7gr7jt+Xj/Uc4LGh9/ajpY+Lw65hqv4SIfVnNgfn9yNju+LWZh52bX08MTBeEz+CkU+wHD4/iMCcqirPoMIB/4IaHHg7ifP5cS/gbevpD7ptNHOpVRRH4ZgH8ewHcC+L0i8kdU9RcD+PsA/JMi8rWp3X9PVX/kXn1v41RGIDqMH0E135E46Igm63TA2j0UHrjsMdx8nJXvusa0buEF+YoEuOF9lB2KAwh5nMOLElh73k6NsgbYFoTNL5IHMODL7TN+rdsX7Pji0gAIkpPkIuY1KH+lXrdmU34bvmNt3LXvwjZJ+UanpX2FVrhNVswTCk5F7sJrJje5rg8JYyWsb1Cf2/nuJJe3UbPmpaEkZ7lP3chQ/z7MmPQIDv5ejOmv4eiGBPHyEC3pWzMhm+XGh0vl0HT7Rl1Wr1LdWvJYQk1k1iwN743kGK/lbVd26MC7lJP2yL0pDr2An47IvBEmiCmXnLo7W8x3A3ZyOTwE5JgnrZzgUJpbcbLMG+Ev2ZEPuSeFPY763yVe+zC2Ijvn8S8f1cyhNJgL8JeniikJ26zIsE2o7B6mSlNXwfKE3VWhOZyUcVKiXi1yh1sI3hbbGp1T+4i3e2rW4aIPVbKjD0ErQy5vcbFgebsI6/C45H3kFz0yLmZZQOBGvSerbSzsbkXRdooo628/4dMm9Bc6FgVn+8qM4Y4/DeLgjtrKvY6VRBU9Bdm8ZeJzsqH3xKSftTH2twfdcUS9NbywGuHgewCJQzHSfZw62XWXE/WpY6rxqr877JjJvNS+AzaUp0608Bi0G58x5fBtPqrP4FW9IIXr3Qx/FWD8s7rcZ0zM4ANDcphjfioGQfIv1j7HYxSf4U/GVtxf/IDbJhag7kMUxWfQosvkevviiH5vb/JVb3xh9pHS/DbZ9zfXfyeA3/nS+j7uwqwCPV0YYL8QRFllllIu0tJHWfXwTHtRjwFDjL7sdKmOPhym1sVyh05ZDsHmzonU9GK5TZlQvrSvqycVNo6P60rt2bWj8ladqvxGjhdVuZ3OO16Xq5ftc5RO7bO+kZ2AFzFv1572foeTY966OAuQ5r1ihRwNb/of7aoVHUOlkCnS57P62pYlOZQ/il2jvXkBVicqHa+lFB8/68oHWMxdzrLDyrwx9MOxjURhKgWdOGST5XK4iDk8KXYz5xz12u4piFddJwFSPtOuxyRzewTczjwhkCXE5cNCWq5wsc0TVjNvHa897jeYugOdTd0xnjXweIOhV/U8hKmd3Fp3i090fSPnLi5eye30oN+LHumeWF5XWlNkZ5ukU13hFj20+ek2eWBRJh1vjJMlv/CSloyLni86VZwUarO3NTa6IECP+7wgyXmjze9YcTFtPhWdx4/VD3S0jgvCpsm4z4ITHjutLrZJNm/yLBdJRwEIU2lWtspRKyeMtbb778DFaEcNU591NJgK6IhecFr2GdYm5tWMx+4HBm9geyOn+OrjYDu8zGdkX1V95ttLH+u4/E87fdyFGeGs/dT8nJ9LgtivI1+zSweWHcB0uzQPzIH8mh0EcbYLwVAY7m2Eh39onZpq5JM2hwlmGUmPzgTNpSqXm7w4nqYM2kycqNK7J109Krerp96zC52v5NS6XsxLdei9HaIaBmmpOiMkE89i7e9rcVjRP6Oben6jetQ1wy2SbYh3yzwUi3AYZIfmzmxSV6dOoSVM6/XQJC3HvU+HkWyz8ppOx4bXnRbtlPIx7+z0IOrrMQvbcGdFIRz5nQAUueUjnRI0/J6Y62YhOQr4u2E+gYqTvIznkOnY5Uy8NnlIulFbxzthEdIo9NdDdgrPjXgPQYROpjquOt0+7XGx4D5huQ+BwuvjLg2CGe5aMVWw/rW5WMXUzXgOfB5Mq69q0g6DrvD4gvaDedHYcep5F5+bSh7xN6tHvZBbdI5zVze2vvLzO6Idb5pqUE0Fy/0EyK59ahh1oUbF352t6QmQu5nkB/Y6Mm3ImHml30m5ydv4Lg9pL3INcyARBmh1O+6Tz/JPiRiuyuk6GdaB8bHIsfwO9719CVOHHuEHQk60Z8i7TVBgea3PsDL2Mxo8jKlAnDDc+wwlv4MFj9kPiPuBWLwdRVfPm/2YvsH99MSOfIZUn1H6yZtMz4VZJBH5xwH8VgDf+Uj8ZFsHA53bdl70x/mTFjufOunsT3oHIFNHbvVajilXzik5+iFnumso1nBLKbxL92l0vJusncTSOclO1HYxcofxtbz13TDgBa1tfSovYy9que+P9wRL1zCAlrWCh2yjxp31qOFVpWIu9dCjKe81E2RvHjn+XFo1oP/5uxVdL+NdTjKh6cpO0Ms18aZQHYScTMdPbGI30J+qkfM3RxyIwXlyuhI05tQOP3yDnXHo4Qs9d/gsVxc5h9Nm3gO0kLpymJLDDW3Hds9Lx+QXuTIXgLdk0zhs5MAZC7SG97UO+hIXLdVTd6g/PSRVA495BdF+yaQqEC7kIm0G3YdgKlXxaKqbZI/ZZvUZl7yLT16LtV5Y8sIri4ZoL9sOuwhJDfZe6b1oeZ95fW9ubXxuBbVPmu9HGo3QYoz+Xq/vp88QzhmO3u85dZGVMXVtXxoanU6Fl5/kJ7JUmWEsYTVdz59FyX4g5MDLInW0sWmUj9HvfYbJjWgCDiUP+vw5FU0y4+lWXSgFJls65oLRfYYtemTFfUl6vSf/MvFYWWb1GWfIlewzboiPUzPuj3y8ozzGgeXZB7/RpADON67jg+mDF2Yi8jcD+AcB/LlX8c+/trmyfDnbfxT0amgrknhseaG1l8iveVlsA2Exq04ThwTXNBlwvoJgWznUXOdtnV6W0+WTHMuvr+6NfJkTdXJZ57t+jnRkn9o6ows56dYr0icNGIwXndduk3cQge27FL44T46UGkFllg89dC133ukUDrrOOicAnBPjVKa570vhZZ0ByEHGQNx7m/bsnLE99eF66zHpMckoiyNg4U07rfREKZ7IBe9Rm0dmj/cSBi/H5S+8Egsno4HLy+0zXjPfTYpcsM4cHpR5h47ULnOcxovMy8fYw343tEeiHSmHJ7KOZ+LNdQ05N9BustdNzph4q443vD4NfOqxeqygAlgUWN8/2445u+BF8f4v4t44LY2TDp8TfYPH7l8KL9c9dNhjasXQConaXSRMrbi/tOclvBNTW97OVoSLSc96TxKvpDyzddidfYas7Slt2+Mvy9W+Pfb+t09oM29a5ND7WpkWBa+5862bT0i0urKIJLl52GiRQ3gkK+2xmXsY97iPE2v4fbQNraWDeYWHKy8kMq39OxB2zbQVyzOedj4j/AsdmGFyTWZpD/uMUfeMEkhtIAwV+95klmuXbqTbaG/F8lzv0WI3+4y5cBKld6dXP5B5z+IHOFokh7Rn3B80cfhIfBMzaN9yMt/xxU+fxhOz3w7g1wH4gRdxTUewN6MiPWZZFmEX9c4emoGen7GwN2w8Y+Ocul3BwanBcJT6qmPD6oh7Hccs4OEuVm1R6k+Or7av6oGre9LpvKdJxdWOD/Kyw2956wlsNbW8upSz3F7HO6tQl7M66mANuWmOUR0z/Xad5pOqzq7WD2OYdO1rJhC1CVLlhzXYYVre6IaTNeCv9eqymIuFVPzz3T3NbZC0sIAfKJKcpYWw+PVmEkMTa5PJhTkUJC9Khs6x8zn0DXssO52ssxZe5QWcOcGTJgiVFyl0sb4snndmo/2ZF37CYg21AcbO6yEcwsgTFWtf5b0YC/dSGnOzLnao3A0fwH1dcoy/1I8ZUzeLmC3uJ8wsC8cHfEaHTXXRckXbpgb3PzXeBr8eqftl2H2n3hf4DMbY/WJ2lbTzC4x+9zA15gFo21exfFfPohXzFlx8ZPh5GLo0bSA5CW89P65JoT1qvuA+0zOmGu2QNxdwE2dZlmOS6BiyVuZDOuO0qZIWio6RPR6PXQnDRcAOMhqHJWVstGoD+3jkZ9xPfqDiPnghlTfLVl6dhzqd4Y8QT+3i4I5rXrsnHAlhCz32H8sJvmrhpeoHRIV/eabPI33QwkxE/iEA/66q/tHl6dVK+6sB/GoA+OYvfdu4WJFKdRwoyejgYSlaFmpNBcu2Jk/aC8r7IxxZeH2O4CxVTqO3yFx0ST+Hr9dkva7mpXa2NNrC+5DDJFpZ2rdJrY5NWx7g7SZEq5JI7dNHePmetU7xyj6zTwEPtG8zQawTglbHJq/1VvcOt2+uJN5+QRTV+jtmUtvbTxerThEUVuXEbiDrN0braCSH8wFIjgrIT+xG0+KtkvadLgwHKrLymjNnPQCF2AdWwbrOCYWiOMz4t04uYmcRRbfRAVnP03ViBOJjokO/6RD9nsRhG2Yrc+ygY+tB/FFv/X4Z82rhPdMEYuH145g73kdQJ+P+l7/526nE7n/BS7t/inxCImF5SoxlXgdPla2/9wPLccP8CpftGzV5r3zGjrfINWLWv6Z7uP8CTH3YZzAf2+aOuB67tWfa5RN2b3irIotcW/Dvld3f+9h4WFkNQzXPQR5on0z8rbifI0J6Q1voYlyyvLpP2DXWcC7kEl7TX54KGdZx+4JXYZ/1iLbNtkwSxj0gFnQ+Kue7TuqYGv6FF0ZW98j3uG9P68zf9Iuyc9xTCqUPvAaE9ECp374NFjg4CkznBVOB4ifm4mcuBiOAxRZelthnWHtoQ03PBvdJR+8LYQtexN0k6xPREvd8BtLR+m86faM8MRORHwTw05qi3wjgN2CEMd5NqvoVAF8BgG/7m36G4zX7y+RorHCOHEHMKQODFuQLsBRBDmUMXq1CEyohhcltQxmdxEd2+JXGwZj+KWKH8q5jzbPcjSNfwnuKXP7BISulqLKucu3nlF3LOEmjI0r7do4s6SwkEyS3ssbty5V0DWIBrGORm9on3IhVZ+j8jp3nNZNyI3Q62qSjOY1SsQE8dxxqL+vr2VImRUcOf+FvkKW/zktOSnLd4TD5WzYjn093Mt7sEP27XRziCCknUE3nU/NmB3cwZtccyshPmKKuMNlRdLp5mfpx+bwo83fOJHgF4XB72rzbGmGQ89+BNKGovAfx5iOWSz3QueMbbcihjJn3Jnki0/PGJOcmWcdHEuP+T/xJ3024HxXkBdS8q4xRZnAjFvHLFUP55lr5FgtQeXM+4W8ZgkOuOE7cw25B5SW5d/C4xUluH9EkP8e8L/AZLKNLDGUL9rS4H9i24L6stmGdRSQOYLpYZFW9lxMYm7/13icHUNtVFZZSQnOPBZsLr5RrOcS7yJUdrwRGg+VaXbHosHoiPHEuqhpb2lALPyB+jXVaDx4ZtPUUP5rChR4k40bNrSe/yhFP2Vy3tOAKW6fvk5GPsLoO0lk05Fgdgftn+kyKyeXTFw1TtcjN2G16xOKJeb19TAvC4+Izbv7pk9kelMWfZN4DeyznaAjBCEvvfUbW+SW4/9HSN8rCTFW/t7suIn8ngJ8DwJ6WfTeAf0tEfoGq/oX7olfPZ519OBVGbFQ0cxDs0SWuaaHVuLrhTRqu+U53u+oDZbSkvkdhRbXrrDrq2oaNjiZ3yReAt9/tJKGTI6RXbaoU2wjyjjG30W4q6aQ137WL5LqOVW5JrU5si0fkuhxNdaUfdq+6egS+KLMJGK/RFodWF3DUR6TIcUluRyUHOnTOCyxdfrOOlbZbnLkTSTaivNWFUl542Umyo+ZpeX5CdM3rOk9mdtjcPqdVdk7hkKMeDkk8w/FPuekUMLDjMkeoLodPdRy2Yd4z8oVXdrxi+p0x8XHaOEEr63gmXm9fkTPyZyy6Wl40vK9P9VWhiXheZjeuG+uMbYxXW1rC4w6zO959nn0IWh33PqPkGZ86hbjuBmOWTaPy95J3h4sPJsbj1KimjsW/dJtbrLPV44dphI67V8wW/GU5FzYaMjX0nLZJm1MVN1HqAcvRhN1KuMh4yXjs94nw2OoNPM6LE7Zg1J97mghFCQiXa+ENH8GYmvC16CjM2+Bx+g2FfwyabATHI4V9jy32KnUu4DTraHUzprp6jc8oeMx6pMWU138u7ct1nql9B5ct2H2mxaHX7bY5ffE02rfiPr9jlt7JpuPyO3+TD3xa/cByMvAjuF/s/SaT4nn4h6r+MQA/xfIi8mcAfM/DpzIqBngqCFktYyiJ4gEGzbZ71JfGyRkrqL7ON9wLZYyZMgx9VTKxAGMxNmlNFABfPLFTVLeDyZEkZ+liiTbyQvn2OHtqs8iet6u7Ot2WtpY3cvv2btp3oWN/YpasR+vXe9zIHQsZKWV6ycvcSa45HaJdnDLzdv0w8SYtw3HTzrOQ3NFt6k2bNdC7BqYj6zTqysrEjmrhpfbIrIsPkBDnZSeo3p5wmgH4bJvBG7QWTgGEnERLdvPTAqd4P5XLQ/2G/XhnlcNLYvdxOsxZH4dxhLMKh+bOVePFcHOAwRthK7ygOhJt8PL7F+P4YnasJ9IOqfOagz+TTnHil8bR+7M8LcoKrzlwf3Hc31/g+/byFOhWBqTQXbUZkHVJwrbl3Ltu/MKnYeO65LfifKRc4EaLz6B8fb/1Xl2TN5VR+5y2YPiVz1h4d+17QO5S3QarZSHc8457wLgoC2/SWTTpWP1ATdn/XMupWiov/ublcPGEqctJWihyqs/oMdVL0yKs8PrTmorlQ7k1dDG3Ky3udNQXN4SHlOV1HKqSMDX8jdNqxm7nReUlWgrJS4tdVfoItWGWug0q7ledvSzZingJ2w0X7eRDIV2F6vJNMpn1gn1eWcCRbSyUMWP5uciNI+8D9znsUR1/V59hXVT0veMvcM53wuJmJ5/B/sZ9Bj+VvOczUHwGLyKf6bNOH+07ZgJAT8tl8MEEALVj0YxkAlI4nAqYwUuzycUZtQu7SSuKHFpicrYOSlL4hYBwnADX8F1q2SZ/L5RRpJFjYNH5gx2vFZEj3Mpt2pdoi/O81BkXtCxHMrGUfDI863TRhuAsvPOacpjh9q9kfRTzBLgeuHJXpU5RLi35Ksd6HYX3RHutLCrzkwft3kLiWluvVTXcjud11LucrOii2ZlxXTHx4Hm2OxsMm/GpUgBwo7Cb9oQtq0XYkcGdbdDmCcaRdObwPOONfJxaOK5xWAoQvGh4Y/EDd8y8+EtyhUMZg9fs+o6ctofamI5i7Z6TB3pZG+ATteBOP3jppXBoyi+8MpwFL05fnSo+pfGqcwxKpiVsW8Igl/FL14g34bEV0/h9OR6HjnLFm5u3yEn6FtMkPL7H+8L2VbmL/KKT3/FaF9PVAY4Y44/JzbTVZ1S+bKvJW/Va9DTF+Abp0l7/XwygjR5ZLmOqL874vnS8qMNC0PkMxrJuUZLUTmNfclgg3RueKplPzCfbIuF+mGSGsBdMZXwe2BF4LIShsXAIO9xYR/BmXMZ109F5wacWgkLWJ2+yLWgTDBMLw7aB1dPOyHjMOh6+SDPsjvfA3Gcg6lr9DdkG1WeMUM9jPjV7l3jDlyk2/mbSjSPyg9fCRx/yGYLE+yEbcp99Ul5UfKHTp7YwU9Wf/UIG25DOwCm2hqfrBbKSU+yqrr+ly3erl45X2rLOKQ2aUa/LoTbt5ISs4Ynu0S46X8i5l9gKyVay2q7qsg2DbPJ3ecnxtXnXRVcdq57Gq9k2Tl2d7EaPR8NhBq/mhfcsr86z4zWK3tEq1VPr3ZTXuoiWn35lHsrPclvUsBwrY+BO+SRHU91Mm+Qm09Q4dkeDVsfK6xNkBSDnJa+fQggA8wlWnNg1d4aLI7W6bGcVkze/PG0OMfMmxychN4eLBC/MuUrw3yw/2ycLL90/sByqSwGRk+omO7BtvOt3T+Ben3zsa2CsduOs8k3alLe0GVeGcLvNma6uLXYzPl/q2PFSvoz7Nj3qMwrPLvX+ptfxXnpZ+Lte26LSJ0zd6CTr7/7zJJa/5zOIVwlDWluslmRsM55lw6vKMV4Q7/y9TG0k/mx6P+IpltUrqW45lHCx0mLNVx1dUNY5N7Oe3DcxcoP72WlUTImnWw/5qqRzPGkC/UXJOy6mp2ln0n/FY83lMnF/YmqoRXUmTGXcz3aM04VDrkVX7HxG2Dx4+f3k5Oce9hnRX4/E+2G4/7mkb5R3zD6zZLGgqgvS2667nnBnmJcQkxDI1+xR0WH3Z/LaBJ3pKvjZlmh1iKqTtzCYOrMjRKgMoShK2KVgeZrlL3+jha5eppUp/OSydpJyj1fQvgS+hENW09ulhvZK57u8jY7JeT4o55K3sY1WWlawdc7Mq/mWJ3XugATJ4R3JCINBuRb1Gk1jXtT2RtcWAGfUNetIO62lF3oYpLXHh2MsTMxRh3PIOrNjFASvOQ9f1Jic5OBCJ+NNO8G2GBKbA5z55W6qN46Xn098zDkR76Gmk7rcA3EtOTQNXgjJJfn5PQE6ldLaMfuAO+LCe0DnaVw6d2ftVMaOV33BVeUcNnGwUMZCOxz66e0FtW84+klL7XtN0lmvL8TSGHVjTtwth/I7poIZkyuwsDk9Ojwuf3WDORtMrficwt+Tjh3vyrrD6StcvOTtqntB+zpdansex33tbfGAXDUhO5+bLukFzYXPcAyjUut6VTUhbpuK2HvEYDxOXSLzNvOPDufvpcrjD/3Ih/Dpg0ET2B325eFAWD4FxeLnzG1PEQqxgDoK7cBU8hnQjMdpIyuwPOs1/xp+WSSHyyY9+P3X9CSq/Eu4rwDOqSOFeFP9B/01nxH+jDFbhx+QzOO86HyG3TdNuB/4f8YTLvcZ5D/dvszLWG5+7BGfgaRjfCYFYasHceejJMXzHbMPSqrA+xO+uj28i0HlIGRTxNdwo0cYPuQ6ESPPJq3xJV3M6OyNPlT97Hvtu1pVDqXi76fzuuNYzEka5jcOfMcrCuhB8kC8nZwd710HW3hZXrXRPbmdrnd0bJMDRH+TmHdUSxLvTWpUgIO1LBPAi/atL44vlUeJ/xTYpM+d0oWztk0LC5F5JLTAR1fi7eT0dfnQUMFxKKtNQyE7VHY0cJuE3PUpFOmpMnZ4qXzPa44oiP244elE+ds7eSfVeMPhxEKPw0GQnCHI2cXuI8sNncz5hUMH/AOgUy4vjmwRl0IbEfXCHCzCeWZeLXbJO6QeyihnkcO2gdslFqF0OtcrF2V2i7Y4nDoLL8qWUYxSFGwaizKmTYuJ2umYplu0oFksdHglPe893Ej5exMf8xmP0JZUMfXSZ6BHg7s+o+okWc7jtmkad9Xeaj+vg3C/yktyDfebVPoY79dlPA7836Ukvurof9dKpOTWwz56ebEoI0xdaO9hN8mTjBPGyzOt/PQ9TlZM71o5NW+6Td0k45DpEx9JjjLGdsZ920TSIsPqY/zN2M30FRcz5rtcwt+E+w1vljvCCN0Os/3BdxLun47lzuu2Adk1/vJi8DGfcY37Zqs3nZ5PzD4siSqg9t0LGWB/HOOfIE7n2iUt5Qt9OHat+SXua5VVeTMtXauzy6Kj72hN2iWf5OR8KmPHsJFb61p1Jl4q6t7luuSVDS8MWEmH44K3yLlnGybe2WalXH+lwdvI7bgxARFL+4qWBNiy6GWN6mlr+Et4KyRHUNsrtRzkkAXhZBc5lZeHQqVVKtvQch6FV+A0AB2ZbA4t9Y3s+Pm4YdbZHU3i09TeY5GrSe76nbGQxa+4guUX2rvtQ3acR5HLH7Q23vVI/HCanPfQxq59bjtBd+LWyovMy86e2icA3jWj8tHEuOFjbnMO8ygnJb0G+ymZt/xMWjaLjx2OVN6RrwOnEGx4W0w9LsorecEnmX/v+oUFf0pdKO3n3w3vFvdfoJNQ3mV6+byy2ZBr9drcgyxsMIvqiKZp5Ay8ImukurJ1KraNQyhKx7P28L3oeFNeEi9fbvFXdnUZtrEt8mJiqYt5wUOq+p+grbjhCzrGxUJrw5U3tLLPiEWq5Zl32fhkvEq4r1luwjI+JKPifhyXH+3LPsPeTxsHf7AfwDUven9jafm0CcJWN2neeys+JC/q1vZa/qW4z3JveKbPI328J2afvB+/D487HGDN3n8DwOsEGrlwbnMz8OtCJM3vkJuchlGKYt3HLXLtKjsmllzEZTn5qd6Wd6Njp/PdVHQRqqfmd47aaaudN3asyeVc2oauSvOciJXd9JuVZdzP7RTTnCvVs0641kXWIlcL7djADMmtjppYLaQwmledOtdVWrRMSIM3O9DGEtSdheruTcxl6vnqBIXzwk4BEblMvJJo153BHJuvSU7Q5pfOQ97g5Ze4ffFD9yjzzDa4XKMb/+KBhjptdbgcLgLSOz09m6dhcdij5Q/nPRMv22SErpTj9P1Uxmwr20U1vdMTOw+/CbkvgZglpc4zO5jHvXoHIFrCxQ6PNTBhxWOj7VVZFwerjoZtKc/S7vGyPMl1XeLTNEWLi9S+S4w186Lgc+MzHl5qX/iMpGOnU+Mj0pWmDY/5tcaPc+OV7IbZz4pttlhOvyv+6oF0hhO3Z6Et2LbsOxcfcZVfFmTlN/uMWNDkcsf9hTewu9bNGMEYC+ezhsIxq8XjGTZYv1Nm7TxGA1peGFQkvFLPc4gkkPVzbCPsjvC/1Ucs+dm+If/M9Ta0+alV4L6FENb7wLhvT8hu1j49tz5DqP3t07LWZ9QnbRn3/WkZhbS/+fR8YvYBSRV4/36MrvMEvnQDcAub2jY3FCk+bKZwBNVjqYdFOgp3T90UMSFwDxW0rkcCP3udtihixba+ZC915Ugqr/1+CR/l73bH0txlxtCILc1f67rgtffXrnS+5N3KvfTOS/saVYlUEu1qmztWTe3R9p4I6+SCe+Warr6yTt7k5LUxzdJodd4o1pZ02Q2eOuuc3R53bRNlvNvGw9FCMoJ23THlY9nzCWOaHbXR2mLJ6TXqNT7nDYedDslQ9ZAfPxCE7CVUd3qPjRzqoDvdlsGr7hhjwsC8phcfJhKOdpSftIjq5doEw18SZx3TJCbeKTNdfDLh+hivJNo7o/Ay5Z7ToE7B7g/GY6B9L6qKZLxa5tpdfvqbit1XvGhoqyty3pJPuDhD4P2k83s3pPilh6YvD9S7LU4YegeIvTK6Saxj4t1Yd+fXtPkt+d1cn2rY7wvrGJ4braFp55p2uMo47/sR205mMjcN04aW9PcFzGyf4YSCIvYnT+2CQrQgjDE5QavFZ6zdOfbb2eeo80b35MMsuJzwXsx3zyc4c/EA2OJo8s32DVn8XbGC3co+peLixFTmJV1sg5Xxl3nZNyX8JZ9RN0iP5LvMb9fFZvYZ9k5ZeHd7MmY67HwGEN9U4zpX3B+8H4L8n3UK//9FTx/v8I/38yXRQ4D3AhGBvrtBxkcd4B9Z5tiLiksLEma0E3Lsacezm9yTHA6r0iqHfxaH6iBNTmLZaU31wrchxHS4am4JC+yAPtVNvMt2x8aRdd1adjuzF87WQbG2N6E1/a12LLeey2ue66plsvDqIlu4LNVbPAztDgIoR1XPY4fdzo0lnd6UC0NKkqu5eHHcSnKGzMUxevsN2E1kALJPLrhPJ95SduTwGHuKZfUavYfOHfkWr0cwT9p0QqC4ozPyQ3L7wjGO67XefFx+DKsxnzXeKbfc0yPJ4dufT6wS8PHMw8acvxVa5j3Ax/RzaOP4l3nPdHzxgXhPLORkuTyJSN9gU8U7liM1TIWeukkcxW/872g4fNDuqc0Q7b5wXI3jRHRSoc7Q4vHMtwucmkflpaucrwu5BSelYDetKQovYxJDS6fzghqNjotLTLZp+Cex0o2r7XWzsh61Lm5QbV8V6zpJktP6DC+XVUdu34LPusdqp53TfVqUwp7MElZL6tSzvPYbwjrGbiT8ze2veDzKgrfzGWnzyvMSepKMjItBy4c6mc439hlFx4PzJQwylTX5wPJaL9zfSJM37Db6QzOWLdhecDHlj15nqytjdzku/+DPiDCGDl4OTzTcHCUoYej1NNvVD7Cc2EAbfXt9ehX0Nzmzv0HVmfvNGfe0yAVqKGOP+0Bur5n2gz6T8lknxXjQ83WQPs7TSTPgfM8Mc7fDixeHUEESM7/pJGWBw7T8/54XW97KV2vRSrtxXp105lXdy1lkuo4X+Qu51a6cfSnvotdGp3t1XPEudWn7s71Q7ZpJd31srSz3VqMl/irnUrHB573m4t53WqeclnpLXWneUpz8wlt05LnzCDHJyR1vx7uRG04znADvSIZcfnKU5YX83Y5v6Fx5Ey1KWAcv2DSH+fHTNluUucNSc4BI+Whfd6TynGQkOSh2PmFPw+z+JFtrHCgi894nOQi9lvbZpED5PlD7QOdN6GrnF6eX4jFTWb7B/3ZR45h6rdJyoMWFv+nlXOQflKvLj0Jbf1/h4qXQkr0HVzW9xGfU8OiNjqMnvxCfL6gX29ixc1LLNevVOli+8yt2e+6OXduKba5xydzjMdOK0yHRCv1z3iKnHlOPQhuhbRX3GcuV6Ds8LjpjXYgE/VyUkdyE3YosR05I0TW3r8fUGj3RYXuE4WdeOO0e97PPyPiceAmzzW/zd8huyxH+9oSMfQbXlZ/2hZ9Y+wnj/uoz1n7zQbj/TA+njxbKqO/fz52jGwbsCvD+hJ7nPADEEavOsLA9xpy2DB1IxYf6uCizsIYGpFBGmjlaH5b5P2YrYC7A2P1VkNxexRquJ0nHwiuZ18hYlzbf8boia34x66O83aVHeA3ThPy39Ly1fVs5XLfbStf7lm69Op3Ue+y84+Lia5123MEuHHGLZponCFehjF4mmVak47UOOXVmXnM0W7nhTCzPiyMbUm5K4pXEyzaPvIfWTNq80OB3DmzHNGjrgi500jmGwrGxHHs3iyc47FBXXloYKjtnPoJ45n0CMWhvQropf4z0RCwsdb4vQDH9iklLO6omdx6XH9+j6eRmh+92rLQoEyKlj56K5vb5uwU2QcqHo3xIWscRdSyhPAp2UwUqMrtz8DpOOFnqNFgq2mCMUD5wkeuy/i0Lb2rWDgsaOYtfqTq+BBc7Xsn5rc+ovLv0kCumyhvbePuJNOuk9/VIvLq2h3Bz5M0J62KLFLlAchkPdfKKBFEXtbI7vdTe/apYnrT2+Ylh38gLDK8mrfNOzJMz+Kbfcj9Rw+YSb7RHXf+M5UlHKs+4T7r4dfsXmHscgfvOS77paOSa3o5too6ho+gs7eMQQ/Yv6jqGHHuvODA4sPxMvsnfS4aO3tDiPvMyzq/YbbZSfzpm+FwWnPbZFM8XuTMkURH3hRe3na9KuC9xfz4r3P/M0zOU8QOSKvT9J9B3N+Cbvxl4dxuLsdsBOWyY6QxxqcBOaN7FDxggEG+e1JKzrryY2BAvXZDO8w9dT2EoBB5XoYxOV+UsOq68HD2RRknjuJm2vnDOejCvrSnrXOYuL1Zz1VBG0yMRVl7JvFvbNI56K6fW1SVrPyskVOYCFHz6llZarMcYJxk1w/1Gwgm7OO5r3h5JdrUJQAofCW2c10NcAOTQxspjvwU5pGX8yAun4uhTng/uCB3YnBxuEqEjHMo4HHOEu+hSL8DherNe4520fBhHPqWRnNPktbANc5CV99jxIuTawsh5Je+A5roUh0jaXb258wUg9PI3LLwl5HYLssybIeqd/Z6LOXbs/HkAgG0xwnStLn6p/VVJUcYRdQxLjuV+AwYtAaEwLQI3bPyLERlv5kr1Jl4j5noK1iWdJz4tvLPeNiRyh21oUtGx5ZWCzZUXpbzBxapmi5mS/y4+o/zd4jG1x8XY6cxJJ76mvU5Vv6oDyGdYpxAisEXUhW2yH+B7Jny5/O79QfbjAn56zbx5WEhSedD6XU2KehO5XtSQ7+wzop8Y/moq2uO8Ej6L56O2HOp3cCgj8kFCQ8csl7E8h0VyvUwbdhwyCBepPIfrhW1sgyzhIulb5S4nGjruxyIr56k9AGoYZPUZt1nnDSeFoWfbVLkA5iae6RiLL0H2cS/Bfbtfbzo9F2avTwoFzhPypS+PxdntgB4yFmdAOBniQHLkyAi11F9+S5dvZveIPRwnyVpfyg0q6eVe8fmALbyNw32ofYLGjo0erW2av4/wsmz+zc656tTIqRr7wlI2cog/tZ92RLmc/WJbz84G6Z7oymvaKeDbkdSRQjbtYtJko39apmWyErxp59UdjSZe3tsYsjTzIvRw30pOidvmsmjnNcmhvC+Api0qbbS7tn/uWorGhMn1UHKCWY6Vx8EWNHkgnswbDst4zYbxwdA7vApAzniHQVfe+GYM6cgLXP5nOFBoUziMKMk5k00W3qLzeFHentZRexG2gjlqiXs23v+Q2a0Fx37AXqaKoRULeEz22DYBJTr8Wj+ueO/oZr+tb/JiQUYd3aJlkbvB3yuZL00LLiZ8it+tnKq/xKUWF7neKifhY8bFdD95wdPcCq2ZZD8NHSte82/XJVZ9FiLJG5TzVoYwwjaTK1zm9HNcF7lCvMkWXG7jrcg1Xim8nq121Uan+ZuxPGOubrEblmde0tHzD+B+nZ2k7ypSH0v+pGCO+U/HshQBMWkXnY0W8NDGhIukkz8Zm7xuWoW9d7zgPt8Tr4zkvAb3lX5PTA+5xjtxf+dvjE5Z7qpz3KczPaVz25R7YPfsmCPBcP/NH/7x/MD0ByRVnLMz43bMJ2YzpNHQ+zBUnhNcLX8NbLmr6Awz8BP4jQf59KoFfCev7dLSvU3RZuxcrHz+T2EgMSueR+crWGfSweoCPJRPSVcxfbLZgpfr4vZ1H0ht9Gbe7i+TP8R79MVcUdW5mibTDqPyR7TtHjXkZUdUcyHzmq04TUeQFF1sMjL8HgSzpa7FYShEVBc6tUv7X4w67G8YqvJ68GXkdd2ltUWYhXFUWlUri4+DcthJmkh4+6xdSI5sDL/Kq04r8wbYEGbnApdLcsiwwzFJkiugMgCwD3a6E5uO18uHLrfZHnZSkHCeh6rzHkLHFC+8Vc7pOnIoo4XMMC/rD5IrhdfkDId7Tp3MGYeOUNt9Hzut8HYH7zGvHaTzIUwL/1ZNPjFs/D0E0zZ4XZr9IbBgdISBhUK4uGK34eKCRdGR4poNZRsKCffZZyCH47mcQbdgPacOFxl/EyatuHh9uEjWqWJoxkX2IVQn4361DUNUx9vJtUt0TxImsZhG59S+ecvcl3VyXRhGmJfHPhpzw0gKqvOGCRwxJXBx8RkFe7qwxITVhKnUeRCxgj0eV17HbpcXvELtM18BIbnWOg08RsJjrheOoWCdYVhsDQy54SOCl082HPmpbsFUprUFF3+OpPobmDoS2Dee3ujEoLzhlG1DeE86C8slOSmUXjjUfMVUlgOhBZBW3J8+Q8PnMu67r/S2T16sPkNw+tOvrb9Bxn3r0slGSv7S7FhsdrM5gIcyjuba5qd9NuXNJgVUvz4O//hIpzJKDDwLYzSHaQ5W7UlBeWVf7KDUdHU6xZjwjV7Lr7VmMK/O2XaDhyM/gbkzKjIB3k4Rk/ytMTEnaeqBFwDiTgCYdR8ss0wK5sU5RLl1o4h4AaorzLpOFqZcKQunVL3En96ujZySb+ZEbpvERjKHfYserotc2KZRgxWAFJ2JV0hfYVtIrqtMcMJDkzDVfIKYyjxqnbQk+rFjS32HdYGWvKlEN8daozJj9CXRyvRo8SRMvF7eNDAd7bqV5d3FyjtphMCedUy7qYM3h7jE4m+ESE4nOPU+5EyhNn4ClTkFN0PsFlo6io5x3C8SrS1QDtgiWXE7YjQLKIxD4B/1DN41TCV2SEPnccqktUeveUEnLQrR0mTgJrT7CuCd5BPJfAEn8Q6C6WxhkNG+sM0NccKYTUoYbfOpjBTSIsDtlR7a54GA37SBT2mwF6yuY7/IpkWZAL5oGdh1gfuToeIVdSUvr7CqBReZ12kJk/RCTq0LlZ/wyDCsa0PFxYT7cz7ZYTnzRgNL+6xdkvkcCqXRmdq7bNwJZzZyJzbY9+psU0x2fU8F+Qx4Ke2ju7/4U0lyuT2Bc1Z1xWrbDHMAJNxbLOtyx5x9+AzDbgAJMzv8jeskt8Hj4wj9DPdTl5r2BWGNSyp9bNRltanLkSR3NCreqx00fIDGAXpfiTenTI7AMTXkosF9gb1TFbwauCiEi1DEEyYAKHKFsU4LLsYnR+xeHoTdGVPVcd+edvH7vItcgBZSjc+QOPI+Tudt/A1OHFpDRON9M4BD3kGLMNPZ/Kvcxf2Pc1rgN176KAuzcZMF+NKXfEQPbAzQdECtj6yMNqE7wL091WV5VDkE4MmJaDhSiUmBDa22MVVu4ze00PZJ0i/ti5a6eKFVdWxpazmIt+rY5ek2Jbn3eDu5pZ4uX7V+gRn3vH5vC32Vm+xKyJcWXiOfFpnmaFMXlQ1t1UOTnOT4fHKSaYV1QuR98eVyNfGGWHb4vZyxAMoyhHSMNOQg8WZbuImMFjYiV9vw7qLxsW0gSry2wCF7SIzeNhwGgH+zbO5wwk+zIl7R0BlZTvoWmtXptCCH2vEi2SYWuNEe0+NAsSsUYLkcDlN4eQeb5abw16RziBqTQFmuvyoRdlfcX05HDM38lwottmJILe8nLbh/L21wMvwN5Stt917yjrZi3Sbdx8Wt+o/JpfyVv0Gh9eKK+7LRcStXl3JOq46F6OGOqI+1r9CTFtRlr7B65Y1Nsqgr4VgRnRdiRadU1vSchIsZU0FYkOvSzN/4m4rtJmedEa20x8TUGIWhQwaTwHLnRWDRtn1XmAq2tQZvckUa/IhNMQh3a/W54LCNyTlLPmzHvkNIbrLNwfbofYaF8ndh92ybeO+PrgvbL/u93L4ql8xdcP/NL8yeoYwfkATAl79pONOl0Dxg8YS8nQ7wyFrZm+9u6UIk5fdURhUW/6IA9DjyOwabWlinLLdQWbZzXkzSsLRhlF37lvZu8tNWL+3Ke7u+gLfTaTFoXfystum6yz3e5VjmC97Vma+OrK1mqU9W2u59hlJvhDn2Tr7qkEE4hKmsh2jwRMMdAfHw/sUyjykTDXYI/i+FbRRnRU5u7NgN2kNnOYUn8mIrOR7SMRYzblx6QpXbl98/yHLtdK78kU17mjT1t91Je0pI4YexS8rOvvJq4vV3Brxd6pOZA/DwxpvVP98R85AWkuPtmjoejY5HY5ukI2KdIa6zwAIHxhPH1yWbbJfAt+h5c9HFGOO83g+FuKKTWgSCL+54/Er5u4z5kqyeri5uC9V5hYuJlssbPe7jYpbr1XRyi7/p7FqTi7uQu/cvPVOWWzE0dO3a4DW0TrH8beSYbeqtXyMiSTJvCBOGhW167OYNsVrvzq+7yhf3JLAt9BqLqxizNp4DF2ljjureYTcKr/uFGcoNYIOpZYFgPqW44Ni7UFg0w1Hk2gPAsWmkXl/2Tzmf8RchP/Fm/E910OInDgUhTHU5yHJSXr09He6D5GJezx+I7n1GRD0gtY/faQtarP4GmkL583tsyO3DZ4f7n1tSvU/zBUgfaWFGHu+T98CXphqaRmVcOyQ5J8PhBdombXgORl6iVYzwCA9HrRNZR6QLr0hXuWqjv+P0k1jJ7antW6rqJhf3Jhq1XAF/1t1MDBa/IjQxupB1xZvydxn5WhQuPrjqvuiYeS/TA7ZMRXT/TLHqfFsloxvObjbvtndXAvNGD8Mep22VKiKn8zHeg3jzQ97YbRuTaHUnqbCXgFsR0TSJpa+/0D3FpQUUzFmNwhj2NGkQHRMMrI7WFi9COuaJgua6yCHzISEH2Seuj7EcT9WC1uS4c0+LI7tuR+sH763oGE+7NCZR4DayjjaBoGP3rS7Xc8i1hS47edAEoHfGNmEIpzwO+QAsdGzwGx69zgGKbhYHht3tkbY7XKSBZBtMPCatXpvtC9UrSE1IuHEU3l1KtE2bdjyWeCDsMOcSF3NV2zvS+Jsrmdsm7LC743Zwy3J7kfN+Vr0SvhXkr5UsbdJUxHJXeKaGTd4KqbvvZFsoYcLuK7taXVKat5JnPsm3z94NFidgn9H8ps0e8wO1a3NdKghc1Dimf7EN8zruko5Ttjiv0uRf5xDSWJAzluvEsIKLLC/hYOJF4T2L3+hwcXyYOY60ZwxG0qP6m/AbK+5n36qpXl6cdT4jHWZlcqFJD7YNh10ejVz3mcqnOpIfaHE/L6rfbFL9uvnA9EdbmMkh0NttvGM2kx+Pn1A0JgXcxQOsc72jbKCOdayRpeEhBDSqkPdT4JwXqAAawc0ZhToE5bkEvSuxyAXys+CK9PSyTOdouXmQkt+/TpdMpSi8pUld3uout2QB90d4+RNx3H4tOjGTupfY8KKUkVxF8ahZmzUruYFCcnUCPcuSg5gNwXIrJnGAu9GG7WTm+9ndeGKUdY53BvNxyyYjnq5pKheBH34KIH0y0NtE7euOWOa6eKEVjn3QpuOLMWzJ+VEusSNLjiIdSXwgtwFKcpXeYZjOmSYgNyDpfIAWW0LvNJiDIjNHDH8MT0ydAU28IF7BfHeAdSz5eMeM3ymbZawj2I52xD23Ly9EKy+/ZyHgo5DHuwPpCGm6jyKCm+TQRc6/5lTG0fWt/zIuxrvBjg+E3dxBBXmq44anoZNxsgLURm+Tze9VMXZ3WMeRGUVuK1ZKnnhrc5z3Ahcr4IpivNPL1y50rO404WTFTF4T0X1q1MhtSossxPtmqf2SdfYyLXpIztfVU7JxppVSLlC61/MiY6rRW21ku4zds5z7zVHLWS6XVT+ALKf4J8NUS3vsjk+OjN+nY13VURbe5vehSc4Nq1w3d9URGWMCf0fb+RCQ2FAabZcj12V6jdu4nrx4Y7kCL7NFSrS14CJhqmC8dxxytcjN/oWx3LBbKi/ZsX5Um/0A89rTN1u03fwds1lv1XnxNyDaBudr3u0rBecr7r/xYMbnE7MPSQK8+5IjxV1T+qwoV7GlpV4XTiJ2tnjbVt5jLMxkODUVgd4kdmBZbvG41S8kOaRj176gIgRsK87Z6sg7x76Te49Xy9/FOd+r60HeuzoucuoMhMr223erbcoNW1iLs620yz3ZONAc5sJyNj290ZF6USlEMUWmqU6hltVJQFSdnW/mb8po0WK7sb5ASSrGrmfI0VwX8dRuk2hp+EnhDZ2y0+RyXvwschC25MUeiNfK6lPD4bBmuWpa0Fl7ObQkP60jZ6304rjzFjumtmsKieT2QZEWdKxjyCXbsP0thIWuHfT3g0NabNFF9k09eYPdsEk9jaz2vaOOl8p6nfa89p5xh20vxtSqY1HR8v27do3Om/zV4u8hH3KVGpPXe/mojnv/ope8lXqfm1cKpnYHqNQ67NLV5mPmLTi53FcGjhXbkz9x0h2mstiVl3WCMI7mzbWMx4yPAsNU1vFAxTYzQcVUfqIzyxmfqG5hGtfRZAnsw9EoclPoNS1akm01L7KAGlJZsLnBbm/fvCeBmbEgk2obx3iyjfMb/ely0jc/px+wJ3i3Um/2Gb3OsT+sSWfGdMf9+ZSs4v5Bthr/3vpx+V8/6eO9Y3aT4ezen+O4fAAlRiuupadoim1MHQGf2qxduEsa3SQ4FXIqRv8/gdvYuT05lLGid0Jsqs+cYHokFNP/ReWGt7ahpmWXs3Hoi9NvaOuCZrNcyIWfIa9d0mKb0FkKIdJ7JKls4S3lneRalnTMCwO77jv85lA9ZIRoyHGkRDqyQ+W8FB3jaOfR+Jh4ycJ7r30e8UvtrV0uOVhhfXKZ24J56yJtdnx2bO6skuMPh5EnHysvkMM2qjO6pfbxO2HnmKgYr3Ke/0190mKJjuIvvENHW8CF/v6JAsRiyHRKH4dW28VVYMo5SI6duCjEO27c+Ms6hlyUSYzOE7m813ie7e/OmcNaptrxIvjrHbRgvqOdsIw64RxX6REFjf3gawbSHL6JhnkuQtNXfKogk4lZzsO46LhRqn0Eu7c+o1eR5SwY2+i8sF+UbVPnE7v8he524JcvvC/1mLVRSGHYirBcC9ZY0cauUvJL85R5+9DAhde7qzomprpSe7JLW8ICyd9UXg6vTB+cdyyfv7c+A7DDkGzzOH86Q9NeafZV4U8Ook2LMrGwuWiHvzObsFy9vTJ1AnI0hWOdvTvFOsIWZYSLU761L3AxRyKwXTvcP4QWZu5vdM9r/oy+IRlYbryn68xP0YL29A9Ud3IZ99Xq8cfbCopNAxj3J6Yz7h9i36o0H/GhqP/5JP06CWX8OM8lHdEEcjuSz2lmeYSSwJwJ9Z5v0voj7tnRbCz6v3P8O+zvJ+9xvFcc72dZ4c1oTeJIJVPLnkpU3hqlJlbGTqFrP4n1iWmpC02e21t5BVnHAP9Ci1IJLnizKQK4mbc6wdLkJNfybI6qB1+6sEXl9XuQ4jWocKl4uhSuQ4t+6Rz+0mADPMlaS2ls31aiNTncx0B9juzIP8QAeqYafVmfotl9z+GIQ784HSp2Gy3kgg/NOMSOm4+dU3Zmh9gLxYDtNh5g3nhPyn5XXrOfhUSatfjI4ZsobkfofcgM4cNwyjeBv1wdcoFxPPEZvLjDCw4TVNfXbMovT3N4j0y73NxOVm+84/FOZkimZt4DincYu2tHw2vH8JuON8nHJt9gYSpj8RV1RZnXJYJ3tEh7reMYtyYmW9FnY6c2deaCsVTL2s/n/xZ8onweoFGdj8zKi02e5FxialHfcPESY6Xwlnxf8dKkdN2G/7VtVrtsr9FfW+CM9kkuV9KF5aJcrzJsTHeGbFP0idQeqTTjX8buhpbk7qYag9fqmyO/El/120YXvtceOj4Nle8X8cJwxGukfMhMT9ClyrK/40fCfZaLwN7ZYsJ+w0F+CgVqg20SxbUbyRKqwyQnHyEZF6u/ST4CxGe8YjiccXJgHWafO6M9zOv1nROPK+5rtoXhMRhTz4THzHtg4LxjuUy/N214g+KdGM6vvKleb+fwOTdEuKKFJpqvqrhv5Wa7mwgOWpS9JoT980tzgf7afx+QRORXiMifEJFTRL6nKf+ZIvKjIvJrH6nvI4UyIo90mM8soE6pfmwZgu1OmtbfQqQ6dxDO6aw+Oe2zZVCd77FJ5l230vqkRLubA6yazoaIrJcvuBxRbUOk6FF9TkdbdUz5jUO65CW9Wl5q1/IxU3Jg3L7xuxikk8tXim2SLah9Ve6ST3KHA4h3PjToeRHq+bnfa7TWByk/rlEYyuyDeYGl9Dt4ReATXKbt8jWMBYU3lflMiu0YT82EaMXtuIZIpN/ToUiqK+TOh+cu30M8QHKdV7Me9a8o/OXvVudop4fXKGAnI44mnS4HD/D6t24EeWfZHWdMPJgXdrqi7U5T+0YFJ33HJhZuttM65Ox4NSZAsw35hMawzWjD/CYRLXJ8cwrwz0MF7WuWZusMOGGZUwQualnBtRjb8PoTN+OdbR4fIDVeKbxFp06O7Gib9jQ4uOWVUlB5Jde9xbKrZLwFrx6akmzlFvxifVtczM3kVO9nrGJL+7id9ffEUEhgNT/dWrB7SqYet+JvwUnn5ac0QtjtbYgWBm4UWi6rdnV54uUy7ZgWbV1dbr/AnAXLaVwkubbToFYHEm/VMW5Z1slvnT8VC3tG2CC3M/4mLNthG8s1fvYRFRcn7Xr0vD0dtL/YyJ0fe3afEbxu85hoTv3MZvZO3M5nhBxJvMM/+OdYKDS+8zcuV8PesQi3snHv/e+8OQJb9NL3UXUel++4fw9kPmJSfMzj8v84gF8O4Hdsyn8bgH/90co+2sJsvMd1DBBdkgTIT3QXTKes/AFnADb5HsSD105xhPfO0enPwS/zBuoniuMUyHmOum6jXrxXaPkwKctdnAvNN2ooozt3QRm4cwjFbN3llBlzQDM5Om6uYajbglTyfJJb9WAhWBdNDa0WuTZPW+7mPV4j0ez0FUq80tfFl6YjuLLNiik0A2Jn6g5JPG8fhOWQPut/adFEvEJ5TS2eLSy8Oh0uCm115Pd5J5+VTtr1JEZ1HQ/XmR0ewpG7kzenCeflY+0htAgzpzAnB0xrzjq+c0NOmhw586Yj7E1/NxMtwDTq1MljoX8RImL809Gx47IdX39iN/UBL45ATpJtYR89Vdi7A8bLE4oIMYx2DF5xvfxdNXLGVi/nhW0D21ENXtsldqctNlxl2pUnA/RegYcyUr+g/IuTGg7pxMnor7yQYuyO8Tvxl+6018m8FVMVs0IDNsbneUqp8yaVoq4NtnWYWnGxYh3TJiNyXQXu3EVK/t3xLpc2PmOrR1tJR5uxLtlGkHzVrq74cHQReoH72ZLVT2qitfbLwqsGqkt7rjB2VDrb67jItIHdOywHdliefYYwBspZ6r3ghY1lCZyXYZu8WRU4YrzivHB8svrMrhG2HTraI+Oj8NrIHrxnoIbq/Ni1EpYPvLF2rVgeOHkj/DednDfR2uJPXI4fllSw29oztnR0frA57JmOwm95p75SfETyGT3vIbQRqeFv7KRIf8dso3Oua95PryPryAuv7ftkjvtxDz8I978Bkqr+SWDYtiYR+YcB/GkAf+3R+j7a4R+iAj1pQGHC1xFeUACoP1M3ZOBjk602+zFo7VsNfCSVXbKhJwLINwn0PaDHDbjJWCzOf0KO3XZtu04pCj8JS8yJkzOyJ32O0dLw2m+bNS3WQpoghG1WQnfkBqqdXJRreZ6TfT7LnWV1kclzoEtemjMpyY37R7Qqc5se7sQ7QenezzKBZtsItRkx8SHPk5Uwo7ntrM+ZE4sG8mlccJ3Fs1Ll+N8AT58QuJJ59qWq6SRFqEzHVpoxt1MlyY0JhGLufDmvuCMz2pQUcZLiNNpxqFtACq81YUwKhs4mZziC4E2nI2rUZbKOwxZRdeGgaYhBIjzPEofrWWiHWTMOr+C64R3yNtsnGKEh/F2beEds5FlOzVv7Vl6FzJCWCLuRyTtPUwO/15bDHAUj5MXkjLCTmEDcFh1jESbIJ3Dx+ycW0hO8wE0icEUAvJuWG7yvc9EydzRHPxSoKPSQdJotELi5jMEy9geeEC0X2JxQYqonBB4KxOmQxksY64ZStJtVwrSAb94wL7MJ8bKc+mFspxf621VUeZtFyT2fkfYEqz9gPN7KFVrgEAZz+4DkB6zCeH8scEEL7mOD+3GBqlRJ7UvRCIlVsm1CobBfsoESs6RynbhxHFk5ISxfzJraYIuGnrdw0qFEFmIYi79Qf+SPQwlXhd7N4pN87Ul5llvPWov3ryws3G5HfXpFG4DG6/5GE+YY7vhoLFhuGAWm9T6o2WcAjo8CCnUHYJ8QiSYp2YLaBPjCL+O+8Wc8rrwAfCNMCi8a3orlO58hsw3Z3/BmHGiTb95VZb8n4AOpjulz+B581rj/uSX9oHfMvkNEfojyX1HVr3xIhSLyEwD8egC/CMBDYYzAxwxltHTCR+dwvASCV52gFrGDqbw6F4D2xAsCf4pxDCeih0BFcB65MvX/s8e7kLvT4U4bdE91V25Lu3H2NblcyYslL+vqYWcnd3gbOcaXaB65n1LqkY5el7ocy7mM/1ZemgfEKkfL7dQyYVruvgMm68QOX4rcyLPz19K+2nRNtHVCYTuFrvNR8oU3Qi+4bOSPpo1IPCG30np4jPPVfOjhT4aKnOWaT3oiPz5UTeVTTgqZYTlM63KV6greHGoSEwOY47auYnVteNMEI9WlqZyf4PlOtdsCoWtx2CyHJz6HnEhhKknnJqSFRB1BOKlf95bZwHi7BbQBQi26j/s2JUTSqeb99ppvyR06Efd4RXJaPYg2z/wWWmHaijGbetHRXvmMe9i9xUXKyIa33qOloh6gcl26lI+sZNqdlsZXMXyRM64IyZWlvJFFvLagT/6EcbLIucbywJ5MOynINvwUrssvY5/byjqm5mpsAjovCi5yezTJyVOiqId9RWAqEqYeiadguZQ2JNpzbTvJyWkNT/Sngqwj15Hwl/PngvsZj9mW6nsIWQ/GfWx9Rj62vvcZ9ndtX+H1KSr5bSF/Q008IO4HQsecd9pPCfc/j6QA9MNCGX9EVZf3wyyJyA8C+GlN0W9U1R/YsH0fgN+uqj/aPU3bpY92KmOE2Cmg5qwlnPUB84vxdyYF4gkT5T0ZL5TG4/A4Hndu3lIOKMau7ViclWHfyG0dsA65msqtJtkcJEmZbcVEZT8u7m8bJsg2XOdCDcy52lmBavNqq66ufbMSz2qbrMfuniRBfJ3qSov9Tp/Cm9u/aaFYf1CyK9G2vEUFuhdrk3JdHsLSjgkNkcjO1sbYcHKa2stdrso3h+K8/s6AObK8GHDHg6iXedJkoexW8jsAwWsyAPtoZ3ZWI/mTpSkvwkWAg+zCvIuZZWzSD/uOxaudYMWLJasvv6ul4HcEwhGSUwXt5upsr53O5f1m/DvsXQSua4bVDLlntE9tcjNtQffAXlT3ts/28V+HQJRv2WBgsf9VDEeu40Xw8d5BNeSD6f2cKB2g0ET1Jw8LEFAnja6fB2sOZZz9TZNZ7WYOmiPq1nJuesaczeAwWsLjBW85X+pNeFYHP+nqvDtcvEpXeLepZ6n3Ao+3RI65fLniYua8lht426WVV1u57fH4FUs3vKh8CFxcNLkcF+ZEQZhO2F18RlpQ+LhV0jXjfMJ9WvRwiFpgeMXjaPsQyxhHf5E3+xJmkD1tPs/ve6Vw6u4f16+GX9LyJKxbcBiAnI2O6rx2r40XE1tX3FfC0cBjs6PRAhwRAec97FRGe5L2Qp9Rj8ZPfofaBsrnuow+TlzkRRgv2kZ+h/uA6PF63P88kio+8InZner1e1/B9ncD+C+LyD8H4NsBnCLyN1T1X7hi+mhPzByQdcz25QRwM9CSeJKmOt4ZI8SrYM67BcDg1UMhvIpAdEgF/J2yUcExwxHFB1y3oNj2SQWFRfSe8HJBF6jcpsWhFF4Os+EFa1trcdhbJ9+pI+QTrngfre8RHQ/7kaku5hsL3XpNcRkt/UjldVElA5IlOfeeqYnSejjd59X2d9n4cjDveCsdy8nvOKxNNWec81Q9TRh4V9MdGk1GwrGHY2XaRAd2dKCnYUzLExJzpjwpse/HBO1RZB+uUzhuwww+Lj+/Y4BCe8bEYob2xCutAkmhM+Gg+RRMdsb8XTR2zIdG6JPd/ziIxHTKT9BiEhfvIOTdVEGJOnw8KfybkeNTJYLzmEvA2TfUToKZBtni/ry91qUEitNCCZmQOqwYViblm9WHbMr2zQpdCi5eDk/BZsNuw1vVes1NaHxGVetliYzdANlon2DZOMMF7nv+jlZXt0fW71Ruye/Kvb/oim62V8pwMWO3IO+69aniovniUIsxt/w2zJXg7ZrD9VXc57wkWsLYqWPF2PybFyGEyYuc4aP7xST7DySctyd2oeOKwy3uI3xGDV1kTOVr8PqzP6i07CMOau/A6PBbnc9gv5ZxX3yhBqj7j4rl/HvYVVIkhZTfhvuYtNEXjmUO8RbTBz4x+9STqv6n7beIfB+AH723KAM+8qmMAtCpW3E9zfzn7qZA03BYYUz96uhg0YvUkayM/kmjJpeq4Yno5UyUryninYWOd+GXxHu31zdx+gDWxVjJL3LJ3tWOvMb1Scymrk4ONwcAv+aXUzMfSotbvgfIyyjVWW9tE8s5+DL1haU20D3SorOu7Se9Fl7JeUlIaR1rbR+pT7zIzphsk8TM31f5eNcLyQkO2poPNQUa75jN/LGljTzL4WHNT8qWp23Oa+0L2mPhzTryewjpySByhJkAJdSE3zXQKAcg/NI164H4x8dPuz0WOQinKqNeliuAL7qGTvbEDBiLoNMdsr2DwAsjf5nd64o2H3KGk110Bm44kvMW/w9TDi/aBAct444FjB5LMiMkcAigOjbk3sPfzz0Fc5NsvhnXYFuAjM531qZOhr/z9vthEDY2dbZU7ZtQ8S6x45V41em9t9bdEw4mTN3hb4NX0pVt5HiWdOQObs1LHb7To9GR7aqF1n7LRo77V+ZbbMOGLfXOvyveSsmvd8G7gpUdUZJxkOuuCy1dMDPjs4CfTo2ykAyA8FmK2Qs2VJ2ABX8DR9hPGD4Fpx1qEbyaaQ/CWMEWu7NcTa/1cb0r7UgRmh2+KXVBxm7uG8K4mPG3kxu0A0c5JNzkJJ0Q2J7wV/LBHiw3Pv3Cbcj9LnRSyMELqonHYjy1fYb7tIhjP1d8YryHrfPTM1kn9m3LJwy8ntFX+aCP27wWcuG4b7RuU8J9yz/TmkTklwH45wF8J4DfKyJ/RFV/8Wvr+7jvmPmsb3Rj3qhKaxpaoI28przzysho1Dgu0OjOxyhjnAwlNPTY4Vjea8yT+rS2MCdJ0rkP11CKrCO6wju8lOpYkT1tG9JRssukYpcaOVs7XvEmeetyu8rZGUPt/5tHUOkds6Y06zzy3C6petZFWakrek0AeVG5ucYLJS1yqyV1aSov5iIf9bPc+oJ3fP/Lh2XIgSbeFIIDRQpt1KzzErq48JETKbfvSKDAO6t5AiFo2ue/htOLF6DVX45Ojns60/GiddRr5S43yQmna7/5RWv7QHWEtPACL8JdqkPNbSyLuKnTDZrCGv0D1GTHqKvZJaX3btMiTLPjHruz4vW9+ls2Csg5wsahGJ8pme0xywMAfQl1g20a/O+JRgE51Bd9bAi1CIxJ1+N8zdMIpk7ZYmrt4FyWTbClrWmRk5va6txibZcauz7C28q9aERuvy68495vJDeY2us08ZZltbyaBVMLdnLq/arYzQsNlLL8FG3VuuYD6+zJCMp4Doste7RVh9LHYq5xFtw3LF/v5Ip1gfsjyxtMOl0it6H6DKSycTCTuv5cdfYZ5WnSHOL+HnMJK63vN/NiiHHQF7D+d3y7cuSnrcimiy0QYe1HiXKQYhvRdVFWoykcsy10Hba4yz7T/KT1aY7qsPa53qrrooz+pRN3Vcrib8X9N78w+wxDGS/Fqn4/gO+/Q/N9j9Yn/XH1n20Skb8E4M9+7oKv03cA+JGPrcQXID3t9Fh62umx9LTTY+kt2ulnqep3Pkr8xP0vdHra6bH0tNNj6Wmnx9JbtNOLcP/zSiLyb2DY67XpR1T1l3xa+nxI+igLs7eYROSHrk5keaaRnnZ6LD3t9Fh62umx9LTTZ5Oedn0sPe30WHra6bH0tNNj6Wmnb8z0ds++fKZneqZneqZneqZneqZneqZn+gZJz4XZMz3TMz3TMz3TMz3TMz3TMz3TR07PhVmkD/rC9zdQetrpsfS002PpaafH0tNOn0162vWx9LTTY+lpp8fS006PpaedvgHT8x2zZ3qmZ3qmZ3qmZ3qmZ3qmZ3qmj5yeT8ye6Zme6Zme6Zme6Zme6Zme6Zk+cnouzJ7pmZ7pmZ7pmZ7pmZ7pmZ7pmT5yei7MnumZnumZnumZnumZnumZnumZPnJ6Lsye6Zme6Zme6Zme6Zme6Zme6Zk+cnouzJ7pmZ7pmZ7pmZ7pmZ7pmZ7pmT5yei7MnukbLonI/0VE/tuv5P2ZIvKjInL7tPV6pmd6pmd6pmd6pmd6pm/c9FyYPdMXMonInxGRvz4XSX9BRP5lEfkJn5Gc77W8qv45Vf0Jqvr+U5bzq0Tk/WwP//sZn6acZ3qmZ3qmZ3qmZ3qmZ3qb6bkwe6YvcvqlqvoTAPxdAP4TAP4HH1edD07/z7no439/vhKJyLtHrl2ll9I/0zM90zM90zM90zM902ebnguzZ/rCJ1X9CwB+P8YCDQAgIn+PiPw/ROQ/EJE/KiK/sOMVkb9FRP5NEfn3ReRHROR/KyLfPst+J4CfCeD3zKdXv05EfraIqIi8E5H/ioj8UKnv14jI756/vywiv1VE/pyI/EUR+V+KyLe8po3zyd2vF5F/G8BfE5GfO/X4b4nInwPwb4rIISL/lIj8WRH590TkXxGRb5v8P7vSv0aPZ3qmZ3qmZ3qmZ3qmZ/ps0nNh9kxf+CQi3w3gPwfg35n57wLwewH8ZgA/GcCvBfB/FJHv7NgB/DMAfgaAnwfgbwbwfQCgqv8ogD+H+WROVf+5wvt7APxtIvIfpWv/NQC/a/7+ZwH8rRgLxp8L4LsA/KYPaOp/FcB/AcC3A/hkXvv7p96/GMCvmv/+AQD/EQA/AcC/UOpg+md6pmd6pmd6pmd6pmd6I+m5MHumL3L610TkrwL4YQD/HoD/4bz+3wDw+1T196nqqap/AMAPAfjP1wpU9d9R1T+gql9V1b8E4LdhLF7uJlX9MQA/gLFgwlyg/e0AfreICIBfDeDXqOpfVtW/CuC3APhHLqr8e+YTPvv3p0r5/1xVf1hV/zpd+z5V/Wvz2n8dwG9T1f+3qv4oRmjnP1LCFpn+mZ7pmZ7pmZ7pmZ7pmd5Iei7MnumLnP5hVf2JAH4hxoLoO+b1nwXgV/AiB8DfB+Cn1wpE5KeKyP9eRP5dEfkPAfxvqJ5H0u/CXJhhPC371+aC7TsB/E0A/jDp8G/M67v0B1X12+nf31LKf7jh4Ws/A8CfpfyfBfAOwE+9U8czPdMzPdMzPdMzPdMzfeT0XJg90xc+qer/FcC/DOC3zks/DOB3lkXOt6rqP9uw/xYACuDvVNWfhPG0Tbj6O+L/AIDvFJG/C2OBZmGMPwLgrwP4+aTDt83DSl6bOl342p/HWJRa+pkYIY9/8U4dz/RMz/RMz/RMz/RMz/SR03Nh9kxfL+l/BuAXich/HOOp1y8VkV8sIjcR+WYR+YXzXbSafiKAHwXwV+a7af9EKf+LGO9rtUlVvwbgXwXwP8F4n+0PzOsngH8RwG8XkZ8CjHffROSzfLfrfwfg14jIz5mfDvgtAP4PqvrJHb5neqZneqZneqZneqZn+sjpuTB7pq+LNN8P+1cA/CZV/WEA/xCA3wDgL2E8Qfsn0Pf3/xGA/ySAv4JxYMj/qZT/MwD+qRmO+Gs34n8XgO8F8K+WRdCvxziQ5A/OMMkfBPC3XTTj722+Y/afuqCv6V8C8DsB/N8A/GkAfwPAf/8F/M/0TM/0TM/0TM/0TM/0kZKoPiObnumZnumZnumZnumZnumZnumZPmZ6PjF7pmd6pmd6pmd6pmd6pmd6pmf6yOm5MHumZ3qmZ3qmZ3qmZ3qmZ3qmZ/rI6bkwe6ZneqZneqZneqZneqZneqZn+sjpuTB7pmd6pmd6pmd6pmd6pmd6pmf6yOm5MHumZ3qmZ3qmZ3qmZ3qmZ3qmZ/rI6d3HEPrtP/mm3/XdX8IN40u+cS6k4hMITghUgU9wfNDXcNW+E6z5q7piQiVRMSPWi98YKd+PL2j6jO7fh9jm68KuX+/pG3jcvyb96T/+Yz+iqt/5KP1P/smHfvd3v8MhggMxHhQK1ZxfR0zkdeYVA72DLyg939xTmdyyFm1S6CFJLynle537/E7SI1rtdKpy7un4WLqvV75n1zo9kv80dMqUq14vvX+fVXrcNtqW3av9NW143Da6lD92T14Htff6Os8mX2qrR3V6/bjXlnevz+ixj96/x23zIffvT/yxr70I9z+v9Iv/gW/Vf/8vv381/x/+t7/6+1X1l3yKKr06fZSF2U/97i/hf/W7fxZ+gii++VC8h+D9KfhreuDH9IZPcOCr54H/8PwmvE8deddhFFCBiszcoDWnfSrwHjfAaxizABHgwIlDGLzGJEEk5FYHrqkeocKq4xDitKQBTz9QyhWYE5UjaKtOU/9HbZN0FHNQLDekK7LOPvlR4EzWyHLNho/ZpuhYdKq2EaoZU0dg2KnqdO/+Jbl3bZPvJ9/7qhOWfOUNuw7qY8sbmwqNjiXPLcyWC1vYNPaQbFeWG7yNI+n0uGgfj8do72obmeOPteht8Trb1DvPTqjqdGWrzjb13ie97tim6qjLPVhtIY5Vud6+z730/nF67P79yr/1D/3ZTQVt+q7vfocf+H0/Bd8CwZflgArwXhU/rifeTxnvVfGeWr7RDicEn6jgx/UI3Pe1wbiD7739jAWKd1AcOPElOfElyfWyReqEaI8j9xPXnbE7yke7kGzd3SXW6yU6aZG71tvrZHrtJOVx+3I7pTbe0dGknI1On+X9S3xFx2rXmrxbNkrem3I3M4rCV63PfNH7jwsddfP70bTTqa8vdJKJih0kVVt1el0h2E6vfT1kK9yz+evTo/fPqLb3b8L5jveebR7RaVf3f+xn/vkX4f7nlX7kL7/HH/r93/1q/i/99D/1HZ+iOh+UPsrCTFXw1/QGxSd4/3440P/gfIcTN3xV3+GreuCrEJwqeO+98V43G0PcnJrtwp4QvNfDu/g5axIZTvrEgZuOSdhYDOXpNte6c5MxVZO1RI1TptwqR5d6bFEWUmWZEh7tBPHKNkStDAZ5R0ZSXTFjVgVO5Qnk1F9CyyPtg1e51zqKyh3bpKmN638qAByu4/X9ayXfsQ08X3eBBaFz3B3WcdU51S3iOq9yLB/t6YAzPJfghIKjk7nf+GJET6o/dNTEK9j110XuRV4gtHAu7RH7dUCVax86mW1CW3m9bTjNe2WTurXPmeanz/Qftc2+r19hxixXaSaas7ViVw+onjgetM3L7l9N1/fvkKsx1acxXhVfE8UNilOBr86F2AngvcbCJNtnrWfcRsU7vIfiNjQTnfyH2+OTi7tik/uMWPl3N0Hj8ketUNG6PjG0PmmbYFc6cbonv+r4kvYBYaOz6S+MItxDrO+91jacdpPOWHR/dvfv3szjJQuabuFU7/MjqerMdaztq779vn5W30vu366+vn0Cm0XcNvcv8urjodJ16Z7OrNM6LoZeB3q9r3hfkl52//I9y7OrT9c2Nb22f37cpHiv58dW4lNJH2Vh9h6Cv/r+Hf6GCP4qvoYf12/Cj+sNX9Mb/gbGUzKDdpv0zhw8J4B9HNsCY5gWMIdy4MSB9z7xOSCieP9+APu72b1VFcchuOGESDyDycB2AGJydnLNzc7ZlH/AO9qTp3E8tdL5/7FnExO1Seu8OibhOqeRyRaP2IYWPEQLACKn62hWt8VPTBqo1OUApy97H7ONquayS9u4xs6r4KeiR/CSTjve19w/EYVqvl8ofS63j+VGv9H59NZ4KQNgb5udzjYurN9kV6yAxs4bT+aFdByLW8FZ7sFiG+3smNvHOprkchfmAnHkzhG8jCRJzcp5qmX9NazzmG1cZ7fVuAepvWq9adT03qeje9usT54ft03tc8lWCmA+vdN6/15lm5fj6en9c71/7wkzHk0K4GsYct6r4r0M+58Avmbbv9Nevh1cEvdZAXATYCztZh7AOe+cqHhJGbVQCE4c+CRhn/ptHOHutIUh3FcQEHWlowQpE4vY056o7Awomb+F9Mi88oBtTLBWnanXWJ+y3yflMcX6YtGxL/oZ2yZsJY/ZJuXVnwaIZB0Sb9IJUFGcGq1YbIV8/65tE33OfaKsNnJeFN6EDFnns+FNE+okN9vm3OgI4rd+ExuEYSzBnNDL/kAB05n1Oqnvr7a50hEpLHnks10N91VK5E+98ZI3Kbh9j9iGdTSdwlZEK4CoTl80bcZmRL1naZS82Dass9tK1vYNWu3vX7UNiBcvtw3bYnf/3npSYG5Of/HTx1mY6YG/cn4rvhk/juP48lg4QfBVvMN7V4kmOl2+LHhWWgNL2/EWCI7xBO088ON6G0/SVPDJKVDc8O54jy8fX8O3HD+Od5KHoXfNFKb0mI7RrRU8ydGljCVyiJ7tQkqiyDq9zDZeV+nHogddtv9LoxO3wADhIEkvvX9Dp51tEjQohTJCXCfTVuVRW73w/iVbxSR+z0tal37TBVjq8uMBHWl6vdYdu9dmrYP7UaMj3+uoi1N3/2o++k3fXgUotJiW1Jv2Ea+W21BoL/PKtop6c7+xyZTgcM3Q2obHcrJVun+9baqOi62ktsGcdO7bn6Ztqo7X9+/lzloB/DgOKBSfzAmNAvik9jOeYHaVcJYmdnFHwkbvJsOZ9J4RFRgbd8YtNBkdi9QVJ2OMVhtQvmLq/L/1bw5sZW6FzIUqYarm5+mqK2+qJOWLv1GkEO9jo4fLmv39xNj44r6Sns6eCgjb6nHb5Hvd61TJzVbvFUC6f8i2au5fVFTGL+ux9L+qVx37lb7XO/SqTzqubFP9wt5n8Bg6NUaBQnHoSZiy108ROu1tc6XjOpbdV2uMKMHoN4cw9dpvsq0qRlzbJutQ872tjnmvz0xOKd/3l92/tc+xz0g6nYC9BtPfv2znasW4j7hrm5zf37+O/JlGEpHvA/DfAfCX5qXfoKq/77X1fZxQRgi+qjeofBNu54lTBJ/obe6bW3jXHCxCc4aUn45L5u6OzMGu0QXFd7kjtOK9Cj7Rd3ivB96fB37s/BK+dh44RPAl/QQ3vIcegGq4eIXS7kceDDJ1WHWkpRTx8u6NldWdrtjdsaAq8U05AwKZOl3aBnOHvdimPtExO1ZetesgnVRGmBkaWv91zzZrXiAUTtrbptvdORUY787E0zy21e7+dba5f/9c7ACrhXfVccm7hfr2xG6VRN8m2r1dhXipfQpAlAD19pCOJzBC5rDqVG3VjYtjGs55NfoSWXBOn45w1g/a0e99GlOP9rmJC9RPNNnKdk8rb7YNkOvt71+DGW2f6+6fYZd6/pH792G2GX3u3v3buPm76VTga5hbOMJPh2IHmPGamtTOe2QqV6Y8jl1CmyvqoDDu8PAbEaiqxBtaNE+SWh1rfiwUrO5U73zXr7bHwvNOr0tX3qnJQ7YhnaqtRnt5E67yjpotjPGkuhZbifVSK6869vcz7DoMJZCxOy/X7VNENEz4nly+s9XWNpf3LyIzhh2FxgKAml/aR3KpfafTymO8jR137eMwzwMA9HD9WU61K9+ze+Nxp2PWSZ2X4g9G35ZRahhz1Hu/sdWjttnbKnRiWwHqmAvtedlneDj8q+9fP5ZPwN+bFbNXvX+bcZJDs+XFtrl3/16L+59XOksswuecfruq/tZPo6KPsjA7Ifix91/GXxfFl+VrOG0/aiJh7Bgr5LQd5OlkdToUUYhaaM4Y6u6EZQ7fc073Zm96r2PS8V4FXz1v+Ovvv4Sv6jfhq+9HtPO33Abt7f17fMvtk8EkYzC6HJMLyruOJneUiZxjICtV5Agzu3sgjiPFiZjkjQJTIvPetY3puNiml2tyQtQsNHKxUM5Gp4W3s40CpyYdoWGr88I2Zkcluep5xON2qbZi3r1t1vs3+uNy/7i95Ly9faaTle3suukLdu/hvKsd13u/2qbeE7v3CoWcuUk73rPe+5nhPrcbF++LbSjjv81N+zhhnU/iDSXaex86PTIu8j1JY8ptFfde7thmvX8zf4UZS59ju673j211yonjM7NN3M/9/YPj6cuT4Gs6QslvSU/uG5OUZWmqYs0DcwoSC3y7dsx7JSoW+e0TxBEmOictJvolcqs9GvvYZCmHIa2W0Yn7OrFMgTHho/H7KtswrXitOOcbwftk7xcCkDgp2W11Ife8Z5vm/o2eIDilNU8kjfDKc9pKgAiF/Azun6LoVBV8yXiYtAb96v+TD9dZ2ZXLxI0RCXDK/W8jOS8YI3s5j+soBFG86T76EbOeG7va0+4Iqbtjq7s6F50wDtegov0t/Rzvn2psgiz3r8MQr47maA/K3eu42uqtJoW+KsT+LaaPFsr4o+c345vkE+hxTFC1ycoMh1Pbc4i8sve0UW0TDo411xPQw9HaeXHM3eoT70TxzbcT+v4TfFVuM5zyhlM/AeTAJ2YaPYH5lMh1LHLV5SpUbxEuorYLT7w2vHTswaX2zsmDDfbT2/Bp2warbWySp5Of5A54F6jq2LkRa8O50Gq1VbKNuFxDaGl07GxTdRxh0/xE5xa0dK6S8Upq32P3L9uqt029fx6cTuimJueCV+e91tn+TJt1tPth+fPi/nHYkag9k54TvyJn1z7TCXQCXrVj7XMjTG1tX/SbuPeHymiXkK1a3qyjTk8WtKtttOp0dQ8odPHQM+kUmzwvv3/deMw6sl3XMeV9efK+T33787NNHVMvTYoZOqiKc9q22mP0V2z0RDN+AYiFUOv8yxJHXeqbflFXOgZHrS5jLf27bKL4gn2nIwgHMSYNAOfjnqr/mk8Q6R6m98leYZuKG477LjfsBLdeyDF8PV0nOP66v3mpbRod2VZ+T8g2rKeSrUD4lHpkkvOIbUiO3z8UDa7vX7al3LUrt8eyWnW80DnJpfbZPTMNRQeyRVcq7U12td+BGzs5L7n3amIUeC+jNjnnuJRruw62HKL/Wtswrek01YJMW03n1NiqjAtkTP1gzHBbKfQc2GS2OjTu3/W4YJ1ebxujjXrt/r0c9z/P9IHvmH2HiPwQ5b+iql95Af8/JiK/EsAPAfjHVfX/91pFPsrCDMA8jIPj3wfw220fi5LAfjt4Q5xWnV5npw2farz8RG3uSM4dtkPOucBRW3ZAoCOUEQxu4u+e+AIt6RFtOimvOsKdbAewtm/Jz5MFjXfscknL++naRhLtGM8c8BcD9b0KVGb4SLGNT+rEHr3LDPfSZBvjNTlmizimvLRX52TOeGE73DLrjd/VNvHEwmw1nG2UZ9vU+yeQRMu2ae8f4Jv/vviZtGeR29/PsfjFPEp8p+NorgwnB0m0Ox3nNC/CjDSezl3zSpFrdq206vTnonO+JyLRb6yHWJ77yco7J0tTjo2T1TbWb4TsOjc97t6DYav3GP2X7wGw57V7Mt5NOoocxTLGaEylPifrmPL7V8bJx7CNjSkaci9K9nK9tzEhzZpPfRSGOYEFULtns3wOujxxmbSktCocm102yUGSG/eo07nV0XSBzLfqJOssxOs6Tm8kkU/6vdQ2lVYjL2C7CdUR0084LxadkpyX2qboCMQTCxdAtql2ZVtxIlbXa3s/q45g2wjMP+q8fxHK2dy/mec+V9vndi7tM2pbHCy2eUDn1a5xD90eNF/VwlvHCW9YVDkvHRd2arPpZKfx2m8Lt+/sKqq+pxUnrX6obbJdzkTJsjf3M1a8iG3OD8eMyquS9eT7V/tcHhc2k32tbcr9A98/vBr3vyDpR1T1e3aFIvKDAH5aU/QbAfwvAPzTGGb6pwH8TwH8N1+ryMcJZVTB1/RLECje6fvoFKcSwAHCoWyW957qvXL871SnHUKi0w36MRmACG4KvJ9SvnQovul8jxOKL8l74DjwySn+fg0gSa6FN5WRzR4htTNdPsOpefskmHhAqIovYD5z25zkWMh5DxYNnQDonM1U2zivRkiCnhoKFtssOy8nEO+uRfuU7B6VBBgqjvmiLFW/tTMg/nRmb5vIy2obtXoFko4+4j2q0FmtynlPkk5sBmXwz6ZZ+tgMXXOnpSRXJemIc+o1gd6eg5hD0ov21T7X2Sb3OXFenbZJ90Syjr7QA1ynMU5kY5v47RZvbcN6TX2mndDYpt4ToS4r6O5fb5tRl4Qe7XjEQ/evjikz1nHqgmuvts18wfwR2yxjqvbRB5JNzhTRz9JYsbqnPgwRy7gyXIQmPD4KbaeE63FmmT5+2bZFx9PGPvRaR/rN/ZvL+mEeuI9iq9faJvESz4JXpIMZKibG0Yd5Ev0q29R7D8A+C9vdv5SfOtiWKvu5D7aNuyubbo/0fubYNpc6Xtg1PysLmPC6m3FxFh0ftatt1gAP2NX1mdhb5XD+4t5XuwKS8qGTbRRm2+RxIW6jT9c2UnQ0vcZ9vzsu0GPZy21zzRu2EtgHnx4ZF2ar1/abPC7C7gCW/vKWkiLm9Z9J/arf+widiPyLAP7PHyLr453K+ONfxrfegHfyHrfxdipiNlK6oE84dIZ2qF8PWus5K68ln0woIDjxJXmPU4Ev3wSfzF3h8xR89XiHr72/zRN6zvF0jV6XjpOxWM7GLSvgj7YbWkm6q18Z7xkwRHy2tsll6hN5o7PdlLFbU75XpuSs5hOD8dRhcj1qm037ep3CVkOnCqeZ13SWySuvtY3bm3W1v/keqNOQO68iEo483m+MN2Rc3fuBrAdOfx0peo3Vy6Lu97lWJ6LV7p4kO476BeNkLnho2xQbM0LS9zHbsI5hH6W29vfee5SaIySdUO/f47Yxx1gdO8tNRyoQrRCtQP2JE9smOWe80Db6mG3a9r0ivddiw3t61vvf9dHJm+yT0jomFSNMiMeOJINOSr0vdzGKAhDDq9HLBxZOWql1YeI9RTF8yrbJLRfY2Fv8GPHq1Cv6aBmTr7ZNlDlazFCGse/HmFrsNOvVpNOnYxvjFZuk13Hk909KHk16kBfl3ovgCjdWnXftC9oxLsyuvY4VJ9sNwg+5986rcF+syHZu7KpJJ6sXn5ptFltVnaqtaMN+sdUH26byKmwuFU+vuM/14wKwcdu0Vwvvq7D47aaPdVy+iPx0Vf3/zuwvA/DHP6S+j3b4x4/rO3wrfhyQg7oW33UL/8ilbHaVmF7mPa7Mi1TzBIBZ4SGKG05/NeiE4Gv6DjeMh+c3vHcHa+VXcpeeK1G26KS1vZwDTjmwLCA+NdtwqnY6/v/s/V3Ids/SJwb9al3389/vvJkZJzrkg8xAFIweCI5kFDEEkziCxGDAgxglQU8ciR8kagjEOfIgEIKKcyDISzIHQfGLBBVUggPOQU7MTERQM0JEBCcJxkE0k5m99/+5r1UedFd1VXV1r17ruu6PZ7937/3876vX6ur69a+qe/XX6tUaBmrviemDWt4xC3mU5Xvb0G8nucnLV5q+zcBkcydiylqP1lBLW36ZG7sfLNqPBu0WlxI0ZK3j00pDcNITbhAQR9ne9lwbdzlfjDQrDnIlN8IaNx6T6O0xZbaX0u/6rghJUssNneNmzpVwM65TUK7KZEzD1Lhi1UNOdoWbzH4+r758fQdBfgY/Ipvmudw854lcNov7rA50UYx72dgObnHSKAhKp2pXblu7EU9SoyAe6+8Ih7QvzDZt6PSEzKV9iDZ8FjeqFz6NFfS5GUzRR2M2B9z0GNncJc8Vt2eIV9bbb9rGJNys2o+pvrkmD4soEe03bPiTenjC9jxpN3JeB+VBPfHQPHFGvHLIt2vLn2j7EicDq+dVdiD4vpHlZqWeYHyvs31903hi+4YpcOXshwvcmHskLx9k9oPhKq8XQ24O2oxT7c0nC4xr39d8UvgniOiPVBj/DwD/hUcy+5jj8pnwfb/hZ76BQeZDpjb0FTJrgsuDw8/72a0WTtY4shwDvBHjG8pWxp3Lsf13Jtxoxw0MbIwbZCZTnL3Xy+5ufOT1GNu9UG5uecOtmj2PG485dkZs40j6or9iApIHfFKOmtcVbnr71ZysQbn9aaszkuuoAWmPyGdw05WXc9l+Dr9qMbyKLyxxY0oZH7CtpP6azbc9hiyO9gA+y43teDg/wdgm7dFWOnxE0Hc6HuHmqD5KulkPo6S9YSM2mFomrRNDmt8ZbjymlkcffAvBwkKcWeZWzxpXT+Ymtd+5wIAeXOLznuma1ee+BR0PkBsG6+OsNiXdziR5msfFAubYVlhbzOSb/W23GUt2OMdNvDLvwnj/ju3JTG6O2aeigJDTVC1E+7V057mJ8XWfPvJhizZOYn6M7X29GOFtei2evk04w+vc9t7iPTeZv1ofeL7tbauZBctFSZvbb0Xvsf1i+53n1XPyPG6i7OcOH3VYPjP//c/M78PeMfvV6w2/pJ/wq9sv8U0nUdt3JCQujYJUAW3KCXXbnE0buhsssgzGDv2AKKGcClbDjfb6gL4BYLzyhp1v2GkH8wvud8aNZNtVkS3voTRUKY6KsZ9Zl4GGOZodbRkaKLMyslT/JtxUPTYnAKWDvO9ND21m4BzKG/UQ9HtfsvXzHDceYzmoRRrvepIfCCACsz+lyXPjO58Ow4AbG1/nhsHGfsfcGIspVwTfKacUY297Wz4TS8tHoLpa5n0udASoffdvaJNO76B8Ha8I3LQ7RAzez3Fjc32Emyhb2oy6FZd39OUr99tA6BnczPxG6oGUget7kckAL7Hf87iJA7p5tz4LzO2wE2fDOgBuce8fLeSykHYdMrDqUWt91lPJyoFJOlBk6vyVsLe8DzC3dRFpr1i/BScoyOjt27r69qfx/WdwY9vQNuhMZLUMFSPYTZhy5NF2FY/s2WGUFqf5u3JF/Wq0HeBE++1MuM5NrL+Nq/r6Zc5NtB9l3AiPB7Iwkz+d7QVz5O6q7Sf1AkaPsz11tne/z9gerR4028tBxgu8Otu3vsY1bmIdu2h7wE3euYHZaW5inbJcBfsl3JQ87CeNnsFNlD3f7n+F8+HDtjL+5dffwl/18h203cwotzgf628AnUPIg9TGOfwqDzlTdUByrG4B0L34aTuAN7Dueb/vBKZvus1l490cDrCG0d61GN0R8ZLcJHbHyz+RGz+LV+IqwT6OnWFPPeyOvO/0nsMYm4poP+XKYmbPVTteelXv4B4ipmNu/Cqeibeee01bfkdZVlEyMGonzYUrtrcPlRIj25ERcetzTo/9AK3YNn+oXLG95hB94YAbZwP4Gcs1veTuNZ/ztifbhrDP0X8I9y24ybhikBuUhlDbDDagn8VNLns2UDlhNXDp+UniNgRZYnaIpQqO2jr7UWW3GqoyVm/7REB5L9VYOGCMvmMP+/DQs3plPh7r6mDCxQlupGMnerYDbmb1KmutW1sG37Z1GG1j7WW36ne7Xu25sRqj/a5yM7KfcgVvz8bNMUbPI9K0sd3IbT/HPCvfM2wvdzLbj/RObe9FQPUApWu29z2wh2wfucLI9jHLYD+Y9mRB74wbX6eO7Wf7C3E3n7xvdoWbKa+fLDD4TQ//eM/wYVsZwYxbnfECqh8yqfMxSE9usw0DSVoTF/feqD1sqd5sL4iWvHSWJTjkzm37z20rnwRllINKdm5Nxrd63Ks0oiOMcd5P318IGIl8RSK0gwJLY13fTXoyNzTkJjZJYjM5na6kmenFAcYRN0Qn7Kc2kIaVTnGTY6zlXeSGpDzcxyWIPaPPjdJavcINLthe9ZjtWSXdNvQ5+4iIfhJtIrpXeM0xt85r9ibimMekvBaT4eqM7VvcckW9zyUYH+ZGGckx+6FyYr+AkfituPFluxL2IMlaRtHl41pGmDYUrR3Z9FdFHjtsSRkZZE5Zi2nLqmM7Ka6EDYWADKPtXgkmBrt2wZU3tDmiWU8afJCbJut/F5/hKTdWL6B7FfRKKmsUn8Hc1h4MVwk3sW5Y+13n5th+4JW6MbJnZvtEtvKsJ9Ian5xh7rnJ9b657ScYj2wvn9PRNnSB11h3r3Fz1fYY2i9y9Qg3sU5JBlu135HP2dyebb+r7f67BAbukZAfNHzQd8zKUutf+v4Tfu/LC27bXStp6xdVd1CPsL0Rgr7QU+8RWAc0pjfp04a4NISyhQcoHZeNgR3l4607ttLxZ5QtVwy82LPqI0bjwn4OPaQdlK/NAhr8i7LP5Eby2tG4YogspWm7+JO5mdovvmO2wk1orqiWlxa5WcH4iGwrH45lZ+VjSdpOwyppkWM+wGhneFf0jsp3r/f8SXqLvIa0zT9xiRsfp7oq/k7czPSYONFm/PMduen0uAIuB0aZ6JrVwS4+wUkg7MTtG1gIedOWytp3phqM2v4CkG8m2c1dO9rqzgxjjylym2CE3c7W3nt7hBubVurWTm3gOuKmxcvW8T3DtNLuL2Bcsl9SN5pt7Ez+NW56ro7sF5+vFvMCN135TvD8EbZHWC05w+sp26/xqraf1ZP3sj22c/XkDMaOq70eADLmJsqK/WA1X+RGZS+0++8VGB/3jtmzwwcNzAi/5G/4LX7F/+f1t/FtY9zojl9sr/hpE2oZMI7VtqBJp6E+NEOHHwDSr5vDuKjpxLNKbyYta+WXrVPSGWEQ7u6rID3GdoqjxcXmv+2exGz5WGDa8rrwfG6aLCpKXz5J1XNlMKUHcFznJmL2XAGp/SJXA24sRhrozbnxmKMeMrLsZMnZ0+ZwaBMC2p7xme2jLHRrl+hxM3EsWyDG5RtihC8f72T25R9h9Bg2suUqf9sHu+fcdH5juZpyE+5NuTppv4e4iT6YcWUA6xdu3pCbmf1OBG07O3lXu308a/qMr2zWbdWHR1w2u7DaaFNRbfdBzp4l5S1MIHiMsX3ajHTX8UkwtgG9fXf2CjdpSghXWRvaxxngbYzpQG+PcYSZ6ySoed5ctV+qdxFjjHHYzpY+B8YYXVq7VSaVPcHzO9u+SL6d7ekB25f/D+rJA7YnDqezzmx/tp4scxPvMzY22ykP7QfH1WX7pZi/wnuEDxmYETG2bcev9w0vrz+Bb3e83Bg/sa0sfXcZWoXr9gdQq6DU3GnnFhef1Y8XM/RFypIW9RjxXoc4t00v21kajhbYOLCmoZofe4wuroMWuVfy2jV/ecOqPcSfyQ0cxvJuTWn8yqmVkuzOgH33a1PNDdPzuSkzP7psrx1maz+rq3E144ZQ5UxjY7kacaN5OcyFK2s/ArXj4+t7P5zJssy2TfTCcDO1veW+bMmSa/IKtw7DuM3yHZdv4DeWV2LjA7ntCaQLL8INqaWqTepxxMvcBL9Z48ZiLP+VLRBiT+fbM/s9jZuImeSMj3pF6v7Ifs/jRr7aaDEKSubBVpvFsFccbPkig83E3cQupF41Wc/KjEtfRoCqn0FLJmPP5qNWqm4Fd2mbj7a+mjwxmv6sXdTkJg6jlw2Oq9zoWBotobC0WjfkGdj8m3K95P2y5yZibizYvt6Im8x+zPLNs94ma9xEXhtX3n49NzOMnte+7meyrV55no95vWr7nNesnPerth/aJLPqOq/W9sL0eW7GtrdhxfZaT87Yb8hNzuu5ds5uPfTt3LV64TFebfffJ1By6u+PGT5mYAYARPgV/wTcCa9M+AUTthfGy7a3ilWdQRv3JK6/66lu8gFd2W0o9zcbB9WZOoDrVkW5R6axr6JVqHRrZSuR5Atuj/AUs+itL4LoS+EGs8rWtPGkMDLbvd6CG0q4kUHKXmUFk33pdicdwimoZ3NjMdsGZ2Y/mfFa4QbOnmvc3PVeb78YZ5iGNJGd+esu3BzxmJavvpTMrFsXqZ4+2vSSrv13vK74zYzXFHN7l0J3A4Ow0a6fV+aKaZkb5zfn6kXBaDAx9P5O0Flm3af/ptys2A/YeXf1BG/EzX5kv74fsxSkHaFSMRpOMjy7QwFs2hLfWM6HKe3izZaxptd2pCujvA9S9JY8qp66stk2qpNilPeMdzb2t2l3mM5UO2qKK3mu3QAbjI1kHYiXivAQN1bWZuva2MCNq/s107sYro7GOdNbubnXBjjjplKpGFl4rfYbcSN95lg3evsN9DZ6Xd1Yt1/OzRHGKHvJ9nXlbsir1eNsEm1fpuVmbUFme33vbYevJ4ntZ/Uit33BdQOft31VTKBlbrJ68Qzbg2FwWPud52bEa1lUCPZLuAFae0Nqv6Sdu8BNlP2MgYH2ys4PHj5mKyMBt+qQ3/kFGwO3nXHnDd+5QJKT2lqn1m8PaltjbUeHnKxNe0dxTonvuo2rNppm65R9lDk9YGxsHgQJxhbPMd4jxvpAJa4tFur2PCadERdZpe8J3ESMlHClXJhTKxtXLW3jBg9x85raz9gk2A+189rbz3PVc0MV476OscZfK1ep/SCYWBtZ6cwUzKJX3mUZ631dst+B7cGQw/0J5SOVXHlkVNPqyaBe7yn7hXguK/WNzcxdfQhy/eCvPB0BMPutjDNuot9cqReFq2pbMDZmw1WtAyfs5/Tu9WF7gVfxcQJAvGPDht3YDxBcb8dNlG3v5J4Lpa6a01alPlOb6STlvMVdWpQ2iEy8dRoWyqh1svibbpkF105SyzfTKx3IiBFk9KBs0XLPn6p3Vje47k5oJ99e48bK7iat3h9wIxit/QVtWTHeUm5wyA07WWu/zXC1VDem9uu5kfcFaWe81v0CG+/YyO5HsfYr8ZH9lp6nkhalUl22vTzbRrxavcEmb2P7uc+N6oXF2NfdC7avOzv2ytUKN7Fe3APGR21fODKvwFzgJqtTJIPBYL+Zz0mca7yrJye5ibx+5vC1YvZAIDCIpHtcv2NBrSsCtIaBTNznAHOf3L5gK0vmN9eOjDSGqHnYvDlIeVcsDaWptpcxymysryjUMBGMbo/mWdzY8klDLd1AZnk0tPx3WF0ewzO58fZrOMBN1nHV2S/yWq/ICaB12yHBNOwTbhrmti0lsx/pHitTPm4NtuS9J+W9ws1clgw3BeNeMTbZFiTfttrY61nlJsfY/jG1q4z2krJwZb1qd7qexY0tQ/QjNvm2WVoY2cx+U27oiJsMo8XHen8f2E8wN1yPcZP7Z+WBrj/8mP3R01wyhGS5h3iOs7XSpmEwHdFeVvmX+snSDhj7q14KGMmh6DGKLKvdSJ9nJE3CBCNV+5Q2RTi5wk3Pa2vZC6bYLvYYY7vvubrCzRZ4bZuX25a0uf3U9gP7ZdyITzOXzuadX3RrPnP5aqmXbd3Vkf04YPSYSR5RhpvSIe/TettLmaztLbNvZfscs3nms/g2jWWHGLM6ZTaum3Yx4ya2qdb2ikMmyk9zEzH3ts+4sRh3xHpi2+wr3LR7ssop7Vy0X/e8ifYbtnNXuEEi+/kC42tg9nDY6hRtGcuXfzvqnliTzndLSuBwT6o3m3s2PeBfEfYdP9txlNDy83rbY0j0SvM5wxwxSm4boIMFG3ajo1U/pOV7hJsoi1oaP1xrjQyDHCav93ncWFkJ8ateEtbtV7Yb2HdtyuHjOMTYmLB2qUfr+t6xz8jl2JDtsB31sd4jbua2b7Nz7Z6sUPX4dhM76zeRm7EsdeWT371HmY7VMjdzjJlsezgNuApB7IenczO2n723Aaftl5U/YrT3Vux3JTBa22ZztRj6+DgvoOxgiDmOZFt5bHvW/O1Idoa5dZTK33YoCcN3aJrv+Pz7SbKr3IzSbhyHUR6VjVlu2PB1LHsGc7Mfa6q5j52xHwNgLrty7ih9iw3l8xz62RuTX26/npvcfiO8120/53UWYlo5/GOl0xpt3z9L1vXOMRfby+rdMa/W9jhRd48wzmzfo+kHM7n9jvWOMcf8zrRzbPBk9WQWHmlvvsIzw4etmH3DK5g23MF1ppfwfb/VXxtuVB7jIlFCq0JlZZkhw/lsGOXSozVMZStt214BsFlN80iHekXWvqAkacnHy68t5GWrjx/esGDcTT769Mq6UyOMIuvT5lxBZUsRDDemFHIikufqBDdRL5G5wknaJhHt10pybD87eNtBAJfzsHbOMPm4IPS8tnmrfg2jcTXzOdv5Ep417uwX4xmvM9sLRstC5KZcagPNrcfU2f5kvXB5FSECV5/joc9FrtrxBfZ00Iv1oqu7katoP8Gxbr9L9cLKKo5RmxE7gI0bvwJ50m8OMZ4LDOCVGy7b1eBg/5HuhrPc3anVzzHOlsLbEGYrLwZ6BzbM0rK1E3SWmiB2sHXfy7ZVgH6iAEd6O268rNSa+prYkJvoKx4TA5Grk9xEzGK/Uu3G3Ng4a7tfcTHGepmxYyur7nzDHQRmKeULdtx9281tCiW331FdmPF63vZLvA70Svmb7fmi7dtBYEvtxjvZnqi+l/cANx7jddsf2+8MN15W1hN3ahOJR+Vr7Vzrc3bt3CluYtrPG/ZkoeNHDB90KiPwsjHuvEM6EK98q+9Z/QQCcOcdG23meOjqILrOyq1/BAZR/Ext/DK6cT11WgKYa/PsK5o71r3Ta9LuSVqjtzQ6WWiYWOPtkN59953AqOc8Ro9pxJXt9JTgj+OOXJ3mZsBV2z7QY3qm/dio1Zfgo6zRa+3HwbbRfv3RzfaIW/tICg1hl9b7AteXd1XvjNfQqIrt9aETeHYHQ4fyRUzl9NJrtk9tUjX3XVHjcwlXbHj2H/4+qBcpN73tU64esN+lehHbucpT22Jl9Y64Apbtt8LNsJ1bDYQdN4Pe425lGrcFraNaPaH74vzm41bW5K7vgzgMff1temNZYvtkP3XNbmWzE00wsil/vwNgrHfEjdxtvrKb7zMlsujveUz2APm53hlGG2dw+zacAJjYz+Kwthzp5VqGsm2uvJ/Zuq4E4ObKt2a/xMemPhfKcML2Rz439QWcsX3Mq9VNPrT9ON8j25MMHEe2D3Fr+zIoG9t+HveY57aP9sNF+61zU2T9M2Wze8tPt3Nj+x1xs5724wPjayvjQ0E6Y7JtrswKE1738tAm7LjRBlCh2a6GyIk4fmGXQFyPNLZpqVUOSW1lpRrqYjoDdgOQ6/RJPwZkKm1Lq7Km4+TTIsdEVm/DyNjmekw85UZlN9fl0XuRK4tRuZE98iXtjg3Se73ETc1bZS1Xl+1nlv0XuBFpLR/v3gZmjJLZrwXPjZYvcqN52Ty2UL7mMYLR6tUmNSmf6k3qRfQpQtmmEW3fyufrlEKpesT2az63p5ij7Xe00w/FJpA2gVe4GteLY276uitc2Yezf99qgklncQsXhIybhXpRFYkPWt+5GftZ+zpcJv3Ifqe5CXXq6mtmd2NTwU2grq5bbn0Zq3/U39JVsP5LJu5l4cokM+95m5Ovgzs9XXvFkJn3nYIdNPQYRUnxZ+m4NoJ7PWNuok7SVwbae4Mjbjwma/96gIbhaqx3wE3IW44C4Zp2xE1ve8GEQ/vByBKoTWEw6rttRpYB2sb268o3iR9yE3kOthe/9uG67c9hbFfXbL9SL3w7KWiknrvyTblqtgf6rYznuMGi7RNZBPsZriTFFW56zOzyO2rnYhtX8jpTdxNuIsaL7f57BIZ8Y/jHDx/0jhnjVs+uLS/SE4gJr9iw77VbR4wde/tWCaF5GwigOquL6j7E5qjM4tTNEdtOZpiYVnAmdxeQ2fOkCSK7qmLTAtorN5jM49VgAlAHTLaytN3WRUrKYzHZuDa6GTcOo/bJamPYZK3evpI2zI4rww2H6s3w3LSsybSqz7YfHrDf5uN2xZB8E2tRqKbURhmvUTbas3U2ALtQEnwssX1b5cyt2WxPun3kDEZr+3Wf21Ju2sCj8SwPwjE3lte29ZJN3R1xk2Hs861xM8W5k38wzuxnfUGxmXuHbQZ7bro6ZezHwX4+9TPtl3MV7XcmyOQOG/HMDnYwkfKBxgewp+2GPDNc3TD2l0FB+05gX8ZM7wiz9TsCu5NlaeB3zv4wdb8xkeo5i5E0N4Nxwo3Nq1wqk5fl/dxr3DAaZmA3kwG77rSfcTO2X8/VCCOk9aDSqX+1ep3PNfsNuRnZZIXXlOdiJT2l8MCeQOR1bnuGKd972962G256NLd9MX1o9yvm9tTI68kZbh61vT5vTtpvxM28nWv9I8tNtKe2N6n9LnDzhHb/PcPXVsaHQiWPGDf5LhZx7WTVb3bxjhvf2umE3NwUGpcKIZWpd700mFvqwM6giWyDXHMnk46GGMll0TqVQz2CR4tIaVp5wMgtl0vgpq1NVqS8xo29kGMaBHJ/jOCa/QZAhnDP2K9wNbCf4UowJlSkF458rjXhE4z2LkOPu40YPY/ztpIBt411m9m+w+z9lW1mzp6s/NstMGs24bDNZpB2EORRlnNzxFWsU4Yr5uncm+Ums33jKnIT2wzo34kyRfg29gN8fVy038lQ2vbCqq4Mwxe9DGq8zzqcphtRcozbss06YuSU/SW/SpHpGeuN91y7od20+ptTT3PZelymXh1iGmMcY4La29HsgvedvdsOtc5NH7/V1AyC7JJJnnNvYr8tveff4NH11BxHVxfmmI9kc55tulVeW1rLKB2V50NsD+hAaGh7g0Nt356k9lWPx+vuuu1Dr8DEGf22wTPcxPKIdIbJc+XaULbta4bpEfs99gz4Cmvhw05llErVtjhR9REC6s8dycw0wc+MEMBM2MwgZQ9pVVpkzV8725rpUTXV+TeXBwmEMAPTMMoWqZ3RMGr6Mca9lkVecs1ka5LWFCd6BaMkVt4XuRG9EdNQFo2rsq0zt5/nik5xY+PWfkNZaz9AX4K39mvcILXfETdZ+Ua8cuXQy7Z7rqm0GCWOZgNpo0fcNC8pOe4zjGh2cz6ndcr7OoyP2XLZLXnjOiUd1ozfMTexfDk3UW/z18x+XhcbP6ET3NDQfr58Ys9j+4mMdWQ+wY0tX1t9z23SfJ3SLZVd3b34fN7D7gT9sGmtfcz+2JKWEkmcahvTbtr21/KR8SO2kPKpHRK9qg/1eCpGJ2v+OL++if5hu+Hb/UwPhKEJRhsvu1CaLNC2DTJzG84e+I5iEj++yM1I9mbqxBE3I/td4SbjtfyRzf+5H51u94WjBVlrew789rzOyye2b/fX68UZ2494Pba9+ODM9p4b+7xxbawp73vavm/3yWB6hJuGXacRyK4Qe70RI6jZbOfHubEY2yD68wXG1ztmXSCiG4A/B+BfYea/a5a2OFhZcgVI343fpZfCDJYOwl4rIRUH03c4pGNXW72yBdIc6FB7PbYCa+e7roRIXgyYD6zWTsdu4sb5d6qdNtPaqpNXjK4zY/TuPMcIeFkA4HoyY1lFbHpQ49KoiB7LTYrRcZFzs6F9VJFrj87OcDtuII2DNCkGE5u3Uyo3zOjiWOAmYm5cta1sdpWCLtmv/HAfS7bcoKzuRG6WeA2yNJMtJjTvK3kfA+8mXynYwCbE5ftq6ifsfT1iRMO4z7iJ9bHme1+uUw37TvLpiAVuIuaOm1BPGB1X8zpVZOS0P1rh5sh+iPVx1wfhof3kMV3tt/N6XY51KnIT6yNMfTysU7gW7tKZrnr3+l0z9QcCNuz1Y+iNS8Bz29pI+Rh46bxk/u06L8YO5bvcrX1qkwWJHvLc7TGtKZO0fRLZYfy72sV3jFC39cNMuFBJG/RmGIfcBFnCrjbU7cPOzwJGlo/cbnULLT2PGxhuxO+o56Zr92t93uWhd2C/ETc9r7sek76LrBHsuAn2y31uzKveNrbXOlhtf8ir5Sa1SY0N6oVrN0zdl3ZxB8qkieP5nO1d+mh7Ol8vwDJwOqgXE24ObT+xZ1cvysPiSdz09pOyn6oXKO2pPm8e4iaR/bSBcOevd8xi+AcB/HkAv38lcTmynEILVX5Lp4JB+rXzjd2cfRmwUY3XAYB+sbxOT7YZDLs3uTxgiPyd3W6JMI2qXLKDIf+1eqOHvZ6WQ+tgzTC28nNroKlhVp5k+tXlxZhxE/XMuLkHWStV/tteQ7XcqD1lYGWtGrnhc9xEXhHuqP0CN2rPxH4dN3zAzd5z09lPuFC66oYyFl9O/CaWL+HGY7yBYWzC1Os1NlG+gj17vZPyRW645wahTmFapxhkMLKUdMH2c27y+sgWw6ROea6C/Vbr1ISbIhvsp1w9aL+Em2GdmtTHzn5ZnbIfTlsMpT3fWiewDo4Y7d0zYsar2Xpz47qOYOovB370ycCVVRrUXw1ttVI2rKb8DNq2ed0QjB7zXnE1y/W+I5283fgo8YF/h7bNx6O9b2pBz5XYt3El5WNAn0WWq8e4geGG22QV1+NJBvaz/s1AteGa/Y64AW6mU7uHOlhTkucm2i/DPOO1cSNH0qOuAhqM7nl6UH8H7cZRvfC8Cjf1RECD8THbi2xeL2a8DuvFRW6yepG3IePnzXPrxUi2csXVGtRzk9ULcN2B9gRu0jr1SYM8R34TwlMGZkT0hwD8xwH8YwD+aysybosdqmNt/j5zqwZ3bNCvs5uldTJ5SXZ73P6lj0ORbfuKOxzmS+fq6NRkzcRur8dtG2ydjlWMMZ+RrMcoWz79vWdwI2VIy5dwA2rxpoefwk0zkLfB3H6VV2r3MtlH/MbxDom3YbbVK3k9x28oLZ+1QcuXNW/L1d6V7xl+Yx6YqU2a3wgmIuiJcfvM5y77TcOEgWzHVSjfWb0zv5FJoY4b8c9V+z2pTnnbH9nP+9zZwKaMxS6t80ooK2o7E8onPYpX3GL97fjx+adllLIpP6zbQoWf2KaO2jbBQZksUxmHk51qa9vL9ppG62ywAwjOV6KeaNOubZtglEjtfkMeMh03aO1LkWXAfDak50YGnWvcwGAmmZUXLgb2k/o4s9+j3DS9pa8B1SeTBrUmmrwze0YeR7zeTVugtg8YBdfZ8q3XCzLYUAa71Iy06yBayjt/3gxtr7K2XtRPeKS8Zv0hego3b1kvHuEm1qmyItfKSDatjtPyesG1Pj6zXtjyfYW3Dc9aMfvvAvhHAPy+UQIi+uMA/jgA/J6/9veqc9lQlrVL5WBuWxwJpXMjX8CRWQHSuIz0TbeK4ePmtzRScp/blzdLcN+MCIHlQZvrsbg8xnFax5Okd73XBFOIt0Y36l3nRhtHvedlWfUOyAn2JLFlKO8KNxlGJPlctd+j3FhZmLSRA7nET/Qb2V6XqOr1754au73HPnCe4zeSng79FTYauMHD3HgadKYy4SZipFCn1Mee7DeArxfIfpvyKqZgv8e5sbLn7LcSbLv/V//1vxXafd8BZGy4M5UOa/3fRgTi+6CMbHYHlLBhVEYKHBB4lw5fTVfLmNsw15vKBptpPbOdS3g96vO1MGrDHZ0eGx/bv8fY/Luk2iCYKZSXPCZsav8l/17gxvPanl5j+9XfB/a7yk3Hs7GgrBnk9svtqfVoyit5XlNuzDNjuXwtrYTrvFJaL3CC10wWho8r9eIZ3IzqBQF1oupavXiEm1inYO45e0WurP0qV8/gpq8Xnzt8vWNWAxH9XQD+dWb+F4nobxulY+bfAfA7APAH/t1/Dd/3hEBC3Z5QPOFuGu2N6/5XyGMOgP1NADjeg4tLp4sI0J2RAECs7500wKPyIgya0iqZxwPGsmRuMAed0jDqn7h9yKWX6nWNG4mX8pntBiKqKdm3+BYB+bQ5plzvGfu52zXJqv08NlziRu1HvZIhRALuDuN1v/GcHgT1G+l2e9FWnuf4zbq/tmTqN9QSMkdMud41jAOuAkYGdPsG2TRy39b7h7gZ16EOomlvbAfRoh5ydQJji5+z31Gw7f4f/vf8fm7vAHhd0vliQLc7bgSAN7zq+zIRt3xkVWzGuIORVMtQjNouEfVt+aBt72xYCjeXpYKqaJMBed+mNlxFvt0b2HDp+bN1sm2ajJp5OxwGo8WkPrvCTYLxiFciEPYBpj6U7Nbt1+KT+pvYT64UN5vYb6m/8Aa8duWrcVcv1ni9Ui9a/Cyvsg6JOa8wXJl68TA3k3pBNrkG0ousaGHa8idxE8tX60WKifufbVUx5HuRm7Hs5wvMX++Y2fC3APhPENHfCeC3APx+IvofMPPfNxPSDyibzlh5Ab5c2BmuByIvUOvScSdLPt59Rb7lFSs07xvMfgv4LUMxba3CUlNmX6s/wMjcPv7c8aOyNCjfJH6amxYvq0+tMnp0BbPjasrNRO8D9gtM1Rm+if2eyo3Vu/nBWcibLTe6ukaHei5xM5Dlncy2HAqd1nCU7hO5OfRXfShCZ+UKNgbap2CfwM2Z+tj8iIGug+/s9xA3E/sldQoT+zmu3pCbtE6dDPZ9DFcGrvcIupuBTJFK+bIHrsfJ4NYnVY2dBAAC2Gxb0jtbSGk+hN3xTsO0GueGCSoRMZW85KoblHU8zzF2JQ2yzO09RjnFd9yqNkyFq3jk9oybGUYbl0kF8YEtYIo8X7dfLN0xryTKOq64s/04Hgfz67y2ZwZ1947L59v9z8nrTq1FLXd7Hlu9EMzFXx7h5lq9qHotTrboz+s9bm+O6oWUPn5W4HncrMt+jrAnlvsRw8MDM2b+RwH8owBQV8z+4aNBGQC4FTPr4NQaets0APWNg90MFtxDrFYdDvGaYqszG74pgK7Q6bsVKB2hpqd2jNysiMXME9ma0MhaTKWbYmeCamOkL12il7V62WNc5ybKSvraJMctetUmuuf4LblZsp9RldnvqdzUzl8SSnfR2I8SWVO+pr/Nz13j5ohXGBv0HVWa1IOHuJnJJnWKbGqGx1R9jjufy8v3CDfR57QUzp5GlAn9zORzuYm2l0zK1Tijbez3Ztz48l1916BtNfEdLW3viOq32ioKkvdNsimsvp0Am0+aDKSk48IuheHH5ZoVNOqdyZK+6C+yG4pv+UFY+zgtm2vrelYw2pSkp1nmgSArJ3Y94dnceEylbdoCN86+eD/7tfapOBQbeb87hBB5jrpcfInXLJ8MY3hmLPGa1Bt8AK9c7sx4bfViM3k8h5tz9ULWrcpuotbevkWbYSXq76ReSFthB7S9D65ws47xYrP/LoFRdlv8JoQP+Y6Z7eTLkeO64YNdTGdQQcBet9YQSqeiDeCsrI8TACLCq/w2siX5Vhpdo1c6iSUtdNujyO42L5yQVUw1BZXTJ/sGqTRCmaxnZ4xxzk3EaB4RVHK25WvHfgNyrPcVbhyGITeia2Y/gLXxtPZ7C24Mprrl1XKl9lv0G+WRpXwk0Sk3Q147PVmdkqa1rfBZHgWTq2+L3KzaPuOm8Sj2yn3uqHyPcRN9oa3YsM1X2wxrPzKyb9RmUJ39tvYLbaSkztqMdW74ZHvTP9aPAnM98AAwqAt3e/1NgE7aMgBic+qi89msjGXm+87Q96cwafcZbF6dI8Vp7YkgG/loqYMNY31WHFWSyWnaKyaQbOGHTQ2f2qKYc+N59v69Gz3kyrcpr3KFo41ivml8hZvWPlH9ipS8YyiavSyn9uu4SW0w46bHKNipTpRQ1UvouYoYbfkazzWtbdsOuPH198j23gY7U11PL5h38TmDUeK7xguvR9x4+2W2H9TtmhtVnxNeKeGm5VXqxf5MblRLTZ3Ui97nipdOn4knuTG9B4eJwOW7YtV+sParkvoJo4e5Ce0pvKy33/l2/yucD08dmDHznwHwZ45TlmOTEZan22/0cc7imMiKe2vU7HYLjSO7mxO98kCVDhqjfMl+UdZiqsk9JlsGiysrn9F7mpseo2p1XJV70gHtuHpLbuqVsf1aXiL99txYffD2W/Ab99DhItzKG1f0+nrBevOofE1WZj8lYzrwOWNGkWiRhfrIJ3gVjLKFkYyvMw8wPZGbiNFxxXVyYtBmgNmdCvdW3MT3F5z9hvXTY1rnRmRW25uzgXBnOcLJlAmxLkzy7/oFlQOnpXxnSG2oSW0HS96xMlvHbF0Xz3d+1+tN4zGt+Lf4u5MU/K2t27nZ37dAjas0HGI0ra3rjNl4ggk9VzZfsqPOVO86Nw5TaNmL/ZpPR0yOm1RPvDDHaPU2XAHTQj+ll/Dl4yk39vJBvWAfBUmn2m+YtDxK4oYxYIp6V3hlCrdDJaLKkKufzed8bgMeH+Umtvuyg4PnXDEe5CbKjriqdars1A6YIleMNkgzei+3p2aXSG+/K+3+e4Wvd8weCgy42TgCTn4ZfS5bXKfMsuiMRZ1ptnmD6smP0ZGZUr1lBqPpkCOQVzAyyglj8vBtONnpbdscqjQ/l5tYPpL8SNsCyDtmrbwGE2Os54ncAGHW09mvcaX2eyduqtuYGVVOZVNuqnC2igiTr9o+YMRJXiVta0vtw8jz6HBUXHJMsrN9Wr7WmVrh1WMmt7rRMOeYnslNVqdcG1IFM67OcCNvkg65mWFsFDSuFuxn68WzuLGydgizGhj1A9PiK1X5VuvYqO5L2iyuR3lb36jOohgJdVZ40/idUTs2W82Xq15WWXmtLq37xv7KyAgjmu0UhWKqfJCcTAnsvNXtUg2TLJSWjwU/xg0rN+Ti4vM7Q9tj5uLDEVPGc9ZurHADyJas4lcZpoyrXcrwADcjjATUdx5brZP7m9DayTaMsgpFxud2p9fsS5n6Tfu7VC8At9vATstkPLY2VTCfs9+M12JT8n5DqB9z3ku9N9xYn/Pl7bl6iBuq5WdpScuUMFVMI66a7OPcqOyAK6orl7KtW3cRDOzHj3KzaD/76YTPFhj4+o7Zo+G+b4B54ADti/OlYhRP8XGRpqmsNNC2F0e76WRIJ7/WQGYYPZttGQAir4cOMBq9RFL5S9jJfEZWHmoyOyHlY+kwwMg+k5utVDKDccbVXh9/8lIlM65zM8SYcWNtAnNC3JH9rnMTbZ9yw3ZSwdpv0W+kcY/lU9tr1k+xPSArUvU2vM8pptrQu/Kxp35m+zO8iqyEXR/WUp69ytKbcjOSbRi5lxWuJtz4eh/qxYgbhZn7jcDYwdiSNgOGK8nO1gvZNv0oN+o3uBbu9cARUn/YsNOObR/pQigjGx9t/q2y4HIMtUkrenTCiQHmrR4G1+ovgdsJpk52Ta/Zc+nTVtl7TbuDa3m9zXR7P8sqaMEs3BBtIK0b17kRvVn51CYQzGblbCcj2+xHtPu8LnCjdcFxU5+Eak/L1aYHBj2Xmyi7BW6q/QJmi7G1E83n9FkFuUTL3OyHGM0zETXv2j6VuxsYozaVGo+CeZkbYwCJc7HZHS2v6Deljblhl2508Lkd0O9wIfjrMjfOb3puXL1n+Wra1g6ZO7TfGjdTn6sNta52KS7bNy6F2XjXSXLrNyxcPcCNk63229F0e/vhU4f7hUOpPmP4oBWz8hHRdqKWeDRBPYezOJpTcm18yOfrkuoNm1dtKIxeBqBbIkZ6YfRKXGeBTFr2US1Wuz3Uw0aPdgDPcGPKV26LLECBG7i4zHrW2kxW761VUIStbyvcLNqv5wbIy/ug/TKfI5+WptwE2VWbdNzE8on/1t/uFDyCmTI7VT6Z8QKgAw1fL6xsLB+c7V3cPoBGvC7W5fIQqTxz8bkZN/6EQHMSkz5cTtje1b/IlbV9lO25sXVKi4xiS3JP7pN+Y/zTsJCkbbU9YpSkjqtH7XcylDnpWyNI7X/TQ0GoHmHJ9fRdYjmyE40PhpFtW3oo4CTmpsbIlg+wSmfkFsoIk1fTo4P2gV57oqfodWkZdcDeOj4xLVf333XjUsG8O0w3o+c8N9xx03wHzBoXWXGTXQaKwpWxH/hWXUdkG5er3OiAHHo4eLBfi3v7bXrPthvEu+/EHtgv46Z/Vtn2CqdkQfVtOQbYYD7LjdhEZdHKJ77PaO8vi8RON/Vu4vq+UtVTJmrpIW6kfAQqkx6oPoncbwg7iG5ob1CWvPTU1urbfJKbmJZVb+OmhIaJq/8KV0wBk+GmPCesz61xE+sUST66bdDbQBuDyhXTLbQZ0kZWTNF+F7iBlB/Wfp6r9vD5Cm8ZPmzFTL5ArlWgPmC0qxPiUIdG7UAB5dCA5oSatrRKJpDTE/VmX5mXZ5048EgW8Bh1ElseKLWSl2+DNURd+dhunSkVZcdJbiJG6XgZxR1XKjkon8xaVptJV3WJm4C59QGi/c5xs2y/GTcD+7VOcLOdzRcYl++U32Tc6D0CkzzkrIXOc2NK1vrhq9wE28etGGfKF7nRDEDqB1n5Mm5anQLs1or2AvQiNxFjx9V6vdA6VRNZ+wGY1mU7L0DBb1CLq+kH9STDyGTrhefK+tUp+3mGTwfZKhXt4ri09VlmjzUta7kirt3EGwfN74haL59NB9mXsXaetUMoLhva54FekY3lk8TsMLLjfq9tY+8r3GQN+1e5sThK50xkN88VPC690JWvdsmlXaD2GZgVbjJeCb6PAHlGOPtZf47llZXZk/YLfhN5pdqP3YysVisGdvJ1UgtT47upkz03cPaL3BQ9RVoO0REuSrtht8b5Ompjd9M2iOy+4jc135yb0tbZZ3GUFb+RlZ82lBNurA22fs5hwk3ELFzJFubWtiG0i8Z4+stzsRuutI6c4sZizO3X1ykYrlrb3NuvbkF9EjcYlQ9omX7SwKCvUxkfCrUCo3Y4xPFsHGiNqsbNb90nL43VzqbTQp2sk2dp+FsD5tJynzZi3ENaiZi+fO2UyV3S8eKofKhfoHcn0i1yk5WvpWXfKa8TrcrVpHyy7U0waSVe4KaznwEb7XfIzcAmFtcZbmT7QOkcNSXy4C3RI26u+82RrMyklX90iZuM9y3cm3JT/UbS7rvN+3Fu9BZXv1/lxta4XZPo9bM2UZ4A4wutTzWrF7buumd8Yr9H/CbFdCTr6rnnSmdQV7mJdRnnA2Ol3ae+zNU/Slrqyqj3AP0mXub7xPa5sGknLZV1GMrFDaxfQIh6HI4DLiWttD+0y2W7SkVp+Z7JjfcdcuXd6iyHbGnSCSO0goxkZSJBfW+BG60by/YjHUDFtL1ss5+mv8CN+Oe2Fz+wspiUDza+08RvDtrUuv1Mt0+rDXydsXHJkblMQ+zV73buZS/7DVP1E/s9MFs+cuW5V9zFJlAuuY7MrnLT8Yq2+tqgk8dk8qIqATbPI27pmuw5v9Hn6c6mflv7WTlKyte2u6v93oqb2O7voY1kfOqwfx3+cT0wgD35NlQblEwkZdkFbYaaqnA77rnpkbjNNsYBuBnzWcgxNk1korHTB9L6NcZoHy7cUh5zk2CSpW1dxjN6E4wp5nBfGoIsLGFUgqL9FrgZxIF1+/VwyGxdwNB+MZ5hnGHeqBw4cEUWkJWE86E8YFr5rH2Oy0cdRtspmPlnVgYfgn9O6m6Mj+pUw/VAXaaWOw3KM8Q48BsQ6qc+ztsw2i9iijg6bga8Rvulep/9EGYy7wAccFHJFD+kxKOGvLu47b5Kp5Egybp2w8WtbHnfinhSawb2j3WfDejWjagdNpbtpgZHhzFwEzHRBNO0bZN2uU3ICFc7KHAV7ddktSXtuOpDzk2GsW2wUq5w1BGb2E8zP7Zf5OYOqYfUWsiumC0Xe2KebZ8ObaL1t93pnsWzelQnPzfsYJKTSm1NCDhMbqM61RRHTMJS8N0oW9MSGBtVJCw+hmVurN9o2H2UU4w9JpkUJgAblffMxHctV2vtTQiOKwpcBUwmkD7XyhDqRoRXw1XqRzXM6lQrs+XmqC2e3/4sgfH1HbMnBNKZcqA+BPYWB+Dui4ztTDCkA1EctuXVtogAsn1Gc22dXCpK2FS6qDdi2OvsmK2kbmOgube7fDymiFHisHoV8Qo3/h6I9OHRunXr3JSGoTa0prAcGqhDbiLmkrvjapUbixmGV0zsl3PTGixvPxrab8TNqs/JB9VXZUecD3lN/LX5TV4+dp5htgJKnUowZv4JAHstcM5dhrHVZXlwlEvHto91apWrpfZmUpePuBnazzxAI44ZxsLr3H5H3IzsN6vLZ9ub1VA60/HB6X1QOkPkYq2TAsCXKaSN8Za3bwfbbgnbyo4LGLswzN7PrO/7fgy7F9IbxvaumZVrL91LC7XATS2fJtde9io3rXxVEPZj1+lgcRDsAEavBa5cu5hyEzHKu2fefh5Tz5Ud9kppBBXv5P2Z1rjp2he9EnuvpFJs0pbUFOJWj0S4vjpgkNRVS8U43Fomdb/kuGMzG9aaXovRlmfqJ2zjxecKDEowZXWKXXm5ns3IYOyr3FS/0dxZZI1ey5UnEVmdEg07lwFjbz86195wkz1vv4K5veJRB4vmTF7vRz03tnROCQfbH3Azj3+uwKCvwz8eC6SdXOb+rt1a5t/9aO+ilLh/YMPFvaxWBOvMVpaaXgL7FQqOjaaN1yZfZNljbGWJ5Y0YM8x9WOXGYeQyi7LKTdPTx6k2oKmeLh64CbzqCUUXuEGQtfY7xY0rX/nhm/h1blL7LaU9Ll9sfGP5LK/TOuXKR/B7N8+VD45XmvLa1SmHKdblg3pxVKdwkZvMbx7hJvrNQO9Re8Mh4ux3lhvDa6zLp7i5+PzrV36zePArtHdQm58Y2di2BVmb2p6iWSZHyMmud0TCYKPml6Xr4rWPFXcI7ACY7az6MTd2sBG1Ue34zbmhTrak2nTVtB/EopONCNqMv+C0uDK0BpO1CcNvHat/c67CoOGy/WaytUtcy6fd45iUKS7gtPyDz2V+w6k/FW3OX9OOqG9zSH7os8SvmKWywW/kOZ4OQzUdaQ7jOlXsSSj+KSm44lrhJpav56r+Dm1qlM3yslzJoKarjwt1qh3x73XN7RfqIxlumLQP11b8F9ubYL8u3VF9dO3NV3iP8IHfMdPdz/WqOKr8tiFzcNnicywbH+Zn9EY9/kEoDcBEb9STlmlR9gQ3UXb/hNx09kvL9PbcvJXfMB9wcwbjI7Izbh6yvY3H8h3IBm52J3uyfI/IvhE33m9OcnNUp86U7xHZKTeMs4FRjzN2BDXNNMNpVikZei7aMU4Tb6udJV5WFbPuRhIn6YgD+qYma85oh8H05SPiboCM3Qyv7SFWIPeNzyVuLMa94ZBvP66Uj1z5BDPVYkpH05YvcuPfWiyrZKLHcEUl3rhinxcQ7Fk6rySytcMrHfK2UrLAzar9BtwgyFr7yeSdrUfagY62H/kryTODNK30kzzmsay1QeGtbBXfxaYJJlK9TbbbPVDvcYsM9Q7rVIVVPiy91RU9IbLMVMSJryFGYvOenMxykJG1aROMmrIYV0/jJejB1NLKLNvPUlNld/WTbYkbWz7eZWXdfLIhKV/khgw3Htei/eBl4X6fb/ffM3x9x+yRwAizXRIWHpAti2XZmLbU4Yuyb4Txo2S/uPni5opszw2F5F/caPw3nJv1UD7hmnei2htg2T3dtlM7IGVnsL83koWRtauYzDAvts9lBXPb9uS3XYFN08AZ5j5f1cvtDjjfoncGIypGrpis7IgrjuVjo5dLJ5VTPdKx89xEzNF+PVfz8rGmbXcY7bCUp9ovxdx4zexna1LcKkZa4JHfN4z9KvuV8qEONqC8bcSAfR/PPMuy8kW93ao8jXkd+quztUErZnXP16TuhrxaH7Ik54Fsx01Sp5rphSvTvimuA/shsZ/iWuMm1qmaqztUblR3I1cj+zmuFrjpfe5zBub6nczfgPCBx+W33zpbZ31FKgyN4g/KsmmGTsjaKiZZjfX0slhM+8XNFzdf3HxxI+Wr/b9Pw409ev9MsKtBdjsYHA6Pi1BPsjNp9Rh0x0cu2/IumClsMxvJ+niVLaVH/X/jGW21RLr0bGSFLZ2bJi8rGBmAHnm9wE3E2PSSdqnUbwJXkRuLcaO2KhUxZXpb/aXgOz4t1cIX+xmuEm4iRsuVO7n4jP0qN5meZfsZ26tsosd9voNzWYuRQZB35fuDlHrMK76gga0etPLYtMZvkGASWcWU1IuZ7aUAJEyy5RVTbmxcv1/HRhZrssM6JZhAeqR8/PxK5jdL9uNFbpI6pZ8WoHLlTDsnJZrbb4Ebq+diu/8+oT9p8kcNH7iVsR2tqrXS9hDCdgN1NnW8J8jiSDbRE2WdngXZNO2C7Bc378zNQvm+uPni5j24cZg+CTf29mJg1Hbfnb1/gJPqCpuktV/3BYF0i09Mi9qDgpfV23Xr4EnZVn5DQMBIZFcCEtlB+XSW+xFuBrL248gr5ZMtnyWJTfsYN6n9YGQXyqcdV+eD17k5bb9h+VrWZ2VT2y/6zaHtQdgp2v5YNrf9tfIt2f5I1tpeuHqQm9gOygDorN/0XF3gJpHVI+/B9UTRdVkWya7uXuHG6P2kgfGxK2ZE9F8B8F9COQD1f8XM/8jVvD748A/qrs/jZ9KOZf3xDkeyZ/V8lOxVPT58cTPW88XNFzdX9Pzmc7Ma7FZGyZPrX8k/xDmJM0oHo3YadBK3piUna/SwffG+dVyGeoLsEPNAtuBqsjSRzbeKXeBmijFyZTAl5ZtvX3uMmyZbykWmvDSRHdrvYW4es98Zv4lbQuM2s+bb13m1p/YBrN+7G8mykR1jWivfKkZKbN/Vi4HtO66u2j5wRYN68t720w+PmQmVZfuFdq7le56bHPNXiIGI/nYAfzeAfy8z/5qI/ppH8vuwrYzMgLxgHLfPtPsSMYN2Oidblmdr5VuUPdIT/56RTcv3iOwXN1/cXOamNLS/kdw8YPvPxs3b2P66LBASnAjlSH+z9a2+f9f6HCbOQLdtkNonA9pnCMLBG0a22aWWDS2vnSjVW2zo9XjZMeYm217WJ7k3kjWYOOg9zc0MY+BKymQ/q9C4Yo3vDHDl6jnc9LIbB/sFXH35xva7xE0na+0n79Ctla/1YzNeW7wdh29W/67ympSvZodaLP0Rt9VF2b1ikvtjXq/bHsroGq+MwBV5rs5yE9MC0AOKW10tsiv20zb1mfWC2gcfWm08Lh8DHVePcGNtf7HZf7fwgd8x+wcA/OPM/GsAYOZ//ZHMPmYrI1cHYlP5UU5+iuky2fJ3XTaeRHQkO04b/56RfbvyPSL7xc1HcPM5yoeT5fvi5uO4eX75HpEl31NYDMz1YIvWcyj/iS9ztP07VdBmEmR15r2EzXSQAJQP9JpOKLh9K4yjnixuMRxhNp0Wu4uJ2MCtsg5jvS8fIm6YH+QmyEpnTH7bAwU4yHLpDdcsB1xd5CbKEurHj0HYuOdGi1f1MOoHr4/sd4KbKOvt1967yuyHvfkch/J1vFa9+tkG1A70gJsp5oXySUd6EywL9QKwh0f03Jy2fYjroNBcTuvFbutF4IpDBk+wPZGpqyI6sB/DZnvRfgu8cpUlaeeszxn7+TakyOjvJ9aLK+3+ewVG+wzXxfAHiejPmfjvMPPvLMr+TQD+ViL6xwD8CsA/zMx/9iqQD1sxkw/u2uAc/HRIDMLN51jTmH3N/Y8mmOUH6IzyVO8Q4fXyPZebcfkekf3i5gw36+GLm5mWL27GWj6KmzwwgNfdbgiT9lg6W62lRhc3v7nFSx6kcfnUgOuo1PeZt5CXfAtLjhUvtwLhnOttvUd736clqq/uy4iIzSoBwenlKtsGr6Z8dJ2byCvJeyMFhdHTripGk1fhqmxDjfa7wo19FrPhapc8LDfk04oso34Xz9nvOjdlZNV+k2PlwH5VViU4YLayBlfpFyfv2yflTXk1GEVP9Buq9pMlIT1EIrF9wSTrqiNuxvbMMJY6Zod8eqSFcuJ8LvJa8ZbVuhE3Ca6Jf1o9DMm2DoC0HN5+zm9G9jvJjeW1t0nhirSdC/UitgmmvDs3rs5wk9WLaJPPHB5cMfuLzPxHRzeJ6E8D+OuSW38CZSz1bwXwHwTw7wfwPyWifwdns7AL4cMGZtpAcXsWmlVl8UGNx65LlAUl9+uV3VFTNxpJu5XKUq6X5UE/1muDlX20fM/lZlw+lsb7pGydYP14bmLePyg3z7L9Fzc/Pjc2/hm5WQ8E4KYTw1yVelykKRF+6TND2m7ThbJppblvH0YuknfX7tvOJ8CQb2+1ErdtO73eiLHhqL9JcJQfcti3HBAQy8tGFhVXhsnb/xw33Mlxd6+cz0CwVo5cRfvJrTPcyL32zSiblpUbUpjxJM2IqdYxw9XMfhk3FH43W8ztxyxlIrfoYTEThFefJ8w1yw0nmCOvML/bIMX6MgMulXBFHUau9zkwM+LG3vMYW2sWj47fq4RMmhQqyfhcS91xZSCd5sam7TDVxk7RAyDSbazWfm0VcWK/KTfxfptY6uwHkgqmAKz9+nJCZQGzLfIMNw7TyH6/ewMz/7HRPSL6BwD8s3Ug9i8Q0Q7gDwL4f1/R9XGnMpoVM/U/6aSZGxxcwTc1E9ka9jJV1LZwkLxsOpP1ej2mqDdi9NUzys7K1zeKb8XNrHy/Adzgx+dmqueLm99V3Mzr/cdxcyXcbQ+r/twOdSU4B78l7c7Qzrt04bc6g8xAW5kadKwIcFskV/QObRjSlW1lfXlkVaB1/nq+txX7L2K0QbSxudIwAZzhMfY7o7erU+G3s8GgfM1+ecpiv+vczO3X+hMqy3NZrho4+Nz0mdhdy+2nq0kaYmcc5St0DmPRy/A2z7vex9zkftOXjwywjaPPQfF4TOMw5mbsNzOuCFkde5b94v3IVcBELb3las5NhuVMm9GG8zppOhjWfbbAkNPePyT8zwH87QD+d0T0NwH4CcBfvJrZh31getcZZHGDNl9jK4t3DJP2UHaHvMfWGk0G84Zt4yJLM72M/tVLq3eEEUla0eM7Q+dkn8nNddmW/v25oYEsPpAbuLRzbvbL3BxhnMt6jD6+//B+8xg3v9l16j24WQ+MMjBTXVzy2wmAKWNTNsYpKxTRnwHpUGyQF+EB1A1BRad2PEy+eoXttTZ7HO3QXkJq/JSR3MiGLc+9w8wNK9lOP7UCQbgiz1XCjWKinps83sqn5YVs06Kil3vM1n5WNnLT623263hNOo2x3ddVRrXvyH7ZM2NgP/Jyuf1qeYP94hOKg2xr93N/tXXf1cEOMwKvjYuI0RZhI7Gj57bECOhk8zqV2SjjNU46dOXl2sIQB12xXZT7g+fpfq7N4A6/9ZtmSwKcfx7br8Xn9ov1YjRRUmXr9qzCle8fHXHDoY3gA27G9hv1Hz5jINxTPt8l/CkAf4qI/s8Afgbwn726jRH4wOPy5UhPu41HBmsYxN2Wn+BonSxu6kPSaPmVsu2S3r02KqsYO1m6KvtEbh4p3wdyAyPrTkvaybU5H8VNO/ZXr6guWbldxfiI7WeyRLcmF7j4Mf3mferFm3Lj7v443FwJZcBkOxTSqW8psG8GCgPc4mVAt6X3pMMlq06tk1eGGXcGNqod4DoYaoXymGIHhN0+nh4j8+bL4MrnGSjtl0+rmLl2Einj12wDm3Ej8T3o6bjyNnB6SHgTv9oMAXPZmf00PuCmx2juMgNqv7jieWA/x01iv33rbOLL13wu2o/J256N7G6+2wUZAEy4sbJHPgfeqp2s3whm6MB8Z8ZmJw2Y1Z4siS2PiZ80NhOfs4ODvWFKy2vbGOwgg8mWJ5f1fuMwHbQZzFszmoNRuGjbZ6sF2Miq75+0X8LNyH4x71IvGibd87vITQsL9rNl2LFsg88WGB+3YsbMPwP4+56V38cdl5/EaXJvFJeucCdrEtmG1A3QTB5n9MbrZzGfSSvxp3JzEI95XJVdwRjjo3uxmyIztFd5fQY3MYif2YbRxj/Cb3qMZSuvxUR4PjefxW+y+NXyPSL7CDdn0z4iu1q+a8Myed+XnC6Ayqw+A+2tC6k3Jq2symj/KuYDyKAmn6skfd/Ybkka1VfRVQbHTQm37qRJK/ey8kUU7fkj79iIHunYuVMBE0yRGzuAL7KMzIajum6H/1zzEB7lkJRx20aaT+TG2zPaLw8WY+OqylZ9d025ar+mtPex3N8tNy1OXVqxX8RhfT3jONVTfW03caDHPJpUcd80NrrlO1giG3HZ8nlM5UeUjT5nMXaYYLgh8RXGxu3QjCIbJ1RGNvAkWkzR53rbG86dEUoBZXUKkHeqfPk6DAOuiu03J7tkP4PL67Z/F7ixwdhvrzxnbYY7FHKE6WrD/07hA1fMnho+bmC2D5wueFZ8wE47PqOWPuTD3ssv6b2CMU37QPneUtZd/wTcsElZFqYolM9XyPfgpqTlhgnotnGweWPdNqJnMKZpT8naR3U/mO1w2b8/uN/MZD9VnRroSe99Am5mthsFZqozmn23ph3QVLsXaZxAxKB6PDmZeyW+AfbsctOjYGzaay0+H0cHm9OjNzXuMe8GI7Veax0MWEwt3uuB9pikI+QPWotcBNnATcRIYFVNsXy+txwwEqiSXFby5BS789wc2s9xFbnxHyMv3xNDO9adbVsWuYn27H3OlbdyJdxou55w08mStT28PYGxbC0fJ37DmtdY72r5NgCv1N7lLNyZtNFfuzqV+Ocir12dMrwy2ckDMvnC1YtZncrr8jo30U+ojlh0SDKwfeSmTZi0vOZ1OeHmoE5R4KbV5TE3tk4xUFbDnmC/r/C24cMO/8j3Ib+f/t+McfXzw+flxs4wScvSz2a9Zci40RldweT3ewX5j2HWztPGAx+ehenz+s3Hhy9uSmDUY5xTNvqa5X77qdzWgYTNjwHcmqTr9KB25Js1uF6b6p3hc5io1TM74AHDvr/S5WU78DXePxtPYiTJ2GCKXClmuU3GURngm8PFkcvAa2/SRftpWZs9x/ZrvGrf8hn2i1xxxtXAfrUMZLbktNPsfKe9SdiBhNfTNGlP+lL5WAYZKO8Rb8zmsBT2NmM/WdfXKTKYOWC6Wpe5fh9OuGaflls5BGO7zwazkR3immO0XJHzz5hnwKT5WPsFv7lal8U+wtW0XgT7JXXK2Q8UBl8xrPrc5wpt4u/HDx92+EdpsGpEqqfpwZR46ej65tievvQJZU/pgasjP0T5PpCb9qJza3jiGO09y+d73NJ0ysO1bV5ok0zv7zcdRjK8ddqfx81Mtkv7Qdz8EPUCLXwubq6FXY40rwpKPyFs65HtTlUZmRlg+QIS6l/30VW0Th9X57fvFRPJhrh6aiOANrEi4uT11jiR4UfuWzYCt5Izo2zTlHah6YGWyeq18svcCEbhlatebn00WZGgBlV/CzdQrsgcGAHH1RI3gtmUxw+Jjf0Af90I1qya/SAX2hZLb78JN5ftV2Tlt7Mf4DrenSxTPeDClMHgry6qdvB6yfGS8Zra3pTPsU9lEMQZr6Fe+Lrv/SZiGtrecWUwkV2ZbDVwrwMRXy/q9kY2z370ftOO2qc1biLGaL3azmm9MD4m9gPqdsWh/XqujriJ/srwq7i2XsilUj6u9m15iW7bRrLhbpmbrk7hU4f718DssdBebCV1eNk+oHGgOKI6qn+IjmVbg9LLknPEVVmdMVyRTTC2ph2nZc+V75rsqfJ9MDdEkqbKfhA3MsOpDygC5FAbovY+C1Z97g38JmLUd0VM/Xtvv+nK91WnxuWja+V7e26uBTlIjdjj1Id/9dkWhx7zzQzsVDcsMvTDwxvbtObdUyJQ3Upc8JK+S8FaVq+HB3qrdMMIbmWonaTm360DDQA7meMFiHSrlBZfMGreaNwwG4xzbhyvRHWlRDg3Wxs1rfUSMofGNfvH96R6vWI/GmOs6SI3XEGIPXv7Vfc3uBpXBKOu8UrPs58tg27ATew3sr2kIu5l9R2ymSyt14u8TtWKSoB7t/ioXgDGbwblG/GaYIx+I3Ig4EbA3drP8Kq2Vmv0fqOyOMFNWqcaV7N6sWQ/+Ph5bmKdSupF3Q7c1Quxn+GGZEBn7TnVO6tT+LSBYT+h8WOHT3Aqo1Rs1usAWhwtLmkBXpCtekLaEqePkc3KtyA7T/u7l5vWfH4ObkpbZmRNY4dP5Dd2W8PvRr/50eqUxfR5uDn/AGQQ7tjM4KB2BLSeQCp2EtdMtMMovRT9CGx4ZlC1odNTsUu2zJuRlbrBOiDQYtp4ipF9nFn1bkx4rTgocCmyevT7XjFoZ5MgWxtzWc9NxLi7tM1mmhcl5VVySLMsWWya1tuPTnLTosSE18qV2o9ieW35ZvbLuBpzs2o/4upjpnO9Wj503FCztQIZc7NPMbefnU1AmqbfnjeQBUH2e+zL5UPKq+QL+DolA0ThlY9kZfux+K/zm2NuIsbWxlk/8VyRycrJcpNdsd+qz6X2Y1Ku1H7Uc6O8KncF/6tshTzBTbtv9XiuovhXeJvwYStm9uFZnL7t8wX6uGlWIPtvR7J+z7trRjXtUNZ1OHKMj8jOyvfFzTo3sLLu8sdxw10j6DESPpnfmPhh+X5D/OZKnbrEzQ9QvmdwcyqwdLTgH/wUTjm0M88WKReqy0qCXe2onUmp35qcWiYg040qsrv0vWta7YtLx6Tm1cZ7fmXI4rIE2T4kM+Feb5UOFAG2vDBs1g7WbtMGjL3sjJs4g2+4Eq22IxZk5bbnqvGIipGol51z09LKvAOJ/UyZNG8rW1NE++0JVyq7xE3wOdMusrFf5q8UytdkoX7jnw8tb+F0zM0Ac5WS/v0u15zfSHedSge/4xE6IaP5aR2iBW5a+aLfAHVVO/EbGQQSyUH0uWwLxgYnuIGJWxvkfqPDR2yJ34is5y5wtcCN9TndFWbLK3VK0qDZz/GqZaTOfq1OrXOT2eBeM3btz6cO9LWV8aHAMKfVkbYu+v5BDXpM8SCPmSxPZPlIFlGWtEYeyfbhYvkekf3dxg3ILbF/FDctTcQofz7eb2LnwD5pDm3/m+Y3J2TPc/OM8kV7fU5uVgOjdb6B2ukBg3bo4KUow8QQ8Dfd931QZ3WDsEZZtw/JVqS4Vc+g89t2Ur0zzCZSOzcs+cby1jTle7LS0bJIDKZMdhkje65cctbtX5qXdNoFE+e8uo9Lp3ox5SapOQaTVyk99He3Hx7wV3aoGpwFvVPMJqMuX/ObULa03hO5KMuZnrP10eWbfHCa6nCC5ePyY1k7oDvUO2uggg3YlV8GQDUWSTxlvxMYu/L2osKAbteG4TWRYQduASMSjOY6Z/b7pCE+X37k8HErZh2BBNIqIlf67py5aRzw88iOw0k9j8h+cXMZ42Pl+/zcPILxy2/eRvYA5ufn5kS4a7vP2vsggusQEMF9ZiJHaH5whi3qAez3+4A24PBpWzfN5qjvWUww+kFE7c3X8u17wxjLW1MHTAYXz2Vj8NyEO44rz41La8qr28lc7mPZY25aNoXXHFO0AUJxcvuNZZ36BR6lrSyv2rD2WVLZdPTQ+007AsViJpvAye4HvObqyV3cgHB0+0y+9zkAYRARMEWM3KdzeXGxzkbhg+kBY4fJtEEdFwttxjTfaoMNwE6Jv85kk08/KcaL9mtpCRv2rrucc2Nljf1OcNP760jP5wz3T/wB7DPhEw3M6jWaxF3aTyo7C2f0PCL7xc0XN2+B8Yubt5GdYnxE9p24WQ4E1u+Y2Q15TnH5xiW1uNNd+xtcI9Sl3XzcfuQ19DjK1seWMfNmFpTYlZfdrHOP0W/3ZBBbvb58sbz2uOuyXYogvdSYbya7zg1NuXF65F03wcSb4wquA+SGSwvcNGIjNzMbSF4K8YT9/LwCY9/HmELiJfuNeHZ+w9Dtb+1C9Nemdz/wOaenTnI0Lki3Mu4ob+WRtd9EtvcTzw2Pygeu8eY3s7x2Wcqheu9Qdlynpm2G1ZvYoPiNHOpR32Bs+/fm9gv1YM5NxBjK2/mc2G9z9ptzE1e4TnCzZL/PO/Bh0NeK2cOhDfDTtk7vHcXPyB4N9t9L9q3K94jsFzfraWP44mYcvrgZh1XZR/W+JTcnAqOd8keqq73b1Ton5p0HEEBlkJHRSSJhOjYuXsSrbOz4hE6RK2N9kd6uYOmPXE/pa1XsTm9AzOaEPJPX3uVlSFauguwZbmiBG4up2sS9c9bZD6Ej+CA3UlzrC93K2MB+katoP+mU2nxE85QbhVJ+RH8lc5BFZpNQ0KlNYvkCAF8voKfzSRKfD6n6ctLgXNbZPmBqvrDlPpfKtnzVflRXpWAmLyayFGQzv9HDKYZtBpnyWTnPlYWcl88U6WFuxjZoPmntR4vc+IZ5jRtfL5yewJV/1/grvFX4sHfM1PtGHYGje4/KZpjeQ/a9yvfFzdvIxvDFzTh8cTMOH4H5PcuXBYbOKO+760rX95QA6Z2ULU61Q2XfR6Yyq6tbK2tnhoIezSpud3JlqisLZlDiOklRLyPBGDMm7aiREe/eQXSdQvthYdTytdTx/b7L3NiyJ9y0fXOtfCrt9KDfRpba7wo30kmUqPSoSfVo6mg/mHcjU27IYSx8tLwtpp4b+GB7yNZpEr3e1hjXq+ifkPI1zN72BgOJ31iIXBRQ5YiNX4Stbt3W2sTnNOjWPetzCcakfNi5vutWfQHebxxXkZvd26ivy6N6AfDu34Psy1droNvuXO23G0xP4SYWIGKGYm72w9xvHuJmYj/rg51/fr6wf+IVvTPhc21l/Apf4St8ha/wGxvkFDTA9i0YwGbi5aw27Te7Tq3rEtV+tcz+2k8cAOAwf8y+P1N0hBUV1yns9fby7bd2ZWrvRb6z1spL+l/ftetPOoyYUr0nuRHZCrKLx7ey/KmWfVzT1Y7c23BjMRoMquMcNxkmwcE048aVGP2WrrnfeFmn2elp8tXuTCaLWb1wf2p/3gxgiaFnSc4GigaT8xvzbqjbzndYL/o6JRLWFkh+d9yg+QkYnismMM24mdQpwxXXkVNrQ3rLP48bWz53UesU1QhTrJ+e10LHM7iZxD/5oIzZvsP8Y4eP+8B0YmTZ0jKKH+X3GWR/BIxf3Hw+2R8B4xc3byN7JvwI5Zvn2zLR1ROTsd0yY58RPs519tZ34+WYcN/v8Ks0XPNqq1CkfZmZ3v6vdORM4YhbnEi3FnnaSieJkOuRDpDM3D+bG3tOh0VGqEfoJ+WLmD6KGxt39lvmxsSpFoqlQ9v844gbu4Jx1m9gytd4NX1elrxIr9ttaMvlA1xp5F2hFCN8vRBMJQfjN1a2YrKyzl9H3NT33mSYyBbXETfVKu44eefruX/2Nol1qihrbrEppnflxqUVRFLeWKearLHyG3DjMT7jGfCW4esds0eDfSGRwz2pIRziNu2zZLO0j8hGHB9dvkdk34Kbz1S+R2S/uBnLfnEzlh1xQxdlP7J8JwPDfGuMub1Txe1w7NIL2Ou7QUlaKn27dkw6a0dEehCtY1LWcex7bcxmix6bdRrCXC9MnAjYy5fAmqx/F0p3QFXAtrMEbrKCCVxwUCXqrbmxneCStedKMMr3zpjZfIftfbgRPSzcBK5O2S/1OTK8zrmpSh03DVPTS1VQfQ4mbrhpvKLTu+vWOW72XLI9e9tXzktneoxRALR64TFBbV8xWh/reI22D5j3tpOuNAVcv+JA4BVuVC83rpSbgX8eYrRcHbUZb8hNV6fqu3hExceCz0HsWfl8G256jJ81lMM/vrYyXg/c/nXPeR7/dWmfJTuRuSx7EeMjsl/cXMD4iOwXN1/cvBM3h/o+oHzXQj01ixE1tTgDsmWrxU1a0S2dZRB0K1FdCpET9uR9JJlnb7PLkr50Alf0lk7iQdqOzIqxlrl0sBjATfMSjGz0xI1z57ihXs5w47iqmIQbyxWwKTeccnWGm4iLp9w02efZ79jnAlcJN1Buov1uxn4Md3rgjrpFkmp5WvlkRWSX9+gYcFvnOOI/UT5zEiZXe9pVF3vyJ7rymZWHzm/gQ8drxNj7gtrTxhgAbsbnMm4Q/Oaq7UPajiuz9dbab8SN9Vdrs/CNxWNuYp0CCFvxKfL2Kz7XeOSOmxoXf+SL3Mx4/QpvFj5sxax+TL2MwEkaZ5MgxuHTPibLVf/z9bYafR5jzOeLmy9uftdz82D5fgRu4rMu6v2M5bsSSgeCoD0xIr81DOjiWRkL9tq5NNj6rYxmxcAd2V70ltOsaazXYJSZ8wwzWFRyw2ExohVZZ54Fpu0UsufgDDdtxcnYVBkoeslwY7c86e/KFTHBbmnay+Q8nOZFbkaYj7hB5UZN6o7tXrTfgJsV+0VuBKj4b28/btgqLh3TcC9bcFmb2FMBm+wMc3xmuLQmx2hPNmj1UwYGY+YnjqFg+zN1uWVN5q3Sas8VbozfCFf7WW4ixqohrY/Bfh03IS6Yjuy30t7IafuEtpURKCtjWh3Me2wdN+wx2TItczNqiz9puP9QaMfhY4/LZ0BbXrkW07gQ00qc4WYqDmXJp7ms90D2dPkekf3i5jzGL25+CG66fH63cTNLG++9V/kuBG7vaUTdHNJFdb7T5V9Oj7trut02LNdZO6g7A/5jzpleMrI9ZidK6DjrqrSE3WZVlBIJN+FF+wVu9FbFqB/HlcGAxWCEI742GGndOxaeTnITMXtRGnOTyMq4AaftZ26dtF+KL8iK/ezAxSYV7qJsl3fEInjP8BrTSqGo2FO+HthWy0yyrFyJn7R6dc72nd9U9bv1e/Q+NuLGhv0KN6mfyICazWRDb7+UGxs3sufbOc8rgeriV2K/pAyzuPpUduNkW/xZA+PrHbMHA7mvpdvL17yAzsnGtI/IngkfIvvFzVTwi5ux4Bc3Y8HfaG5Olm8xMMqpWTZrMvdm8S4jWkwrietfMmUqqy6+W23zGplshim7rx01I79zy42MYlkJ0uuJ3iOMlNxf6640aYsJqAMhc8/q3ah1kM/aTzrmGWafU7n7EfaLgVDe/VGugm05JNbBS3Y/YrZ5LfCaldcNL6W+mUI1FeOSdnriYGSidx5nyCcQNrOy2/Jew0Qk7+JNMC9iLIOpcoUo1EfN/YT9Eq7O1uWNgDuXd99W7NdxE/2m47nXe6kt/lTh6x2z5wT7FAHa2u3ovo3H37O0Ua1800Luz/RmGDG5fyR7pXyPyH5x88XNFzfPlX1vbt67fKuyl8LmRDlknMd9kI4TB1wM6Ix1S5xsxQLALOtCcv0Ih8dsjo4ouQ86rjbuzT/Ku5VyjZuYj2HM2DDnJpqf9IbriB9wtXMzQ4ax46oqFEzg1vF0OxYBZIeEr2B6pv0Az5u3X1tpEVlupSzfextUfe3EGxvZYLeQni4fkw42+oZJ7jfZVUytzlF3/4y/SpmafT2mFJe5LqtrlGKac5P5J+S/oZ2LdeaM/Vpe5+vyXgvJVT7k7O13xA38/WfY7yu8bfi4wz928xtwVbQ02jVuPYeM3BVZlp9JWhuXDb4Rc4ifkR1itHk/Wr4P5OZS+T4jN7F8n5WbZ9r+i5vPXacGej+cmwvBzuTaDmxbVerj+sFkD9NByWeEGRv39JRb7aSxpsfK+pW9XqOAFJl2sptNArB2+l1e1DDbjp6sGKxz4/OOA74z3HS8Vj1lO5fHNez0pZiD/YjhlgAiV4EbduWrvxP7Rb2Rm07hqv3Qc+gxsv7Xc9Eime1V3m3JDFzxmNfe9j6tHbQS97J266Dqrz7oyxyHsQkfSxhJB6nCt7sX8lbbS72IfgN0tl3lJtapZr9SL6zsyPar9msI5tzEOkW0YL8lbuRkR39zlRt7/xnvGr9l2PHJAS6GDzz8g6zFuw5H98ph7ES8peys83JRdohx1Jr/YNzoisCZ8n1Gbt7K9s/mxoYvbvLyZbK/2+uUDc/iZjmQvrORd6jyePs56G65zo+Px/6/64iydGYGmOaFgZyo6INwx5BOWnfoCsy7MWm+Jh+sciPxNW6ICPeAqXMl20HVsuZc5WVoubnZ9hST4YqtpLe2G0gG+0W9a/aTnOF/n7Bf61ILN+33Ma9Br0vZ45vbPsRjGQaEjOtFxGXrX9KeLGAEs/JzzGto6nYa3LF+tFaX+zrVuB61GRFjqxdNr08pqZ5vv3PcwHET/eqQm8m9zxSYvz4w/Zxwxshnn5qfUfZM+BHL98XN28ieCT9i+b64eRvZM+Gd9PClB+eo05Pfax0+doOnvgPy6PsIKzjkuPUxDo8py+vZmHynL8MUB1KMt+KqDmCUq9CRdZgCxjAoex6mEl/nyk9e2Pek5ICLdi921M/49nooW/BsR3w8mDquFzOMZ4OVPeGDiFw9D9OMq2NM78FVb7/HuPnNGLxk4esds0cDF+dys7HuWcDuiNwubZLfp5ANlWdUvkdkv7j54uaLmz7tI7KftnyPyH4UNyPoLLPNrSvLQDhyuvyn7TILaSVO0qFqePsBD+l/7T09OKDqVT31vY1Mr83RYs4wiQ637cjiyMpHwg+lela4ifHtCjeSi+gUTFObhL8TXjv7VaXtdD8CEc/Lp/ajy9xEjDS0X89VVz6QI5KNPMH8BWo98t+t6w6HoXYgyqHfDMrXG5x6PZ3seLuibmvtZH18Znsbz3DlsjlXlpv9JDdZnfLlHHN1xn6nuYl1ils91G2NqniNG7XX0H7H3FiMV9r99woM+jqV8aHAAO3UGVkdA9BGwsYPsuzTLsrGtA/rxUQ2NpiLss/k5oxsivENuLFph3oHsjHtbzo3V33uUYwfVR9t+I3lZobxCPNA9hFuHrbfIOz7Vjreiqt2rWRAQvVDw6IrvBshHRR9byu2GYNrRbbdK50O880n2iZ6KcEsaRlEm8M0wzCS3XfT0XTbyFa5iRjRHaQxxhW72X3e7TMHZ7iJvPZcMRBVm/jmblq9IseXuOlt0NWVk/aL6VvHnOG3BYpss8xIlsFmJWTA60H5COb9IlWZYNLfebDlsZjWbW9swiUlUVBvfExtP+BKku32+jI3eZ0SrjwV1+0XuVriJmJmRvvItFGi5c25ceaGHyjO68VBe4Ov8B7hY79jht6Bli3PyYPnjQbLWZ1YVcXA270wOeIq4yaGJ2GKXESuzsi+lf0cTyvcxPBekzDsf34Exh+xPp6SxfvUx6wf9BH18cyT9H3qY/1eEcsgi1E6YUVZ28rW4nbmWLYFctqh5Bqz8a3ebh0dzRuoukXP5ravtZPPym+PuXW4YmfR4zIdRBhZsuVtyUrx5P4KNxnGxlWOqXHTmJAOKdW8bIfUYlrlxqYtg/HGVbSf54p026S1Xy3/xH5r3Kzar/FUYjP7xdVnQxuoDviaLDsbxJ5FSFtXRsa8Cje+TukBHiidawplbrYVTFYvAIfRxuEwrdkeJo66AlP9yy17I+Dagk0ixhgf1eV5e3PMVbDJkJvoN4XndW5yf+VkMOgP+uDEfhi2kc1+x9xkdeozh6/DPx4N0lmRehk7W6G+Jm1WW3bNOmpSn2oaNnpYZGIbbfSS0Wn1dHqPMIbrbNMGWe00JhgVEwDsJ7mJ5QtU2XbniBvbBkX7Ra6eYr8Fbo7sB6PnkJu8jW2YQl4zbiJG64PRnlNuRhhj2c5glEuhXizVx5j/yfp4xE3WV1n1safVx4SbpfqYcHHYZly1Xyjfu7SnDwY2jY389n2zPt7Sos7wylYjvy2Ku7PWS6GonuDXttMVHXui1xUY0hFpxvWYm4DtBPrtUBR8iIIJqf63Xw1a5ybDiI4bitzAYKrbB4krGpO4fMzZUrvCTc5rZj/L2dh+0Bl74cqvAp3hZmw/0SvPGz12nmlsPzU+av1tq1QVBQhlJXRkk8xvWrqj8tm44ZxkCEGugDI4LjySa3+zOtXVMYMp57VhzOtUsSFIBkWNKwn7ATfRb85y02E0XBVKevtF/3TcSN4wvlxbzHPc9P5Kif3I/AZRwtHYng3TGjee188bGF8fmH48MNrWAUb+1J9di3/lN+XXyVyzekuFCzrkYxUx7yP9o7QZpiR+hJHD9UO9R2mTjtohN/YhO7LfFYwR00lupjpmemc2GdnvLDdGxsadPa9ilPgFjMCA19GJe2exDuy5wk2n96g+ZhhHad+6Ph5xs2i/FYz22ru1pxcDI3YIzL2Qf99pkeu+Y8idYIz49zCAui0PsYMy1+vjsePn5WLnh519GBx82b/T0ncsrmKM3HRtAZrPyCCHg6y11zluImYKf5H+9d/Py+3H5nf0y2fYL17T7ZIS75QaGOqXJmp8bmbLvtM8xuTLM4hzOwKeGxjVpT53UKdmeLzeke19Whns2EFhsav1ufgtvQO/SfTkGAdlYjJ2Hdtv7m/xmtW5xk3ErFw1MADapFJvvzlHeTjTFn/u8HX4xyOBAQrfMQPQdb5sv+CCCj8LNgkxGQPjzmnsIJ4JNC/PrLyu43qQ9ihEWQKmmcXxm0s6sd+pkMjO7GdxpPa7iOOIV8tVpnfIVcbNKsaTvJ7B2IVZp+BI9iDboT1XyvcO9XFqv0Ttcn08wDitj2fbxDeqj2fa02Fg83K2KchpmIzpLK7tYKVGddFVi8fbfc2avXtXVlEGmMB63LV2gmoBr3DTeD0ymB1iUCfbj3mvcxOvOdYZYVb/qv0OQixfl9OK/TJe536Td2wlvZftqu+ZRrerU3Meu4kDV8F94lXbZ7zGvJpnx9v9wGfWIj/GTdRiEhz4nMc1tl+v94ibKLveZmi6Jurr1FjLY23xV3iT8CEDMwLygx6C89kTYoaVhcJvKzsMNTORjXqTpBritrMoMMKc6On0HjYGJu2j3ERZ1eczc/Wdg2wMz+ZmEhTXWftd4UZla2vH+f2Oq1i+WXjAb9J8FjEeyp/hxtapTHYUok1WyodB2iPZiZ7o20+rj/sCN6P6GPQe2s/ifTY3zwhsukA1z+5I8RCPMLXDCknXd7M6IZWt/9Uy2s6M2T6FAXWSV4eZgu94TDTpJaVDgjqAvcLNiNeeqyQjkTV3I1dXuIm8qrtRz9XcfjmmTG/MYu5z6/aTExNVlgZDuqTO9BhJkHUDOLXBiFfANQVT22f4LIoZJsPNke0zXse2r1cS+2blFVyOpydwEwd4dtv8KibNJ0A7y40rlskv2u/ofEQZqLV6kuBawjiuU58u8NepjI+HruPhK2kfj+ltfCA7VGxqA1gfgkM9Wb6p3kVZiQe9cZ91h/mZ3KQdrUGzm5Ynxp/AzZL9onzk8Q24sWntxSt+s4rxbL1IQ89Nexk9A17zXbUf0HMzkx1hfLQ+nuVm0Z4M6Paz0/bL9Jzh1eox8bH9Yj5P4OZsfVwIfotQf30UdyF2qloMRzhlvn5lK9yheScYechdbge2mA70TPWOb53ekiTJM67OcuPiD9lvjCnTewbj2r2CMcKOxdNqtJj3SN8hr5O0tvs9w+PzFRvUcrK5PMJ0hNGRYzAl7fyKjYZcneCmz8PiWsXU/PWy/SyvdtQKOxmQ28+Vb9DeZPbrZE9g/MzDHsbX4R+PBQboTn76BKQvr+fxEFZkzfan9szr9QIoL/BLWptXTDvVu4BxNzdp4vRkMb0BN6mswSRcZWE3t5/JzZL9Er0W0xtzg4n9Znrm9nwWRhxgzAc8ZNLO7HfIzZGsWVF1PnZQH7vyPbPNWKqPx/Z7hJsOY8SUIHKBG5Xv1Z5eCQxg3+37VDX3JD7qRBIBu07rcjgooc87ysaBgH3ZfkVWLRAxmmOn55iS8pusSvnkas5NxEijewTY94XioRJZ+cZ64sEEc9l8pHLefpGbt7Of58rV/sR+o/Ih3lJ75mWwcSKAJ7afPW/yfFsnZr1eDNJO/Gaf+E1mM1nNWWkHfJ0K9wxXnT0x9psjrmL5xrIJV6ajcmS/I5vsO+uq4jo3b22/zx2+VsyeERh+gO9e/E3iNu1J2dksc7dS5fZxvC3G4bbu2Al6Q26iLMm1iIl90g+zH/t7U/s9qLeTDXom2/J7Pe+FMcj225kG5UnK9wg3Q1k+WR/fkJt3q48z2Wfa753q42jgdBzscfk161DGfTcfRw44/apSf1BBzMvqiXo5vCh+JOsTI/BDclr3IaYubvXYzuaCbMdNtKH5ynQ2Ez7ipnQK5SbA2IaycWtfZz/D1Wn7BZ0P2e/Iv+0XuSd69x3YrOqsHg78prdn45kZsFvU+ET9TTHGFZdQpiXbA+BwEuXM54791eSLue1tvMcYMJ3kpm9vYgdoVTZwZe130GbM/LXUKVLfmnF1hLGzH+w9nLLfZx6kMb4GZg+H7DS62FlLO2+DzuSRLFvZJK3r/BzpNb8fwSgDHUnijtiW/Ad6nslNlE3rnsmr23P8BtxM7Se/K1en7XdCbyprrh/ZL8qP7Pl0jAbYqo/F8Ag3z6yPqZ43aDPevD5ewAi0h+Gy/d6hPb0UODzY2ZTJQuEeFsHIEuqx7gDVpT1WQTJ5VbJifoKj3XYAurQWg/xOOt6kaUtKm14mG3iEUfIy7+CNuLFxx0u4Rg5/KShZrkbcxPKZ48hH3Di3PGE/z1XOTbYqcdl+3H4DWLZfV95QP2ftVbN9tKeUl3wZbHmNrM2nxxwwZjaIPIZytPp4gAmeSynXkr+OfKOTHdXleErnMaa+fD1G/S19isznhhgXuEq4OPLXRkHdgB38wuEIddlNgGSYTPyU/fAV3iN83IpZdiQ9JvGuRVpIGx4EV2VP611JK0nkQXFB9lncRNnD7U7vxM0l+z2i90L5lu33hty8K8aPqo8raR+RNYN84GR9fMt6YbjqHoof2WZcDGy2MjZ18X0T7ZG0voXhwMqyxYmt5iVpN+hR00Cvl1sHhmrGMuMa08aOmoVrO84uXmNyEDd3GBlE5SO6bLdtM2A/Ymu5IfQYHRCDw3Pj73lu6nfMGJDPKXMchTH0yPARN9aeq/bzXA24ibwa49sOaMbN1H5Dbkb2K9zYTu7I9hJi1WETURsIr4O8mr/68oHNeVudDWxG1JnE66kfNG6xmhH1WQVZuZfV5bxOBaOg4XLc0Ab5ILW3gdg6mi+0IVNusvYmxzTm5pr95txEf212sLuItQ513Pj4o/aTEjuM+Nzha8XswUDAOSvHtDPZo7QfJTsL7yX7xc31tD86N5+1fF/cvI3sLLyXniy7ID/Nbiktpb+1c5J0/FoKyjFlcdZ+m8snp8fiiJ0FwZQfrmBgTamPqz9rdiGPUbmpvS6zfbFTRjlXcSvjEHACMXKVcmPTDuwXb52xXw45sR/1RrlUfXmkZ0FW7h34K2zehzaIPe5x53ZYnkRVjpGW/FUH3MqVx3To6hbTYRtCw5szbt7SfjsDZD8OHX3OxSM3z7FfjH/mbYxAKfdHDcyI6H8C4N9Vo38AwP+Xmf/I1fweHpgR0R8G8E8D+GtR7Pg7zPwnDwVN4+QqapjIiHVmeDumtY3we8qeSPtRsl/cfHFzCeMXN+9fvhg+CTfXAiE/cZMClz5O4CLKKC/DMwCinnMTl3eXysx03R5oTnSSLXo+Azoso12EkIdY2WLGDRNaIsXE9r7JT8oXByK6jBAwJRi1VKon8ccjbvSBLFyFMg8O/kBy9bT9jrhxtjZcPdN+kRtYjHNuLMZW3oXyRb9JuWnxlfK5cpptCbaD3/EqN7BYp0CuvCqOBGOH2a5g+/poPxsS68Wh31Dzz3Syw0GI7U3kyug9zY3FyOqjqf0m9hS93l+N3lPcRNmWtt0YYDrhc58hfNSpjMz8n5LfRPTfBvD/eyS/Z6yYvQL4rzPz/4GIfh+Af5GI/rfM/C8NJRi6lVHaR7fVwHYCuMVdpwGt4cpkaSZ7oHckq/VsJAu4BnCmR5eFL2KccmNlG7TPxY3EHy3fM7kxmJ7GjehZkV3EiAcwPsKrK59wlXD3btwkPvYpuLnSVmV6Kjdy7yFuYvkE00VurgYOL61rJwKh823ea9qdbjL5UH35vuWlJ4zV2WYVY5TteaIXUsiydUf0ysqR27bDPeZOL6jHyEA73pIaZnDzFwKYSbfWKdWL3Li2QTA+yk2UVUzsZEfcRMyp/Va5MbxyrRDlVm6/ETeH9gvcdJip50Yw7qifsDCYZaBR6q8pH3tej/3G1JnOF2oZhzaAs8Ehxlovdq7v1y1ws1KXbZ2ymJVXy42x/S4PBuGjclEaq+A39QTD+G2wVYxgGL95Dje+rTrHjcfc/OY6N3D1wtblY276Ad6nDPzxWxmpzBD8PQD+jkfyeXhgxsz/GoB/rf7+S0T05wH8DQDGAzOYRkIzah0DiZtnTWsIgph7eBhZD3ISPykb0xKgx0jLZTfomuhxLvQgxhlXBF/RZ+V7c26C2HvY75CbIJra74JeG1LbL/r6CCNwYM8HeQXQJhJN3NkviF2x5xE3UZaNzKj+AW/LzXu1VWe5ib8z+9mkq23VDONyqLxIZ4ZQT+UjKqcaAnXmmdC+N2ZrAPeyXVpoWlY7VEuo78pbGL3eTM9QL1tZhrwjpWlJcLRZfdUTX6zhbagHnGHsy6vvgF3kRsvLXPOosnKTr3KDB7gBtEfK1j8wsd+ImwOMZLgJssSeG63tzGjHtaD6uD/REjzjNfiNsYkOEIa+cFA+y0UczR3Ui85vjO3pQG/ur8Y/acIre1451ovoN1OfW8fYJib4A7mJdYqG9eI9uenr1FeYhL8VwP+Lmf/lRzJ56jtmRPQ3Avj3AfjfLwuJ7U3bpvnZS+yvWzmqF1fdhgF/uhnN0zvB+ldnLwJevW9FMj0rek9gVK4MRhD8IQs45urNuDF5HdrvvbmJuEyWdsXCTPCex3iAufP1EcbEnt0k0RX7JbJ1QrNdt1CsPX1bv1YfT3ATg57amPmYjePtuFluq57BTby+KDuyn+KymCTJVW6WQzy6OZIRFZP7fShL5ncNHOLl4jk9nd4uTn1aIZRgZpspmGIgO9SzjvkyN1Ou3psbk7a7dqT3BEYO9wwmVz8QtySSW6Xp8zvCaLiJ9gp6xnkd23783tFb2z5Jq4MOEwWFZidwY7OSwyjO6h2lTerJ+9SLA1njk765ekdupvHPFRgPr5j9QSL6cyb+O8z8OxIhoj8N4K9L5P4EM/8v6u//NID/0SMggCcOzIjo9wL4ZwD8Q8z8byT3/ziAPw4AL7//r/bfBWIzIBiFo1HXicG8bSAO9QYVcQY61Rt9I9GzrPckxkNss+t4Y24W7fvu3CzisuW7jPGMr1/AONR7JmSyAx2nMB3pOcnrkp734GZF55n7Az1XfM51dlYGeo9wkwTb7t/+bX/gVDt9Kazm/9Y4gMbtZ8F00d/fJJzlJoaP5urMs+0Z+h4OnExGHIu8SfjRbf8eGADfNn+WNuSThwcHZn+Rmf/o6CYz/7GZMBG9APhPAvibHwEBPGlgRkTfUAZl/0Nm/mezNHXk+TsA8Hv++j/MFI7Lz+jsfMzOIBHcEcNuQvAQ8FzvTMzKZrjiLZnNOD33cBFjhukUV2/ITQIxxfTe3ETMNupmo57EzZLsO2Nckp3du1gfL3GT4Bo9w96Lm7doqx7hZph21FadqX8ngm33f/E3/iGWrWcutJc58njA6Q0MP8k3A9/Vo6gnG6mO9J6UtdGsnbTZuMQfxI2Ns/znI7g56GmyyeQUNwcDlUG70TCyTzpsgCJGnLD9ScydrMGY6h1girZ/iNcn1YssXObmuu3flRtTd0+/3/Usbs7IfnD4yFMZa/hjAP6vzPwXHs3oGacyEoB/CsCfZ+b/zrIcI591sj4Rhez9+EX5yZffu3A0c/yALGV5vYGeQ9nAzZSrZ+o9IUvBnh/FTZSlmf0e0TuTneH8KIwzTCHOb1kfT2L6CPvN2qpDbmbhEW4mmIBQ/x7h5hQEIQWGH78dJ8YxwVm4bRe7l9TjM8Pc2lnedxHZid5gsw5zJ8s95oE/xFXRopdyPW/IjfON3SfjwNV7cRNPhbM+W97pMfY7xU3E6Lmalw+Oi9nqMqeyQa8TQEtwwOuZ9tjxFGUzv3Hxt7E9yTtMUtyMm8O+VF5P5tzMbe9Oh3xXbqLsABPekZtM9iuMwt+LJ2xjBJ6zYva3APj7AfyfiOj/WK/9N5j5fz2Vmhk4uyfOk3S0nJNmHQwJUf5I75FswKT+zfDOP8D9dIzJdYcpwFrSe5XXGTcx3VEH8QhjljaLh+tDbo7sZ/E8G/Po3hHmZ/t2Jj+y8wjTo3pX034kNwv3LtU/G5/wvoTRKj7y9UEZuvgo/VEYtYNHdXelfKgPAm4Z8Dw1AAEAAElEQVQXGfHdndDZOqP3CsbOhpVstglojuuNuPE4YPrMlTfF1Kd9CsYFbjL7gdF1mE/pPcQUucKENw49ZJOEF2Tt6XoZtrO8pnJVL2Hu+zFYm8T0F23vx+TtY+XDehH1WK6ucjPF3+w5PeviDbgZy0b7vSM3WfwTB/7AFTNm/s89K69nnMr4z+PsY5rhZuTOyGUh7fC/VzB6OxI+gUNHTO/qtjNuJmnfKxxy8wnsF8NnsecsfFTT+KHcLIYPxfQZ2qor7f4suK020nNpcVfOsx3TU8HoldmAVFdgnvoPKT8N1wE3XXL7qx49XvA80WsJiKtgnpsPsl/H1TBhF2fyd7TvDHtBUkQbcM/vs+qIAiNv+oivF+wxPgkTWW6dS2b+GUFjPoB4JCxzldnvjTAZPUwwNohcHejO0v6Gho/6jtmzw1NPZTwTnvVy+Vf4Cl/hK3yFHyQ83MmvD47RanUWTFq3W+2ps6t8HZORKQOPJ+Hq9smt44qvGjyNqytHbr+H/c5yZdKmJx9LtvqfVRyjnE4G2xdn+G2auGCGZ+FyuXwSTI4rRtyZeN1+D+JyuTzA1Rth+myB+eO/Y/as8GEDs+E2gtiqrfL8WWTfS8+PKPteen5E2ffS8yPKvpeez1i+R2Q/qnyTPLMJufhebveerk/dJtMBUPcOUliNcR/eq6sT9Uuw2wGOWegwd7lNZAVLxJTwc46bqMdj6rjpQFmuqPyrA7TtEW5c3Nuvl432g+mFfkb7IdQNnzF19j3wV/sV4APMU4wirwMOSzpXvSM9ESOGaY8wpu/cS9x8nw4ANutzCY4uGK4esr0tV8D0lvY7xMyQT9whVpptYr9Oryh5hv0+efjIrYzPDB+3YmZfjIwOU53BfYw1pqWDtOzvz2SHaa/oDWWYlS/V+4jsFzcPc3PG5x7h5kz59NJHcwO0mfRPys3TfW4R48PcXNQ7k31zbk4HKh8EPq2L8/v2ot6LcdvLqNd3hPzoov05IXlB1qWlVi9sudgKzrhJ8la9B9xEjBTTBn0A3DbEZR9lX/dtOTvZiNniumC/GI++87D9ImYKssa+SMoHLvhtWbp68UD5tJ/FwJb4XEjuMrQ2SNNSYr+DuGCSa1vkMSjhiU0sV5l/Or2DMkRfl3oQfW9kv6y9OWM/TuJSPjBwN3oiVyP7jepUDFld7rhJMH+FNw8fMzDLHkT23uSvfSZqnGt9kvo1yiPqmOnL0ta4bWMyvRFjmt9ZvQeyrt58IDdHsqn9jvQ9yE1MN7NfylWm9w24iff12ZBheiNuZjIE047PfP2NubG+ftl+R/qeaL9YH5f1XNB7lpuntFVnAl/RFTsQ8bizkLfrQJgLDLhOCgM6cLtif5uPkG/j8f4Ic/c39IBO+Sj5SjqVjZhqPMs/4yrim5VnZD+LI7VfyOsZ9tNwwX5yeZXXLD7FGG1ysXwM+ENJ2A+IRraP+aV1NUk3wzj0bQbujOHKT5f3QZ3aF/wzw9oN5szxkCv2m9apB+xndVK0X0w/8dcsjOryDOsor08TPvy4/KeFj9vKWIO6U2yQuU1cxKATgfXvaPk11mvR417WzR4EBxgJuazNppuISMp3Vu9MNmL6KG5sfGi/INxhejI38d7Qfok9LaZncpPJumKcsN+R3v7GWGhov8zXn2i/I25suGq/qZ5E7zLGxNc7+424SsIl+9Vwhpt475G26nSwW35WdDnCNsMphTQhbjtYeisxQKY3YrR/Y6CwFc7OkpPBFTFHDJneGcbsnuRjMaV6E+4yXrPPOziM3GQyzF3YAp9Gb2e/TH7RfvHeGfs5ewVcIx/Ta3SifBNZC2ClDo620THm5eswTzBmHYcr/qphy/XsOMnrQZhhRIiTxRT1HNgv8jqy32F7ExMM6nJqvxgf2C/Ve4Dxk4evrYyPhuog9lmSHYvr/oZ70gFJZUPoOiIzvRNZi4V5LJu256PyHeidcpMp/kBuUq54UsdH996Cm3AvtV/shMTO7UzvAKMIjPyoZdiuk02z8uBJ9F7hJpWd+ZG9R4nsAcao9xBjTHfCfsPyDfSOMK60Van9ZvVgoneGcRRS3561VUf2O+mDQ0XuZLFB3jMbRjxHuGJHUgvJ6A4i6fJKMHL9z/A49QHGw8EKjD9PuBmWl5Fu4zqS7TqHyd+MK4fRdhKTtFnnOeU1CZlNFNdR2pG+RfvFexTiM9mUx0m64TUa89qFZFA2yjc8bzqsRxjluvPXlToF0zkJA6sVnximYY+jc+xJncrCI/aLeoEL7Y2ty4zOtllZVnnsbH+lvfl8gfF1+MdDgYDuuPzZs9deyNLJAMhtXaI8rQrYDtSZkMly32ZL/PQX2wcqT4eK6aO4gf/pOqopVzNMByqvhsx+gOfK2e+J3KQhNLKq44z9gsqrIXmsHdvvLbmZhVX7BZVXw+m2ytjvtK9f5Gbk2wGiSytcvemjbU9yT8s4aEhiKqoHGWhS9h98HQbyHcuF5O0lPSp6ot5RPgS/ey9gdh3JiOnQ/g2TysudjJuIcQDZybqB15H9xLkbEOYDblzxIzeTcMZ+InDGfoNB6xKvNg/nyj7ttLyRV8Vwwl9FDyUYB351zE0Y+CgmOuevipEaxqh3iZs6jlnlKsNoZ6Im9J6q953SCaYs+W78lRK/6WxgZCftAOIA+lR78xXeI3zq4/I797XtQZwUCV+NnzrXg53AGY70FKL3Dp+EmyP7fYovyif2GuJ6pt+cwXTGfm8ZJr5+5WRul+8qNweYPsqvZr7Oj9jvUZ+b9Kc+oq3SPnvw7x4HBSFzz96yh4kAfUfuTF2e8SVbq3SA7fVMT5CT8g1kh+/sWNkhxnF5U25m9o6yo3QRR8QYtqFNB8qRm+xUxgzHWfsxztlvUheWZDNuuE877dTPDkiLetI6ZWyACcaQ93H5aIzrrL8aXBQOBlrmJpF14Wx7Y6Oxz3LG9hOOU1xH7c2oLh/YILYDj9kvKcdnCQw/gf0Dh487/ENWzEyj3MWj88g99ted73Brg1PZUVjRG8sQ4qrXYpyV76zeo7Q2/lm4ibIc7rPB+F7cZGHVfjE8k5t433IT4+/Fzcx+BK3H6SP0rbgZyEaulmTP6rHhSNZyE+vjVftdwXzk24/4zdkQ2qf03tH1meygHk3Tz/KfYVp5LozyNLLqEwftUxqPdljhdVT2mO7IP1Z4knuzunQCc8fVW9nvCO9iuzjEMKvfWbqV8q74zwjjUZtjZBnovnM31BfjWSd/9Tkw0eH8YrVtmeGPH9Re5Gb4+xn+muVzoU49zX6fMHx9YPrBQCuVcvGhFztj6UNu5oQX9cb7S3ofKe8PzM1MtutMX9H7XvYbyD6idyab2u+s3jfG+OGyPxA3D2O8KPvmbdNiyHdKMBC22riXuCfP2m5rEYfksw5Vfe+DbOLJNjo7G3tq21WHGfOdU64MPTcI5XUZaQ814SZinNiwTxu5mgVvv34r1Uwy+EgoH72X/a7W/YMBTyzfod9wiEQbDHFGGxi9GcbdSU65Sb9FGDBGzBqLXIWinOImSifbpHPpSXuTDVBPcJOpinqv+WvgJrZzk9DZr8O1br+r7f57BAa+Dv94NKxsZfwKX+ErfIWv8BsSGMsPdrfwZQYbl4LNzA6ITj6DXHflWZg0w/b3TLYdpkfDYEXjbFEf4mqU9qPtt5J+ZQLjDO7ZAP5AbnhgaYbxIqazuDL3yi9eCE/gSv1i0Ga8GyYktKysjq+GB3B93vB1XP7jYdRgRW88MWHyKWTfS8+PKPteen5E2ffS8yPKvpeez1i+R2Q/qnzTfKnPavYOC9C2YCahe2fHTbvXHpfKlplxIiqz4EaWQ15Hxd3C3ek7ZppjTRuuC6b8JM0xNxlGy1XPTcTIZoXAc0W1d6qYTnAT00auEoGGsbvunXBkv0zvzH2P7cf+t/Ujs4ighzBUHmM8lotMlpCVjMk7eHKSOQ5skNYpV15bpkTanJAYMUVu9HT1bMB+VKeMakK9wCauMIVH8qYYBaYhpqX2RgsLENjoPMdNB2tmv6M6ZS5G+5HB1BLmQK7aL8af9Qj4Csfhw94xo+TFVjX8IN4FGqd1z+eQdiorDntF9grGkexZbk5gfBo3AeOR3rSMz7a9bXDek5sHZZfL94jsZ+Em+s2Bry+X7xHZyM1J334r2zscmf1Wy3dS71T2gacz2YNQIg5TRol3g7KZryg/tTMXO3VExUbhQ60U9XCCUbISvZTonfo3tbSwaRsmS2v6uYIEY3cCKfciY/82/MhgJ8i6Vw6qfPqOso2jcUVdec9xs2q/jBsEbg7tN+Mm8iq6w/ekSNIO3qH3NqFDv9Hymnw6f0Vep7S8Uj49drXn1WI+8hvnr5Jl4q/xnVZVa7kxgxzXtAg3Nm3gxgmJfwZfSP01KOzaG1DL/yQ3EaPzV7k84CbKWq7KeLDZz3NDnWws3xX7pXXqk4evwz8eCOokprHXB0FNM4rLb3WyRVnR62TJpJUGm+vsBA9kQ3yEMZNdKl94gDjZ/UD2mdzYtFLv2X3msFQCfkduop6B/TKu3owbk9ZxE2UXyjuSfUtuzpTvYW6MH3WyB+3AU7mxaQ2myJXz7TfkJi2faQc07cS334SbKBu4uhSk3c+u178U4gJs2C5G/7Y2lMRV1mFn+IFH9temNdF4ImnXLhqMDnOCKeo7/J5n5MqkYxzU/Rk36POzvym7nsXheSWj5xI3sXxy74n2y7jSbAyvXTjysR3dIoTFeOg37LlZejdfymuUsn0QZbwazEd+o79r+TpeFm3Akt+M1/B35Dcj+6U4Qr7xdFoO6U5xY/Ow9hP5M/Yb3X4GNyOuJvmnPH6y8PWO2YOBaksje3pJPKrW0rYlpcWlcXQPlxOysLIigpB2X5Qd6oUmosO0QU9NJw+yrnx4J25Gem0h7QPjPbiJ5aNz9nszbs76HOVpP5Kbp5VvJmv9qPPtEH9LbqJs5tsiO8P4VL+BBmkHYocWyO33ptyM7BdwnQoMcFVOdgRh7se4bxfri/qElDsXD3qlR6IraoG/WCZmVowdZhMcH5z4txhGyjEqr/oKr3ODgNG0zWe5sVgdxniE9hE3EXPgyreDJ7ipD5wl+2Xc1O1uMW3KTeCETL4ZRltMsnlgwmusv4nfcE2kHfqsvAf+CfYTY7B5mXwo3htwI9s1W9u26K9d4LalNOEmriJFv+E6qqPgn7FdPOOfnd6z3FQuLDegA/uhpbX+ao8J2VzCFW58XDHGzzeIh12y3+cKzPgamD0ckqOkMfudpJW4NvZnZJMHYvf3QO8VzNO0saGWNLHxOIHxEjdJGg3dN3kOZJ/FTdTzBPs9hZursskDYSb7I/j2VBb+evTtd+PmAJf9+27cHLQD6d9FvW9iv6N7MxkG2oeLB3kN+WDoqWYj2do+qQj5tNrZYfNvpNf0uDvM8jvaSfUkGEe6bJvKXu+xvROMhisXDrgZ/WXuT56bcjP0DYZaYJWbjtega3Is/Rhj5WbWQZdkgB9ATtJOr2W8St4mTeSmlaGCGHBz6J8HmCi5lsqILtcHIMXKcS9ZxgsBelLgjNdZX0O42Wsk+vqMm5W268ncpOmX63KS/pAbG7e+E7k6aE+vtPMfGL4O/3gkMNr+WBu62Z51kvuZohMGOiNrG5K31PNE2Ye5cbb64uaS3h+Qm4fK96Nws+rbj+g95GamB5/f9qtZAv7DxfbGlA/padhRkHRcYkdDj19oSZPsVDXbfE8GXRoNmLp0rW+UYdJOaux0CrRTnSPDVcZNPG59AFmPkzdYHuYqkz3gJmJU63JJew6TZJ5zY/ORbFM/imMAPkDAMUImm4IjlSeY9onCjeMgK0U6GJ8MCjrABlOoUcFgHlO6Yudy5sorKUZyxieXNrYXZH9wuLrqC0mdYkvOkTHjkfdx9NQdL3+hLhPqaluOKfu8Q85NRChcjduqH20w9psYPm4rI9D79NFXxzG4x0naeD/eg7k205thxOT+keysfCPZo/LF8MXNnBvB+MWND49wE8v3xY3HCFzn5kr5HpE9y82JcKndD50Iti+7J6eIudS2w2U7cmzwjPTGeyIQO4QAQNQuJ+VzhzUoCQKRmkDEddqG5PC5PpZs5cvKVYDotSmmWbsY20i93y7wCW5iJ1FOixQfndov40Z+dy9+UTycb8hN1DPcnghAvrXWuCGPwyausqo76jr9rGoXKJYBIS3VVBETii/4rXMBs1xaahebfzIBG2PIDSXcaJAdV64+zvQG2QlXzrEOuMn8yNUTW77Tz4ygy7Rl7nTIWP7wvOntN8Fw1O5nXH+i8HX4x6MhnKzkAg9+x0p4RvZMnBBm0h+QPYPhSDZe++JmnH7GzZGuL27WZM/Ez3Jzpny/6dw8Ur635OZKGLX7RzgTHK7PwH0fYph3vUbZ/bP2P9CR9nNcZzTB9IgNYzoKOJZsaFDzRVxZPNxb4mbS8SY+0Lni3zPZ9F6COk4cwPah2yCy43WEK967+sywEDf4FbMjDCKHJ9je/LYLlTLeKWVc5ybW+1TvyXaxG7dc5SZrqy4+M8jU3VXZYZv4rOfW1Xb/ncLXO2aPBDaNxFFjOQqjBnuUNn7pfrUyHck+C+NINpkleqres+WLD82P5MbGPwM3z5T94mYs+0xuVjuT783NlVnKZ3KT3bfhih7b7p8RCzaj9tNhSTtrcYnIPHekeZ2OTy7gmmEioB5mMsBVfy93LwLGDlPEMZIl26nxqeUgHMfViUEO23iGqcPYeu6xPM5+EdMEQ3p7wX5Nr2CiIBsF8wEQSdqz7U/0haMBg70n6gj10Afy93Fsz7RZOPLPCS7xBQLAGzyvHPIecDPz5WX/jOJWnnqbRj1HOGx8aL8DWTZtlDsuH33XcMTNyH5Z2qVw9fnyDoFBXwOzR8PDA7MzcjHtypbJEb5H9J4Jmexqfs/kZpb+s3DzVnrPcjOT/eJmLPuR3KwOOD6KmzO6n93exPvPeOZdwKgz6yvyBmea1FzcHuxkdFvYFsMRriuDV5XV/4wU5SEeWy4nYUo+9hMyvTCmvnEKk8Vw0KmllfxmqlbtZ8vHPVfTkGGWsDJh9qAvEHwHf5TnIc/PxGS5lDgHex8N/p6ICQaTm0TI0p3V80D/lsjgOvDPGVfPtN9XeJ/wcVsZxdN0SgAwZ8TWy6wzKdqwjGa9z8pavfHJwk2209PFx3o6vWcxOp1NVuPvwc1E9kO5Gch+Fm4O9X5x8/HcPFLvn8pNKF/UCRt/f79R2XNdpTykOMf3hnyY/Bwsky5Dq51qm98KlzbTgMXSNQzm/hbSqttxvex85STGzOcSDDE+pJjRtgzO9B5hHkDI9Ek+mg0FWUK3Te3d7MdJsUey0RcDN4jXDvRa/MvltfpHmOwFa+uIYYTJyq746wCXfi5hlRsbJv651N5YTKFsmmaFmwmu03UZ7bc7Lr9en7aLGYYE06W2+BOHFTp+hPBhH5h2pzLqB1Pbi5NbjVsZ+7tvE1qKVdnmhxQqF/Vfel/Wew3jFtLrw4fsBZvobbmJsgxgI8Dup/8IbvK2aNjcvws3UfaoL/Cjc3OtfEbv6ME3lL2mZ4mbp9X7x20PVG6yFbak3r8VN8N6/4SHsn6PTDKXv5XweI9sulEwBZEPg6twKBgxXKeewl+nN9PN7Y/dkmfjXZjhMphcfVzlJmKM9WqAP8OUHkxnry1yg5BP5GoWumeglRVh855i9p2xFYyX7GfiFtNUNmKwnwkSxUeyFOJYKy9bjAzfqU54IXMrnpkzfT/Nxic+pG4f7TnKlw2uvAFPMR5yE+pUh2lg6wyT/eD2FFwo2xn7aYJYVwMuytJibr+nt8UfGRhfWxkfCoz0uHzC4OGQhHF3c0GWaz9j1lDZfIzTn9F7CaNtHSe4gHGD8Cg3NoHrkwV978lNlOUskU3zTtyMZB8t3yOy78FNd2+BG20zH/Cjp3PzHvX+CjeL9f4tfa6r948+lAftvr0/vLzyMOCQjPv7sSzLW5OCDQ8xRVzs4107b3/HcsR0E4hO7xGmTDjWDetrIwxx8JDhWuTqyH5s7pHwesEvn2m/mfqlAdtRmtiJXg0WYxBOO+oL7WJ27youHSyO9EbOVwdAq5jsgDHadkXvqv3OYLJykZvZM+LZXH3mAdgs/Ki4Q/jQUxndJGzWMIQ4A21Gg+C3pYxkZ2mtA0enr2l1r/2i3ksYbZyNXnsvYnxDbtLtPh/MTZTVdB/JzUk9v5u5cTqzeh//fgQ3Js4459sPcTOr92/RJq7IIshGbnAxXMBJgVv3N8IN8u5dKcBvFxzJjTCav1vECJ+Ggw71pyR0mCZ1Ia1XNW2caMwmHkNVbEWuP9JvXdkV3Av+vc3sF7mK8tYfpZySblSYGu/q/sx+oR3gxL9G9ovlUyjsLjfM1j/NPfFVokFeV+pvlXFb4XiAkZuIbYM6bjLZxXYxYht+A479PRF3XJi/0ddPtYu96rwYif0cJntxwX5L7c0gzOxnYQy5ibKr7c3lhv99wteK2YNBZ7skDvQvOGqLTTUNw244J/M3l0WX1sVh/H8g3x1ScqA31bOCEYGPyE1Spjflhpve4TL4hJu0fDM9R9xk5cMHc7NYvlF8RfY3hRvAPPhH+X40N5AM9fOn78ONxXVQnjfnZlrvLTcXAyPlJ8PZvDRJm/hXlIeVl/io7Up+pxjt35j55J7zu9DpiljIcHRkQ7mm9rJ5x7RRr71lMGd1g8I7XWfr/gqPQ1m08ll/yLZz2XDKfhN/ovB75nqKyySM9aqzPRm5gFFks/q49Nwm+NWyga/EdtHpi3pn5VtpF2HoJ3hujAxlvy1A5H8ZB9wkBtRj/GnM8+h5Gid/Mr2Ickk+oz5qJjqyX5r/s+yXxb/Cm4QP3MpoaxeZ/w4Ehr9z2ey5OUpxLJs9PY4wH+s5DiuyH8mNt1/k5jic5WatfOP0x7Lv5TfH4YubK3rG6c/Iskn3GbiZZrysZ5z+jOz1JzMxtINvyxzLH1qVJOKvH25HNLJudSp0ajIc0747jdOSvR9s6O6JrOBJOlozTOm1ieEPX943993AJ+konnqezexnVuRc51R0USJu+Lpkv4N6FW3UiZ4pPHtXCLfG23sJ/p20kMesvFo8Mv+sPE9NMq/m2cBm8HtatzNs7NM6jFZvZr9Qd2Y4Yr7qYwkmntgPwPx0zQlXy/5a8cSvHaz4zTCE+2fam88cvj4w/WAolT+Y/MhT81zStIenLHUtVcunlw16Zk/kExiXZKUB+ihuoqzDkNjvPblJfqZcndD7EDefyW+Sn5+KG3s+8UdxM3tapz2vN+JmltaGB+33VNmLT+uug8PoBgtp5yQ+cEftYoYrDorMtZloF6+60hn3A71unE99HzPVfcBNvNZxFRNnHGa3q94zXNnydZ/Lmunl8PfIr+xAkR+w30m/0TRHdWjQuybz2xrMZcX+nvNvSTtpN6K9FG9MEO05Sj/CFe4prkV/jWo1HwomGelldJiPzDlrbyKo7n08jO0XZYfP2zP2i/lF2ZN+c4T5qv0+W2DgayvjY4GBPWkBMkc/keWnkH22nvjgei+9byH7Xnp+RNn30vNhsuGpNcvrhyzfA7LvpeeZ9rv6yM5mcldwHQ0yZteTjjID1w6O4EH/9WjwYYUyvaN7Z/Glo9pByAYZ3HMzfC8vyy+ku8zVLL1cY7jVjKWwar+I68h+R3nZ67N6md2zZTzrDyLTHft8oPuo7cgGByv4qCVTSq3PncE0uH/oDzOMdsJnJPde9ouDzth2Luid3b9kv88cGDi3lP15w8ccl89oy7BXHWE0u3NFdvWhf1bvaYzmqXQG08N6T8jOcL0pNxPZt7LfR8n+buDmqn//CL59Vu+RrA2fxn4XFcm2tUXx7jEbV3koQAl5s5UxnS4daFz0O/2swRCo18shbdp9kPxXPjycqTvA1B2EAp/W0uS4OuLpwJ5TGwpmyxUPksdOM59ww2fYz8RnPjfTC8B1it2AJAtPaBfTgx2i7H4R04U2R/2L2u9ZfUgHNdGe8X5UeIJHd1Lke9kvwaE2IfNvgCOTXcL0yDPjK7xZ+NDDP7oWOH5so/v4hk0b4w/IIsg9ovdhjNz+2Hv7/jHcdGlDPqdk3wjjM+33Yby+kZ5Pxc0E10z2vTA+4tvPsn0XQrrYDrwXxpn9VsOokx87jVkn0vaE7OUkLcf72Q0G6L6gN5PN0mbfnhuFUVo7EBrpWcEo94OefjtxIitRMbdgmpXviJuZLknLIT6SM+nezX4RYwxR1uad3KPs9zMwhrjdLZ5O8FiMJjqsMxPZIeYQ78Y7Ex+0ZejuzfRmPB5glMFYtzEg0WMxTe0Xw8xPYuDA1YyniGu2shb1nrTfZw9f75g9GuxWxtjozSpWTCvxlUp5NDsw64wdyi5gzNLOZKVzZHG9NzdRNsP0EdzYeIZpVfaZ3JyRPYMxS7sq+1m5GeE6izFLe1V2xbffipu3sF+WdlV2tZNzNlzBmfE44tZgZ2A8mx1OGVzGeBRWMI3Sygy5JLpiwwzvFZup/0066mfrfpb/JDiuov54hH+WJtNzpj0egYnARja3v9n8NhiGR9xzIpvlvVK+LI9Z3pn/Zf74rGei9V0bD3+V9hnfj7aLkfsoGzEd2c/mc5YbaTMSvWnliDY5Y78zbfFnDo8+nz5J+OBTGY88evbEeaYsQtqremPNewbGlbzekpusfPtC2pHsM7mx8bgv5aqej5LFA7I/Kjervo0H9J6tF1d9+y1tP7Pfkex7tBnrYfqB6VSgV8Wz+wT3PSYnEJsvvoBnoLfDFPR2mLJ8TJW4hOsMVwbTKK/upMirmAKQZfuN3My+BsEJp6u4ztgvxIfdh6Ngmz2gX0GeledklWOgYCeAs4X2UX4JpprVw7gEEwCQvPcW6+Ug7+xTIjRIexpTxaXbGClLYOKWk1WuTtYftV/93X2XcNUHM0zXmu9PHujr8I9HQ6lkR541q2mPyGZrym+h50eU/d3MzVHaL27G8S9uxvHfdG7Ww+lX0yQ9tej00TtJwKEItB/klYVkoNHpPQIZ0up3zeq/eNrgVUzdztUTGPXxLJ26s1yNMM3VJiDgbK/X3tN+K1wdqBsmnlSrVOVq/RHM9S9v/vaZ96LiLubDMi1i49AsnnpX64irE5j0G2ZVznGV1UX2P7sJoCfhsgp4h/tK+NH3Lp07Z/a73oR/7vAbUq4P3MqI4nBIZqNqnOFnzfRbE/yoLL2d3hNpNf708n1x8+HcRD1f3Hxxc6V8ku6TcXO+R1xluf0kez2W08aN3o6OkDaK2jwIaJ2UveWpsoz+W0FGngF/ctzANoJrWKTIod3CaDga6rEYCcMOLVW7SfrYQZtxtVkcO7q5hSOTuWBuWheSiPOtA9tn36EbgXiK/TLuBoW3Zh3WKyvLcDuVyciPVNkbUxuE+r6xv961VxZj0EOzehFlow2CbBaG3FiMliNJN7FJLM9heyM/bb4jvRLC5gpKkkztd8CrzXuzFcfKWoxZOym2f4SbK239V3gofNhWRtStjFSfHgQCW+8GVUdjEzee1MnCPYnkXpQtly/IKrQj2QowlYWpxFl5Z+VL0iblW+Mm5zXnZsEmT+GGNO15btZs//bcnPGb1fJl3CTlfRNuHrH9j8DNQvnehJtVjI/Ui2dz4+2Hqw9rOWggdGYER4xbPa4jU3/ry/pyL3bwpWNdt3LZTmA8ntsNDuB1gXLMERN2j4MANwAm04F3mCw3jGVuyJS/CLd7ukK4e/xO1vJsZRG4Mr8tN+IWyg0FjAZTZz/hhhpv1p7Ofjy3X8cNsGQ/52PRfgl3FqOWR+5F7IE796qoYAx/I28qK5fJYMrKyx4CuHDMO3TrIAOd33QYHUm1rGx8eaR3tU5JkPLYcgdM0V87PTSQNfc7HkNc/zLaypT4rE0bTpXVe1bPTG+0X+TGYpJ6M7KfkXfcCLXWT9HyivX+iBvL6+V2/z0C48O2MhLRHwHw3wfwWwBeAfwXmflfuJrfxxyXD9T96sWrigNwbYcLsVw9obWZkrZ2MFxcZBFkucuLzfUj2aYHqpeIgf1ILxKM8pxpmHLZWflieSxXZ7mJvEZu5jbxeqQh4Tr7e4Ubdmnz8lrZY/ut8/oIN7PyIeHmrO1H3OQYr3GTYT5XH2nRX9PyaZ16C25G/rpavnPcjDCutFWj9kbe7TlXL65ys9beyL0zobX7Ld7aRcFV4/WCdMC0w88tjXQ4VJbhZvfth4TJysr1va0kSGksjqi3w2z0aCcILQObFhVXtzISMTF0i94yNwavYjaYFD57rrrysc+M7PUBV0aFK98yj4TWLib2PGO/M3rlniQecdXZM7GfHVQpr9zrlTzcfAibtCaNRnevr7OflTXloyBAQHfgTTcxYcrXYZT82XOQ6W3tldFt4iDogDy4XPceY8ajq1P2XqLX+vasTkHwEHTCRH3NpE/LJ1yFtFO9HGQDZs2DAGyJ/QyOGTfRnvbvKjed/T5z+DiQ/wSA/yYz/2+I6O+s8b/tamYf945ZbWW5REDBq0lvmHhtSYts7XaorE2b5OXutdnjTo+xrH0YaNqpXqNHZWlQvpEsL8rG8i1y46t9uZ9yk+iJ/2X2aXnC6yE3i/bLbLIkO+L1EW6Oypdxc8X2sXwh/jA352zfZCnIjvxV/jOwfdcOPIsbi/9se/NIvegxTjHP7MexfJHXiewyNxlmHOhtvnAm9HXD3kjiImg6D4iyCGlNnJ1QyC9ed/UBqpCaSKp3qXymDJqXyJBPIziG3NjLwYYI5dW0vmnreAUCV/K7/nNcRZ6MrMXkcFlo0e9ieUP54iGpijtisnkn9pP7FHDGA0+zumFl7SUPyuua+dfwfoI7YhjJRp/r3CDI2nw1+4hxR/fNXve62sjXfTaad7egEWxv7Rvz6fxkYOPUPw/qVFYfU/tEPQhpIv7VujyqUzavzH4xSWLPeNQ+xbRHGJNnxucNHwaQAfz++vvfAuBffSSzD9rKyGUrY3hQxUYdCK2Cc2Z2DRJh95VhDgBUp0RWZAuuhrTXO8II2A5h/0DPlLW8BFcui1AzfQ9gitFOvSSYDm1iZH01yHidcRMxYpg2hjP2qwJGLz+JmznIjpsj2TMYZ/56lpshxliI5EUTJzvzdS8acT2XG4vR5LXU3mRlk/IdyMJitHmca6vKFhaz2lbLMOTVyU7q30NtFXx5Z585GAWG/2YSGy5jiCeYUeB9Jht1xo4J+79d+oHsCHPsPyHctwIp5gyT1TOjenKP4u1MOaUUlcGLwdJxlbXlRnaGySlk8fcxN8+yX+c34ftdU66OMGYhXNdVzJFcjduBhx2UOF/I2g3kGN3AxsobB3F6AkbipMwWr9V71Cww2gqQCDP8KlwsQ9DjrtW0R37QcTPASTBNW2a/LP8Q79JkejP9E0yif+gzg7juIrB5BPlDbmY++xUk/EMA/jki+m+hzF38hx7J7ONWzOQ7ZtGxOg8feSupl5H+16SdORBR+VCryMZzeVNZAdrSNr3H56AePmAz5WT+zDCZtIqx42aC0fUoouxETybb8brIzRn7mQRvbr9DbhbDkuzA9h3Go/Ke5WaG8WJ9POOveDY3x/a85NvP4mbJ17mz31obEm1/ghuT6pz91kO3VWkIwGuNzZsmGww0YloV4PaP90mnc4JJ9HKgNrp0holGaeUwEoZu7TuLCwhczTABOkaPmMjcw15sxntYKcnwY2ATHNjE/gz268ogQQ4kWbUf4N+PSoSu2o9HGDVByNJ0hrN0DkMYlNAsfQIdVPDx5vVnf53P2XuhueoCG9mFPo68L8UbdBUm6j1arYq4o8xR2jSQsaUzcJC19rPcDDAO6/L0WYx2QB7BD2YxGWBNMAONo2naHzk8NnD8g0T050z8d5j5dyRCRH8awF+XyP0JAP8RAP9VZv5niOjvAfBPAfhjV4F87HH5+pZpDfEJ3AWTIJ61amesJe/RdpvMq+3PmWxn+ROfc99n+R6EKDvjasZNFOYYD+Wb6jmQTZ88o8xO2C8HsibbbZB/gJsz4QyvXTjw9WMjraU9jXFSHx/x12dx02E80d48Ui86ve9kv5ls1BsxxnzP2O9E2LjPKpolBgp/u1o4M78NtgPFZcBh3vPP+mL+QkhAMxNGamMBRsrqe1NZEVbMbwetHa8nMWrnkwumIVcLzfyQqxVuYnmv2A8n/egExm6LFw9+1/h0cJXIii2PBmXxvgyud8E4wjXoxGtI5nJGaSPOlFKqPrMDuJk8znAV0lJmr1HaiKlyxVn6I0yRG56kDemi23T2M1nG1c4uX160yYEfrTYXnzY80EUD8BeZ+Y8Os2YeDrSI6J8G8A/W6P8MwD/5CJAPPC5/VBul1tZb7igjmCdOIuvuSRL2CbLONSV6oixBHwip/BCjkV3BZN+gznSNZDuuDrg5ijtxk2/GVXwD2eYxtV8Ib2q/wNVM7xluuvJl5TW/o+K3wmixSr6cpB1xl2E8Ux/1ITnxVycSZd+Km8X2ZsTViuyR3oybUZvxiP1W6t+Um5DW2eTCI5rRjoaPwdYTDnHy8bT/ZdLKgELvd+1v6dRnW8ZmehGoGOKfxMUk6bPkXg+zSLZxpoODka5RWMTognBlTqMbcjXDvKrX/HZcwVwzq2WKcZTX8DkKf4jKhnX7xbyCPTVNwmWWHoS0g2/1zDrT0wGAEVFMB3qHGBnjAdAMk/EbBhrX2aBskRsb7PuEQ87j7+jLJou0vme+McKMPu9hXYhpR3WKcVy+WdzaL0s748bGLzT77xYY6F9ifLfwrwL4DwP4MwD+DgD/8iOZfdhx+VSPy++mWIZTQ6Pa0FLRkWzsXMe0I1kOXmriJZsJxqPyjVaZJKur3AwxLmJ2amIL9iRujuyn8Qft957cdL0Ik1W3YBHKN+NmyNWiz3nQAdMTuVn118MVqLXyPR3jIVe57NO5cXUq9Ezk/kfar+sBHAdCa/fZ5E2gukJnUw5UVTrclqPQgVGUiawUmaRjf2ezmtMEaNQ7AbXmiNod3z4GNyL4LURZ30EGinvhiIywcEUWh83ItDF2cTYrP5vflPDqZGWroLiJ4mpniJZYwpVdFLbmjPUo48qkTXmULajBfp6rgInIrwLXvLXZCdtSO732iPPkPmLU3o/VKA407GRFfHwYWW33rVIbZ88FgLJdcANwD5gAv604Vuc4gTI60dFhqLwHcmKbw0xlK6PUQesfCTdOL3x8iMnhSjDFNhaFq20D+I7OpkNMGebM9nIttnvsubH1HszgjfSY/GmTmzy2XJO0aL+cm+BznzgM55ffPvznAfxJInoB8CsAf/yRzD7wHTNADT7oC/lL9sk2TIQuWbwhcbt2ra1thjRi5P7PEBPnmDikGYkT0M0AzDBqbME7TXmmXJmZ0vaEsI8KXOcmw5RylbRKoU95aD+NPZGbwaU0r447e58PuBrkyyOMMYvEnhKcj83slwAw2WpjvmDmc/Z8tv2OMF6rj4+3AyOM1+vjGfspV8v2uxC4tfuiq5SOwyCCYUZLJZh+KGFcLEtLX/dM9oy2QqV2aeXi6mkUMwvjM7nDBjK4d2GXlwMZMFWOyNwYcyWYTHfO0hb1WFoTTF15YDDd7TtmHLLdUb7VFxQJTwaHGwwlXI14jLKZ/TxXif0CF9aGCBit3qxOWJ67+YuYNrnm1Lp21PxO5MmUFYOyt0IQiOs5a7exniNMHa4o687L4lAGm7j8lgH3xsB+a+WL7c+MGy3iQDZyM23rmIGNyruUwORlygRTptcEuyqvsto+s7On95PS0Csmu7o4ApbpTXDMMbPDOC3cV9DAzP88gL/5Wfl98Aema7APmvhkqQ28mwmS1tv8Jfs+xM5OVjMcbfWTRrlLazBTSFf/bvGjMoDTUx4O5DF15YtPq/p7r0+1A24iRtpEf+XG9SKkcTR6u/LVvAUzrN7I1XVubPy8/Uyw3F3mpnGxxI3tQWjaoNe1tNJRSdKqeQbcnLYfvI1ENtoTgH5xcma/yg0ZTEq7tYkdNAztF+JupaTdGvlYbAce4+ZMfaS2OhVlIc/y3H6gMpPftQNZHYpxiyGtj7aN8LKbrVPMx/Zb4sbouBJ2U4IKvX8dlFVl+d5R/aHwBsqrK7GB7QZ84kOMsvrD5l7iK9o/YwCb0FS53rxxyNrEwquy3RHfVqf83rnbYqmY6h+y6dUc9b8E6GcRtPBJcG1Oj5ks5h3AnbGZum3tV8pH+j0xaeN8cS2mwJXdQmh9IeGRTFONO/tB2cx+lZvmVFJIV8HdL/vpAPuB8BjUJqP6a8sS7Q3j/13aUCfthBqjrYCIbCx/rSVSjs1y3qX1GJ2fycCgYqIoa5oz/Tj3QE9xSeux1GwUypfWWYnL6qVyE9pUOYgm48bypkA4nO5o2z0TuvY44cJyZfPYg/9y8JvOf+sXJfU+HfuUtYH1G4uJg6z4YfSxpHyzJuXThKSO/ojhgz4wzaDd7A3oBmnSnHOLU0grHr5LRWfvXLKlgYMXuoedqWlGL6zeDiOVylK3RTCbGUz5YaYji35T6yMm4tBYGID23gFGthjZY3azrNoRY1d8u00FxMDdPi0nXD3ATW4/bhg7+5mnRMfVe3GDevKktIKSF5m8DDcOI7m0nW8fcWMxylSotJQdxlCn9sCNFND5mOeKiZzeYs+Bb4trRD2jOjW0Z+9jzn6hHRhzM7Nf3t60NmJkP/jZYWO/oj63XxGtdWrUNqnv9XVKbf1u9htw0/n2+aCrQYZLBrSDXvpWDTdRKYfFJMf6SxlhyqRFkaphiqP4ZbvgTm1FSJI6vWhbumrG+vHZOwXM3g+52qXIGt8RFyXAgWXUgRm1rXoBE6hmUYsMMvlJso1UL1PABChXRAYTWl5qEy64yKxKWa5sWh03CzfcVs9IbWRsYn2WDVdEPTemWpayFvzbqv1aFSz20vKSswWD2yCRyK+KBF+3VTyziYyp3NjP2t74UymbaTfEP02lpLq1jsxjR4GIHmOTki2Ba3k3Au53rts/yWMynPkteqyEyvZJ9y6X1WtsoFx0/RbjC3LC4J0LxnvxF6lbdoJP67qZQCJrANl2WMvVfXQ5s0nEZJ45Jblxcut/IqrPlyoAbph0QK2OpTplq7DYUeYkc/uhGK5ysrcGr/mRqRd+IF9LdW+YIq/Z9tlu8JvY72q7/27h494xe2r4uBWzO6M9UOPN8tc5ArPWBYl3orFS7uGC/HR7D7TFqEIcZOyT3eIixWAx+qTsHxozTPGaTuGYJ1yHKXJFqtdx5ZKyawxKBbdYzLQXy39CzbVcOSMYm7HHxAk3VpQA7RRK2tZJ5MBtyMvMqGf2i35U2i7qabeNW/075AbsZYa2sRjRGk2LVZ8aFVPm29F+hiu/bYG9attoR2wOExC5IrMqyB037KuRey9moM8+HUf2jE+LxLf1GdglrT9MFaOZ30RMNp6lDW2+bYssbxztx3vprJps+3bA+rpVwgGTybl7Bnmu7LsCh/br/CjB5uwX0y4EhnYytfNc4dK9JpF+YzN37cy35sjan6TTUcvo25wK18hKR4m4dHq2oFdNSr0sSdaCyQxiov0J3NoY2+bYfFS29tL28nd7LdeUG4PpFrmxeQG6AiO/EbixXLl2MHC1KU+AHJm/SXmD/VAxmfk055tkiHVjkHpBuUrsJ3mpDU7Yz8lKfjYvwy3B2nPOTff8NLyqj0nhzfyzpk2qUyOHq+1J2y8CtbTyXpZgZpgCatWqzwiA67H0m3NQw1PALFnFLZN+EBYwGdktYLR5yeYMbOX3fgP41dQpkU248tz4OAI31kbOb7TACaYqtLHUfUq5sRjdQBG1jRVMMnqq9VvKs5nybTC6E/vhDtAG7DKQDfXC+ZH1OcuV9hesjlLIzn41Lqvf0ReUq08cPju+1fBxpzLWN7jVCRnQFgx6wYVNWsbawrpOhR2FxO1RXB9MdjClFcjUZJEFTEsrt02VMV68OUVJMesMc3ewxW7yQstPf7tZePM0U2rI50c+D8tVt93LzJoR2MxScnkg7I0rx01XBnj7UV014sBVgGoDZZhC3PlCLaOzyYr9TG9C8JbHn+fG+REn3OjDwD4dUQcm9j0LQLvn1p7a8Q49CcFEPtsV+7W9W2zVdWl7n4PHRIEra7+Iw+IVm4z0sl0mQfUb42OAWKLG575d0kn3ZW4//7v6p5JkHKc7Hp4bporQtwOeh+jr7iEpM6fKjUng9B7w6HYL2IQGCkn9MZiQ+HrEONOb2O+g2RuGhs1gMOWgiptj3XCZoKUN/mifzNZSLi2jDID2dlHfeXY40CgklNn+0YO/49W01aYdI8VIUaxwozPZsu0oYmJdgSJ4TB1dFlPkSgPrPcuV/y45m5VwuNUQSSt5UCVr2j/q7Ge54pgsLxtnmDxX2uRLBrKqQr68Kdj6kHDcaF5GL8O3OU681SsIRwiYSVXVtGTStpK71UrJlL0sMj0sj4XQLlobdBiNnj34AkMvxO255AYmaFu/Q3m1eWEdwkBHF6a8nV4EvcZv3Aqn+82Kpa2gJ35TlbHqaRNVrl4YSPZ53fQaXzZOFgcMVLdfum29xgYMdBNKTk/wQYep5jzCLLjiHDZFGwzs92lD4OlHDh80MGPdF0zSYMr1A7H2O6TVGWH27bvMashvmZWzGdoOk8Zb1q0xFpngnZ3n1wy0/Qs1nE1ejL4sNY02JCbLFkItkSVuLWvAJA91ro/NWL6KQx+plauufGTzg7efYI5PitiQdjE2/Fv9XpflwPF6xn6t95lzZfzIFtdxY1sA1xjEVtCXh1zHTp5SBiXZVYzwVBL7QR6A9rrZo2AeQKWoPMXo7Qe1X/PyUKaB32jcrXIGefOUoGAz37dJfDsGEozs7uusOxuudADIWqb24nXAZ8pI4cnbZGtHh3tiUvsJpj34nPqaf4HH1fv2pM1DmCyhvjcT0kfZVg6t2uLrlp9Q7688oAlA926MvSmXyMyEU5os9UmFaPmweqQe1xUgYnSz+26MEPuy1OOxmDjmI7gYfXmDHQSLrlDZNKGvZ01BdYkscw+pYk4ntXsI3Gi7AeGmtCdu9SxrY02+XIWlwzlQ38syUvvBYpJrO9p2zyP7GVxkRln2g8sjezpuoKL5yrIB3Z6hJj/XBvvyjtJaHI179nEy9127Ucoo8TIPxY1Lu61tohe1vK1t8LpcG8pw3aRuMgRoH0tm08pzXL2vet1gynMnwa6K6T0pq8MIj9HmS7UJrrg4TNLZ+i2/U71S7mAHkd2i/Ux5ov30sUymXtrthcF+ijPas/629uv8RhLuPm0slyPjK7xp+Ljj8u9mT4s8bWxLKkldI921iCYdacPTKji730051feEAGlGaeR50iLrUgaBzZa2Mh5quHxeAYN25mzDHWqvU2wwEbWaqZiMaC2XNiLE5rfZJ57hYvPDcSMPoobDtrUNauPGzeKTP1b5cJ2Zw3aqbsXDJV7DlMQtV7n9TPaWpyE3xuq6khaOCRb7Wa6cXm8/S8Sab/dctdp1nivtiAQfsykdV5UblxMHXpOBTONGXqSwyNHiFCTVfgSKx8nXRPLQj/URtRwM6ux32A5Amqn+CcXkV9iabK0XI/sBaGdHw/AW6v1R2+QKjtpW2TuJ/eyERsWU+ZVO6GQ4VgMD9MpevJaBYSim0n7BxO2qhHtMUOi3EY2bGYJuy6MdZavQqz8kQXPbxK3blkJ9Z6vq4c3n3S3WGnf279wY0KJXMO2M7TsappoZoWxpgrlOtX6SbSs2w1V0DXiuRjypjGIC6Lupv+T6dqDNvBsW7KftyEbWLb393DyMt1/XLqLZj3aAvhv7macNEVV7Nd9iMpyx4VFwGCVJ9TZpyZVfkGqC+BjfzcpIturq2gXzV/zVppMqWR3MDUxlO7kI3LkcS/8ij5vafqEUflqLQzW1AwZ9TnO4jqKjP5rdc0Nb2cZYXoEj07xH28NzZfVUblxzJ22ZqLNbDvfoQxYTVx8F6FbTSd1OHkWxzPoMDFyJ7jawbe9EQmxgJyfZqNuo2PMO7C81bvvKoPBOoC0cvN8YTNqs6jv3piyMsopp3zO2RrjY7L9fCJX4Bw4ffly+NKjaEGV9DxszDys3q7Gb1j1bTbOdxNqBLKk5LNFyxUUtGjEZZ3UNIQD7Xk6PYzcV2HSITNx3imaYfN7udDUAdtsS7fsEE3puzKoSWUyQTq6/0k132UbJPeFG9vMNam4/r9UWoBtuyEPX9gQsN3GVINpv5Ee72bupDW57kg4HlbVF1Kz1YWD8N2BEtN/Mt2NcuQqd/9R+8D7ucPjNfHHLjitv4CZiin5kMcmMqZuG7Opf85XOfg7TxH6hHSDevSeHdqBbfCK0jlWwX8e1vWcmgWYr/fav2M8dVLLQNrmOH+9hQBPtN+AqYortQDdJshg4Hm9ei0C7L9Mmjm9cAjKYhuc2cpBxYu8Buhq0vcKdJmhn+PmOOvCSFVi0QywIAO26Opl6ounQdbjidfELBmiCabsD2Mx7zdy8TrtttiN11JOa8CR5KVeCBb65L/MGzfcFjSkCQHFbWKJ4ANm+QyQJZ/bTdp9r/TWDaXZGiY5CvXlokNTOrwXMYQG7Dh7Mc8+2MeKPlgPXppq23Phu62SbZ45cEwzMQB0w2zmfgjEMyhLfjI9zuwMpW4EqerliavXCfvqBuZ6vwoWHfQe2W1He8SY6R7hsmaTNtNw4zBX3ABNxqevEwJ39M8/7HvrBUMTt6rbhavf2Kpxyh1nKyHfGhvLNN2mL3LbHqDP4p+Tj7Gd4cNzs1n7+HTM3UE5s9OnCxUfTZwsfeFy+eI+pxAQ9GanEw9ON4DsqsYMgrRIbX9UZCXaO2TofkjB0mqwH2iN9teG3hTGyMsMdoLVDGkpajccyOfC2bORvG670vp1ltjPhDYQvspstj9yY7QWxs23LX7fSuI4rYhEmuOJgRGbplavdPLCsbGZ789sm2SKZgW9ne4K+PCd3GdDVBoEXV6zse40j+5HYHl0n2bWC+hCPnFvfrtzYoLNgBryVdXmZ3/rE8hZLbe9sQD6upjPdRevrTtYChPqQ0ythM3pkJtMOHrpBbdMj+UUMupVRZNV+sR0g/5fNdkRpqwjlMwyxfN0AJnCnA8V60c5ijtqBjpuWdbfvx/Y+5K9L4n29ccauI5bar6tTa4HkZMpQHtuEMLh+1gJmRVtOFfRFdMW0F53vh+s7ymmDe+1E6mQGl3JZ3snotVnWrU/jgqLj1eGIuHZge63H0puj/HV11tZps3JGxgdtnsJjBzziiC6KcO+OchjJvbV/BLiTMqke5qDusbGuomX2mqnLtpl1iXaAXtFWPu1kRj2JsHBT/SbSwEi2MgrZJoSVn5UCtDYzyCZNwTAeBxqC2dTJ9lkF1m2dotoOHLXoLw1He25N8FBLb9sj+wwEV1eU+iP/DEaltd4rK9EGXMRksVgM2X3Dk5lDMpM/hhup37Jdr9YpOxkn773JwHEYDK6Uy4QrtxVYJiotpmCLsrJLpW0UPJaL1bpsZTh8YsJumTaYJK37nqKU52K7/25hsa357OGDBmYMvN4B2aJFpA8grvs1xDHttgy4h7pv/Rjwy7Oix3RK3LadfVbzasWt/9jOjst1C2O4/m4f+oJnrxWAPT657zI2cSLIKphy5fa03EMnMnAVO/Gugu5+m9l9VwQOV7blTbgRrmoatV8s3wBTeShzeBDshqeAIwzs0xUoArBt4Hvgxu4hD/bzH30kPT3PckHiS0AyGOKeJ+FKGtrAVSPM/DZ7EdjgaL4t8YbdYcr86sh+m3RC5RATmkyERJ9qNmnfUir20/eVJvbTdsDyoX5uOZ37dvGjFum28O6CqSaWAVmcqHHcoHEEY7/6SQndJjSsb75jXTAG++3Gp2y7IFyZ8pN0wkHgnTxG2L+WDEOQ/g73qt/4h/XAfvcguxCIuWxllOwFKqENLIhqR4u1rLzVegO0KXdTRmkexGXjgKcBQB2U1YMjdtatcEqN9CyJgDvAG5exWh14a2dpa6tCxfzcABDa6ZOj4Dr9XLZV3tEwsZ13q3nLce83USx1o/qkfGvNPhbsskN4dM0GB0QA7sBNuLpzKBO3rYE7mee1FIn1ecVqvJo+2I/s34jLPqfEfq9cP3fAoJ9NvuDW7hPVLZKs3Ij9pG1jMj4IlHeLpH4duXf0K/vbruZIXjPeXb5mhRZoAzBxSx0E1QR3U83rCttWM2AQ6AWgFwJ9F72mbVgpn/ZdbBvarjFbjFwqskwsgHWQoxy/AvTC2G4A01aA2G2DNkz80+Movua3V3J7DxGGGy7MwLbdlbSt8sO0gW/Nf2f2ky5N4ya2qWIb6EpmGfAYbkT+Xm0r7aEM2r4RNl3BH9hvxJX1GwFcHV/5st90jLzZ/isqd1/hzcPHHf5xN+utphNtX5x1e/jdk1cuxGzZpzcdHDkFR6/ZCuS2MAmmTb2Tts1l61rzrGz2t+mQ2RkwxZsMiNKwyVMQhivJhgtem6+DN+DKdL4cHotpD6DjwMMMyrBtrTPL0tla4cnkLdlaLIzWkY8DIskrYhKb3e/efnH6dBTUf9oF/44U2gDIYYrlar6t3BF7+8l/7CDTrobGPNkKxUYXnitXhipjudrMksvd+LrWv4n9Ol82pY6+tO+hfmYNfOtU2XTOfneuPY9ZO2D+Wg6jr4v97LsIHSTTY9y2Zj/adNKIGeGDw9FeoYGx9pOBkFxkmHaAzZ/627aXIG+v1iuzBejLpDiS9rJebx2tiqsb7I+zHesDbq/m0V47ILy1wSYTl0GQ/aCq1XUH+GaYZm+iaWeu5rUxyorZz4zba7slB2mAAN4Y+0a6LQvV7xQSh2Ol7bNJXGHGkbtHuq2JvjNuP5ttVxbTjjpAROuNt1F6+aZTeO+ts/8iptKJLNdoL5i0vNJxFFxU2graGjeuUxttkD3XV3AJHi6Dge1nxu17vVX7+DLA5636kdSuyo2qYt+hLu5GXt8sxDKNQuxbnAj6/TijR1c16jfc2mQmu1VN6QNo83vT3n7DvIhLuxOW/ywOCoM0YLvHLf61yd3LO4D7C3n7rmCyzxn5r/HX8tu84717bsqnH0wmO4NvAO/11N4bWr0/8gX2kF07ZDHB2K7e3/ZSt4Qveu2fIPxSZPi3rttPMTLg3nOz9hNs9+ZTxGi8nVT5YeHKc+kThg/cylhXMZhMJ5Sd9252ZEYAg1o6uUiAzpgA0BG/dmpYZ0vKbFbduiMz5dqJrU22DnCkRTWtG6Tx9taXxyjL/YqJYRqtuLKy720mvLRU0OlO26GVDr1+lZHrdhuDiXy80SRlah1+hynrPMt1IuB+Ny2EbWGo/ZUHLYd7YGzw9ivZ5FzpjJfg6DrQ1R5yTzDqVxoNJgC6BVL581RYYFxvCqbGjXCBfmXlHjHubSXO2kK2RikHlZOd3QdqAySw6ZjKWEDk2olT7OuDDjT2Zj8JdllBFG5b45Wp9yvuuel8W2wgOoQr1cnennaCRLhSPwp7wxipr7eoJc88TCRfaz+djLH2CxgBj8naT7iirTQNm8Uk6nPfFi6EK1K8AdOe+Lo0N5IXEdqk0Wa2YLbtfy00+0m8t59wY9JJe4mK5W4wantx4RHNKKsdVFnSQaQ/SENW6KTZ86cywE2Q2G9NKSrHOxqHgh+M7XUvncZ7K3dZndOY67S3lbpaDiZPK7cBp7c/ehtan6/gS6dox/bKoPte20PWbz6hDjzEHzmWU+O289budZicTOBqlzan1Av63jBxdTt9NFZ3bGVptmjcmHfOOszU22hkv1pfCQC9CldVZq/+JHzBNprRBgaTVPeZ/TquakbGfjoZCeuDEuFmF30+jW1Q+gvw6XZ2fQk9VZRr2e+yuk11V0D1ZTlEAoB8nFsPjInHX0Z/ZakJpvlxdmYfF4zSntzrgEjbY24cdFvSUTMfYLLByghXFpONW65QMZlVyOJPjL3WfbcnN+Mq2E+46TBZrthyU+1l3zmTgaOsLNa0pd5vdTJZAImJJlzF9i5iMiuN+swEOoyys0BOk5atqJ82MIJP/7jhw1bM+H6vjV9t3VE7eFtt5MoeifabqjO6Drg4XfJXOjy7iZtOItuGQqeECES18yUrVADqUVf13950AwAT5FQsCpj0SG3bgeaABWiYTIdWn7F1Gx7tu1k1k4dZ40ZrMgkmNIy+XxPwwK/8uM40HFcl65aZbveUDfvMrXNtuTIdhhFXjp8Mk3Tuq12Z4bd4VSxlAnkzXASedMuZtR88Jr1t8Ni/ZnDI0nmRh555mDEA1K1mxX5bW1mxHU7RKzhRfV1n7aj5qsUEi635E8ugX+4Zn3J8KSbTy9q29rTZ2+ER3l7Wj6QekfdtVBuq3fbKx946CTUjxSUDEvFz8XUiVx8dN7EddvUaPaZov4pR7WXs59um3Qzyqfl6bTeK+faEK5M+cmV5MnWODb6SE6t7FH641Xliv4Jofuo2LrV7Zr/4N/h8tB+biYGTgbgMiMST5V2kfd+BlzI420BlrLkJ/7WcG/TUy7J9E9rmuPprOyJCv9kFTDuDfr23Tsdr4bws0lF7/uyo7+WwDoZwIx208C4H1vhtfDLPCMcROU4Z/aw1Xnfcvpdvq9F91/c7SueMwBth2wh33kE3apgYjRuCX7mtPDHkNU2DqZu8IMeVbPncfq7fe7sD2PfWbG0lU32XzPofFxyNE1aOyhhO7GowmSobV1jch7wZoF/fcXst9VrsRxuBNy42shMU4keCWeZb64SG8raTaxptXYlc1Sd7498UoDvrkDTDGjeFG/mr5ovWeddOPMynHkpd3e7lkAjaGXS/g/aSL9+KsTbacP/1HfSLGxjUPjatvhDKK/4qkGybUTGVjnoxom7P49ou36EDjdLZ33UgUopG2LYN/DPAN4YjfoTJTniaOuS24Il/MHRyaZMDVKS+76XuEhef1nm4CmPbgP2V9UvudGA/NjxZ27mJVMuNjct26jva1txqZwZKvd6A243AP+/YN/L2U24m9rOYNF7arq1iEl50Qq4OqDfm8tvZAZ86xJ37P2r4mIHZvoN/+Svw7QbabmU7ziadQrF8bblth8Jt14t7BEyHwlzS66aDgX0vA556befyMMRG4Jdytux2uxXdt7APWkPSMeToFWyucZvZsf/2O7Tz+P1VO0YMlA6atBa3G+h2qzzVine7Nb3SSZQnm33nJeKynVT5GwdBdQWI7/e6urArJn3H5uWl4JIH+1affK4ho2YHe33E1aCh0xWpfS+NoXClT3gU+91uwG0rXElDfwsrd/owxYH9IkTjR/L7fi88MYNfX8sAjAHeSqNN1acLVwxi4+Pi72o/auV22Go5OWCRCw4TF5/a92K3fS/vc6JiQulMFd++gW6ADqyls2+DYkq4YcN9PPDGYnI+tYP3vU7MVNHbrTwct63YbtuAl1vLy/qQGxCNcBkSnT/ZdoBdO8DM2F9ftfj8cgOB1H64STmrbtv5k86748Xikd6u4TIOzJSvaq/K1Q4UXyfU9nIzmG46WABx6Yi7VcdJG6DXTHvruNo9LmkH9r3ME7ze+/yOws64/ZXv5dh3BnDbsN8I28sGphuwA/tWur16vHptytzx3hZyVn+7ekLaWaI7lS1Edwb9+hW3X5beWdlOWezMG2F/Iex32R9XB5Cbz55sfa31xz69LAZ95yp2KIGy7aq+X4bXO25/+XtppjYC3TbwrUzo7BthuxF4k1XbSkbc4mR+al8344oNcD0BsPn1TVbvfr3j5S/9Gttradv5p5eC6baV7Z4vhL1+X4DrgE2HKEq/j7umzrphKIN2aNV+jNvrDvr5Fdsv77j9G78uqwrfXsA/3Qo2AviFCyagDAw3QN7Jbo8A42NAbzyN73X8mNiPzeCp6pKBruiQJl+LZesk+8I3P2n5ixAzsKFtLQOjHbBxZ2zfd9D319Je7Dtuv/wZ9Isb7r/3F7j9/l+AX24AyWmV1PPvcMEHi4UlaRhY6sCjDTDotUzG4L6Decf261fcftpw/2kDfvsb+Be/aGOMzauLXLk6pKlIdVs7yKNMB7P3OulRVxe3n3edbKL7XjYffLvh9bdfsL1szX7A3H4OLHSwqjxZIfHh6nBlQNYGZduv73Wuotl42xl3JtDtBpIj/6XKD/2VvR/JLeVGO4pNXmy6l4G+YMLrjtu9+ClTbSc+c/jk8FbDUwZmRPQfA/AnUeYZ/klm/senAozy7k+Rrg/ezW1RqRkngtSeOHrZXNe4+W1WX2SFQ1epXu/Avb5ogBvw+gq8vOhMCO3cBjoFbo4p/OwqrR2gwXbESpRloAiUAdl9B+/3MsCQWUV594K3fttXFyxX9rJcZ6df70VMr3dIx5Lvd+iL29tWvkXntgqGp+7Ufhkmi8Pc31unn5mLjQxXvMs2rnpwzGa2eJktZ53eeDG1X/hrMSmuOii7vxbemMuspYCWbXB2+1MHwz5Rkl5L5tuCw+ahA9gyqObXe/Vh1A688R/a2+B+xJFVRzFh/Tsa+CvGe6t/+17sd7+3g2LEpwh1cGH1csPE8AOiiEmx9w/MFKPZYrl/fy24pHddJz5Kh4FA+9a2k2l+1rcMkAyT2DJ0xPzq3e7bJuFKVuskG/GPfa+DNNHTOffEfiZBxo0tmpmcAe/g79+vP6Dv98JlnXwi2uqqpbxbVovB7Vh46UgUxo39yVArZe3KaLYmo3aigbIV7td30H2vhxQRcNtK551rh+kGdb+inDV/q5flSuwgGUxti3RoAuqzqaw67Nh+dQe97mZbap0wVP+iZi8ZnFUwHOwvbpxh9twE0NLB5aKDfvUztl/+XLb/3WQV4Sc9jr7sA4P+sx8ybvart8l2VkOH1zQDWj4ptzkUAwzg+w76N38F/Pq1TOIQQN9uygnvKL0RNZI/Dr/r04ZmxTYlslKrcVNWyDtUlWzZ9iUCjFbeOO+mdVaet/B+Ilbxh38IN23wo6swskXv+w78m3+57nj4Btxf4LaAM/QAGe3odwUf2IRhuGDoYKPWD7fF8nXXQ3aw76Bfv2L7/h07vZS6RQV78+GmSDjVZpN6bvR5KnVaMGp/z2OCcCW4GKDvr6DXHfytTljqKdBVif3+nqFoxI36mWlTJW4HZeI3ZeVzL4ci2T4n17ONZTWUysCzvZ0SPkmhetC1N2Kjxg2a33BrE9WPJK86SNM2yvTDvsLbhocHZkR0A/DfA/AfBfAXAPxZIvpfMvO/NJJhZvD3V8ieFdn6w8Rtyx6odkgI/q1dyaT+x9YS24l2s9JmQCYz5HXQwa+v5TcA3OpAqBSszMTVThHFh2FjAK4103eRtLANb60M7cFaV39e66qLrCi8vtYZptqgbdJB3ECyHyOuupjOW9c7iVzpiXDmnixja4fwDtzv2GXAqANHBm9bwcRcV6YAfRpyxULmr91GGDE5fOx5k1l7FJ/BvXRU+V45kmuM0qmT1buNALy0AZGsJMiMj6PnwH6Kpf4zHWeNv74Cr3fs319rg7arvZhRVspAKO8G1ZVeXUShNrjVh3TEaHwm4pH0MiBjLgOhe7EhVb40/zrTDdzqliz/ravmJ7UDuMWV6aSDqL7EA65QJxvuwPfvZVD2+qrl5W0Dvbw0yu/lwaN1v5x60OxnB24MPyCxPj3CJL5V41wHZfz9O6S3T9tmvGLTmXA3eeTebxTFpmOmA37LVf29NwzMZkAmbdP9XnDd78VGW/Ef+vatZCMDtX0HkVl5jYOsLsQ6aPny/9RmZtDIP/9cMB3qSTQzg359B9G9rProgIGAm9S7dppeG4Cyrlhq58T1Jk1Q+0uc9Zq+zP7zjtvPe+kQfS9b6nnbSudMGnhCbb+22gmSremeMgDm/bPY8+4xMZtOrPy+l3/br3Zs9710HAm1/dhqHdwqPVyfQe30QJ0PWzF/xGX/2ndMKle3X37H7VevwM+vpcO43epBKKXd34iwb01x2YZVeJImXwdJaB1uh4E8FuGo/DVb+Lh2qn/9CvrLvwb9+mfQL1+Bn16K3MtLadtoK6sL1X665ax2/OsYqtgApJ1d+xhwLR7D2bDr1O6m3tsRlAzOKOZogplXsx3pTK9ys7ftjXYrHO534Nffgb/0V0C//DX211cAO7aXDftf9QvQt5uuDHN9Jy+ao3ETbDT413C031xXpW6yLfd1B/3qZ+D7vTwrqfgD/foO+u3KAaFsf3XblBMbuOCfP/JZD6Wf0Y58l3emvrPWMbzege/1GcllN9L2KwL9Hq5b51EGRreJ/QwXDLTng9qM1SWAUhd0oLjvZYAmp4y+1u9qyvvPtzIhQzuA71z6EVv1V3mnMkOWtDfCjWI0mCD1axc/Kri2171uq2bgtU1ifoW3D89YMfsPAPi/MfP/HQCI6H8M4O8GMByYlQ71vTiJO8q8dtLY1EqZYnPHUUs+C+jESV2HGtrh0U4Hy/scBGz3NhjbtjbAqBhdZ1CfilWf3Qttn+LSgLkBI3wn//6qqx1gLp1FvgEvAN0JuMvqxtZaHn0Y2A5XiGdcsfnh7tXOL1gfjDoI4vpuIO3ltCCCvgOnU8x7XYXhlp3qW7KfwWMbt11m7OuNe1uF0Zdpqz5+La0MybsiZO0XeVmwX5e+3pJGTPxn942XbtdjBtPWPvQtHTkdjA3slT0L7OSDBOtDMsgW3651zXbcpZPJZN5907y4dILtQNHaMPpaIa3nSgcf5p/BxK933RILoKw4ojgVl31HrR3QlcYEk+hawSRp7b97404GsPLeDFEdPMpTzLYDVq8ddM38XWQamUWqPjhdm2Bt+vpatzMXn7IneiLazw0Qan5xBTZbWZP7tl3Qd14B2nfXDriDZVYDlwc/A6D9rhWWth281wk6qu9u1dPDuCRReftogDFNznVL695FIcZOtUP9XVanynWGtF0b6Eb64VlI82MXmIVrmawz3KcMs7le8Uj5brv01lAmVKgNVvleT5ij2nGq9YErLtnhz0KQq6+ev9kYwXUwgVI3qK5cfn8FXhnbC8rK3PfmdxsYfKtbnTb4CQsGiLiem2MGQQZDN1izsOukRvN3aXPr37/8V4DXb+X+yw38rXywq+AXPGiTOcF3bDMxqhYZRzooqRhlLAGUutw2ktXBhlm9czaw/mwefc4ONh58SI5eL32a+koGuPjQX/5lmez+xQvoV9+B3/5FEduaD2nzRR6SK7JrF2yoExaCiZuAHqbCtY9X6z5+9R0EBr0Qtp/voDuXVVigfhvQtPGRqxjY//SDN9suA3pKsPRrXovusn2YQfwKIsL20wZ6vQMvsg0W3cr0CNOozkdbSl3WPgS337ad4u9liyXdCPRKIK5b/oG0O5zpzp6K3bORQwLTFJXnz+7eifvM4TflHbNnnLHyNwD4f5r4X6jXXCCiP05Ef46I/tx3/FouutaQzOqZuVh/JIzb1rBXWG7WloeoLgcDkENF9JsnbDu2Bkf9130M2MZDGTwuanHb+rsymyV0eahvFZOE+sB3OOTBp7X+oJpartz6ewjSuaDAnQ7Yml6W1R6nh0JFn+DK7Bft32EC5LAGmcGW7ZVceyv6Ho7kFzuuUd+h/UyamF7ejUxmk2yu5OTI2M+WeyCchcwHtbPR7Md2q6PFkpVFro3sFzHnwEznx/iQxOtEB3mJhokB2qKvm9+d/RYxuYG5cTx3yA87kbgCPW0HYnzFfmZQJ+2TX2Vu9uP6X01X8/AnnnHAQD2mjCuy9wGd5ZV6b/IimahanD217f7Pr3+lqat2YKCsntUVNLa+UwPr9/UiYIN5jKAO8MUv5bmANkPdUrZnROXKqTRVLGJ0PjaG0n4q12j4NgLue3tfSdOabUnyjrHkJS4qHbquYtmMkHPV2R9qfzlykTSO+i7vpoXgesAG2QxH3AwGYcNgq6tt224AfvmzDtL4vgMvL7V+oKwsuk8LNL3OfrFTeoTFiFpuKSQkm9A5zUSPmFVgs0+v1bfWUZKDkcxzWtvYn7+3ARIz8IsX7zfnqlCfwF6jOoBxfmK8oWLiva5S10Ekf9vUb9I6dQRMyGDhpraZzt9LvLUxVAZABmNJtpVbIPPuPsZ1KuPIJojPWNt1kjZW2m95H932y+rAXw95eWl5slc44cf+tJgCLrUj181Y5p6dFEkGep8uyLc8rvz7ROEZA7OlwMy/w8x/lJn/6Df8QvdtayCg/3idbcwT4nSGJOkk6DRP8yaWRkplZQagOnwc/CDoXbVdnGFi4/12Zlww7XUtX6DtgYnuIRfyP+owOkzcMKQ4TRrtFJb/hZFGsF8FNeJrxX7KDYVOsuXOimaD9UhOdv8gZLxwxGjuyeAn66zG1RzbQVnFnOVp/+m1cD++f6a6qLef3LMPmMjVCOKIGwR7Cabgz97XE0zDuOR/xF3094aT46oeknZAe0R51ukA9yg4rti3TZJvN6g+6iFkGGydToH0/t5QtZU8WVXc9+5dplmw7f5PL79dYVLzNe1byTtlrVwMaIdPLrgx+qS0Wf0lQGd+6ZU7m0k7pwu01KhhMh8kjgotxiM+tGDQRxPJhJL9ZhBBu/dqHhKUNUhHjX08QzPjyj4qAVMjZUV5b0p429T+zNCDJJqtgGm7H6pvh8n6osElKwV6hP+vfgZkC3C9ycymGLYTG63G4S/yquOAwVch86ga1TrrR6ptpeqEJjQ+t3k3pRN/BurvO/Dzz42P21Z3QNhsQyWaYWL/j9hfLzaJmA1Z8u9+rxufygQqv2xOhXsKrGASPbE/B/8uoviN9vWkT2P6QPJo2G9bmSR3daxXm0Hxbai0mx6T1m2pZ+aZZA980WcSSpuzb1RW7B2mE+2NBag2kQNCJBGXVz4EoPYhBFQ08ld4y/CMrYz/CoA/bOJ/qF4bhzrzqoMz07GxJ9npzMK2jSsrAelo18xGa7WXGUDpaNVZFDlgg15uehoYA9o5s6fkdDpKigZuNJOsDy2DSzsosjWxxm+3WvSCqeznr/vB5f07y81hSxaAaNIq5zrtMPxUjnbSkw2JyxYWqpiabP2PbIWzrVDsTMfpOntsvOS3Uf1+ksVV+dluAJXtPkzVNhuBbi/t3Rv1I8vTKJzgTzBqZ138iNvBFLYc9ZRI5YK5vUOpvi36DVczSN2AKcibmVOS/DdziAzBzJ4GjhlmFj7cc8Bsp4aMnVud03T1wVLsVeu+zGBW+XK9rshweTQSbUFnJCTGD+xI5kdtX0gOVtg20LeX0g5s5VhpEluO2gHrV5GrI5cynDG8zXC/F85uG2jfChe3W1tVQm0HyLBtZ8PTQse2KrRTXbtkxExbCZSTRcsW2Un5BlD4VuxYvhtEbdts7bTpBB2jrXgwWvsov9FWkaaTnRwnuSqOjcDfNuzf7yA5eVeCvLLn2rLacTG7tFtdNnE3q91UahEQ8NZOEVdM+8sGemknp8r7WryVOsLS2dtIVbr38YzOLJI9naTp1kcBFd/f5VTIlw382z9h/3kHXra6gsll1craCGg2Ym54qcU1ranOnX1sGnDre1P5d6Ny+i7/4gX7L76BfvGt+NX9XgRp831XbZfIv+/FKN/6IvTbZgMkSaOLHwbnTuqSqtOVqbapAsPKq14jLhCl+dE8pc0i4bI9e6l+UgHbBnx7AX7xreTxe34qz5/vr0B9drvnfy1QPLuIbSQUxW4Xc9ipkaTb9ahev23gFwK9bMBPL6DbVrYx7ndge9GJD/Vt6ZoMuHH2oZaWdI67caML5hvqMxHthGJmgG9l9U5OAr7vwDcxmOdl2t4IfouTehmqbWr57ATre9M7oW5LJuBenjf6pSbXd6jcs3A9b29g4loX1WbGL6t+tWN9BjHXdhDmk06fMTDyBu4HDM8YmP1ZAP9OIvq3owzI/l4A/5mZABGBfvFTcaqXb/WF3XIkKOQwCdtRcZ0El1G7nhlEOqW8t8HettX3pFDuvZSTGMl+u+zlBVSPzS8YpVNE/p9iirWuhvhg0L3KN32PRI9T1+d/fdft+yvw7Zse+063W8EkW1nqEfrdoEVxDLiKNXiXzny9t6MMulBfEgZKx4UZvN/A/K1+3mBTrvT3bet5sgOiEVfWfqVH1A7sYC6zbS5fgOinknxn7DuXb/uIDb+9lEGaG8hR42NmP8cVt6dj7LjKCUUvANhsfZUgK0PCifi2+iHl9rMYjwaLylsd2Eun/qW8yKwHWMiBEbVh108JyKSEParf4iB9UjR9vXJ/TbgBtF7jXlxeB2Xfv5tDdgA9vEJ9ffM2k/tCSbRfDrDFxXZ2ZU/rvzkSf6tb92reJL5d2wXHldjW+dSIK8OT9uzQtnUKT9I2VYx0u2HfbuV7MjKYf7k5HFoXbVlnbYKL1MezcCHp9zIlL36ip2cSgfilDKpfGPiOU4GJwL/1rXUwbhv4RuUY75etfX5QOpkSZNDpuIb/F4MUzwwcyorkppPn23cGfqsOeKoefqmY7HY90VFpJqodLTcYJo/D4HKd3DCA4Vpvy6eeCLjvuP3im/LONyrvu0i7fyv/tCO7EepJ9dCONvUY6ARXcvgKfdvAv/UCvpf3XfAT6TZG/umlDdJuVLZaCR9b40YHEYYr934Mhb8RkyRmeXVtw/57vgH47XI4wfatPIO+3cB/1S+Ab6Xt4w3ArQxwLf+ENsCzJ+7pt9kihpH9NrGf8QegHWRBoifxVVNW9zp9V3aTvq5mSMe9HLxV2/2dsb8ytm83gH5R/KU0IqDf+ob9t37C/vt+qx6Xn/mux3XYt5W0tb+gA6la9oKxTijJoOSl+sO3+kmDbzfcf8838E83wwt5G8ww6XMZ9S2Q+lbfhnZKcx317gxsdSAGoE7afitbYF9L/eJvN+Dbhv3bDfsvbjohI+3CsA8abeb6NKY+1lVnZz892I7ArzvoW82D69ZcQsF2I+w/beVbj1qHGldxEJ35K9l2fiNd5eQ7F8h2guWG0sYDZSvsVocJ++4G5Z8yfHZ8i+HhgRkzvxLRfxnAP4cyh/anmPn/MhUiagOfbfODItcpJCeT1wi5b0Gh74SZzjaRfAtmB9V96QBMp9l0tLcMR6JTFQ/u20ors0lAXU2oBw7cZCAJ0E8vbcZeO26Go9iZ7rgYccWGC5iGhjxXwpEc17/v9Vsau9fvBkyDweshpshVbclc42bKar/fdqPyEUnXWY6DwyA/DMF+Nn23qkits7yjfGPKphOd0nHWfwP7aRmNfSYmdMSpW8n7SfXBfAO2lxeDHeXhJBMhcTAhkyD6EKIJBsuVzr8FzgAdMNrVpZeXdnpVqHtu0K++CPMvYIyYtJ0YTJ/pwIh0YCQ+tSmfNfNbbQccporH+dQBV5YnNzFS89CBIlzbpJikXPKwtHXPctW97zngSfJ09guCpu7pexByQubLSxksng3/f/b+KGS/5msPg66179/7/r8vSWOTJjW2ibRQA7ERT2JOPTCmgpbYakARRCsEoeKJtlpjoScFi6LUemA/BD1RVMSYQgu1H4KiWMpHrZi2JxaLWBHJgSht8v3/77OXBzNr5lpr1sze+77v57mf3/t/5uX9PffsPWvWta61ZvbM3rNnS3kiBKAMoLYy6LCBjz016gNaagug98zq8RGBwj/TVPil6aXOslJDygBW7T23qrNNyuzdqY6r9YuwgThhqpsWtM+JJMlNnhgTtOovT/n1W9Vrg7g6Ud3tG2bmnxZz1S6+m964ot8DmnHS0p9USGtB+q1MxGSXPmmtk0W9ofjQeKq+U/RjDQNsIkNcBX+t/Uc2bTfob/4GVN4KFvu2msXP1v1n7dXxQLy0bf/76Hp0HmY8Alo+D9bukUXe1b7Nl9ZIFaq337qGxkWtozUL01O78Wbvtxvwe3+z1Pcb37D/vh9rOzNMdaWJ1Cefq+syP+kkhjpGWrVSH9HY8laREtdlPZ5AfvxWvg344w37b35r75jBbjKEWIlcudjgeK3s2L8dpLTxnvUbdsOlvZ7xQ7Xh24b9h61MytrTahTOGlcHmOLYavB63VSqOlXtUz51wmafCylFt0LbbcPbj7eC2d1kOBmvGSZFmzRL5b5jqiI7Wr/T1PANwE+aPv3E8WR6ynfMVPWfAfDPnBYQgfz4Yx8c2FOFUhv6c3/qRdHvFkDsmw42qKH3ZexurK2L37Z6q83u4t96eXtaVQf6EgfLN95KqQ+M/EShd3b8ToChJqOpl6XB6o42wBJbG1Ttalv1t4Gt9MEYcTlMXKCtcwTguGp1xclZ42pvPX/bQGMvgzGI9B3+2vfVFphcvqtz/otc8UTMft8EbTOU2w0S7eXJoi3t5AlQm4CSTNOtg/+cE4fJhk28tt7pb4Bs3zrm9qRW61OyoDeblFnddteajg/ctL/kO5toiA2pbIJKkw+hXRi3ejW3ZsYf4abJSefG09I2nfAIPUY7V3e9kxpHbQOJGCfsP/NXa3NoeJXwuX5gqzuptuvVxo70+G7lnNS+Rm437LdbCX2LnX33fZNxlba/o9iuIze++PJkdd/rXdqwvPt2q9vlbz6+Yn+0ka1JezMcWvW2fgBAX0qMHoNv1EfYUm9RQOoy62RTmcMkwP5jvS2sCv1WBtiAlgcC0gcCagOPxqt2nsMkuNtY+81qqGzSX9OrDxeK+8vGA2+/aVvQo8Wo3uoNstovtEkZyG3NhYSxN4xOqeOd/V++TYTaBHWvh7cb9l+g74pWfaSCNiFqXLFeW0bduKhUED434K19HS/yFNDr1hva6o7y8ehvZfPSN1Ruan3E1W4D7DYx6QNGHiAWC6jvc1w1prr/DOKGMjHUsoJFfuOGfdsgP5QVAjao1Q19sm+Ty/B0KPMfx1FrJy6vvb+1Abmg8KhaKo3dTauXJh7RB9ZfofSp7X0t7uZtAN1iqBhhG0ZYN1e+MVeuQ/KLH6D7jrff860+RUT9QHrBqdpf72hPtdwkWJsPeNfMFl/hUrRbv9nwa3kibjsN/uIbRMtKof3H8lRKb8BuS+ZCvI4+oNio1XOTU+fRPlm0HVfLDYHyBHX/Zv2LArgBP+zlqdQv6rJdaJk0tWugOLsZk7/e1PImWnl19wulHJNbnaShblYGhWh9IiVb3dVSsf9iK0/NNOkTJ/7z8co+refavvn94F7jqA+/yiqkfbdPRUl7iPCp0yeHdzY9ZWJ2OdXlZiUKtj5wBfrTEAs0GzyiRQwAtAubRWmPQe7RTK5fuNq3tm59oCNuOV/9zYNnvisNOBzNnioax6it32/bkAPArS8htCt62/a6tmh7oVcCN5blgfWAScgeHsjYmv96J8cWzrdtseuW9yJl6QEPHO38t1vXFf0nMj5hHAaxxg3xGf1Xv2/X/GcTQyu8Uw9iyw05hth/pXfuPWXGVfCfuxnVRmMWI3Ybfc/91yZZu6u7cWFP2QTAZntvK4aYCoPrtsROFX25h/mA6tn5uwEK3GxtDfw21jzIdxPHEOt1IJbHtr3nQxcn02vvtKlxQ8L1e3itrDk/9gPNRQGTxViIbcu3Wqxux5X93lsdhmlzNyy0LtNlTHTDSDDGdosjH9s7AFlxJVufzAtxpQroBjctdn0iQt/E/tN+vor29xzE9031fHnRe+v9gNYGsO/A9oPzn9iHqS4k3QT7b5QbZW0yhDrwseVXgvouCA1maSljGyCRLX75U/eXKsqW82y/CHa5AbJD3m54+81aly0zN70QGuAXTEo4ACnrQ6gb4fdIygYyTTVchm7rFowC/XErW/jrBvxCvF9u4rm5bfTeTLe/P9ljzs9hUmh58tN0Arpt2G+C7Zc7dL9hp2WFprdMOsRjRODKJmwNB5z/2nsuRiSFv+NKChf7ditLv/SG/ffevA+2vvR2/zbhpvmX5AiT4ybhavAfyB7OW/dj9rXMRE+trJWtEygB+oYfds/vrZfT+pLb1p5uKPRNgNu3svztm006yN98qUoG8IazYFT/JIKXvN60PA2r3QZQn/6olGVy29Yahr4Vo/SHujzvJtAfekyh2pdhUiZZUScp/TJGs+2+wbVWroS6wV2hb1vvMurnJ9pyXFs2eGNd5JPkppd/v1Bbt44bIDtxBbuRK2XC+gOKfxTQXym2b/ZOqX1eAtAf6hPqHyrGiGnClUIo5mzcgzbJb0sZ97AEVEq/pnqDvmm5LFnd1kd+pXdPr5mYAWiDQx6Q0qC+tDUKLh4gAXQFoQ6EBmHlGqJtLON6b0i5y2jpRnVHTG1wzx0p9eIMK/ZtdBenNWCg9+bcsuLd/XaBJRxx8mEdwJZhiiOvjjG0VT/IgdIg0XRaj0e9ecZVXO6D8BSKb9PM/NeooSsbD8rN3nYBTOyc+i/EgLPdylS7eUBf/0h8GuS42GgQqDTJJm5Yht6d7Hs2EaZ4x1n6D5V6p65ibQscGlc8YaDdCuwuYKPBeDKOQqy7eGsK0JVV7I4vw+TzfRKt8JN9JR7HfqDzMQ5kjmLbF4g3OqQ9vSgxtbVyvb/hOGK+gDZBB/mH7aXYbstEqiHBs6WNtLuYwSiXD+3Nzgsv87PKY5sIXHHfNOiKO67WWM38dzHtG9p7PxY27X0Jy9vgWhhltHFcWjRGZ7fE7kGVQXh/CtVkrc0J+nI8w2S+B+mlSVmzgTC5cTxjFED6S2FtGZHp30Xa/ZpmO8W/0oS1Tyb4iUznyn0nMGDq10XDEN63qmVUyrtvW91OvGDwPugTHuam+8/u9Gf+Y2pTrlSGc1onCvvWudqBvnEB6itZAzfwONB5be0oXE4U4K44959rzZHXYA/bF+ytnYX3j/aC+XK9Ulg28tsupduv7Wi/wX0kWaN9BKJhovqVMtx7ofmHBhOtDdD4ofax5T3jDVqf3um3JuR4TDEOZFW9Slk2oP0t71C51VYb2iTY3rfSrWxI9PbNCKH4TDAxXw4Vd81qy6aZmzjwqksKb+iTcC3jXrsZtN+A/daRxJjL/MeXoIErwm1LUQ07L54oYb41OnUb7f90KTrkO00vmpgJPV2owWvLNuIAlgaLQGwcVCa7pW8XJR4UylYaOS+l4mU5tazKVpZPtI5dqJHRhc8unKmZAu442o42dMfC8AnQcdjA2p5w0ETJHsnbxcTyjhu+8PFEonGDzv1waSCfGDfuqk5XdLro47a1Ds75hC6A7orXD3r/WR+ydz3ljk4YFLL/2D7zX534OP81GAv/Ddsn2QILGZfO8lbrbXc5wshPX+txBfoL6eIucwNXzbftqRJCIv7bEek3HZr/eBTm/adtaZx10vVc82Pir8azcdZPlTt10i981d7mI/Yf0JfEWjWMLfqvxXfghlO8MNtP7YO2UsVG7a3+w0uSzIYaY+Va3f3Xlsw1n3HjW3DFmGu7UnS9ouKfbFpMcT0Ct3ssNnHc9e3+T/ZNrj9A91/to1L/Rd7PJClPMcTEpWKvNLf3ywC0d8EE/amo9NbouiSuP5joVt4IGrf6bcNelw61pzl70be3CZk0rku+6rtVHC1WrR9V2J1qBXp8eHc39/ZQ7YNE/QVhtvePUTFtfeJQMGnjytqE56rz1bihLtctRrV+F9x11yVg3+qS0Lonkwjqx4DRfWRzlQ0Jpo5HmKvG34IbbuIWOOS/HRUTgB1lEF6WVVbsW9/BsPuzx9fgv2rPwM3Mf0k3yHlgIYu+V4grCPQnUNzHWD+ptnEEtSMItrcq/k1q3yZ4+wFlySkAbDU+QctWZxjZGO2trn0qgcWF/aV1RadAblrev7Y+tQah3tCeAFl8NL3iuXE+oPh0EzLONxydGxEpmx8CkG8oT/J2w4S2gcn+o8DeKSs2+bY0+M/atXW11l1HrhTuvjtfQ7AL9FbGD9tP6O3FoH1DeRevctv8Z4YG/3Wf0fnWgOq7csH3DXeNqa0uKsMGyBvqTRB/6fqMSRTuRsj3nF4zMRNpW5PGO43tSYKNKcJd+2EwVvNlIGI9KH8UzwYY1qK0djxbr4vv0PMARPva+bYUCf1i1EBtQdYNvqjF0sBQd3WNR23ZUiZrMtvWy1aMItrusAj3asyVePtybqRxY3zaoL1B4ImHXSSobmVutOqPT11W/lPS41ZQKpWpmG+hp8j8B8UOG1TbS6/198R/YsfIB5lPtG5x2yLXJmmZfWbHEOu2vI25Gf03jW32CflPGDM9mfNc0VXOZOvAxb1wPzypZi5inrmKsb72n/lFnf/68TIZ7u9OdvdlsU2xEPXawE4V2G7dPey/KTc06RQhbkMMHnDlnkc1vcj9x8m4mnEDw9gA5H1T42bhP+12WV8lghHThaRSllW1GmiEtYd+ok2GgP6+h9Y2ZOcMNj3sBAB710epPsvrZoM0hewb3n6jlrHZEE267cPJNm8edme7sQK0u+88iSt2B6rpvGo1oL4ntv+kkF8YCQpR6dwYrraFf79pYXrg3o2Ba78C0ptxQxi1+kT2XlBr+1FF3aCk6y27S1ol3X8t1Q0yWpui0w5T5GbAKOVVaFHcdMMbLVEDKleNG+3vnlWdbaBt/o3+40MTblKM21i25XUhq10PO0gVZYW6Lftt5KAuhQO95SHADrxtdM1oG+ugbtCCMmFL9Gb2taSFc6G/rR/au6BIzW/lmgugLKdM+o3ybmLhrG10Y2154fteF1rh3k11Q7R+mkUqn9q46ef6U+FqsC3N3Wr7om+/Db5nUaOrYbS+iZauA9A31B2cpXGnqG1CSzt7u1GgmK66HHeP/gvcuJgTz5V9cgNqN8G0Y65tQwTl3daNbtbv1U9Wz2eelVnijvc7Ti+amKG/RAz0YLTOs5bhQZcLiWQA1IK85lujcC3ZzmmTKR04DWb44oHQUXPdUtcG8/WHcdXf7rLIHVSzVd15bXzAD6rEKeoXDpp4WJnIletrB258WQEftw6sYyx36iXYOnLTjpv/GFSqN3ARhcxfjoeO0Q12mZsmI24wMPNfi6PoP47ReiLapG1gFrAEuVZfemzivyy2TYbK2nLLFts8eXRcjW3NcaX9OECdf9TZ9AY7HMY6MGptywl7Odf+fDHfHsVjWnHVMIV4Cu2x9wOxHcd+gNsf58/1Vd5/ZreSD9D8x39OcVPrm8Z2hmvoq2qGeGz9AMfGPYk2qShmV5DxCUD9v7f5GDcJBjk+17ozKYOwNvGwp44bFbYnp1wHY+Jei9qSKx9/ZrgE7emIAG0FhW0aYQsoBq5IPlboME3LekwzjO2pRrU72qfkn/aU0M7B8I59W+RthsvxrjYZtQ0dal31CaLXu3mbrW1Ym3PtKmA+4obKupUqwbZ2kyWz0fii9iSugh4LoWbXzku+6yk3aGynT7QbEqw32sP5PtkZk2ZlXb39nda2cqM1drQJsX3HcKexl+uiJ205zEnoFAlbvJBf+2oC7TcJULgSdK72OmGccTOAGEghbnjixnjUuKox2+ZhnQiexO/U5mfcZG03dWGLG/KNs9fzSENBhFuKnzN9B3PHM+l175i1SQeokwyRYB2X5enPOmkIdPTn4gK49RE8omwtCBgHP9RoGIf4sq6NxgG5G8hbyyMBxggqLwFfe69qgmnFldYvvkf7GsaEG8bYrjiJwclEQ925ZDJomED+gnZbgXJnesoN+8965AWmOGjJBnwdGNzJwYcYuZEMo/i/g167aPj81H8SuOKCGVf8e+Y/5pv9x3izybxVI9reB2lPgLg+u9LM/Ndi2/4m7U+8aDs+TX3pR8Ox93ODvekFN14Qs/YXcK0wRf9xTA39QIy/JI4sX7ENse3smftvOtti2fjix9UkdeBT5d1kwd5DoiVwrf+nZg2Woe7JtcUF/Q3+ZgMeOJusrt5vjZOatoyRz4W/2eDedAz4qLko7ZnDIq1e5kLCccI5TMSGGMU8hQFk+S6Y+uVvjXs5zc0prgZs6vqh9msT7LdBkvT02NfIwYRDM2vAGOB4jpVRBTHbMTbIcl0sECqZtMh+nrvZuvSxqbJJkH3OIG4KM6s3mxglRYR4EOpT+w24DlJD3OyC+tRM2iW7LycNeigjMjkXE3MDtGuiAvUGjLqbqo2rb2g3aJa+P0hCZfvvagDV0Z5cVozpk7Ct4ud3CFfJhm5H/rPMjfy31d1ilfLhGvk9PDT7OaTXPTHb6kuFbbBA70zYHdw2mLO7vb0sANcztW1LBbDbRArbh1j6Bdjah6JtIiGqTu/saQRAAU2yGGTt4lSXvBlG01sxtm21zfCt6/LcRIwmm2Nknhs3lpfCR39/Bu5C7LjZlTB2+wauiBvr/Do37L+As/ms5B1XO9pa7yZJf3pnvw3+K3l/IRr8V21njB2TEVHf/zFuUPPNPsORx41yfFrexRzptQBwmLusG71FbhpvhHHgIoujif9aXPj2NviPuAFzU7f79hj7oLuZy3obN82CwM0c83jOKi3g2tIOSN+4wNqQHnFD/msKt7H9pU+gGWHnBsxNBzftb9p7gKojRjcCIFkZuYl5hdJdao51oS2Yq4i9dxBj/UJS0JJF6hDaMkx7WqVoywidFmmnS9qSc9kNAOmH9rrhJCDYvin2t17W9RvC/i5m7/YjDLBsIDgM2ijf6uJ2Zed3bS/WC6TvKmfcqDjZfLLa321rl0fCF7kACLM1d+a1+l/s+7+K8l5OrIu5Yf9ZrAhGrpjXwFXqPz4PqQNGYLuh7xRZMXr/9bq6/wI/jdcEI4gb5s5hpMLtqW8AbT81ymb2kV4lrpTytmTU4qT1I55XRVmKphtd75Pk7EvygRoA/YZref/I+hHuUyvmHX2MY5XZUylBe5ep3RDmm9zalbdxiXGD8D4pyPdaFHVuahnDBNSdLLsNttmPPTmzvqVxQX5wsaud+obbMHI8IoxpFJA9jP92X7cqqv8sdvn6aQ2UlXZuUv9VTDBcFkebLW2s196dMYex1PVu/0PT1ztmDyUp3+dxFyhq0EC9AG0uEJW3iXYD4hJorX20cWrs7awq9Xrg9QAI72bIWFXtKXbZ/BiJOi0oaIO8ap/VoAGWe+5tGPtssk2WGmbPVRswOIzEDWMa9HJnqGi90qatk+llA1eCrldxzX9kg9QOonHDgy5V/86ZMrEKDXv/lovXwn/WS0Gxw/vP3bVTgIeGTq/pIYzKE6vGlYdhceMnjp5XHlCYrFCsFwjqRB3GrRs0+CRiJB/5UBgxKcZYtyQsHO86Nv+FNha5qfX6C7nH6HmldwhNduk/b58ySJ3FOplLV70Y275sHHxxmwrLduMYLnDl+yq70PMVd9YP5NwMfdUZrlTbx477yTuSoL+7QWbsKtysajshOXqqlZ53bgj8sGytq209HgY2O+Y43KC+9k+ubHjyxrL+mmEYqax9mmQH9CdA6Ko8ciOj7SEM3QCS9UQe7R06hzHYZ3sH1feVrLDzH8tWWl3MRq5SbkDcsP8kYC4xLkB59MJfURn812WnkzL0vGvOfF2LGMPkwW1WHM4L98+hz+xjgN4XuO6Xm5nWcTu9kGffneK8pZ1uRpenQTK8b8g2DHpi/6S9LGP0fWj1ActswV5Be/pTljOi+Ukg3mYCp4Df4TLB1n4nPLuqjRvCjBvakl3w+5OaVMWYMv0EvYnWTU+Eudo8V95/tfKt/n+D28Lf7UzdgCY4xOej/xxXCij1Nw0jlb+z5/+49OkBnksv3C4fvQOT+k+8Y8x9Q9sSnuSz312inxBwqxz1OG8KeK26ay2h9vY0boZDeuPtiMSXdaqpF5Bg4AoTXyiibL245piUEfW6Ah1ej4Y8lbnXf+hjJOvyhnfGHKYw8pAj/5Wybic1i7d4260jGg9Kgp+v2ilXxBFjqoNo9pe0y+EQ0E6vj6kVVwFT4yrEmPMfbSJRBxkNU6C515QsGQxq3YUjfbLEvyVgQtWCtimIVMunsdokZjEnKLcwOR/PJyCt34qxrfTEIgJx9iZ9U1QzxPoE05KrpL0t/DeAiXo0tjHcldyA2PjibtRw8Tm0N0H6u2DSB029rN8VkcPcdf/og7DYXBymgANWNt5f2uAx2d12wqhUP2K92immB9ROZoWJcVh/0J5OEzcwbhRtmRJjZA6s0jJh6f2m00u8MlZ7ssOYWv+b+K/rXfjPeDU+pQzsbxf8N3AXuo/OY8DBiZ+kBC78iVpfbL7cb5CYB5BjWzY56YNuZ5+gPQVyN2li7Bv0eDBeX1A3GyPbnM4AWuP5eg3WTd2377ir1l5sXpfjo/pLPSakZavtynFDbYW4GtonQlKl90FLPr4iEp/yzTCt/Ge7xLp+ZMpFdF/ElHBlMcm+iKaanmUQvjgpvp6YPZLK2mdaggZQ75vkh4HcWFbcrSN7Kbb8FmDYqr5pFrpCA3BbfZss50NLkzjQZcx0Z8XKeL1KVfGLvLyD4DE3HaPZ4THJNso2TDLa10pvXm/hRhqmjBvvT9rv112gcnuUMHsfCPkPfclRk6X6U27s3DihjdxE/87t2zw3Gzqvg17fEY6TX4uNnBu5wlUWNyZuA5uI0fwZ6w0+i8t2HVeYxDYAkW1sU4M/LYMQvt4+S43nA67W8UkjbObKYEResxizwkL+A1wM+tva1Dcl9rVYZ584//U25Qa3zr7aN8V+4E7/uViXsHnJlSQou3zZQMCOEUwLSrfte9vwobeTvvQR3qfoT0eklfV5SDVpo63p60ke+Kj5nGXr+Z1HjkJ66DMGJR8x+nzpvrSArssGaUV3x0RczTCh8mJcUQv0fUx9+skY07qsW71J+zoJjy4bV65tVHus4MaYR/95vYTJuMkwas3f6Es3B/5rei3P10vWU41M4ybqga97KAuECcDY7RdfUxxxvxhvqI6XgV7W2hTZ15cyUpxRvxEx+xbdHbqr9lAX6e9rVYyxJ2j5Df56VAHugvJRdSG8oR8wblpfFeoWLTtzNkx07YqXPYF/quuvkaivBqDtFAlY3b3fbzYpYNvg207SStzsfN1jUuzpM50cJm073ORIUXxnTxib/0Cx3Uwgnlx/ahuJMFej/1xbJszRf/d0+1/penrddvm3OsgHfG/WBjZZXijaXdj7vNZQqwPxvsSlVKTWQ1sL5otG0KusV+sFxS7KfMXIcCwwRXvaxMoGSXb79AQ3GrnhK7flZxjDYM37RDtPDdMRNyDMG+73X9DjlrRQj2a/t7PcxPxJblL7hIrahV7GfJx4NFUnubnbf9HWzJ/Ma4xtwrjCMYwYvGzapsyfdkG1i/AqxpDZ9Ag3mPrAt0dbErpqjwsczT7DFPomp5e5qTHn/Hc78B/b1319iauz/c0diSdmjku33KsPOgDkS8UCvS4xl4KBW90AvKF/EJ70cpy1pmKDpKjL3echP0QcGU53Ttpd/B3aVyllmAC3XG9YNuhcHv09x5Tlpb4TqW+AfKObGsF/LtTMf7zsMV4GFlwdY6z+24Fd1X0X3tUTuIixAIQYk7DMN8ZN7wqGehzGULb5kWURyrYDcMvV9KatO26+J1khuzX4pP0WlIH9Ju3zDnFw7fIZJuo3yjfU6HS92cdYWNa1GWrr5Ume9A+1J5hSe7neiqucUycLoE9Wg30DJlsuWPnqn6MYeZ1iamWF8uq40Zu3IdrLy5BbGNl7b3U7/1Y2xmfEpLEuofPa9PMl/7T/PnP6HjCeSC9bymgPyNsjdenBA1inKb7NZh1iq683RLvr5WVtSmXbo5p+0ypLvQ4rYbdxwsLQhmm0rzSSrqfrtfGR2EX7BDczruJ4zHFVr6h83VDjii9WNW+a59yM/nyu/9Cx4aL/HuFG0Da0YHt7B9dRDP6c+BWBxyk3l/3n/xoiewrRMLYYlITXMbaHcb2L7dimj+JVB33Rn+8T26v+ZtYeBeXDuPP2eNgPuDozvfP+hv0X54JA9F//e9p/za7z/jtla5LU/uU4Y1xiBCTbsnNeuk+H80i4RP+7mY302GH0g3YMAthTPBFbiidOL7ftppryvu0HzHVgVAZNbSuUMbal4zRpj6nbPONuhSmzoXEt/ETW+w8auBJpYCx2cEXvEY+NwxP+a5zY8kRrK95/aYyRvqFPjb6PnJnZmvXHRcj5Ukmm1Tn2E/z0XakzsA93c/vVar+ifiAYPqX9IhdgsokYDbIQHfyT6WmBbn7heDZu2vU08JJgdQrqemIf50oXBPHFrc7mzP4EL96zZ/85TNKr16Ruu1Y4M9qskbgijIMvrF3xpG2I9dh/eq48APR+XoP/GJOzo/sv3c37MyU9LvI9pNdNzNq3WGiXMd3RH0eX/F4bTew0XFBSB2jngFFW7Wy9wNgFVsvClFZ2lGWMPS8iaaPkPHc8o339Y4yifhmHW9ZxihtaRqcJNwSDceX29QuD0vIvqb3ITlx52cBrwyw5N+gZ57/KVe6/At5xw/5LZZ/HDWAvR1duXMzxTvXRf0cxd8BNxJxhRNamaIkHLOasrogxxjbLjhcCH9tedvT9I+0xxtyzuCGM9UqVtkexmuaxPXATMVJsj9wctanuP98ejdncvqNY94P8hf8mbepqanfJG9ZOlptIDgMsym+eW15mROP0UtcW+o16d3+v5/a9c9g5oMor5uLDznXDJK4otauulwdZisQe02sjIlpmCLKnFWaurGURjkzvgCnBwbKNx53ywlxF/0mTF8IY9UY9ZnyWn2FusWG+rIoMc/Rfx+WXJ7rojf6jGNOAMbOHMcfk4pHy7BzD5N7Nky7Esu0GIDdeQesjmn11xbPtNGhtZdALDDgax8J6q6ogq9r7SnudO6yQTtuUfbiYn/i6pYyEYcDIhGKUZee0m0x2zL+BYJeBjsX6jMBV2zwm6EXghuPAFkf4duF3qO64kz7RcNwoLrbug9jfRC5czDE32u1zT/ksBokrOJvCBeMTpq93zB5J3AAgbZLCO521HfAobx3sOAHQUifLtmV0Wjts0gOpN/ns/viWyzY9jLHnc70IsljYJ94+tYvfGdnITcS44gZzbqJ9dvtITFYW3EjQG3ldcYPz9gGBqxdzc8q+wA22cXvl09xgzU3wiZMNmPnJwRjbE/saNyvZC22K22PKTYy5Z3Fzsj0aRjkR21NuVrLrNrXyX7N30letuYn96cJ/sU0lmyKdSrSS2w3iF8t0msk8WJGkThuQHMgKUHZmzJYWSc/z4Iwnju3az8v1LM96hAYKtS436AHlFW4jIsPMXGRcpfZVvQ0TvF5BqFvpvTzp9TZ73tolwNnLGN1AL/oTaEvelPREzMi4qfXyO1StqBI1M64Weni5ZdR71n9RtndQ49/W1BFkCa91Qw0/uk84aZB1PlX0XQbtSYst10swav3rYo71xDw8j7tS3MDb5x5WsU8MGz0JyvQ0vIHPyJVE38P/dmVJlxpXG2Gj5ZVRNk7KIuYBE/s+6G1tKHJl9hlP9vtbzk1rC5OYi09mY/wx5l0mmNDPf6X3Ty//wLQtWHFbOSd5CD9ZEHehWMtK7dirHil3km3Th0xP/B0xzvTmsgcYtZd3mKm6d+cm2sdcsRFc8ZSbK7xesE+DrHxQ3Ky4uRw3AbOsZC9wc6D3UFaO/Zdzw+f67l2XfY/En6/mhvKOG0lkWc9TuDnvv0bIvb53evOyS9krSeA+g6F0vA1YgKALPUbD8TagsPqo7CBr9WqoA4l8qMNkGz+JXgQ5yc5FHVyQbdwOyif2XdWrcu5cG+hJ8BfGvOPZymS+DHpnmAduqlLWccZ/jhuTWdjv2u8JHt34PNrLJ8kGp4fKsN7eHkNZVzC3ibEr3CeyvB9cOx/16EQv6xu4orJ70GVyDVuMZQ1lF9yknLuCo+yAKUB2899Eduo/zlNZhznh2tmbxXvSJ2T2cZ1pW57EjTuU8Bj995XyJCL/XgD/fQC/D8C/DuA/par/33vre91SxngLQup3d6yAiO9MOIUOGYgBpIlsz/GdZABeLzTGOziClc8I5hgTzDtLS7/TlMN0zWtoIF6vx7TmJsr6Fqpcn2r5jgUJ61nZlf9iiphS/0WZif9WstF/eJCbMEBdx43P25KoiXHuZ7yojhgn8pJwowk3kmG82h4X8YrITYxXuq13hRsc+S+mC/1NWPenIFBRFle4iQODtf98f7PwXyLr7bvQV13pby6m7OLvJmMJzmzQaTEbY0UnOroPUZYuTTaNGLzh2kZPu3hMw4QyYGZM0/i2h5Jv3maeAB3qgf8tC72DjqweQdyANtcd/HcYIhO9wPEErXUXbpfZgDuRjUtPOaU+ueK/ib32NKqBC+VWbTLakojnybiwGDWuJnECPqXjxCUdp0wAD77DGJOGxz35TvQe1hPyV3ql4SaDtXPmLBO64L8oO0xSZ6AZU827J1k5FKZygB3zZ2NuduzTpteB/R8A+C+r6v9WRP4+AP8AgH/43spe9oFptTew6RgQ7iRoncBxxMUrNnXObbmOUl2++vZTWVapQWayoRoF+gf+lDCzYMvXXq22QmdfbJxpa+ujgniXZbwIhZbruPF6FJ6r0b56Lna2CVeD7Mp/jhtvb/s48p7YF3mZ3C068l9L9IHGh7hBlM3tm8bcKpE/B9kJxhFs4OZUzCHncdEei30L/yV5axf2Pt7zuGH7bFRBlUb7XLzCcTUYsOFObiLGA/+BZIHO6xn/OViy4CbIZv6b9Td3XgDd8rG0/cL7YVU2yw99CoKNcN/DwluQndTl+rZETxqz4v70fNKnOsxxo4ajfmPpf495qTfU5bjbQvmD+B44J3/qo7waHvMf613VhUX+gBsum2E+6ob5ae3QL7KuJlAPKR1jvVzJqp3wboPw56O5fJD1aMBkw6xBT+w3uOLoe4GfnOlItysfkvOBjpS4mMvqyNoU4wnlB/9x/ghjNg6rf2d9eWtTtqxSkhjL/I2RmyFU1PMesQ9tGRj9+RmT4pXvmP1xAP+7+vufA/DP4rubmAnKh2IVnckWANSCs4nGqk7Xq2R1W9VWt+R6omyru7+I3xJjSjGaUroqJ5gG+zlNZSdcTSB4jMyVJtyc0BP81zvkCa8z/zmO0be+X3G10pPKLq6cA8Yr3ES9ESMCNyvZzPcBI9YY7+Mmx+wwHfizdOZH/kvqUrtZcU+7wIQbxkgjnqv9TcrrSdmBm4hx0VeR/5TrfaRdNL05RlfRFf9dSXXw43TPfMg2UX46+MrKhryTs/e5bkEWeb7pFeR6AK+H2z6HYMQUuNA39O3Iz3CTuYEGjSkm1ht5tcGc0CDOvmGmQdayXFfApIrxcwdhqeYU0xX/Abn/Mn50fJdmGIxHuejPiT1Rtr33WI+7ao3P+PSW9ZAfU9ksBXsa3sAPVzEd0Ibjzp4OraTIw6xNVTxuiZ7U+05UMQ8JYr0KCrWIPdPLv2dtSkI+6Gs+iG1r0hXGCezQ/haYOfYz/7nxBDxv2v4ZsQ2YznAzwfgp06pdvG/6lwH8OQD/KwB/HsAfe6SyFy5lhG959KcEnYR8OB+ThHNCd+Jra+p5juigJ5UlJYd6Jxgb/hmmM/ZNymY2nMU44BInt9QjVHC4kGW8HnFz1n9Heq7y+gxuMoyKnJvcnudgZLkz3Mx4jfYdtMfExqN4hZPjfuDZ3HD+an/zXtyc6G8e8t9B+3uwv0l6wlNp2LgjbfvoCwXsvLi9MXJZgbcxGcjwZg6KO/gRKlvr0AxHNtiHP+Ywu5HmAkPGTYJxwGSnZrLidThBsmEZ38wNxvpmbSH+jv50em1geeQ/y0ufTAx6F1yk9oXfMT41FBs2+0CCOZadxY3Cb3yCXn52PWX77B0nG7S7SSkwPI1x7mf+kg4jxl78qHYWJ9xu0lhT9MVG0b5QtMXCSm8gfBaftllKixt4rhSeRwSMwzuFB3rj7pOuPXI9wX++MJVN2mz2nqPTe4SRMMWw/JmlPyQiv0P531LV37KMiPw2gD+SyP1FAH8fgP+uiPzDAP4pAL98BMhLJmalAUjtkCj6lba2rtHAAaGc50bIOz61fN1xUSTICn2PZdRTAEbZ3sNO9YbGy5hNVTnH9vqBju0iN8humawG2SvczHhlbkY9a/vO8HrEzUn/BZ8cyxKvH8KNLLgxWQTZ0Z93YbzMzQn77m6Pemxfk83bxfO4yfScte89uMHp/mZ3shJ4veL7O/wX7Y0+uJAUaMv0lm1/D/wg70ds8DScE0fBeM6OvdEuY1f5SereWZb0pFt/S2KfYdjrqTM+xIiZeXXve2X21XNxQhAnM7zI5B5uOO+WMkafRK5A5+rfdn6PbWPiv61zNZRNuGq8LjA6TAiy5hS2N9qX2FtNcr5vOiaYXawHPY2vjeTsGPe/M4xVvwr84J7qiZMh18YmPmlxJhjsdDikl4+8CtDftw1cAJ6rpe9pCSY/KeP3CFN/kh2hy/VKL/qP25SVU25TLBt5jVxVG1xMGTfiqppzk+n5zOkxfH9VVf/UtGrVP3Mg/2cBQET+OID/8CNAXr5dvu/9xTd+bgyhioH/2HHYlRujnmE54iXZA72HGHN7z+lZyR7pzfPH3Bz55AKvlzGufCCh7BXZI725nmNuVv48kH0aRp9/rF082h6vxOuiH3iImwt6ntouot4FZtJ1uR+47PsrGM/573Syfp8HZ/zbKr+FfDwvBG0yYHQ4sz5oh18GF/Rolre6JphmelO+MkxhAHioJ9huA6gU4wGmiFn4RNRzxE207wJXK3+6xBu4ZPUecHWX/87EXOazWQrn3KCXdQhGnSt76283maxt71DvAcZU7+RcVpYnT7aU0S2T5boUfqJP55Trn+ll+w76G4crLr1dcKGKtvR4CIusz+BzC//Zbp92TAV+iTNXFTDOwig7cMjNqg19siTAy94xE5G/WVX/3yKyAfivo+zQeHd67VLG6vkWE8lFprfZUBb1G0WprKLd2U1lw1/XAV+TXWF8xL734OYe+764+eLmi5t35maFsUP8VNzcu5hR7YfVJ8FGaafHspRvQkuctYj0vALt7r8QoFSW8lZHw+x82DFleof4zjBRZWbSKW5CXe184CfTy3VFOwdMtcApbpBwgZyrWMcp/1G55r8zcROwWnJLxiZlnZ3R9zHJyLdrz5FHymd9IPtzulyP8+QDw8mfqXBliYyI0XGjiSxGjEPxSdtVoL9DReUcN/FJp070zHyfcTVpU4wjxkGrO8qS7nZMcxnN7DvyH+HKNvyZxUIsGt/dm/r+RH8jsfLPlqaN8t3Tf1JE/v76+38J4H/4SGWvm5ht0r4Y3wLclpzBLgRlW+pyOpZdycqBLJ4im2EE6Ivsg+x5+764+TXl5kH7vrj53NyUolF21S7CRfETcXNP4ncl5jYSHxsCzl529mB1p6yTBdySPX1DH3xsQe8EY8uDMG8oW/AHTFbW5Fp8737pm1hhqvcUNzLa5/JxSaiO+Gf2OUxS7GtcHXGzh3owYjauLDEu9l/Ls/+A8uT1zWNacrPyn3T/IcHE/stko49a24jcmKCE85TPlhQ2Ee1LbyVyFX3CvrfYmPgv7vEzPBnRiSxhTuN10qYA9CXNJhf1xGV1RB//bVwEPY2rzPfRX+x78ZiG5dJOMfkrponvr/Y3ANoTvCHWQyy0eE1I01C2XzOu9zefNile9sRMVf9xAP/4s+p73VLGGmgKbYMT9ziZLgqWd3cdrsqGsj4vLWJV1d8RXcguMU5kr9mHNuh7HTdRz0bc6Au5mfvvddx8lri5wM0F+57LjY/t13ATZUM/8A7cpGW3I/veKbYfkjXEFxNNtNqg9gxOKttcpb1OVDs43+OsnGuDEQGw18HR0oe53jZ4IT22/JL5tLJAr5vLOvtQMLXBxRVuTCcCV9mS0Ljjo3FTyzFXNnjMuFpyk9mXyLYJQeRq4j9n3xn/DfF97D9Q+cx/qezFuGktx+rmfPC9ySqfy+wDch9Ir9qW7ma8QoO9E4ypTxTn23KVFaAtZYwTAravbaobuGnHZKHHuIk+iBgDVxFTtE8Ik+sFF/6DEs4DboZ+Tib+I66A4L/IFYLsvf4TfKUPSC/9wLQAZSAACxah84BbLiMUiLDGfUVWgmw50YLU4TqSXemtv7VcOKZlQ77oUYep2ysfzM2xfUVWPpCbaB8cV11P5r+P4uZVcfMINx9l3wyzfDA37xXbz2pTC/+FfuCSfQ9zk8teStIHNlE3JnmHs/4Wq8vKU1msZAV+oBK2bc/9ENtVglk8JivYfk/KurySTpI/zU3EmOixeb3JDhiiDTqWvZubKHuRq6aHMYVdN09zM8NIfCwxnbGPzvH5ME4e4ncmu9Kb2sf2AP59vODvNsFZYdJRtmGcxetBm0p9zf5F4Ev6X8fpIn/oeyRcRftI/yX/KXFzJW4SzHGb+ijbypE/Xb066j30X8jf3e9/ZIoO+k7TyyZm2MI3wWT8ivr0q+qxgWy0Q89p2XpWyhKdu/QmmPVs2US2Y4qyD2C8i5sZRsbhuqQP4CbKyrTsI/57leyvLzfH/cBzuZmVfSy2n+J7LnRS9rSeh7gZubr7Ep3sEHcaJ3wsDIUSoTjQaumGvvthTQ/zMwMd5GNZdye9izzmwwyTzMu7gbJt0GLH9oXH720bC/+luBL74qD4Q/x3pe0ja9vrNNi+0HPUL3I+TgyyZDEXFZ+27wQ3Q/uVedlVepSbGDcNE2NL9FzBFZ8uXb1mOBsS/53lanW9eaQv/pTpa2J2f1KBXwpDnUG8WzfwHDsOy8u9sn0odkZWLpR9nn3XMA75u7mJmAkHRv+9hpuPk53a92nj5uNkj7lJPs5eY+pzcLOO7Uf0nombIX26uGH/PXCpTkTjoZgfuJJr551NUk9Tv3ivVZHLYZkP+XAIKfHl3JMg9WVjlYeYgr0rzFyhUt4NAul9nzMcZWVmerP4HvybkVA/es1PAe/y34KrGabBf5jYp/3kMBGnOs/2G1fsc7L1r8NsmLQX1jvGC0fxOcXMtsu8bORqxk3swlZp6ma2O16qmIvQEM72qVfbMheS5JjTS36Uj/DfJ02vesfs2elFT8wEuCU9m1zIf5RsKBs7t0+B8Vn2PSL7a8BN2hGe1PPFzUT4i5vvJG5kfv5CGnaHqzbKIp8NlNJzMxt5IGODuHorWPh4pjc14kCvJR7wWtGJbHuHiAdWZ7mZ6F1xEc+3GK2yu6B/9LoeZ66OYvas/xo3CeaBqyh+wNXd/lvonflvmQyjhKI0mM4wxuWn+xX70M+394ZizFGZoV7GFLmJdgXM03iNMBkXx1yiNupO+8V6fti85ADjoGzDYPMp/ymGJYcr/025SdqmCtx2+en7gFTv0n/U1i7574F+/8NSxsl3mF68XT4l6iCUfyw67veRXbSYDDNfHE7ouU+2nHgXbvCg7FPsy2Uf8d8Vvb9u3HyuuAkn7uAm6nmK7z8FNzH/eGw/i5tM7DBJZlOSTwaOU4Uy2iRHspndJ/yvofxUL9c545f0TMc7JzFqdjzzISb+n8i6dLFtmMigd1be9Cb+47GCRCx84ln+OxFzMT4bz4ltbbJB3e9p2cnxQx8o3KR3l7KRhumNTxaUZRNMspAdsAUc8bjTxf+HQsp6V7pO6p2WZVwzPIZp5b9Er6smYp5dM6RnXfnQZ6RpErPOf2dlszb1lT4kvWxXxraUkR2voWOk8jEvQLq17LTsadmkVVHZ4Uv3ONAb9MS6l/Y2buSTcDPBaLJP5ubQvjRu5LLe09xE+45kPyk3h7Jn7eP8BW4MF8d2PH/Zf1dkP7q/uZsbBG7ujG0q/4x2AS57ISloYHMRpw3S+km0JXY7lRX4PONO/RIGRzorm+jNMDr8rAdelm3lQbQI/PbdZ32YfKdqwKgTbuL3okxWep65unzNSPINc9SDuf9YtBXU5PzE93f7j+1b+Y/to7hS+2crPLp4ZftZMftA55hTjMSnGmZ4PQ1TIivBJ1Evy6aYA0bXpkzO6op6QszxpxL4khGvGdOnZGf6mwWmrM9Y+o/rBZzvD7kJelo9WWyTvTP/yUTvwNWVvviOfv/DkrW7n0F63ROzG4aAsJ+lAFxQDo2H81fK1rzrSIEx8EK+ZWOHdEHv0JmFcwMmU3yA6dncRNnZ082P5Oaq/96NGzwg+2vOzak4emK7v4ebw9h+J98vuXkH/52RPfLXXWm7D6dk52NZg5b5l2FXWQXc8qBTPjS9vNxp1V4x4TFiNM5r3XKBmzR/VDbjZoIpcnXmmuH0XuEqwxET+4AFr8T3o5g4n02KnTDmA3OZt2fXzh5pv5LIEu7hnbcjTNG+C/0i97/GhTBOqpe5GnwQ+kWZYULOzar/5Y02nN57/Hey7c62z3c+mbXdxH8zLh7x3yD7CdPXO2YPJm6gHBOAD0g5k5f7ZK181ggFvbFIKNuuV1cwkh4sZFMc0T5csPdObmZ6jY9XcHPKf6/i5oR9j3LzcGy/mBvGwXF0j+8/ut2/hBsEbnBB73u1e/p9Txr6/VDXql9sSSZ/6Tdfn+NyqEfalWEexjcZJwn21g4zTBZ3huskNylXCUZIPOAxMa7o/9NcJXGX4oi/w9+Z/zQRAa73G4/4T8iuiGmoOHIT6tT2T6JzVs9RXuBWiJfN1kbbXHuO/RBhyrZ2n9rHdSzi0+XZH0oxl72POsGQxdiVfrHl7Ri3T32O/85wM+NKIibAPYmfcnXU/gjbGf8lTeJzJT0u8j2k1+3KuPXAakGgtPNXzJtsO+fzyrelT8pa2Z1CV2pdWqMwYlSNdUXMd2JkXHRxymQdxnfiZiZbP7v7Em4u+++DuQHFzVj2ixvu2XUh+3Jukth+xPfHsh1Txo0bMLwzN4ftPqHydBJM+n1vY1suBPOLP+f5oHMRlxr2boq3kcSrcFhF2MpGzMOgSJNziYsjBsu0Cesd3GSYoqyELfAzrngAr3TcZDlMV9w4vYGPiDFylaWdypo/bcnnVW4O/WeyhCly5eqhY06WuAJ695eeO+JmYl+L18wHe48p51Md7WX8MT/lZqb3RJsC0CaP6aRRMXxWw/nggCvDPOUm2pM4Je0zMGLiYzNu2ICr/Q0Q+Il9Rj224ir2A1lfdcp/kauv9G7phd8x6x2nAP7iVPOIeaBHnST5k7LtzgBHcFymAco/Se9h2ZBvd2gyTB/FTYbpE3DjZNHPvZKb99J7mptMzyflppUPF5gP5+YD2v1d3JBsB3VHH3kvNzNMzM09STAMxFb5YYC0wDm8Y4NQls9Ff0c9oQq3o1oo335nOGig4yqY4GijJKvrHm5Yx6TtL7kKsFThlggdcpPxGO2J8T3jI2Bq9SqGpwRXuDntP4z2pudWvtfenp1vQ5WD7AO+V1qq2SYMYemi9b+rNI2bmd6TbSpOYuy8ZIUjjuSacYmbRXy237HP4DxjAvIloVf954v2HSq5bU2WXbu4Uvh4zvx3hZtF/jOmr6WMDyaFtLtpgA1eutfzPP0OF6+ZbCsmF2R1Ics2rDCmsiftQ2h3VnbJ1Qdxs5L9QG7ukv25c3MBI0jHK7jxsf2JuEkGrO/Pjbdv4OZMu/8Ibiyxw+5J2eD7KMkolsZOnEBYASaq5pnbI4xx81B2lJvEAMPSXIcxHgu42IeXEwXQKa5YNWO2vBtJU/6Im5jOYgLcZEvjOUGZkGWYjtJJ/0Vcgz8DMD4fyzZ80jmN3zOb6Rni9Sgd2Jf5p2GK1bB94fzA+ZW2HOLTtU0dTT3bpg65OhmfQxVRJvYvMxxnMB1glMCVOx3a0tjvn8A4acvfffqamD2YZGwEw90YzPMaGsFKdnmHVoBdfcPn72mkd9reAWMqSy1v19DgnqT3iJsoy1+Cfyk3JPtZuFnKLjA9gvFI9ogbV8+vIzfc7jG/Rn04N9lA4SD/TG7Sdv+MCzj3ayfTlfh2T2/EpHOF8f3GAecsHweSEvrFBf4UikHUbl8bbF0ZaMgcEzDmh+tv9ttgVIw8CHQFXGF/+nTbTzBnsm1QT9+iO0wX/LfEfNH3Tn0WrytZ5vwoRYxhmecuY6zP9C7jJmI68H1U6GKM+7pE9nSbqplTbXmCUV3Zecdw1KaGSrnNHHAT8xrPTRQdXSMG/4HMu+K/z55sBvszSC/cLr/8VOsw4i2AVQ9nkyYcyMZ6FrIaz2+Tskl+pfcQ4wXZNln7YG6G8wsuXsZNJsvpg7iZlk3yV+w7wvXFzX2yQ7tPLpCv5iYduDzCzZ32PXzN434fWPt7hZP5yHyIoKO9sFHekxO3Ew+e4kMB2jWjVbWKd1Gvn0diEdsVbkiPRK4iN1FW1Mm6zzPU7PA+zj3xnWCacuNkFSrdf+19xSfEd+Mq4abEly5l+zb6FZDla+wpxZx7F5XwW3HZSE9m35m2b+9obb1Yu9tcSVPmVQWyEcbYLoLu6RjgRN8G4d8a+uOcm0FPPSA8Tlu05bN9WxuPcp9xwI1rUyv/3XHNaDIY24WLKV33N67uq/77TpJ1Kz+H9NJ3zIBAZGR1xrJckM3qkGuysewjsmnZZ8iG4z8rbpLfX9zMf39xM//9PXKzxPjRfcaj6Wq/HwYL2kbCdkxHgTqhECDwI3VsSqOiLF7O+JDKlQGTtkJZOWGZzF6lQRffrb/ADZ92mJpszzs84adWebEMUCZDGZ5o31Cm4giTvFR2xk39a5vPaK1FZv4zRdO2ETDZiDpyw/gmuFTQl4slBUeMgYEkbngi7AfWAcSq7TuM2iccFbR/YsILsetf0qUhjtw3tkg6BTFtU9r8bRMQidGxKZGbx1iHsm7Ly/7GHeu4znCTxY132T3cxGPBf00vWp8Rl8G6phD9F9ry6b74K31Yeu12+ZzSi1VyPEtXZI+OXZGNZd9L9grGq3qPyq7yV/Q8wg0WsjNcr+DmFXGDhWwmPzt2j95V2bOysfxHcXMvL2f1rsqelZ1h+mhuEtl7r9eX+30eMMXyk7p0dn5E0wvd5UM/OFrJZhMS+1uf47lT8W55qifVq758kD3kn49R3Tpb93mGmwM9K26G41RYV/47y43Myk7i6GL71Vg2KZCumpPsgQUVPoo5tQE5uo1UNm4CkVUx0zN9kHKKGx15zeJARlEZflCteoGbJK8Ur2nbm+E48sFK72Gf4eOVl36e5uaIq1XZJ/b7H5amwfl9pZdOzAShg4gfEELIx374GbKWcYF6QW8sa+ke+6Is5V/CTSabfsDsBdzM/Jdx9VHcfJa4+R64Wdn7EdxE2awf+DBuOkYne6ofeJCbO+275/qnQH0SI3U7fquy5hsWgXsyloy/e4ZOIMkHO1t9tuzwSG/EyHojNw4Hy/oifC7LO27UYxowkn0FY+BCKB8xhsMOc9w1QDxXK24KZnTDVTrn93AT45WOLf1HMo0bVBxH3ES9UX8QUco3CJlNPDMWABJ9xph9rJfVdSv7fJsyW+PEP2v/3qaACeLtC+KX4pXrHfy6bsvD5x4Ysx04w03ESHqsf7rCTVoWaJ9gYT2H3BBmvg6M7cKfT7mhel2fSVwdchMwPrQj7wekr10ZH0kC4CaJk6lVKYAt5ikbO/qh7AnZ1smHsgOOcPoejMjqTWS5AbgG+8HccFnXqUauJtn34CbK3uO/Z3NzVhY4X/bnys1k0OP6gY/gZoppEdvvyg3GvPSsx/SB3ETZif9OJ0H9TIqGtqGcgW4+v+wXM+4Qyma4baxBNqd6Jxix8YBKPB8HbX/fKNQqt60NKPwOmWe4afZqaPsLTBk3jgsa5BimLSl7iFGc/65zE2ywc/tF/3HMhZi6FEfGTSwbYkyzuiKvCM0o4yaYdNa+9j5S1ZJt/uHqonMrTEPfHcpGHyx9YvVMeOX3/COusV+cYx64iRgDVxrbxRVuYtw4ey5wE4yK7eISN7Ev59NH3CwwfsoUY+E7TS/cLh/uZkO83sZzy7zcJ2sHnSwdS2U5XcGIi2WfYN/TuTlhH8tesvdK2ZV9hPuLm++EmyB7yd4rZa/YR3a8Om5OYTqSfSY34k26nE4KN91n/UDVsyyfcOOstHGew8RbpM/a+rTtB/sVSL9XeRkXvb93DzfD73jsTq6WMcsp4SaebxQJhs8jLBPVq9F/VCTNb+HgEWYmPrOHzluRVR9kZZehMfHfUE+GK54bf+Z9kAbxs7Er3t6jsqZYMfqIy8V+z9WxwiiYc3WVG8z9eU/Tjrv0unSWm3iO/Sd3+O8rvXt6ycRMgb6jEnoQZzs+8UBAOf8EWSSysq31HH3NfSWLB2Sfxc2g5wo3Bxg/BTfxy/Zf3Hxxc4abZ7apA/uuyu5WONn175Xc3JO437e6XT45j2AT5/P41ipHAgJAy8IcM0J5H2nWG20MGGc7d84wlh8dh3ChzTYkQeqzFTd2rWKejrnhsp4bhzEYyU+NVtxc9d8RN+188x/Vu5MvDrhZ+i/jRpXyIzdtA5K2qYk2/HFpWLcn5G13ySU33YY4TnFtMsbN3s/1STrzOve9MkEpN/M+Jvpg1m/0yfGEm6RdTLkJ/aLjKuMmxGvrYMVsfB43jHnpP0ww1ybguaJNjBrGk9xEzBf7G1f3Z0yfHd/J9LqljPGiQh0/MObj0ou7ZRXDI/Qreh6R/RD7DmTTsl/cfHFzD8Yvbt7dvnRZzWfh5p6U9PvRxpXNuIATqh5n/Pr0DS6vM36CD1s1vDTuCCPnwbjst3RZxSlupks1T3GDOTctn2BKuGnfjjsRs/dxEzHKNf9Zvoqe8h/zGHFQPr7zFd8Z2mWHuF0QOQZr2fj4LnKTYDzsN279XKvmkFfTox7TLG4S/x36oOabidMYTNoF6Rni5oirCcYWRw7HBNNZbu7136RNHfqvTbJlzs2s3V/oix/q9z8i6diNfa/ppUsZXbuTEC/iYwkY28NdstYx3ys7KZvJvsS+R2QvcnNWzyOyX9x8Tvsekf214+Yd7HtE9pncXE82iAD9JXJDXrksWKb8dRsbyDjucOVbhWVgIzzjijgixuD/uEnAdIOFBPswIAXa4Ir9cMQN168hn3MTMDr9VbbVp24eJEJcBT1uN+7ov8jVYB/c8YGbdCB50X8hr2e4ib5f4V4MwoV4aKeovqJ3xJjVJ0Ms5PY1LugTBed4TTCtuDFbrsardHXcvh03OMlNxNi4GsssMcZNWB7lJvQZ5dC5tuzalOT+i1x1O0a7Y6xzJff2N582fU3MHktuJo4SdLv6eN6pvIjPv0SWOumZrIJigy+agnaDjGW/N/uiHr0g+8XNFzdnuYmnf87cRPu+B27uuv4J2hImNW3SlyyZbg15AH1w33Aq5AgI28QYap4HYnbeqnMYIQPmYWCb6vUYl5jZd6QncgPNMSrEc3Wam8hr18OkKMlk3ET7BtXi/57mJnI889+Cm4f8N+PmAGP7q4v8Sq9h1O5PtxQOHZPZa7IWN7FfiLrSdpHZFzFqx9jn6tGf6zalInSeZB9pUwrnqyaacNMwcn8jvuxww+cMNyzLXG3H/ot9oovXhb5lfM4wV67Yf2f6m8+evp6YPZIEsC/Tu8ZBgRLXztv7EBYsbVnwkax6PTF/WVbOyzLG2BAOlyI8wM1H2fdz5yZi/Chuouz3wM0uPf8Mbs7Y91m5iRgf5QZ32HeVm9P9KXFzVxLGKdVGCTaWvLBYGLRbXkgWWn+yIMJgRZmfXrDYKAmXMuaR6e2yA2axqk0WTraVcX/X3HTM5RhXN+cmYCRMkSv3YVzjBsfcRIxF8gI3pIoqOOe/CTd3+S/jhn8w4REj58Xno31CvLZjkZuWj/Ha6121qaYyfK4gDuIb1OD7lBtujxVb7oO8TTX6qK7YLg65AXyss33Uli73N9E+4uqQGwTZpf8W/Y1Q3swl+1ocpe2i6876AVhdwX+n+5uv9O7pZU/MWsOq2aNlO0PDSepK85ke7W0k03OEUbKyiezKnnv0rmQjprMYBz1P4uZI9nvgZqj3g7hZYfwobj7af8/g5nKsH2B+Fsb3jO2VXszKJrJX/RmrO53O2mjtLBs5Uj5dkpbd2k1k29KneH4Vo1XHdCnciRgclhYJ/GCz/jjtf7FarX7MuYkYM0daWVom6L6rFLnJ+kWy9RI3cdnjDGfw3+m2ccV/jnxv02XfW9lgX+P5hOzVeE19MJEd7NPz9s3i9cgHlpbxepKbKDtM4EzXM/qbC9xw/pL/aKJ6d38Ty071XuxvPnP6mUweX7uU0R2gFx5r4k2zLK1iQ8PvWVmnO9G7lE0ycRyQxsZJ+2ZKr8om9LrfH8FNlI24dFH2PblxACJGTWLTTr0zN5ym/jshu9LzCK/trlzEhGP7ptxEvi/ad8V/UfYKN/fYdzbWVxifzQ0m/ouyd8fNEaykklh3yVvn+oCyg4vFHiZxGuI7FIdjLGugV7BmjmmTjF7ZwE2K8SRXK4xHXOlkwovRp4P/rnJzFlPwX85NEJrVfYQxGdCelk3U3yO78kFMzgeoOlad21HntZBl/8d4HdtU4oOs7vYIaaJ3lbROsCZcnepvZpjiuSv+u9LfCCvEdf+dPa/39DefN30tZXwgKVA+kGcZoGzNCfgXMCPJ2u+utLI1HxtNe1c51iWjHt6aNOqZybbHxouyzoTEvkwvsvxJ2dghvoqbM/5L7YsYJ3pS2ZO8HvoPvawz4cncpP6j83H5WOtcZe2/Z3DDZWM6jPWr3NzZLoT1LgYW6c51d+g9VTbEPvdVH+G/q9xc6aum/rua+CWGWl+5k6xko7RzsJHftL8Sx/twhz36HySr8HrpXNSDmZ4mKwtZjLJZWVtepPVgxo31lEm9XknCTYYx8mKygUdpHeeMm7n/LnETAV3yX8LNkZ6r3ACP+T5UOrxbtZJd+sDnne/Nn1lZPtayR3Hj42z0/UGbknAsxo3ZcIWbzJ4JV8v+hje5OdPfXPI9cFd/k/hP1J+/EutlLboE2Qv9zWdNre/8/tPLlzJyp6AxP3QYoSxn4hfX4xfKZX5+uIu7yBtGN+ha4bhg3xm9K9m0r30BNzPZKVc6ln02N7HsXf57R26W/ltgeIbeWdn41GTJVaj2vfxn+XgdSjEdxfoFvUdlr/RV+k7+s/wZbg79Fys40nsmCfrkw21VTtoVwMZ5KWVdg4iy4vN8izfiVP4rHseCn0EvY1KtmGUiG1LEvNU6GJezj/UmOHrF/Y8CELr/3WQXGHnwtVGnrOh+SGUv+E913KbeVbPw3zBIj5hW3CT1PM1/J2XNvsG/iawC9t5P0ZnUNYtX07PRyY14zWT595F9q8fKKx/EvMW2xWvUE7laxc0m3o4BV7Qv5Lm+TUe+p5gOfB8neRmmVDY4ZfBf5IrtifVGjBOuLvc3nzDNYuA7S6/b/IM72NlFPpyzJx0D9+F61C9Mk7qOBhUr2ViUMVW9MX/Wvit6j8o2jl7IzdJ/zNWsE3wnbrKip/z3jtxkXHE7Oe2/B/Wu0jLWD4WfiDGOE3Ch/b0TN1f7qrv1Ppkbh/GK3nuTxXSIb3d+2ub0WHamMz1OijK9M5szTHz8qN+PZa0wO+wsN6keHeWP+rJY9gjzKW5iXvvE/B7/CeCf1lz0X6r3Dv8d8Xq2raQ+4QM0GI+nVnqjfQjHM06u+OSK74/acsQ207PCCPQO96rsEVertPKf8rGTsgOv6su/l//u6ou/0numl75j5j6NYkEAytsh6adbXsPkI+bpt6t6Ihv1XpGdYsSBHmq8qZ4Dbi5jvFP2Yb0LbtwAOtP7Am5m/ns2N9OyOMD4ibhZtcdH9F6x7yjm3oubKPvpuTnCeIEbd/50UvTBtM51kY2AYFiS5HBKkJWAWf05M7QtG9RQnvRG2QyzwP/gemZl3XIvQbqsKMqmdU0wsh6J5ZFzqYB/gkFBIuiBeIWbmf2rONuJi5bU41fk/jviJj6hYSxX/cd1WaEVN7zLxIAz1O38ctK+WZtqcRVjLtrP9k7aVCt/wffud2jLwBhzVr0AiEsZHSaEsqC6T3IT8y3uHvSfy1/gZtDLti3Oc1rZ1+qjtjxrFzEfbf+EyUz7OaTXLWXcesz6C0A9FvJH2z2fls0GII/I3iZlE9lBz5HsFzdf3Hxxcw3jz5Gbz2rf1SToy/ZOxrcry1i4zgnOsSxdteO5QTZiDIOXqAfIcbGeTDabdOik7CE3Cca4/OsSVwFTq+siN7N8xs0tKduSzs/dw80ZjJafyaLaP42bsJwUOPZJ1Jlyk9g3a1OmM5ZlXKv2eNROZtys2pSlIY5OcJVhcmUvcJP6M7HvCBPnuexZvas2ZTqdbOBq2d+QcRlXwBxjFnOfOelxke8hve6JGWosiP/bzteMxYtl5FFZQbtpGmUzPYNsov+K7Lvb9yg3D9r3xc052RXGL26+uLkH40dyc+9OXW07ajEAbjPnmgeEtVlZvupKry/dRrrp61jbUdX6YKJ/UHWpt10wNMFcyraPOscUD4nH1Ito2PDnTm6c7JqbiM1zpe2gipl/LzcZ5hk3c/85rnDBf2diLm7Tn2DrGDNMY1kVEoDm9i31UutMeD20rwe8ez2pp7E9DRg5H+OTsJ2NVxXUdqK9mnq8bEVP6GbcuM4J3Sf3+h4dE4A5VytuYmod6cR/K8xVpn/6Q5sGw6TiuTpsU8NTzwvcuLKJrZ8oiepxoe8gvXa7/BqcCrQ4cRd+DR8+Tco+KiuCskkNy+J9ZQ8x4oubnzs3Uc9TuHmifV/cXLTvnbmZ6XklN3el2u+XpFWX+vMKNA1c1uXtdxg0qM/zNthqZa2IUn0rvQ7jDLPM8QZMhUht+NXVKx3H3dzoKW4ixjlXFVO8i3+WG8a4HXAz+C9yRbK8t/dVbgaMa25cfiduyH9SZd23sA59EPMsdoHXaN+u4HpLeDIOrmtlr2H2UM+3C49RrOEJoKwXVY+suIkYye5HfL+j/CMY/cdcrbiJ/NzBTSzbucr8F7lKuGlVim8nV7gZMN7d83+lC+mhiZmI/DcB/N0AfgngXwPwn1XV/8+xIMpSRqANVqBwy3aypTZcdrd2eYdsu85IXrZh1BzjWVk3gDqDUXrsP8INY/zi5vvg5rPZ90h7/Llzs1x6+g7cfES7uNyf1t+XU11Cw7q57jRP/Ayy4LIKu7ZYvt11VgDYa9Hyr7ovI496I8Yl5hVGeyJjARCWB4k9dVIAsmMXgdsq/CO4kb3KGlf9Lj2gNR46V+/GjZPVIFv9VzHqTXvhy3onZY0bWXBz0wFjn1NpuWtvGHHCvoZBvZ5HeOUYQ8BY7QO1C6+XcRnmO32/alPY6/xLYE+x575XqKrDGLm62/dZeyRudrnAjTyJGydb/cdt12Tfm5tM9rMmxefHeDI9+sTsnwPwD6nqTyLyjwH4hwD8V84IWgC7GBA6DwoWAKCy7rfVVY+7fFLe6p3qDXroT5eNHTmSfKhnat89GDPZgCnaMNgn/fxLuUkwvYqbLG+4nsLNCmM78Y4YZ3pXGBf+vKs93ssNy56JMZZ9L26ivXf0VbFd8KErGKeyJ/wX/bOM7cSmK0mq8zw/PvBjnvWOsgtcAvhv+HjUG1/FUxwrvRPMk/YrWb2MiwTK+Es/nJu0z6nqRq5Wep/Jjf3WcODYf7GeNUZffsWNL6vZwV5WgbbEdeaTAbaewry0zw1Q1TfoM/a5vuwJvk9l6YCMX35YxUn/k7cTDLIrjKG8sJB0XB/KzZhnPdtQ9r24mch+0vS1+QcAVf1fU/afB/AfPy28hcmthK+Ox3w/3PXT7x2+78lkrYKl3iuyB5hcgZP2ncK4kk0wRVyRq9N68Rg3MU0xfTA3K1xN4JncnMB4hPMujI/wehHTM9vjUVrFeivwztw80ldN0yPcXOw/lU9eie0rSZ5RyUk9s8RGf+RA40yn82puYvoUmIYo7TLvPQg7jSu0jmHw+4IRrQANowDXe/MPSp8AQpo+I67PiOmzpa+J2ZD+PgD/szMF7WXimM70tRoL1bxgrHNW16SKS7J8N3qFmQc8V/TM9K5kB0wTQjOuZnqezs0T/HdUZSZ7lpuYVv67h5uprKIsVaCDs1hfYTzSu8KYyaa6EgWS5J/ZHgeZk/58T27O9lVnuDmr58p4NOpFJsvnJD3c0lOuedNbmk/UduaOR6v+3hZ8h6z0Ug7i4QToA7lZphdwk0EQLvgINwdlJ0AixnH7h7HEfel5rbBdl6/UtWwnR9rO6Lnoe4fpUW7u8/2I41G959pU7r+ZyLO5+X5mO696YiYifx7APwLgTwD406r6O3TuHwLwnwPwBuC/qKr/7FF9hxMzEfltAH8kOfUXVfUv1zJ/EcBPAP7Hi3r+AoC/AADf/m1/IPlCehisJHk30KDfw/bNB/k4II56po2SymrExLJc5qyek3qnsvwEMuJiTK/mBhj893JuouyEq2dwM5U9i9HyM39ewXgga58USjEFf/J7SIft8QDjGV7TGAM+jJsrfdVHc2PnTvnv2X1VSNzv3/6mv/HBicFMyRqXgx77oNMX8juu+G0CoQ4b0d4ORP6fli5wE9Nw82CCq7zfcgeuM9w4kMnOlS/gSlzZ+k7SMLswu0aMA+TYtuYlr6WAUVzMewOnmC63k5O4FHXXxXxYkOJyBfVdfT91yYAjK/B4am2qciUy8vNh3HylM+mvAPh7AfyTfFBE/t0A/hMA/k4AfwuA3xaRP66qb6vKDidmqvpnVudF5D8D4D8C4D+gOt+rUlV/C8BvAcBv/C1/TIcoy/LJ4M8Ou3InZKeDiSNZUD4py9cWO5b0xe+LccIVl2+YXs0NPth/Z7jBxH/vyM2nwHhR1vlz1n7P2Avcz80KUz32Cm6O/Nf+fiA3MZ/57+6+6mTifv8Xf/sf1XhLs1dblBjG4ZFoonOQlVBswU/7JI9EvamCk5jHspGzVsy9AEgVZ2U/mJtYSHXNzfAeZIp5Uj39XXITZIr/NPHfHdzEYrO+bTio67KCvAzzOqs6w0z2rXhNfR9xTZT3w+/fLvLJ/MT3WThw3NzLTci3D5e/gptZm2pcHXPT2xDlH2kXUfZK5/+KNOk23l2t6r8KAMknU/4cgP+pqv4ugP+biPxfAfxpAP/HVX2P7sr4HwLwDwL496vqv3VF1i4UcVeyXnnJ2yDCTrt8Jmu8UN5VLRgGctOYOynrdxM6gfGs3pOyA0bObx6TYbxi3xLjgeyn48YwAVNuYsyt7FtifIYsY5xhjrKPcBPKDtxIrudDuQn2Lf15IMvnH20XnyJuIjdB9hnt0ZW9mPxde9A1X1u+D7oRCtd/eCc8FdhW14Ka591hxMtK3Y5SuK4mS/Y60HB88K5yTdYKhXpjBQ2jbc8NL9btk5Sbls8wAg9xE3fCE9bLO7wdcMP+68Xv54Yxpv47zQ1C2b3n98pHc8SkAWR6FJ7XKOt4FQjrHRq1L2ukR/uciYl9hWL2Pci+KJvwahgZl8MbO6vRB2mbYt+7Ld/N3t2dl9FpvcIh1s9xM/Q3OyBCet3fe7hhey74j/MZj6KH3DRMk37AKTzBzRjrd3b8H5GUmuHnSX8ryv4blv4f9dgyPfqO2X8PwC8A/HN1pvjPq+p//lBKyv82KBjOWaKvnceyD8lGuUVdl2XvxPiI7Bc3c9kPte+K7CP2xfwXN/P898DNAuP3wM3pJCR3oe0Ly/GW48NgJebjQNSXVVVgowILbiNej2miNwx0UsyhbuVBfKZ7hZFxPcJNrDfjaoEhHlv67ww3Gear/ltiQroF/pSrwffIZXlQy/aBZOOgNytb83rBvsFels0w87ls0plhJHOnOBaYy2RIRq5aAebqgNdbmznlS9gf7W+QYDzgJmI+7GNX7Xrw31VuIuaTXB3F3GdLj03M/pCI/A7lf6uu+ACAU691PSs9uivj33G3bOjjFS1Wyvl6osVaKDuTVToxLRv/PiB7D8ZH7HtE9ufOzRmMj8h+cfPFzbtws9JDxz4TN4zrfFK0b+zw4bCmR2TcTsElCX+zc8Ox0UpexqlVr1WQjVdm1acnZhjd8YCpvlfiPrwb1zslGFNMl7iJiXUWHANXmZhVea//Vtw0Pnp+WIa78N+SqxWWFJfnhjG5vAQbDF80LdPrjmsRF4Ue2NeqEc7rHGNs0WdihPxz6INpvCocn/xNwWD6gGOBh02bxuvQ3zBCPIGb+Hviv9P9DXNjGCdxtMLjjmn76W7+nehvfsbpr6rqn5qdPHqta5L+DQB/jPJ/tB5bpmfuyngtxUEDQgOfHJvlj2T1IH9Wb6bvEYztQ8sBU2iG78pNLJtxlWGa6XkWNzN/Ra6y9F7cxL+Rm5k/s7rfA2Mmu8L4LL2rGMhkZ+3xCNMjGM/Ivkd7vMpNLPsR/rsqu2p7q9QH7XFUwVbGfB1EtFGEjmJAfz+Eq+W/7bQ22bZcL+hdY+x5AYBN+vK9DnQl5nDNMOUCxxjbwJSXO20C93hjNpBrSQcfy0VuvALDFbmZcOVw7a3snKs1N0uuzvqPB9qO14rRyWqwL2kxQ7yO3GjA7H0AzOwdJ2GAZBgtPzx1MYwjNzNMsYJ1m9KGQzJuYooTHhc3Ag35UuxMvIZzbdJC8TrlJlZ71X9n+5sSS9NlnQM3HpPzX/Unc3Wtv/m8SYDPuJTxnwLwPxGR/zbK5h//LgD/wpHQp5iYTfrxef74GrCUbQObmlf7/c56V2VV4T5U205/MDdRVhOMbUPND+ImlrVLykv8N5HVgMPlr/jznTEOeYq599J7xZ/tGvjB3Hzq9vhZ/Xc1SfWxDXykDxJ6u6mDgKaLdr1TQEWBOrnTVqda0abD8lLLND1A10t36KNe1TpgFB7IFMxIMG+8PKiV7Zis7gzj5uxDmVAx5gk3jBEBo2rhpT/51IGryA3g9W683Ameqxk3EXPctVA1+m/kyvkv+F5Yz0n/lfa79p+wXpisYYrcsGotuBg0+0S01k/cbGxfr0xVK1/S9ErgFSfsG3yAzF7itcUG+0CoLDV9i3V0Pbpoy32DFvOR+UBgo+g81qtO4qqU7dx0roL/gg8u9TeAw4CUGzofuQJxc9Z/gZuhv6mdsuc14yb2N5L7b/O+X/nP83FyEv3K9KJ34ETk7wHwTwD4wwD+aRH5l1T171LVf1lE/ucA/hWUnev//qMdGYEXTsyGdyesH1vkkf2+KDvsUAT4UHtQbzy/LEuKHS46pxPZ9+AmymZcNUx36I3n78FomFj8mf67Ijvzn40ZMl/P/PnRGDmFcddT9D7Tn8/Qcyo+1Z//qPYYz89kP6P/Licb5NZKZFhWZOd7+bYwThSiAkUJmDhImNVlv3mBnf3VqSwS2Y4j1SOlRkftAtOQFwB1UnZFljEpAq+t6siVx+i4CbedPVc8WPTcDJgIl9UguM9/tmuTDYLHG14Hsqf953Hl3Ajxx2fLQFsHPatYdwQMZaM/U3uzNqX8fENZ7YTXHFNrBzz4r5pMD2RlH/m+2te4mWFKZCFmjzZMQ6wHWZ1xE8tGruicHrZHz5Wq50blhP8WbcpsnnPF3GT1Fq66/8b+9Jz/xvxnTK96YqaqfwnAX5qc+0cB/KNX6nvNxKzHoD92L6knZPm0X1P7gN5Hk5BqyWG08cE7chMTY9rxOZriu/jvUd/LnKupLz8yhcHLzJ8prnduF1N/flTK7Av+nIl9dJ9xl/8eSe9kXxmw+IFvSdEqn3flxd+1HSeqsW4q6+pBv/PcdM17u6hTNcN8HdOYb0O3CaaY97J9gGYYZ5h8Gu3r+TYhm/Ru57jpE4G7/RdGXf2NnRlXue+v+m8pK1Fv+BKQjk+uxqStbO9gkrqwQ07YVw5Ee+KgOueVn14ZJBv8d12sJ4u5Wbxq0IuQTrZdoD0JWvm+4Trqbwau6NTAzdx/7gkvkHIjS25IL3F16L8Fb7n/Yn/K6Up/88mSD6/vOr3wiVlhUQG05QXJ5MRfHnyA2L0Q4KRsG3CQXi5LA5K5XrsgBNncSo8x0ePRSlclZUStkZtTGJ/EDd+oscm0rmRX3BxgTCh5H//dwU2UlSBU9brrRHEe+bN26iT7VG5mGEn/6M+CUTNeH22PGWbSk8aN9GOHvn+Em+j7d2+P1/qMyI1hvey/RM/7tIvzqQ905gONPB/P0UCDBk9tedgEJy8r6/2HUulzevtgaV52HJCvOfPYo+wqv8Lo0zH/Xfbah6Pn3Jzh9ayelf/G3+cxrjGN3AyyPGk0NU3d2veq0V/RnrMD43XZ4QndRLY9+Rni95zs2vfht/i+3NUa2rLWJ6ZjG7+GMS/r28Ws7aYrFk767552wcn1c1hFFEL7GOsa9dzbF3+l90ive8fsBgAybFzU0hArEiKRmnMWV8LHxJ2zx8s2RpQtkdVc1nUkM70rjJKX1TP2Tbm6g5tYUbuQ0H1RDVVHruLobcnNA/4Lsryz0SX/ndXLBrlztgRgLDtwFWTd3b2I8RH/zWRPYvTsXGiPM25WmKftsRzL/SnBlidwk2GKXJ2xb8bVg31G+3PkP5WhPX54f3oxdbwn+UhHIPVV+WTiIAdcihtE9WcuvY0miWJvhVHcgVBFHOjGuCP9TfpObjJMI1djv9j+NK7qoYjLGWahNOcmnSCmmCaJyqz8N+Xmov8yruKkub93k9hn56zrWi4J8LpGe872G2PZbg/KoH7pSF95X75Xzs18f4Rx7nu6JnJfR4qiD8znA6Y7uIllO1dVj8P0Pv5b9Tf2Cp49wYz+k8DVYO1ZrrDGeMzr50r08PO7Ti9bynjq2z4cCDGfyLVYFX98qsOwZLIT3EP+LMaI64TsdG6R1XeFm6ysTI6FvJ6xL9NzAuMUz4GshvyQHuUm1k3YTskeYbzCzVleZ/5MBvsre8/al+Xvbo/Rvll6RntclQ0Tktgeh2vjBW6mmDNss7Kvao8LlUdpXHI16nGwYp6LTkFoOx/HR82X6rJLPXMfVhJPkOGeVkiogkZpZTXbpN4L3MSDZ7gaZOvor21kNNEjId9/6PP8F+o/9F/m+wFjnl8/aUSfUGA9sXQ0EuZVwPSd98bKrvuefCvzuuPmLjHR9LfVuub1yPe8WUfARDGXguU6qMi97SJytW3Hfca6weuD3KC3KdocxT2NS/qM0/67yE3k9f6e/4PSYrL6PaWXTMwUyG6Ed1JXHWfaQ5TfLj6TvMkLqJFJif+dyg7vOAY9h7iiXun2qfRzzeRENsPoOoqMq7PchPLc32R6WZYxT/23wsX5jFfmaiJ7iHE20LXEug64WQ3Oh7hB4CbDSPm0jzviZmYT5aOemf+ibPOnom0FfIobUJ6UzNrjITcRo12LnsDN0B7p3NX22G4uZe3xgJsVxtR/jGOFEcTVvdxEvAlXd21+JX03ONtG+ly3oZSXMFDMalCXM24AqTvfge4kx3csZqGVYd6pLG87vcaU7u7WBtECre91XO9STdY0rrbCjqme4xhTJf48V8fcRF4V9/jPrpmb+cvtFLf2n8+vMY5cxRq8/3jHy3UqmN0TIuzuPH8AQwMma5TnfL+wL4k5w1SWvM0wjb7vR4/1Rsyp70PMARlXY5ywXv9v1Jv3Nz6W+Z00jH1GiinLw9nHC8SPuRkxs//cLquhzxgxcR941X+rS8Q9Hf/HpVdt/vHs9LqljFsNLlvaEgnlc0f5MHgGwu8g615nVEBDvbr589N0BWOCKerlspGbJaYjbrKlfhOuznCTYoy43tF/GTcR4ymunuy/FTcOxntiZJwHGI94nWKa6eVzC3+e4Wap9yymz9IeV+dW/otVv6f/HmiPZ5MA7S65u/C3QWuejwN83l6+rF0pJbTmeVmd/4ir1gF+Ed33viX8Gb0rzJvD4bcjZ4wNEy2n3+h7SKo6+PwKN5zfAjcy5Ds3UJ4014lQwwTs6rm6wo3PX/TflvsPAN7ezX8hboI/o//6IB697bS8suvbv12Pjxv36YS48cKd9gkqj/SEZXPVqpOLPhni5qTeFebSF9R6pWKiAiNX8zZVdprfIbSu+x6MDRv7V3XKVcbNFuPmDm4i5s/ov0+ZFHjVdvnPTq+bmAG+EVp7o3Mxn8mmZc+pzesFdwfzMpcxXk2JfZzcKyJXuDng6oibLDVsB3pPYzxKMvkd8RyVvxpzszrvSJ8S4yPtMdRzyZ8n0tkY+5TtMdRzmser6UX96SWIw0twvLua1jI+31MYRAxbsfuyTg20ziX74G7bxJXN9eb5uPFE151hJDw82qpl3TfBBODdD89xM+Nqzs3AFeEqG5GHyWO60cZJbpqywFXg5or/VOuE9jI3F/0H9QPV5NMI9u2qmKwdetef84m63fKu29cgGkbpUx0JZV1+0abaU5dFLOS+n8SnUB1WTusx9bLLNgVAtjmmEWM4N3Bl1oLe5TIcJ/3n9Ji99/Q3VjbwJ0Db9Ym5WrSp5/jvPa4KXymm1+3KuGn9Jg01jkXePpZ3tmyJVz0sO8huUpcP3SF7Re826j1tH2O8g5u77dse4PVBn9zNzRXZj+Im8f0jvF7hBq/g5sF28em5eWGf8SHcSODm3BquNPkBxux3lm/Q6rky8OHtq8VWYUQfDoNcBeyt+mGgcYRDh+MjJpnkSa35bMBkeT+kuobRcNFytBk3DaMVVIdJAWzoS7LO4cjxACuuMow97yd3zFV82/8x/xW9kZvoT2onK3vgh+tjvC700L/32MeekvaJgj4wZ147pKxNEUagbpzWuRpxZL4fj0mL/5yrLfh+1abgYmOlN+9vcq4ipjU3Me/9d4WbGVeES+zXif6GecQz/Ddv258hfS1lfCRJ+V+T75JwK+H8cG4hywOMrOwu/nsSV2QP9Z7E+FT7vrj54uYe+764+RzcrPR8Vm7uSQJsm/Zrex0jKOBu4sY8lwVscif1d6KGBmrtvYxWb5FVVexC7xWd0LvCHD9m7fHwoKnI8bsiXVbruz+C9nmGi9y0842rk9xIP98HxFIxKnaVbtegt+I/6c81V/3Yiqv39J/5qmM69l/7FHD8dENtR1628zrq8bLsz6l9ib1c1op0zLT5hvO90LtwDYnL21JbOcnrCrOAls9We201YsYVJ/OJySrjvMAN5yNP0N4PnvEfc3XGf+t4VSgkxWVLJO0pYc4N5wkh++8CN67sZ07fA8YT6XVLGdnZEo7FMkjKHsnGY1RWIHfLHuq9UvZVsvHYFzdz+S9u5vJf3Mzlr3Cz0rPScRXjM2XvSIIyWPGjUV4elOc7kdpqGQGXvIjUhymzZY/lqAiwqT/vPqAswKj3BEYobMttt1TLioa6Yh6gbfXv4EaycxXXETdNbXLbub/Tcp0bz2vuv2OuvOzaf0i5OVUWWgfgcof/6iog6ef4Mwn5gLk/vRrLen+uMMc2BfW3gsYJYBY3GjCZ/ewvWtZ6l+8jJvNnxiul9oSUMXXZK9wMZQNXw7nT/kObtJnvW7u5wk30feq/ACT115iXA72n+5tPmAT4emL2aKr3AwC7UFBwtXP1N1DClO9GHcqKl4X0+7zPl7WFHnPZmX0se8m+z8aNAKIfyc1a9nNwU/Nf3JzgJmL+4qZxg8/Hzb0pLmUsd+nt5XTLaztvx3t+Llv+9l0Jh7vZ9NvLZHru04umV0OeZaOenXISuIh63p+bHCNC/orevGz8HTFFWXFy7+m/zJ8sO/qvFTn0ffmtUNg7Qn3gz2URlhie53UoK4C4Mhmv3R7/JCjj5hHf9+PHvHau7PppPD2NGwj65hh6ou3aeW1LBrv/juLmDMYMM4LMPdw0VJe4mbepr/Se6XVLGTdgtwuFNUq7JgFuHTe0lLWBiOWvyFrZR2XVGsNF2WXZR2Q/Ezfyxc0XN1/cPJsbV/YzcXM52Q5nZWBjukSAvnwtLLNqZW3AUbCV02XSKGITGy2nu9uKGSxLevlbmrwl9lh2hnlvsoryVKla0XBYkhDfIrleFa3159xY2c5Nhhmj7MCNcZdzA5Ld23s0GRfH/lQtS1hH/xE3lN8m3Iz+61Lnucn912QDV3akxNHKf2RfKzvjFY1XWx4X46YvKTyOhZV9A68nuNkjF6hdgZM95/tcjyE6wyu1C1C7FgAaYz2XPYdxP9VnXPGfj4Ur/uv53qfYjo8nuWltSlub97LX/Me+/7RJ1cj87tNLlzL6x6Tj+VXZV8mWPzKWPSn7iN6zZb+4mZf94mZe9oubedlXcvOpZGPZi2l8Ylb+mhKXl65a2jmPKdutzMk0vVavctE+OSC9Tk/DOObbYelbffMx/5Pto3P81NIA1R9nuXH1aj0u/S8D6dxI4AawmSq/v8NVKCJ+bYNSoXzEbAPD1H/BH6lNznYur9Ar3DiM3lfM1cBbxlXL94lLn8x0PWV54sz3GLE4TOrqGmNhYZ+CfG2TIeYm1tOBbBEnqe5tZtYu8nj1NylieSvbC2X2+fBRzhBXJ7iJGAeuoux1/2WxcIabsU0F/8FzdciNndOI65r/Ypv6rOlrKeOj6YyXOTqvpo+SjWUfkb2SvgfZL27Ol/3iZl72i5t52e+Bm5rKwNtfOXlQn+VZ1v9IBkMBpj9fR1/tBSBTEa/kx1f2dlfd9Cx4yU45G62ARqee5yYqbNgCV3Nu/ME2aNN+vDwsyPXm4fi4/4b6Fv47xU2o817/uZpsYD8UrIPbBR6mOCqMA8xH7IOEQXga9zmmwW8L9XOMSSw0TFUiia9ZlxMxiVrZ89zEuLFj/VNoPLM6x5UH50+e5caObFj7r9+SmKt3efLfjNe7+pvPlr4jqKv0oomZor1I6JbJWC9n5UKeLhTHslz2HWRnGB+RvYTxQW6s9d8je699j8h+Jm5avV/cTDH+OnJzFuO7cRMwfgQ3F1NbjgNvAucdrCEvAHa68yvt3zzf6ylLU/cyOJFeaqW3Y+TnM0lZBWTL9Zps/450xygw2vud8t2w3sGNw6iA0KBuxQ3LbiRr9ajIgOM0NyFvth5xw8m4AsUPIO4TzJe4iWUHrlb2Bf/VCjbaUbBJi2BfxCfb13DANhApZY2bI14dZunaWtO12Z7A8Rbtiz5QSGv6PC/OuTnC2Hkrlu4t7nXA0WWNZ6dXlbi6wE3Il1e0SK/j6sh/gSvzX5WN7e08RoFiB3+qL/pvyY2Lm9F/p7mZYP6s6euJ2YNJrfenQZ5uvnHEPDZXg/s5yuIlsq5sGMS6j0Yeyn5x88UNfv7cKHxv+mvIzcq+a9zoi7g5l0SAm71rJG3sWHFKg4EhzwPXOnhuo5E+xFQFNvo0QayLX8xXBdpmLGf0hsFXLCt0i7vgqBUQRmmy9I6elrv0SnWLbU1/LzeVVwyYIldUF783qIBsfThaXt2IXJ3nZuAq8V/GzeA/d3MD2KH4dtZ/gZvIa+a/jJuZ/9Crbjcfel1IZQ1z9Emv64hXhPPUpgCa/Gq9aWD2lG/TdYyRm7FN2Yje0N3re8Zs7/jFCcOaG2pTtDEScIGbiGngytvXuJpxc7f/Jphj343SHuf+I65Cn4gj/93RF3+l90+vW8oIeCc/4vD3DJZn4bpazxc37yN7r55Xyf7cuflI+764eR/Zi2riu0Yr1UPeRhDDyfydCT8cCXoFeVUH+fycjVoCDtrowPBnS67aPIX5uIub7GTODec3wmiyfmA4nE5VnfefHHJDQ8+hMpW+mcV5vf3kiHniv8CNiz+Hr4LxMyL/DiHbMqSql2Yoj/heWiEdy2vAFXhl3of3qsLg/C7fhydJHdOeSCU44rb1C0xdbz85YJaOKcqzz9bcvIP/0G9EzLjSQXZsU4inmasH+uJPlxTAPmtf31d64a6M2u54tGPMKV0IWi+TLbV5VHaLsqHsI7Kfwb4vbi5gfET2i5v77fviZo7xs3KDO5Ji23Yo6ZIGo+a3nrd3UPwuZFVWGGYfUFm+DyISWaW8XNQbypa8lfVL4QwHUyXtbJQ1/E/gxsli4Mq4WXOFztXWuXoKN4pS1xVuMv8h13uem5nsSW6mencqu+BGJPFJ4r8lr+d8b7wectPQJG2K/XfGvqlPbBKD1v62U9z0vGv3d3FDsru3L+0zjrhpkmfbxbV4LY91jSviMWjP2pTn6pF2IS4mP2X67PhOptc9MbOljECPHgFcK3R57Xlq0M+X1efK3oPxEdkvbr64+R64wbNkfw24eW/77pW9mAR1Lkk72SngnhKNefV56QMSE3CD6ZCPH9O1beLd8p/TemeYrawO9rYjFZdWHPxdOeayf5pAHucGa24MY84VY/LCD3Mj93HDT0pGTPf4L/jrJDf+yUnMzzEPZVV72zK9zI3Y6SwWDuxrmDuOM7xC4dp34yJg7FxcbcsUn7Vvk4zXjBvSYxnmqrflK/GJsnRxxtUZbuj0Y9xwWQWUJovSfQDolCuONs/VndwkGD9z+nrH7MHUXiWW/tdv2WwNmMLLgl60tuIXyHLXFzs7LpvIjnpWsr/u3EzKfnHzOblZ2dc69y9u5gOklSzr+Szc0PlLqQ8E+t9uZ8zD/bK84VP0ZUhmTsfe5eLVOt6FP6t3jVmYn3pCwu8uGxGxIiGMz+UmynqbGAltRV//iYM+JPn34IZTOhhO9B5jDDYTV3Zuxo0MekI7XSRXVoBys4Dq4qZJVj5sn9OyBOgwNb22RM9G6+Sna22Z47Mf638X3ES71OefEp8B01DJu3ITsItvywLPI3M1bMryRG5WMfeV3ie9drv8Nr2tDcI9u0eNphBhLb+QRSyLSdkny85axdS+leyvOzd32reSfU/7HpH94maN+ZTsgX3Ad84NPhk3mQ0HSfzL8kBcelOfZoGwuKGA5bXJMrciAt2Vri2jrJgdwkMbrjfqzZYLZRi1yXet2pfcKWGMstpx8EeT352bxgWj7nqMK+XJ3UdzE+wTwtyHqme5Ycw9Oa5OcpPVexc3O8rTEYl1mYTMZVf20enuN2DWLpzsjjK/EHu6bDxk8XmVG3VShukUNy1OUJbgWT+VtuWFfXSu7OqYxWfk6iO4YYyRq64nk5WMm3ruIW6mMfdJ06dfa3kuvfAds8W5Vf6oXkurOMqOP0v2KD3Lvkdkf525eU/7vrh5H9mj9L1zs0rfAzcXqtvagMEu/GXoYLuZ7aq1nM/b+w9tu+2ah6AtQ1KoW5ZUyo4DmSKrNIApZaGjbK63DFcYI+Bf+euDTcA+ENsHOtr11IGdjTFpqFX+Jpiexs0wGejc2ESp6GmgOlfBf0KyV7nhgbnZK6ynydZBr9kbMGVczbjRFos5V4wRLo4S/9V6oYYZE8wl5pyeDX0ZZ6tbSLbYcNwuDKePmz7YVmzbiNl8oiw7xEn1U2Lf2C4UW4sbBbR/QLm0MXVL8kSQxpyqQjfx3HDcSK3LvTN1rl1EH0Su7LMJacxt8gA3sV0UrpRluV04rnZsG3GjJ7iRO7gJ/pMYr7BG/DmTfG54p9MLn5i1HqFfG5KlO8vRwBXZWNV7yT6C8VWyX9zMZb+4mct+cTOXfZZ9MX0W++5KfUCLOhiywWRTE5bsbAxBDEEtI3XALF7eSvWjNqCghaBSytp1XKqNfhlkleElRVXvlmC0AU4bvIj2uhQNr7eXIFpB22gjYIpcPZ+bbl+DYnJtENhhev89zo0dZx+0cAyhd85/IzeMsZUJXHluIkbvA+efoKfgYz0A7zxomOFrLPJiHokxWNLoe/sMhcUNcQd198Edl9U4IR/4CXuRt5eapDJg5UbfB1zSP7vgfVknBDHmEq7accaYcjXjxte7RUwTrobV2sF/17mJ/ZzHyP4zD3iu3ouba/77tMm6sp9Beu12+cBj3r4imzSyl8heSV/cvF72i5vzZb+4mZf9udl3twobgKMNNux7Ri2d2lyEB3LJgMTprH9pkLGp1RDL8uCU65r9pWyC2Q2m7K/uQ1mF2DgK+1BPv6udyY7pPm7ieTNJFfVLXuoER//dz43DMvjAVwXIBf/lNbDcjJuIceTKxLJ4ZT3SipUjUY/ntf+hZWxTPVS3pGeqj3ScaJDsbOmjNBOYL8Y/8bnVG8u3uNE+Ocn8nHEV4sTlNbMvJt5VcGwH/ektQl25/65zM581RP95DFq/q1dOvA83J/33iZMAkK+ljA+mw45zll+ls7Jjh/5c2VX67LJf3Pz6cvPe9n1xc1z2mbJZ2Y+SzdNN9lZLHPvYrvzxRfY45hzz2mXRJwyW93eBtU1+VAU7kMr28h1g1OMwDph5clTQsH1utzMtEttWlg3a0xw9I3vIDQJmdbLxjYJNeBhZfhWOhND4eg2tyR5zA8eNYieMZQIYY4NloQrduv9uFWMmywPSY25m/qvcUDmH6cg+3bFJxxh9YAzm3Oi8XdS4kXrOZGPc2Ow6xlz/iHnB5vVea4/MjarH1NH4euxJn4ubiWzX26TX3ETZaq9xs0PTuDFO+MmSqjb/mazXe85/8Xxm79p/Y1luj6NeOccNgj+16N3Fxyu3k6/0vull75hJvCKcucLMZv1XZBV+UviesvdifJXsFzcP29fW02s89z1w80G+/y7j5oubU7KLJALcNhsk1aoUENnb0Ebrvz6fDyKyc0BfMtTqspcx6qCrmSHAzcrW801vHMgiDqYjRp/3dBX77F0TXpamZkCF5iaCCoC5yWSX3ByVDdx0KFQC7V0WybiqGKPsGW76Oc7v7R2X0QfdiB3ef5JydYWbFVe69t+BrGW2YEhm/5qbJG6cLPtn76dVIVt/d8jJVhduyvgfaY+9cVtEtfMtbqwYvd80kWWu7MwpbiIu62/q35uVSbjaNuqfSNb8ty385/Ue9xkpVwpo4j+JZR0O/m3+01PczPy3xbLxevQZ035c5HtIn+eJmfAP7b28TPJ3yXLZJ8keYRxk39m+mH5u3ITH8r3jfH3cFBgl78z8RHEjlNcP5OblcfNdt6kL9n0UNykxx0mw1/ZL7aTVFt9mWOXHJ1L2vorYO0OtlKK/w9Q3R9hAAxcJ9Uj55XExVkszjHRegL7ELrdXA9VoPPl6MGA64iZiEpTJTy/rl2JRjb3qetffc7OSXXOTYUSru9mX2KvVf2VwHP13hqsZN4/5L7PP/+oyFoPF3LPc5JjV5dl2q7v6SAKPUa+AMB1xk3NF4ZKcU//kpr63OAz+o6yAVnBe44bz3mrrJEeuZFN0r0xkD/035yaWVeOGzlkb6ByEdsEmxLqU6jnJTeQ18x9gTzYj+58rfS1lfChpf8G0bVOL3jPEPF9E2tVL8rKWRyaLtWzo3J8ve8G+u7g5wPhz4KY/24cfV36euOG7bb3//KC4OWsf6ML969Km3sO+D+Fm/3zc6PVbkwLFrfb7ivEpS8/337EswnmW3QColjvN/YlcwdysVbVxqntv6kivkjbWm2HqiKztAyIeh5PlnQshU/uOuTngVYH2Dg0ArZM/8ryXrVyh4pKpnqvcxLIlbZULfh8qyu5L/7Heq9x0//Qza//1utb2CdVlMbgBdUmaLGURZCOvc590jK1dCE7zuuaGMY6+X7cpyie88lLUvpPhrF2sufF6728XMcY0tAvm8QxG5uZMm0rbRX36b/nRf6SX7DvDzRn/fcpUL2c/h/TapYx2K4R7MO4Zb5zXcD4MIqJsLOv0PFH2dkX2on1f3Eztc0sGX8SNve9hsiJUpnWa0jpGBfpE8j3j5ghjK6r9/LN9/0nj5lPYd1V2at+Lubkj3SQfvLAqny9X2wyK1gNu2dHWdxbTWpGEvLXJjdZU5nrzfNerXVb7Uid7X8fKqqC9vJ/aK/2Itjfu5SQ3OVcRU5MljDfRtG6zSiqGurM3cXXATcQcuHLcAG1Amfov1LVVf5Z38Yi3U9ws/Ifcf0B512bpv8T34POBm8ZjJVcS2VYWAG+7ciYWMvtu22rJHdoTVGsXrk1R4S47xsLltiza/Hm2XVicZLwul5MeYWSulu0Cp/znZR9vy1vWLsgnzn/wXHHFj/vvMyft17HvPL1wV0YaqEKQb89cz8WyS9mzZfVJsvdgfMS+X19u+JV4Ky71Xz2QfQ9u7POfHZMG2fLbML4ibjrGKttv9ZUi6GX7OPXnFTcPy76cm3e276BdUADBx/a1ZG1FGpd23GOlL/nUskWA7zBb6Wxr7/ZNrHam55svpP9sZkrU204Nm2RIlW96xPSWsszOZnbD9wcdY/kdfXKOm46RuQIU/C4Uc9Ux5lwVjK1HLcfKNojnuLngv7YAgmRX/uvLVdEBnOaGyjII4ir6L3LV/diVlycZXdYwlTy1ffSBdrumBZ94Hms/HWLhqn2CvQzWB9m8XQxtStoi1uIDpX5g0pad75NYABRb0032AoSJ7BOvx23EYmgn8XnY33CbwVG78JOdmf8iV+e46bLWZ0BoYxLiZtWvtS6E7HP+gwC69l/MZ2W/0vull0zMBOUOgLagLXcdbJchAOgfWdxb3pedy27bkSyeJJuVPSP7mH2/3tz4jqP0Mb0j/zhupH0kUgDqlU22Qyx9pnXnHxs3e5X1nXXtwNVqfT439sHQ+2Rzbt6zXXxk3NzHzQzjK7m5njbZqXGo//BwyNs7R2Zjey+qYrvVsgrQwJraJKjeZl3lHcDePjCt1Q9KejOM0vO2ulTq7me7AvUJACCNv/KEsPtpSzGaXjtaMQ7cRIzMK5etXNVb+I2bXdvTuz7k2sMgd3cDzL3q3RWAbBNucn8KFLIZV7Y8LPjPcTXz394HlAAUe9lRTwV16U3CTcbj6D+I4tb8R9xEjI6r3pff0PUyr/ZUmZ+9MM9lUmI+GeOmyxLmtF3YQDz4gOLTWBPDLiMms+mGImvfiRMI9r32Ce4m04RX5/uZT/b2hNGw2STDjvWbFdqejA4+aVzZqpQZNznGFjf2BfV2I6N43LcLn2+Tt9imBv+Nbbm1C+fPrE0VrvgGL3Pjo4v8V3FM/acW63P/zdvU506ix2W+h/TCzT8A/kClNc1+18DuRHKeLihHsm7sYAOhUsC+Q2J3uY70Oj1O7xxjKvtM+54oO7dvlN2ogb6Cm97r9kF873wft++K7zcqi3YegFro0USDLkQfGTcbyXacVbZdGPB0bmLZZ8TNZ24XD3FDNxsyWb74fhZu6vDzUhIp75i1AZiNEaRO2IA+wOIYlRqjddAjG8Vsw560owbRb6PeJp71SUcpW+xtdak2DqwsID3PO7dp3MlNO+bGMLV9tYEcD/ykTjK1DoqlceMwZVzRb2ffxnoqb44rNAwCQGr93HeVCZDZZnqj/yJXwX/GjRIO5kY8N51H6/E75hg3jGnkSpfcsP8kcuUwsP8Q/Gc+0WYfBG3g3ScbpRbjy/uE4oYwtrpmvEqtVxNuNt93SOtnUG8oEqZWptoX4uR26xzsGjGFdlFj18o2nzSMSpOy3q+o2qqEKjvEwqRNmeykzyh6zfeVqxgnxFXZGp+nVIZ15b88Pk/5rza4PfrP+uPe8eFWZUdugv9Cmxr8Z+0vaxcz/xlXFlCfNakel/kO0ssmZvZ4VdpX0ynSkOUBUNlDWbo497sCgAW7yBm9ZaDCehHzE73WRN7NvpfLfjw3Yj0taJBWe3Y9kH0vbnpp6hCsU2SMkDbS+Oi48Ri7rtLpfz9x8320iztkV77HSs8LuSFcl1K9iyttFFAHZ+F8y9ISTJEyeCvL3wQ2efB8oA3G6tCm1lYH0PU4pGy1rk4PxSjxb3pbmTbglSYr1ujtaJs5WLxbvm8H3zELbIMFqEy5gOztUwAzblpfI0o8zfzfMQKgmyf+fRZBn7B36jsXTXbCDRPTJsgpN9GfO9lvejoO/12xMW5G/3VurvgPFq/GDbuEIqxV4biR+qcM2wffD+2KeZSQz3jluKGyHEfw73JtrVqKn6kPrH8m2cN2wWUDN2SnSH3P02SFZIuRnpvYpqzfSvsM01uAt6f8gtCman9EstYOSr+I2i9e918Zs6z8V+0VXgLr46a4ti77rOOcU9wMefZJt5XbhcNUVXhe8bmTAvHb799ret3EDBbYfDS+PhnyoUNsbU8A1VG2NQVBW25RJmW+Yaz1RoxHmHu9z7Lv88q+hhsgdhJ8AV/Lvi83K4zxbtOr4iZifEW8frWp8/ZxP3VV9h3tuzNtNmUqo4k6CIo1R5vpmPS8zMrW/r7POYoOe3psVdgy36jDXVsSvTnOgEMCRgH6MkEd7LVt4AFtu+J5+7QNikcv3IuxDAA3s9vqF7gbz+2j03ww9d9JvWA7dOQKxHvCVXdOGfw2OO/uP+1cDZjmsvYR4rLMLHJxoPcAM994sPgp6uxpVJ2YwN8A8R9GNoyzNrVoowmvzUOa2Yt200PaNXF8essWdcGAUXycDJhJrk6xahW9ZqurcKOdN7antpNbimqBUY78F7gK9hk3G9l5hZuRqyTd4b+v9P7pNe+YiUJoatuunxD4zVqBGMgSjlheJJMtncC+l3q2sK5X5B69/aJ5FeMj9r1OtpT94mZuX6z7iuznsu8R2TPcfMXNzyluriYBcJO91eLe2UiWD53H6WVFy7Kfn7QM/242ykB5ErSJLc/rzxx3qrfr4GvEsd455qLBv2NUUsOMssxqFzsvDpOzT674cIUxvjdT371DvZ5qkX2zMvXOUuo/xOvp/fHNg2LDpPa/Ajcp3CgEWuPmff1XrO72Stu4IuqN3HDeMCOUnes9g1Ha8jwlPeVc35ZfMC6f7ZhM1mLuKjcBcx1kGSbPTX8aW55UlffN9nak/DJcfep4Dzf9nCroXcl+nrmydibQdjNi5j+WvcRNxGwf9ib/aSu118m8+W/NjZd9zH8irAdOz6dOX0sZH0tbe3Zb3a6okzXO9/P9kSsoHA9ktZaSHsSlArujcaz3OsbYZD5Ktplm/9wlq7wsIHLxa8YN6ync7F/cfHHzxQ1xcy3ZO2YI/S+XAHiJZswjnPNPyxVAX/LzA79E0fTXnwIoFPGJS1vGNdioTbDUuuMMRjSMfTkgL4FqfqhQBMCmfWC1wnTETcQIqONKHMoqK7ZdegGkQBscGgW5/xjNOW5aWQXo8eawjBJCMUpf4r7uvzk3Y8x5WeOqvcdYK98O+g0VrQ9OpNoVfdLR5xhB6LJ2gcpFr7CFeP1h2983arTX1Z/i+Zi7wk0/57mxmGuTDyspqO9I7a38Zn1O8gS0/7rKDfHalml6TMyVVHI26Rj5qWz0X+fhAjcRYw9XNre9I1m48U/6M244gsa+6nx/KuibM0WuCN7nTd8FyOP00nfMSuq9ibtIcMMA9dvZxTKTrb+tI/ABSxeWA725Hso3TEoYr8hG+1ayJ7iRx2QHjB/KzRHGj+WmHNYvbr64uZub9v7ARPa+PuMTcBOGIGcT37X31Shc1uUF/v50P9cvCX0JUufcBp0Y7Kq7v9uYw18vElysW9J8xEiYxOoZZe3juXazkJ+aHWE64ibiKFwRpon/24Sm8mXvaSvxl/vvOjcdLE0UpeDsR+nJbRW6z39zbsbzgtF/iSzpMeyNbWGOxiWoZYOIA26W+cZK+eW4IE6k29AwqsBeyOG6VZmxNTdIz/UktcIxbgo3/X01dTE352rFRcxnvHZORq5K7VvbklTpZG4fY+rnz3Az2hfju7/j6ifVTbZ3fBNMmZ4ZN9f895mTvOiJmYj8eQD/CIA/AeBPq+rv1ON/E4D/BYB/H4D/kar+F87U97onZnaBVsvb795IjeJpfiVbA7fn+0VnWD9/pHfQQ3k8Knunfe8k+1puNMh+cfPFzffNTWrfz4GbOy6AAr+jYKzbyij9Luc15PNzNmBpO5FKXbJIuNvO2AIoBLzT2NRmjPnmhynG3WFqT1HSaxU9s6gFpFbWfCj3cJNjbEvJxP9t18wqa58hUQF2KRtEzMpaOseNphgbVw5Ttx2oO8Up6tIvSa7ra//NuYllu//s2Hk93V5qgk3W7Fex3fjsiaAk3MDXteK1ctfjxgb45aR7aobOGxB5LSi2qu1MzE0xCoa46ZhQnwoxV7FdCHHFOrtX7ok54bipFfNukRxzesJ/nasL3KR5fz2d+6/KUr9mmNRs7NYccDO2i4Y58d+nTq8D+FcA/L0A/slw/K8D+IcB/Mn6/6n0onfMUL9jhhZs/Bu4lr8uWzvDq7K147oH4yOyH8aNor3o+sXNFzdf3Hxxsyp7NYmgL2Uk+XFggHTQkJUtq336cEI2vxTOdqNr+Vq5wt6lIr1yXm/EOGL2g1PeFS/q4dlN+XxC15zdrb4XY+QqcuMnWr02+8VcXfHfCnM5N/df5Ool/sOB/47qDrINkwI3ArZDL2Eeyk64AIrftwVX7Zz6yu3jFg/xmsSNAHW3wdrnJGXb7A3MlT1HWk2qT2BkPTe0CXj5tEvO5bP9N2Dmuu/0H7TXjTpRfA//fSWfVPVfBQAJBKnqvwngfy8if8eV+l64KyMvA6BtRQHAArz9k+QfltXrsuLv0/B2xedkP9K+O2SbfV/cfHHzxc3n4ab++6m46V47n/qudvF415fl5/VB/Gc0Cj5mraeCvtd9u1vvCjMNiyTkm0SXtbw9maivlZzQcwWjNgAZJv7rMfVqbvIMbrJyVWfD9X36DwvM/jdNKQTtRgig9T2rFf77fS+HvNbfUv5Rm6Fp2Pb+tN4jzLwJSM6jm1JQFeMzvJWeKxj7k9t1u3iW/873c6P/IlcdpMAwzbha67qf1xcnxXxHlu8svWhipu2JmeVLgFMnuPWALwdi2feXzctmeT0pO8f4iOwXN1/cfHHzc+am2vNEbh63r5+/kjbaldGqUgX4PY4hz2WbpDoYIqMspyi7Adjr94kyvXPZFcY6vVI0fnkJ6ZG9G8qSwebfu7nxmMzeBiuMs5ayCsgmj3FT81P/Se6/le/LLnkHXF3BaPZC3T4/p/zXZM9xI4Ebezoy+P6U3qOy7HvtA/dEVgImaCHgqn3Hbeqk7xXtqZoGnE/1fcoV3JM8Lpv5DwrodtF/F9pU61sCV6n/7JgWGwau7uJmLP/ZkkAffcfsD4nI71D+t1T1t1r9Ir8N4I8kcn9RVf/yI4pjes1SRtQlLdLzWn/YNSPNh7L3y5amd0o20XNa71WMj8h+cfPFzRc3P0tu3tu+e2WvJkFfyng3TqC982BlV0t8Msymlz+2eujDA8xumaCgDzbPyBp+Le/HlcGf3MWN06PjZituWdKCG1DZXW35qdzFzciV95/jauK/WJdxZSUuc/NM/wGI0xfbgfNQL2V2KEC+P2wnK/vQ7bFkO5LuidxMz14Huva05opsjplWSEhZtmuyw7LdSb75nrl6wPdA4Yr7hYbpQJYfkO160X8n+xsrsernBtnAVea/U9wkej51emxi9ldV9U/Nq9Y/80jlV9LLljICCthHQGEdWw+ZVV6g0NOyo55HZM9ifJXsFzcxD3fui5svbr64eUy2DD5wZyp1SZl9nMPZBjv2/oeXlQNZ1CcRJtHP88Ak8BEwaoK5693bEjCWFdKLqb19u/+4R95ZbqZ6BYNPZSIbMVp509gmiie5ueI/VMzH/utn917iEjdz/0kTZ8yRm5ZP/OfbUUEmbXv/uX0qAlt6LCBZ1CWFJ7hZ2QeoW4rav1Q0t894tYm9qdtQx75nfR/bVDtS4pOXNsvEvhI3xAUt07aFhYz5DDcRI8fCxufJf6PvexspXHW+y58D35/ob/r3efO2a9wM/nNcef+1mLunL6b8V3q/9JqJWb1g8B2duHympHn+iuzwQc4HZFeYHsH4KtlfD256+uLmi5vzsj19cePP35fsHTNFGy0c4CoKy4Bga3JlkHDKxqqHB4NtaKgaSqv/HTFaXaRXAqah7IGsDeIV5UPYqgr/We9z9nm9e6mrWXqOGwjQJpnouAxN5/ocN11P7r9pXYls56og/ibAm5abHte4iRi7DySRjf7bJv5rIu2JcJ84KOkZufFcaI3PUq3lZ9ws7KvY28BcaLKtaPXO7ItNvH3flGTXvKKfd7/LZKPsnGrnir17bI9p2/VcNUwT/53CKMRVXdIoif+2iX0uAtl/R74/6G+ktmVvd87NmqvRf2lfdfGa8SnTY0/M7k4i8vcA+CcA/GEA/7SI/Euq+nfVc/86gN8P4EcR+Y8C+LOq+q+s6nvRUkZt2yaXfL2I0J2xGb3xXAmmPliwfCobzg2yVnc95vQ0vTlGzh/qiedXsniAmyY71j3DeAbz3PYT3MRzj3DTZJ/AzQk9ZzDPZSvGJ9q35LXZd4KbR+yb6g3nz7Spu7jJzzv7phjfmZvoezzAzcSGqxgH+yb1DtxoPflAEgA3eseM3x2R+v9OZXsi7kzW+Erar0+eO1VgEynb5gvaEGwvRWnw7zGWY/0dFNZrid9HUicriWwf0LHtexmplycEF7lhvZZE5tx4jN2+Xm/R9GbDuEpO5j/Os3123r3j5rgK3JCNvW/bvSyANwA3bHXAOXLDvOX+6/HNXB1xY/Zx3YLyZKlxocV/O9C2L98Mo5R/Zm2/xCfq5KlY7rmRwE3uAxt82y6WQrYaJn7K5OzN2pR22X3gpscry1qbMl9rLW0xZk/LjJvtiBuENqVlsrQnfFhNmayS//gz1YLOmVDZfWJf2qac/wJXwT4duIltSl1b3jjWtfTRp/ob9B9Hvs+5cVV83qR42eYfqvqXAPylybm/7Wp9L/yOGRCv9hJWwGaPeyHwHzutQejuhAKIO4u5y5m7q1Vl6c6btLt0JzHS1dwuhAj2HWFUUtPuduhFbnzt1by6pCXTO2C0c6bB7r4FbvQCNy5PatE5PsNNu2iKsWkZbZguccNlnf/qgOQkNynmVHafy6b2dfwr++TQvj23L5ZtmNf2KSSPT2dE4vusTbX4XLTlhJvYprL4jPZdbssUn2e5Yd+7IZ/sdUnMBW4YY/NfaMspN2uMHFfG0yluVv3phTT2+zb4KPmtoh+WKomJ+Vix3936UdZS2YreDzCU9SY29po6rv4NKPZD1MuYdmqtvediBNK0+fZ5ihuyr7i8DFpjvz9ywyg0YNKGxs4qned2pdD6jla3z215D4Uk7WrOTRaRnQ8FsKlAKZ6NmxjNnhv2n57yX+TGfm+Q4VzTXIO1LxnsTEX7EPTyXRvBXrZjJ246JmsDWfu1HQKtqnIj3MqPEWg2zNtUn5QrbuplexRYGtsU12a/NwG24a2nOTexTRmvttzS+tiIyNubtKnWVkq60XuZCu/rjJvMf/bUcuU/w5/3v9y2C74W+0tuamy3WqpeCdzoSW5CXN3b739UetUHpp+dXrddfhvkjt2E5a3DRDhXrgI+aJ1suIg7+VaWO8pedqU3xQgLXoXUliMudgnTAmO/MyS9mNzBTcyLdTorbiLGckxCG7zMDZXtXNUyUnXgHDdjn3Ddf2vM7L8r3NzJ66F93tKVffyR3Ll9AC/ZiGV9mtgXVXB8ylzvUVvuF8Wz3Eww1VP3cBPbMsdnVHC+v0HXdUdbPvLfPG7O+U9xgZsB4/UksIEYD3Jy3dZf8Xsb/DRLnG/WdXF9dr7c1W7PMejuspu6BhwKBL0W+1yWh22e9vjkzwZCdkTbk5aoh+tymGrciSvZuZJDbnKu+H56e8KIUY/J2s2a+Nthank/oUQ4P8fU0wbF7p4RjPVw05j5Dw3vGa46juaD1L5atgKw833QG98m5D4o6Jz0Q6ojvijbOVbwQF8x+g+tXG67m5wSJteqNCkb6jWflCdT2vBtivre05ybERPVnbQDvoF13N9UTLTkM3J1pg1xWW2FZv6LXI2YANSbBt5/YxzN+5tRD9xNiSNustj+tOlrYvZYKk8QpK9nFtT14jxY8Hm/7LCea7JWby1b/3WyViUEqjvsue1eK1jqdbI8MOplaQxRBvmDfQFToqc/SxbsV7kJGNtdlspbXKbTZXWUJb3t7qnULX31WG+GEeSj3H8Lbhzm6j/c77+MV+v05AI3A2atE7wDbnL7JNiHU/a1owuMm+PiCjcIZSkWTvLaMEduBG6wcp4bHzer+DzDTY9PzxXH5yE3Tg9aH2EC67YM6jNyn0z9l9oneZ8YucJF/8W+6moSW8Jur7c789OlcaZMWsbLctkoW/J9QCMwv5Sh1y58r5nijuq230IlmNvVUqRuX4ZZcbOcljZenjDUuHIac3tLwSRGZSx7DuPelnGhctWX4EngKrdPiiAgxE3C1ZqbcUnXjTDxRiQR08y+Z/mv18OYJ3FjbZ9qs2H/aZ+oDjz29subaQQe612bG2mx10cU9jy8s3PkA+F8OpaqvA72jdz0J7+FHUjBa+XPxyttpV/UeK7oYu53kwyYAle+f/VcXW5Tw/hv9N865vrNm75zpLQp2SluEv/NuYn25P3PV3rf9Jp3zAT4JqVbdY9kZfcNYMgrzfR3N5j2j3ZRLgxV33Be93a7UYHS6SuXTfS2/N4xWNmGqQwgehCXHqx3ABHTqAck65YMnOGm5WvHUjsD2VZl4SaVqjtk83pAZUeuDrg54b+z3PglA9rOXfNfGLgM/rvGzXmfHHNjyeLG0kanz3Lj2lSIz2m7SLjBgLHnN5XHuLHHxLK3AcZZbnrcBEwDVwfcRIzE1cZ6TnAT+5+OGXVJyxn/xTzxqoBsuvSf4yqpd+o/4uas/64mAfX74WLvl76hcb2rYot9KihWAFdPzEvUU/Xv1X442T3Ioj2VtHeZeoyu9fr8OGjvUwtARPGt/t5Vsbk3vfah3o25CTFquM5wEzFujAl9AiTal3N1Wbap7hpXrzcYYvQ8NxFjxhWAemOoW8oDSqDfdJCEq0f8B+PGlQ1tA7793qrW+PrLKb2uz/Ht92aHULbaZ4w8QbeJRveJb7v7gQ+GfBJzXNZ+jFxY3jDpAhO8PQOOBLPjimXH5ZcOUxuLlH5paFNBzxxTgvHAf54r+H6/HbvK1YE/E264z/D2jf77vEnx9cTswZQvRemk8ntkPU9lKbg4KF3Dr2cyWR3uE3DZhV7GG8t6IAOubcDk9ShNNkJV17hhuQNMNtgQV97b5zpc6lxG/42yU4wOyDE30T7fOV31Hwa8GaYz3Hg9lHfYznDTXx6P7PI9rfP2xTal7eIzbRdkveH1vh/Pt/y93NDyE1nIzrmJmCJXmX1H/Y22CTlji7avueH8PW03xs05//F7FSPm0YbxvI7nppivJ3H1C2wy1J6gt7pLfmt+EMKGeoSHHXZvt5fdGi887CglypOgaL9SXaZLxhgliYhpnccUEyORqV+87FVu5vm9DfrGBVwRa+TK/Mf9un/ed5abs/7rlvWtFQZutGMBtH3DSy5z4zH22OBS6kq4vh6ATX0eiZsuxbI9XtsTxcBi6Tf89dUnpUn3fdzoIFu9pICIl+C+dxts7O//9ZUU57mJ5/zTHqV8lOhl7KmUuPP2m5+bXvFffxsw81/hSmAbLnmucv/1kt5/93ITfW/vjWLw3ydOCnxNzB5IAsW27Y7DdrfNAnPrebd8RnxjKfXxZcS66tqB1s6Zlx82vW1XH2oQQW+OEUPZiCvDCN7oYBvttXX8ZdBAmM5yEzHKyA3nexdTfwvaEqYBowKyUcdyhRuXr2UvcXO//6bcRF7lAW4Svde4MfsS3xOmU7wu7BvbRZSdxFz0vdF/2r4JN2K+xwnfn+BmytUBNwnG0fcT2YSbvG864malB4P/clnTdoWr69wAvvzZVN7h4OnQjv5B5ToM2zDEhz1piEtzVlxL8IVbxlMHOSpv4MW02jABXHNcgrfWuyrblxe5oZQWvyoEIhqmqmxP991j3Bga48KXazZoHfSJ4o0wddn6lld9OuNWsFzg5gxXHRPaALncyOw3Ytm2dj2V+7iJvBqm7rexXc1kFT0ed75xdDc3efvl83tbEmu7DNb4CXFTfstD3GSYoQC2voyT48YmZYaP46brLktruR3cxc1Qb7+V0OwXu2HSuQLGZa7SZO/nxskq+j5V0pcnxnbfd6/cm/+47sx/d/VVHEfBf1H206YX7cr47PSiiRnwTRS7jMHkvm4O9KUIwNCAY4e9UdlN+p0EhV/2aI3BGsemaO8wDEsgIkYZA95hhG+kUfbm7FOH2c5B0Ts0uYObiDlwI+plb8MSJq6r36nZa0/SuLrKjVzghsqWJQF6yn+XucEVbsaLsZNlvQk3TlbiMjK0tNXesflege0J9rWLYpC1ZMsCO0Y6R5ju4nXBTXn3yOdNudupTOsFNHLDcRPb8gVumNdybhJzXHDGTdAT+67og9YukrjhZWFn/AfjJb5v9Cz/Bb1X0rc2MaMJgQQ/uLZv76TQecKJ9Fz320a/e91SlwwK7EqeyZrNq4FNxDTDyPYK+pOzzmW5AbEDZYIt/v4163cxegc3lo99deTKdlncFZB2R7/3fd1/pY9kru7hhjF5+0auuv8W3MhVblivDmU5f2NMJLujLjGE8Wh9quT2kOacmwPMZm8tZGV3VepXbAfErvdWazNbWU+/Csy4OYFRyhhmG+riDW/Kk8xM794wjVw92h75+aWiLDO3DTYAu+ZTn1Fxda4e5MbyArcU1bhqsu3d4oLHdouMcbNTlN3FDfmgYZISu9n7dZ85fe3K+GiyR8Y1CEqn2oNeQCfrv1wWC9nynon1Utplomw9INJXWbdOQ3K9tZ1QnV4vtdtElu2pT4iiHgAqUncp6tgHbhYYj7jJZUvH1KYhjLlyVTqJvb4s+57cUOGl/wCIOP+9HzcVUZP1/jsdNw1F6F5bZ8j8Padd9EU0dtc0iTlI/U18V1AKE3kur35pXtDLXNUY4MnRs/sM0yvSX7ifxhwE5r8z3MR2MXCzbBekP/ivb44x+s9V9CA3qf9wPRW5vbzb1eq34U+P0V666BWbNdrwg9ogl7U+xHy5oS/HESdbBq2NewC8ZXjRyfZq53emtwWCVi6FygpQN60oT5k6e+VGQ+HDPpjbJ09x+Rk/5/B6rnIjldcymap6qs3+NYNi1q2qVJRlgq1xNNs19d/ITcTYuRH3rLDiIllJ/WdIH+Rm8B8qJs6PPtmCbG9XY8zZpMSNNdRMmHGzwhzsayUUm2zou6hyzBlGaZiE9HgGj2N71S76m5IhbsRw+PbJMWdt1zYF2SB1xZQ+zM2NNNmNv/5h6Xmf0WUe52ZYMqpCN6e0+0eK/xhzjzmy7hFupmVBS2TNf/f0/F/panrKxExE/ksA/lsA/rCq/tUzMu37FdZIpS9Xc70EX7hbTOixrF0oaifeayy/tAb8Bum7y4V6Rz2odzNXemcYQbvy2J1sL9sHnjbokwM993ITZa15K3XmXda4EhVo67Dek5uq99B/esF/93JTzm6iUCW9if+O4oZjzpYMiLOn5zNurvPay/L3sNh/s5jb2AcH3Ejl5nrMoX6Dprf1Wcy9Jzcjph1t4wM6zzEX/fd+fYbZbhuTjH1kqT733/O4CfbdlRQ3eQMat+xD7usilzmWjlP6OduIgq4vPd7RdmD7JoI3BfVnwd8Z1yu9aXx3H5YQfqt+sc0irNMrum8og7ndBqopN1HvNW4AoWtvjXfCYbujlvi2AXO9JSC1bGwbbbB2lhsr29uGNG76tcj8lfsPeKtPFp/Czax/ovOZTzpvOs1r8Ke10cLp1evpGfsA27VYsKcxZ33qFngVKddTPcHNlFeahFupHjf96U9vF2PMRd8bV8/hhmKbZLeDPmN7Bjfw3Fg/YW0KxE2Jstx/ncvncxPblEJcu//U6euJWUki8scA/FkA//fzMopvWw/8EhAKt4RJueECJVC4Y4yyaJOK/j6SAlrDj556ANrugLXdmkSCbKYHIYhneueyvWyxqm9h2zGVFYM2MZGlnmLfSu9ZWaX3VfqlA9I7710Z03tyQ7LmP6s3+E+1LolN/PcINznGeN77D9rXpTfZ+qssNbEL3zO5OWNffduo6ulr57VeE6TF3P3+u8qrurGvxdxeY86a/a6M6T24iRjr1s9VZ/Of46o+3Xg3bqJ90X+1PV7138PcwMleTSJlCXtsG9Zv2DDDlvJJPSXCX6xi2d53gfIb+9ANxgxH8WHxrzhZSfUkegV9AJmVtf6pnpA6+ETl1vqNvdJR3qUsdRW3C8mSniO9K4xa4xudm424EfD1p/eprd+n2h7ihvMCQPe2WyYEuDE3gMPY/Wd9BvnvEW7Q+5zCld08LUc2jiPhnTFHjI5Hyts7b6d5S+VTqgAAQQ9JREFUtevpPbyC+g3ilXnMeZ23i0d47e2CeJXOa3sfMPDa+rakXdzNTVb2sF3IMFbc9cncOIzMVdIuFNhqn9GWfbbrwBO5SWQ/bVL0wPnO0zOemP13APyDAP7yFSH+VlDxvlpbg6IGl7BE3y5UUlkqLCRKgSUtYOkxtdQ74EPdMz1zvceyXEBbh11hBsy9w8xlxZU9r3fU02Wt8wtcVZ+4d5XenRu2r/uv9elVVqUsTUi5eoAbxtu56XET/Qfip6tRoN7Z4oFlKfcsbo5lxcn2Cwt3zuLqOuu/FTfHvApQ32GssSN9SUuf+FrJ9+EmynZ19Tz51HP1HG7O9DeZ/xR1qZCABlOt4If1GVdTX36psJmeRaNC8abUF1dM9t5GbFfFFwyo3FXemnC/SEvrR6onBaXfoOu4hL/9eJVzmGWQc7+FyypEaxS0frLyQeWMW7tbHvWc0jvBaFy5G52RmzYy89vdWxusc8qBG/vW5Wluou/FYjDhhtr+2n8PchNlK6a2AZD2trFRrYzLY0S7YSCVVyHfT3mN3FyJudAulr7+EF6TNjXhtXMTcWHSLh7g5nK7ME57fdrOCwjmab1p2ZbvDyWYq3ZeKLYkLBm1vHafPrVdfOqkcB36d5wempiJyJ8D8G+o6v+Zt0U9k/qThvLvEJwq7o7BZo0kNI4uG+5eWD8a660XSgtEfhF1JtsG1OC7Btw5zPVmGIG+a4/w+fqPye6JbNeTcXEfN1G2J22PsL2s3sfNCYwA2k5fmf86Vyv/vRc3GmT7ce4cm2z9cauS7Q66KXoSN0eyRxh1IevKXuLmWFZg7dFKanvvoi+p7TWfw/iI73t/08/LwBVS2edyM/qPuQplT/eJz28XV5JA63Ih9Lu6FHymeVdpGzuUb5ips93LKqg7B8T2D1zZaGVZ67xs82HUe6jHfxwWJiaxbI2zeq71+6QHgOtjp3qXGPtxXpSUy+b2pHqF4vsMN9K54UGnKPHkuFn771ncRNneP2mPlWnc6LyuK7wGbrDEvLbP9N3L61HZc7yO9l7jtctau3gGN5ZaDC7bRWy7vZSfTj7OTcsTxtx/rB2Vzfge2P3cHMbJV3rXdDgxE5HfBvBHklN/EcB/DWUZ42ESkb8A4C8AwG/+239fn5jVkUUZtJbggpZ1tmUzY213LgS1IVnjUG15vsOuoA7ABlNK8QrAlk/YLlgczy1wLa+tPTa9N5PFWq8qY655Omeyptkaf8Esg96OsYxEGOND3ATZm3Tb7AOMiv4pzRU3cZtZtvc0N4ls56liIsy7YsnNgPFBbvaJ/5oaqsuO7lo+sJvGzR3c5Pbl9rq74tJxaR0QHtl3lptuT/DBBHO/hlCM1R/PipuBi4QbwMeNcdUn08F/B9xk7THyeqW/aTFGywrNf4zzcpuqevQCNwTjMHG//wf+Hb/hbshxzO5aNzzC1nZnvcneBiU3GqhEWXsizYMKIZv70x97V6O2fUh9j6XXS9V2PfVoe/IteVmfr08ECPUm1OdIvznH8aD1Bz+tVaz0sI6MGyqrhSP+HEBfep3YZ+0btd8PXN3PTZTdy80r6bzNPlFgbaP1+6f9d8BNkLWIZ+mV/+xpCtfDvN5QdlzNeN2kvz30FF6HdpHzyk9FM155y/c5r9Lqxp3t4iaVm8hr4Kq1i6dwc9wuGjfwfequdrO1bp//inYRYq5hav6rG6Y8ys1E9tOmX5cnZqr6Z7LjIvLvAfC3A7CnZX8UwL8oIn9aVf9fST2/BeC3AOAP/ok/rLcabBZaCmDfQY+V6xav7YI8fpHdDWwkBM8iz6P8fkEXKtsf4Y75vvW+hHozvTwZ5HxaFtoKKPpSjsKAvfxvsjthio/Z7+dGVd3W8zNMc246Jutkn8GN81/AVGJjxk2GkTv7+7jJfF/eZ6l6tB81PvpHTo/1rrmJPkCIBeZmd3VJlHWx0n+fwRi5wcbnVm3I8qYrxNhB/F6Nm1424ybGzYyra/5bx83Kf5GrK/4LXJzghvsMOFld9Ddmw3Hifv/f+Sd/v95ouTTA3/0pYET38pkCqe1Jy6TM2cg2gDYwQLm15/oCBBuDbPwb63Z96umyFTtpE4AmXrEt9EpsEHhWz6h3UVY8Vxvg276T9XF2w4qrq9xw3n+eBXWzg1Vd/PsKV0cY42cpon1z/4U8cm56CeY1tmeOmjWv3Fc91i58PUDfuXDENLfvkXZh/aLn0XMTd3l8hJvz7SLKem6e2S5GWbsdBkhsF4GrW6hn1S4ucZPkP3X6dZmYzZKq/l8A/M2WF5F/HcCfOrsro22Nq6L9iRWFwCbWmZR8uWijRgk/QOaug/K8Mw0At0VojEzK+HqSfB0wNDvc1qMzvccY0exXwiTwnzScY5Sm4DFu4opUl3WjiBlXvisXtu8RbkK+4WO6Tvsv4nyEG+a57yIlgvLUSBgH434gbpoFWsM52tvr6e3KlmkETFHvQ3FTW4ZrYjOf0Png1+e3KXoa5DAtuLLHiJLF0XPiZu6/PB/9t+JGnLbjNtUx4aT/YkSfS9L6szLsoPvtAMrSafuej0CBje+wRz6sTmmyoLL9ty9vNnYTfLsabUzaL9Wby3rMMsiOGP2U1fw91zPHPPE/PFd5eY/RYpR3yHucm96DtR0hqcZj/1ncoB2JemZ659x0THF59Tn/sZ5Ml5fty+f6ud6qY10me8a+1orvahdRZ8Q017u+Vo3tlT/zPLPPcnH68Dg3H9curnCT9yG2M+joP1/2vdpFLvsJk+Jr849H01ZfirerpGDDLuX3Zg1E9uFuKYA66O1H0jz9LmeSsnXspaHxrHYigsK9eLnSM9U7k21rWqzb6p/3U2IgYrS8PI2bhGfHVc4NNwl7F8owPczNxH+dqzv99wxuWv6C7JGeFUYtpcsSCcHog5gvzyV4qcYpH1zkhgcbV9qUe/fiUW6CrO2ctaVxknPVBgxLH1zjxlLn6i1wtWpT5L+jGHsgts1/cqFNXUt9SWLf0axsbA/5qQxC6Brgnj5L5IP7xTf0myK9T+zWd1lbjrRJWT5pNxQESN7By2LFygKQ/VB2Q2+rvi6Psc2RjY+lHr5bnsXKRLaed/1AwBS5KvQIdi2fOXgONxbPfcgdcWT+A/oH2AGgf4LkrP8W3FRez3KT5WcxN5R1fR2XCb5vtR37vuRH+4oN59oFfxzZYVIc+P6I16jXdlnVtF1EXL1dlJZ0lZtjjCV/V7vAW6vncW7GNmX+O+pDXLtAmJo/xE2O8XMmBXQ/LvYdpKdNzFT1bztbtgW9Kna17gCAoq23BhTfZMfNLY+iAJFeV+03fOOn/E7nNcoq6rsU0ssiyJIetGU2CaYkH/XOlvYZRjvZt8LuHaWTVbgBliy4mWGacSNB1lLZpjXnyjAKYZZNl9xAvJ4jbtJOSOvStxY13faIsXDzmP8iN1OMj8geYOJOdlcF6LMSg0+0Lwc2e4znezBayvxnf0qbQoqp59XJbnKNm4h5xlVb/tzalBy0KR1k7/U9Y4KTZf+Z3pGrjpH8t+X+m3ET2xRCPu0ztA/SWlkE+3A9CYBvdfjIH1PtiyTLka3FrI4xCrNRqd9Q2JBBEPjBKGs29QmzTm2c6m1ldexjUOKo+Rt+0JvpsbRr2SXY9PQYXevNMEZZXu1h50bZjrGxo+YjHsaxbInnM9z4vML6/RU3nOclW4/4b8ZrGwSnMXcOY673Pt+fjbkdM/tK+aHfX2B07eTQ9/dgLOfLRFjOcYPynp5Nz/o97Ee4ue5734dYn0N9+RO48W2qlJ/5z/KuXVRt7VmePs4Nl/1K759e9MSshPQOG57R5huiKPdr9/qieA+FGBSCHlTiSvhHtFsb+NROTwW2jXWZaEnrGbb2wnvf5abgsjDv3UjrYALG1pja796xncG4i2LjESf8Fr3WUMs/4+N2LtmxmLYDbtDtZMw7Sidqb+ZqkIWdrzMze7z/bP+VvMDetdltkEsX6W6p91/nIfef52r034ybHKPntcfNWtYw948q5xgbh9JaT5Xt3AD1vQLpXuxxNG8XWbz2ycHoT+/XUoctBYxxMrYp+yDwdV4NjQ7cJDEnqHr2XpcrEdtUP3+Gmxhz3n/MjmGsecGUq96mTHbuvzzmvH1A7r+YbzEVt6d2/rt+iS7Q6t1y7fKbw7u3bwW19z3I5naJcLFjKO0JwUy2t0FAgc1PP12MJrLcjvn9u+Z/ih3D0X3t+5WoR62HaTcmqf22dA0jywpxY9dfzg/2NUzl0PYIN1G2NVHatXLBDedBeh/xX+S1uQ99OduKG+t1h7Z/xM0V34d45fe3M26cXgltCut24bghpHqn74Fj3xeO+4eTZ9x0Lrq/RHhf67nvM8yP+J65KTb2yVCv905uomybUc39F9tFj0rqdza5m5sR4/V+/0PTr/s7Zg+n2uOr/Ra0BnuD4raVS8cNCr8YmwdjpUnEDnv42nkLtviF+dIp7Kr05fTeGQrJ2gdC5yt646RNKYi73jlGq9t24pE6eNnbxw658ehe659yw3ljh78eP+Mm5+qGylEddEqQ3aqsNNmMG4R8Ob8RwiP/WTHj6hvKkiTz30ayx/7jITL70wZXK25G/7ENEPsdfZ/JdkyA0k5jK4ydRzVMwOiTvTAhkvk+YpzbZ4M0Ib2eR5JFkfVxEn1SJGxJc48bH+uRmxgLvCVF3h49RuNq3qYA3mBDTvgv5kf/HfQZivY9t1Wb2qTfHvD+G7kZeESfkq79V/NtcjlrU/dcALWjEGv7gOpe69zLTmLKgxriHT1rE+fGh3Tc/cZQl7UBFGqfCqD2++XMdkaW80NZu4RxXtvT2aWsWlRYOxPiBo3vFUYhraxH2gQWaH6XE/YBELVYlRoP233cxDz5r8Oe8epb7j3+ixPkDTryGvzX29zavlMxd8BN937w/ZFs5GbwvdnbnACRyA1GWXTf2zfNrvp+6hPXdq0LW3BDfY1dn4q2vdZyHzdnfN/nKGObcv0kta4z/jvb3yz9t+gHFLvnqo6P7uIm1fNJkwJf75g9kBSCXTeobthRtmUt37dR/OL2Vjb+UOAmb20p407vK7X3IdyFj5Zs2brYujOEwt5ZsAFHKe++5m7Nsb2ToqQn6i15Ltsw1o5Hm6VdtmEijPw193Z3Quuyq4rRMLMebDVfy84wljxom2rCrD3fMY5c2Z2et7beWHI9coabi/6reYcJ7D/UjWLIf7Lmpl8RvF7n+9R/zNXovyLbMXpufMxF++wiYEsz7aLU/TdidLzOfL8V3wv6uU32yk3HZP6L9knQO/W9y+sYr4htqttsg6USN6h6uz+Zm3a5k85V1nabbMQo3idZmzKuZn2G2RfbslT7Rv8Fbq74T9RhAuZ9xtiWvf/4jmfeny64iW3qjuuzCPADdMDZ78p3Lt3nVKjf4LrswI224C9soOcrR3ZOrf+qdQjevJ5CNPUxo15XdpCtMRj6tojDYTQfovjBPi671HPADZcVaDvvuAqYhry1QdhNlreHuJn5z55SpNwA7pz3Xx9cpnqBNvxUlbrUtxTYZO9cPOq/mD/g9bTvz/CKddnP4vsoW07yk7E5r5nvy6RBH+ImYjSu7m+7uO6/Wdk6gjjq52YYjauyFJxWFdzJDec/dWKjvuP0midmCuxap2K0w9qP2xt+2Gy4uGOjd5RuFBC8VMtavaB3unzHG7XB8RfmAZQdyWygVjEVPT3s4+DD1Ys+iLNjDaPVCa2mFRvdY2DZ3eP5zdlk63wt75ddOb3S1xdnGG0dd6eDcDTbrQUaNz3P76j0bynhfm7Asrn/IlciPQ7a74n/Mm7srm+noQsxHzeJ5bz/AEm5Mb2t9hpz1nPnmNk+JpJZPPD9wOvoe6E4FlDMiU0gesx1Hn28Kvogfep7XnobMN9axTL3PbVPvvDZMhrHE/lg6vsT3ERe4bjSEVPlqry7JXndwX/nuLF64JJQPBaJPcV85L9etnN1lZtZf3M1SfBZ1BXz7uklxyDgbgTZCV4uJFYQ/ulUm+DCoi/zoW+/ptfFXZDt+upOeOKfFJivREjW+ibt738ocj0zvZEblm1sVF45vgduGGOtywbBsKMJNwqE69wMY6+U/WdcTblp/2rwHz2fzPTW3Z7fKre73mDvI/aYNtkH/LeIOW12z+zrPNv/V2Iu8jr3fW8bfiXJY74/i5FlT/teuDbve2L3Lm5im2rds/U/hjdyQxgjV8/yX29T2ria+6/KTvo55787uUn9+ZXeNb3sidlPyhvlKn6QN3zbdnyTN/QnKeo/Khxq8X/z3+3xtJjmelZKiW+oTw6EZWNdR8dnZdE6enHleG09N/Ny37qtWz7EdBbjQZ4vRvBcRUZLG34SN8P5NiRB9J8d7/6rS121jpcXXLlIUSFe7QI9iyGM/otcwfsPnE9iDkBdgJHzIsOPCa7Lvu82ZDz2mKsyinZxcVBmvk+PH8cht8929ztI6NInme574/Ncn1FiLteZ+u8UN7MU/VfwzfsMLuvbzhzLDM9ZXs8mxa0+p+XNRsoZPyE/bpN904/NjRfWdtivPl8+bvvT/DR2rI2t+PO/d0j7JpIu9RycG2RL3q43nqt13VZUkfjkDm58WfLfsryXtcG49aHjOy+EX+gtGpXa2yjs/ast0XOv/8Z03mc7MPa/li7zuvK9XmonVtQ2a5rq4QH+Uew+yfeK/vrJGdlDXOi+L/hiWuGidvIwN1GW+7kn+e8yN0ex/onS1xOz+5MC+FVbA1s/3Fovkr/YfgVBX/3cB2sl9PvLlj2flVXAdbw2GK0LiQC8YYO0zU7ZnYJcb99Ie5/qnWH2X++hAUJjpPwqZcuRuDrelnw8ys3IldKHEm3tvFLZknaqr3P1fG72Q/+ZbFmeYuWNq+g/VdTtsXts3GpeoLRr4RGvtKaduGL/reJGGzdFMnJjr+wecbPGaHfK+tbL5by23NhO+uDL8ruc91/kZuZ7Sz2eLVcWXbAsl/UYH+MmykZMBVcfpHlejZvO67O4yXyS+Y/xLf33BG6O/Hc1Ccry9EGXoj1J4/wRTkMTN6ZZtg3p/YbSk0w91Bt8GMtS3vrPs/2iAvhWcez12KPcRFnGdUrWHGaYaOfXR7gZ/Yeh7S/bhvS2Yd/hm3FTlqXVDWLkBuiOb5WDGxQ3vJU528J/91xPr7b9beb7GDcDj4vrTfD92E7O+35b+p5k5bzv+3X6Pt/7fjLnZno9Pdl2T/eLif8e5YbjJvffwVhD+vh29N993MTrwOdLiq+J2QPJukYoUNZVK3YVfJO3tsSm3bVuMmOeLzirslamrXWWt7aUEe1fcbIb1WX1lGC2LkEexGiTgprXft6QbU3SY3omN1y2HCgvvZY1xwqI1heBiwwvM2rvpTyZm4yrtouRoiyDUDvTp0Ssh/1nFW0osm0ZQF2j7souuFHdqYOrFxX2n0zsqzyW6nmB4DO4yfO9G+0+avePQ8xhQHQ9bgo3K98rWE+3p/BoyzPaTlQ6YnoGN76sx9TxlCMCuJi7x3/nuMn853HY2cF/E64e52btv3uSoNwQGXQJpvkcp4/xVfvN8s0C6Wd1obf82tcYBQ5XfU7T4uyoXzRU3ddyJzex7HmusrbRMAWuuG8+xw3r4RjX+v+1ttFPWO+fc2P4RX/Ct21rFtxkb2ONlf9ybs75IOVmkA081xJp3Hyw71uZ2E4O9ZKeQ99zO7ng+8jVZW4ixnt9n/vvPm7sN9BvN5cj1/3Xa3qm/z51UgD713fM7k8KvJXbztikrP/+hjfcoHUAU4NFAV7nze+j8cDHNwiTlWF5VIlPbX8BYFO+L9E7CmusWusa9XqMrNdO9K6Ng79f6ns+7P6kiviMwL1HQXru5SbKtjXRPBBwx7S8QN3qsUEhnsaNxwjwlr+j/4rEkf86NwyQO6wLvEoQQfcn73bVp9JocoD4ZWaKvhPoHdyM7SLKgjYhsaU7e8NSMAOqGyD8bCZSs44b5sbxmNqAhquX6E8sYRcCjVyF/EPcRPs6pjaIc5hQbY4Y7NcTuCFZbknx5l/B1Rc+lfDZ6rJKRnOFm5N9RuBqZPBcEhqornWVPD+d9v1oP1rZcrE/Pu3z95ntaa1pYL3c53iMC8wKd73xmCzN2oaV7v+v21HEOPpJ3F/P1Zyb0d44zLuLG8KsVZiXSfdJSCZ7v/9sxYlI39EUsI3G+g2Wuf9W3IwY4xOM89ysfB/zi/Yd9DzD9xv9jr6P5U/Fa+r7Y161/ervjS/7ujS/brtu/ACck20lfVs5Lzvvb/wkdt7P5X3AcTu5D+N9/f6Hpa8nZvenEsClqW/6hl/Ir3DbyqBsq3eXy5NfAWgwuduDWsuHncUAtAlOC/JatuzgoxFEHRzv4E7I0tb0KtB2hxMo4fAYqVNueveGwzDWU233na12Cm278mpDWfQj1Hn0gV7Uw9xoffHzNDc2WKqyZk+rpc7Bdndxq81XdK73EW7IB4p6nl7U1cR/rfPSgv0UN7vAPhpuYbHmRikf/Fd9ZV1X2/WwSrUl4pl9Ua/jRlptGa/tI5GtXextcsPdqe0WCKGy+AmAkJ5o3xzjOuaC7+m8SpHdYLtrobV5oMSZ6FluOsc4xc0Yr8bJm5YbRf2OqbrYtW3cn85NbMu6wyZrzR7nv7emd69Pj9+DGxdzwX+K63cmBfSOWTs2DvTiAGXMWz9AgzrJZDtOy+/qF3lq3ZUxl41DHp2URZu0c+x0TAeyLQSLVTtNHK5zE8uOXHHfNrcXdSlgqaFNcqZ6LmC0m6LtOHO1kr3iP7Q6uT8WrDCrxwTubxf+CxiZ18/p+6NYR79WfWrfj1yd5ybm/Xv/ALeT0X+cL1y92n8+5pS4Kv57e4CbsexXet/0momZCnQX/GL7CX/wF38NP952bPKG37j9su3KqAD6rjDlYmxfZI95BSBbCB4qW7Z39nW1jzXWZZT8UUyhf/ew56vIXp7spRhHzIYrYup5bXneyWfHW1sbXM75sktu6I7UOW6ok6mbYTRZ2DeGAFGtmDxXzAXrfZwbw4jgP+qgMv85rtbcxEkZc5VzEzGT/+Ax3ui3DdSaxGDfQi9WPCJvF0IXDSF/buqWRNzI9ty+iU9U3c5+KuGClPpemn03sgni23L5dqGVXXPjMCpaDC65iZik+6tzNfY3IK7OclPOneEmYBT2fbfJ+y9y9WxuIsau5970TXQYICv8nfkKveoay3Kfs0EXshpku1/CrRzXioHSr/h707vnNsXYa+FrhAYcg2yLFa2yHdN1bqKejom5yrjxsiWuGm/E1Tm9I8ae5+vLfLv8UfbIf172FjBynstmfflZ/52JubXvLaJz31/j9azvo/9y35s99/o+x6xOz8wn53y/0nPEDck+5HtrJ9f890g/l3Ez+JO4mvnvFDdJ2U+dvp6YPZZEd/wN3/46fvP2S3zbFN/kJ9z4ZVV6QgUo9RU+L/WJSQynfknl9f4cfn1Pp/4RQz9wsZc5d1oWucFewuQtQzJMXF/78kq3v+FkTLU5Snlhsw+kvOwRN1byCjceoxIu7twjpm4Nyz6Lm7X/6AmVRA6PuWl6xV6M1UF2xg3nezcM4m1EYhfflX1TvbLR04+1fXRNhRBHAO9AOXavPPgffZLEjc0chnhJZAkTUHaG65j7gBeIGk9wwx4Ve8J7xE30Zz2HHmNuO20q2bk6x80sbkZucv95X+2t7xlxvQc3EWPVo9bmrqXC707b7R+3/bEs5/sWCalsq7rKKupTZGlPgsz/cTCi9altObHT3fSRH9s4qcVOw3XcLxrGhsAtL32Em9D2YTfc5ty4PHGBcC3K/ZfHN5cdZfu2SII5N5zXmvf+u85N5HXtv5msUoxMeF1x03w/8nwYN0teve9t3HLV9wqQfbjIq7/WnvP9yM2jvp/HK5rs0vepP6t9h/67l5voe+7ncm4iRlvq2ZeC4y5uxrLX+/2PS4qvD0w/mH5j+wkbdvzm7Vf4xfYTtk3rLnmoA3i40OYGUDZxQAtBN4CSGka1IccLbntzS6usAG/o721skLp7n9YNQmoD2QHZFGVS5O+eWjgzZneXO8EkCPbV8zbA2qU3k5WelBtk3Eh/GnDETdRbuYLYTn8XZO/lxvcRif9qhyVlyadhGnidcsNlBTb4ahhtnHRonzSew3CmpbneBrGd5/jsyJQG62faRe/M9ybH7+vowr4uW3xC9mkvrxC3/f+SG/HnDfO07R5xEzFSaX6ydcRNjM+damFcmyT2vTM3oyzdcKk2fiQ3EeN9qWy6sOwnQh6Y81Hy/W7x0LdNbLTlyTt2lB6/1GHXnzKgkbpMum9Xbf6at/3et9nf1P/c11Hc9X5fHuDG+9CwCGAd+ZKb6H9FARlv6VztF0N3DlB/ZOUyblx8h/zON1fv4Cbrj+f+m/SLchBzUU+Qdcvdpbfyw+spAjcLez6f7/uugKPv17yufG/pDDenfR+5mbTduf8ir3NuIq92tCz3V8jFmCt18+7MJ64ZC64+fVK0pfzfe3rJxEygUBF82xS/79vvuoEPbx0L9fkhWBRuwN+2Pa+RZBdRnvC1Nd3S8zeU5Udag/it3nsWAW6q+GHb29MGgbYne1p1zTCare19j6qzYWR7FX1pn/qGlem5zs0+cAMlnC1f72ARV9tmGKV1EKcuGo9wE/0nnhv2H28He4qbCcZWbyXmFDfsv4gRIeZCPspyXBT7pdqnd9u3KdrTHyu7wmz2pj7ZSjxC+3K2076neCzx6SeHGy5wM2CUWrYIy0luIsbI1Ra4cf57JjersrCJQU/X/PccbrKYu5ok2OL7gpJW+S4ZJs71jNmQLf3TdoyXB5k1dembWH+rzYdbq8hPykq9XS/ngd5m25HQH7N9W/ht/cwj3Lg+tuX7HfJU1mE2Nm3lCD+DyfQeccN62X/9CfoZ+5TyMik7xxi5iWX90rE5Nwf2BXtG33dZewJubTD6Ptqwti+5vqJz/n34fpTNfH+2nZzn8Yrvu+w24WrVHufcrPq5svz/jH39vD07fbRd+PynTl9PzB5IAnzDjt97+130l/5tE4USBuXdCc6jtUz3qN5kKYT71tTl3E26sEjZZKOt7ZZ+Ydy1PC3b9zLqKtuhK77JXu5WKC0Hm2F2O6xJ+SggJGACbCe8Jku7+pWt1atFdce1Z3PTVAGl44HUb/wAbejV8qU72aTotUuJoi/3affUFHdzk/vPuJn772bLtM5yM8HY71Vf4yb6L2Ls9ulEtpxSkbbkrH0OoLWPe+0jHtFfCG56Ha8bGCNFK3jjnNZmTvLKmHt8KnhZa8N1ihvmtWJCj897fG/vanWu+n3i6E8I6nOWJ3FD8Ze1qX5h3A9irvvv+dwE2TvThr0+7WYbe90ur5Vb7je0x04cdLSYEq7ROLQ+xw+SrGfxu891fkp9NUaJH25H7Cet5TaxeOrtyfoAXgYqtV/sg0CjWu/khjEKcVOvYQtuuJ+yrqEPPsNAjWNn0DvBXG1l/5UbMoWrlJv6K/PfDQpNyp7jJvef5Td0/w3cRIwuj+brU7KVS7v54X0v7nqaYbbfY5v6bL63ItR2qZ2seM3bLui92avcjGXNLpGLvg9c2U6393ETeTWuyq6i3X8jN3ZNtHbPm6X1b9Tew03N+zD/Su+cXjIx26D4fT/+LlSkvbPVBx/8u/zb8qFjcUsehpf+7IV7BXgAU3s/u0dQGrvdsSrN663q+AHAN9nxTeoTMxrszDFqglFd6dLA0X+7WqzMWxtGb4J6R/xZ3IR87Xi2xlV/AO4wNa7U6cn03s+Nx3jkv/K007qje7iJvPq78We48XfBRozs3y7bEUHRlnA0FPUUb9RxxT7A4oZjjjvvPOYa5jRuCo6G6YrvXb77vvv3PDf9KpZgusRN7vujmBOUmzjxOnU/N2O74LyVOtNnhHu9T+QmYr4nKbWj8dyQN2Vcnt51aqddnidQse7+PolI2YXT5Fm7QPv39ECxZ3xVfrxUud5s5Kes309trRN/oPSRWasb8ktuvJzQ3xU39tf46L2F/WZdHv+YJtcc8p9d92Ocz+vi94H6ZhJD2QNucv8RR1Zuys3B9TS1Z26fog6eB99r8FWOuYB9ve9zXjOcvZ2sfe9tZd8r9Vez8hnGVdn4MXZfbub7wNWlmIs46XAbK9lCxOi/kRuHMcyi5G5uan7g+pOmr80/7k83UfywveGbvOGHuvUzPz8S0B2kcOfXZv92dLOytv7WybJkf1cEqE88dcMbBG878BPa5t34Jjt+qE/LblD8KL/y3xmDdr2IAy6/ztfn/friNpiwMahSWSmd0FabpnViz+ZGg2zGlf2w9daxO2X7hne17uAm8pphMq7KkrP+rCuzz/zFTfYsN4xxwFE7yuZP8onZ2J+s1DtfyHm1S85Zbjixnuh7W5rZLzi762RjzCnkLm66vcwzxcnEJz3t05i7yg3HXMRkXB21KfPaKuYwyM64GfsMk1WrV0b/dfvit7/8hVJ04r/ATVy2e50bb9/VJALcbEk1YqyMEyRLOU4uS/Ed+0UN/b50G28ifUKE1pwbVkC9/1lvGKgU2f42hz2g7NcMavvq5RUALw8vbzzL07lhHxo5U/sgbeCrYDvO6p0nvlnAMRr7UMYc/cd93l3ctMkz+75bKapz2fZUZOLPEHNeFoPvzSmj7/tTxRmvbPuR77dFu7A+qO0fS+30ku8DrzGxPVItnHKjAO+2bKsRrF/sb4jew03EuPA9c0V32JQrQt52r3ETeaV2EvwXueJ2UbjZn8jNd5JU8fWB6QeS1InZ77n9sj6Jqu+YULTZOyc8yOpTghK0NjTq4dgHS7zds0n3jrTofAOgu+BXWj5vbUsYvskbvm1a83t596B1YrxrD5xeHfLx3B7sUep4/N1obnfvw02ut10SpC/06bX0clnaQnmgL6M8xw1hHHDxwDA81SJMbWkM1Z1xI49wUy+YEDj/QfwTLuvemu21d7Y8X5CvcuMmPYEvS1uzXamMuosdqN5u41luPH7A7PMRovA+8Xhpqi9szxluEowDLtbYfTJvU52rrVfqcG1BzzE3fQlpXC6iVZZUucSrCRxXxI0twbzmv6vcRP9dT4K+/CzaMO9Du6zlvawfMor4yedwM8CNbRSQjc7H4acfoKwxRxzSrhmCvZU3fw9tR3u/v8V+4yncFB+6642wff2a0RZ4qu/3mRmnR0eeV5gdJpvM2vK2cF2L7Wqru4r2p2XHeu7xH3+yYuAm+i+2/aFfZ1kM3Kx9fw7zo+3ClhNa2+cbFv4qc5XXhe9VW0ym3ISnOUqPyKROPObtZMXNRd+7a/w4tuhcacB0Hze9TfU+OfrvqF08j5u5/z5l+npidn8SKP6Gb7+Lb7cddrcsDheEyvqOPKbssjE/Z7G+1y2efqU3/EpveMMNN+z4xfYr/LD9VJ+W0R1QwjkOba5hGDDV+t0dSt3cgrmP4GaGq1RcOuvZU0LGBMfVYxh6EjguasdZlqJurpTJ+c6nHNuQ+e86Lh6n2pK82HH1btGj4XdVon1nMXDd/dI/1mj4yt/68XZ/GTrAEXXPMRoipXy3OrLQ4yt+oy635L64iVI+XmObyjH1MxW5jWMG7lYYM1ydlXHZYOY/j7P/yp7DzXDczw1juu/yZ58aIV1q/4z5jA8XFTXAWh9T/SIDP+zL+hRCyw6IvdR4YyPqyTACPQpiXzde28ZJNmNUBD88mRvO9x4z2h3jHm0jmXEQd5abSX889KHz+GZZ6/cN0xE3Qw+X8urjJuLAYT6bRM1l/fL3btcZXmf9RJQ90y7mPZiXTX0Pn87Gq/m+3whbc9N/j5hWetL8Bd/HlTLR3sgVt8F7uYmY4Lhibh5vF+e4eUa//5WuphctZdzxi9uv8IPs2OqSQWDsSC3fdxPiztseZcPJzjrlFlBSnpX8pIpf6VY3/BD8pIJNtO7S+BN+FFtaJVANH18lHNMgr/8qPe0w2fbIWS1v1tVCIvQ+lh8mXeHmCCPXFScU1gl0WaGtY4Xsyzt7QcQ0cjP6j7hJ7WWbtHH1VjXNl0miyUVca//NuBHq/Lz/pEAq9qnnxpanellv79nYNl0Kfh5T/s2e9LWnIPXdma1i2qXHp7Nv6oOOwz4yYUf5w8MKW26UyfZlnRsqJNnJdlSMGTc5xpn/3HbGsKU6vmzDqKgvf2cDBsE++O9tGq8ZNxxz0X/cdsc2tVObMn9+MDeT/NW0id3Trf6WbiNgA65x0NFx916pvLchaBvGVIL8ALSc6LFVF2uJ2fFW+1Bt3PLTBMM46B0wCnq8dPssz8sclZbCmWxfplUw+ji7kxvGZFxRv8ITfifbMNXBqViMutsTF7nZnR7ve7pO1DY443WXukRLrI9hvbjITYzBk9yoAEJ6Bn/yNeNAlnluvveY1ryqw5hem6btgq835uFao3gfCeJqn8S+Ba8xbsT60qFdeF5Veg17gukaNwmmyBWOfd8x1XZxxvdTbiKvQm1qb1wN/nMxl7WLR7hZ+e9zJ/1aynh/2kTxC9nxTX6FH7fd3/2of/MBsm/gPFgZy/YdhWy77jINLC997/gG+5zgX9t/gGLDJsCP+Am/EMUPm8mqW14B9IZ7jLl/2NOfq3mqt21fLeWsrZ+e2fdUblzZOLBT2NK9HWVDlI45TnDGDmrOlYbBZl8KmQ0gJcuLx5DpibLM1Rle/da5xs0Eo/blBjtsN9Bur/N9k1X0AbF02QWmkreytoNg1+t9wvb2GwyG5Ibuo84VL0bkWGB7+OljseJGHleHKfpPG6biR00weW5iXTNMkavNcdXrTnmVwBVyrtK2TEeKTxiXcXOP/2yK2zVYO/lQbiZ6riSBTVb3xEbWdRQ7M1ltk32P055GaVliWGVvri4lfLN+cYVx7sNtYS9vYKFNltmdb95yjZuRq9tStiPrg80u/SxuouxG9mayNonewUP6kavHuPGy1+1dl8WQ71F6C+eu8tpjXZwNI6+Y8srpyL7xJmfEzK2wJGl/9zBOiXo4BjX0oY/EnMfkubrWLrifv87NyKu/nqz8N28XnB5tj6P/7un5PyopXrWUUUT+PIB/BMCfAPCnVfV36vH/IID/BoAfAfwSwD+gqv+bo/petJQR+FF+hdvGSxn5XkMPDj81MWml8JAm28OHnyEoDUB2vOmGN73Vv4LfffsBu95MLb5hxyZ7a3r9PZ2IAw4Dh20vG98tGe3zGHut5Y641fne3HBZK8f5kvxj8plsbLqem4gx3jU75oYvXtJ82y9HuWzGVeQVQ9ns3SBNZW9V2LaAv8H6iJlPcvtKZ9/v2c0wWt4v4lS6UIy+34LvoWhP93LZjqnrWPnTx2sWJ6NPeh8AiNsN78j3nbMcU+TqRkeP2lTkKmtTUdZs3qg2zw3L+v5FE3s5CkoJHkZ8PDdjf3o92VNb3lyEB6d9+UzJ3xgK/EBIgHL3mt+PoaW6pQ1yLEpTNbYNu1kw6o2WRsy3GWbpHuD/Xdlal9b3uYS372xt4z5uIq8DVySeyfYNXcVvpDX47w5uoqxxFfzHyfzZB9LUL2qQvYebmt8Ms23jTnLRf7k/E/uorMYz/tKSy57wvVJM80229pkfWfAKXnWisPcqVnqPfG+y7fpBsS2tzaHf+I48ip+kWOYebiLGjgk19jpXImjxPshGTMTVPdwwZpXuPx4htFcQxHPDXN3jvxk3Z/z3KZMCL/yO2V8B8PcC+CfD8b8K4O9W1f+niPxJAP8sgL/1qLIXPTHb8Ru3XwIo31bqSxn7kICDEzU/3pEYy0qrpeqq9e5Q7NrvPe478Kt9q/Fb7hvc5A0qG37aBT9uP7kPXx/pRchvramcl+W7HQVzv5Pjvjj/VG4Y89xeBSBSvvNWPnNwPzf+nLbOJHJ1ZJ+lXffWkxpX3EGe4SbiYv+tuFnZF/11JNuvz8H3B7JL+2gg6pdooD5xXGPsx/pirFXZqX01fuOuYYPvZc5Ntoyu8CSu7BVunI+IK+Ba233Ef0PcJGXNf8bDu3OTcNUC5+6kuMlOn0pgXX2Q5vN9iaz15e5OtALsK0a+VRt3KESlfRRcay22aoDfdWkx2TY/mugNGLX+Z7JwslZ/X7pry6HaagQpTwR2QbVXqA+6k5uIUX1c40hW6kL8yplxWrDfz40vKw6TtglW50ZZj2jDws8Xy0YJZN9Vbqj1cJ795/sNwqjqliMu46bKFpts2XZlIeFm1S4Gblyr7Rg2UZTvcXbMGTcms6Mv12P/3cOrrY5As6+kW6vjmFdUPbs8xk3EqCg7UdpHRgpXxsCx/+yayFxdjbnYLnq09SjfoHWX133gJvOf4+pObkx2b2j6rp2fOulrEKrqvwqgTZ7p+P+Jsv8ygN8UkV+o6u+u6nvNO2bY8fu3vw6F4vfIr6Ai+Ek3/LI8rwKQL1/7hvUggpd82J1GBepdtg3fpAS3iuA38Sv84vaGX779Cn9NfsAP244f5Q3f5Cf83vr+W6uL1hSv9I7LGPpyrwwj0C/YCn5frHYA2Ob2SZe9zk3EzPfVrcvx+VJWsKk4vc5e8XWtuMkGn+PyPc8Nl+XLT/+wbr508dsd/gOd87LqcHDZWd5+xzwvZ2O5/qR0FTcd8zfYIAbtLneUtc7V3qGyuiKv4LqcnrjEI/JY2pvX2+2D5rJ2YjvktWPy9mnKuecm+r5zlWHqFyJdcjMumetcjRgjN1Fv5Wriv2ahZMtcn8nNef9dTQLgh1r7j9LrerPOI8Xpl1iOg4i+LNvap/27A3gzjxLg9qRRtF0A2X47kg5WkPkwKxvjuT+RQSJrv98wLmHv/h9lj7mJGLlPpWtkakNpCW8Uv+e4OuJmzpWgXwcyWdA5EIYM03VuOO/957m6at/YzrTK9hUf52SzuDGP9rothnqZLfAauUG1r7wb22M14+aI147Lbn4I2H/8LtcNx/btVfa25GrtE1CeUUauLP7msj2x/85yk9lnOPi3RR9z9S2RVfrXfo1cXYnXOP7pR+z1mq90d/qPAfgXjyZlwMu2ywd+2H7CD3jDj/JTff1a8ZP2NwT4QtYCrYwsWzCh5XeIG770Fx13FezwA5cbFCo7oIIft1/hVj8gfZMdP8ivcBOtD2Bq0PLX6p1ef7Etj8L5nMJuyfNyLSsLkub9DncjqZXR9m6ElegDvTu40V6/QJp97YlKfQLVu4c+6JGtD6GjbNHLXK24iTz2DiDjRgLndhnaAWDrQ9DyAdvOTbvbdIKbiHEL/oOz12+5oYOswLbva1y0vPkCHXNbJqAQbHVJH2FmPaFd9KQQ2Ro3PW7s4rLTAKN2+oQZ2OqTkeLxjfRuIca+NczMq8fsBpYbMMYNqp599FGzEUB74dp8AM9Vs/64z+BLWIll8oH0S9kGxUaxvOZGHY9bwzjjJrQL9IvkFv2H7j+Q/96DG0y4Kv7rQ3oBnA1nk6BMdr8B+EYtea9NozNajdB6B7tmDaOg53nZUeNJUW9s+bYWh0J8o6G3ETQwrGfQO2Ds/U4NJbqGMGMK/vSAtUHTuNUljd2HINSa6D2B0fRUTNb2Gx7yj/2VCsrQt5s5SoNFU3qVG1e21yXQunqGMEds1tQg4Tz7rxSUK9wQZo4rV6/5I2KkJWiRx4HXie+n3ChGzMYrJ/pavPdjqWSTvqok5ZXtQ2+PKTesZ8Krcj1SKartHeZrrXy0tjzntTwl8hjPcBMxNroS+4u6PeWxV9j7lHZDSHHITS/Pvq/XBG3MDLLWxm7Rf8RVj9Lya+TqHDexXTiuspj7ZEkB6GNLGf+QiPwO5X9LVX/LMiLy2wD+SCL3F1X1L68qFpG/E8A/BuDPngHymqWMUPz+7a+197l+0hu+yTfoLvjr6u/MlfI1L2Peglf1zYVUbSvtcW3TLYryWekNIm/4QXa81Yp/kPKZ6bKRQ7mACt1Wz/XC6x3KqivLQ0O798zTRoXgVgdbO6Hvd27qhbB2IHdxI9yUlTrA3sNE++xeCS9NiLIykZ1zg/PcRNnKzDcIfmoLx7xsmZQd+W/kxpfl6LG66o6dPICb2AcAN+Oi9oCblCcjDnNb3gIAb+sYw8iFdbwqby1iur9QJz/FXzJgNCRvdRkW69UlN3NerUMX2s3Tx43AlrT0vJOtuNpullX2qN1nPohcCYA3vDkf2A6qnSu70OXcuHiVPuA1jEfcMGZpXHn/9bvM1hvwe49P5ibzX2uBcSp23wXwRyhuYu+01Xv1Wr4p6VNvt04xNxnzgzOy3//vfz3yfqee+zKgDWTi4GWmd8CoY9lWb28rfejaC+1a3xURrU/5tPUxkQa5wk2wD3X34Uycqync9Qncm9nRBGiALATnAjdep3r7Jsli8laX58XJtvOfnPBfrJ3s69c1b4piInuQmNf2W8pNqojRCUXMVM5C3/pioCw9tR2Beangpjrl36S/ofh6LDaRTXhl+9oyWLrpJXZtFn4ilPNqN5H6UyTi4oAbxtj6PrFVCdxplH7/FpboRm7K2LDz3Ks/z012zehLhbuQfWRdUDcR09F/nWfyPR0f9F7wn51qPmmN6r5+/0OSKh5cyvhXVfVPzavXP3NPpSLyRwH8JQD/aVX9187IvGRi9g07/sD2K2yi+IOyQ+UN/+b+E/5/2xt2/SV+BcG/td/wS73hjbtptYae5219Z3eN9AsKtjKZ0XL+F1IGCGUwvJeOHuUJmwLtnAja3X0O1x60PWZb/DMmUMBLv+tgE3vboh9Ul2pd5607NRbp7+IJ6g6AeoEbwgjUi34fJPQG7DG3l6B1L74ImJosSrdgT5LOcOPyB9w4TOid/q7ARt3oXkeb29R/V7nxA1XHlWFWsm9D6k/YE0obhEmJ1z4AXumV1lGnPFbuy7bWdJ7iply8AcHeJooRI7ejne0znxzEWNYeDZMq29fjBpXTLfCaYbqLmwlXtp19uzRT3BR9HtMZbraNyl5oj6UPmvlvq5sRme3df4fcPMF/QJ80Cbz/riYB8IOUmym/pz6S+EnL09dyI8p2zCV/su4Gs0wZ9urHn+rTTHvWuGvdt1KBN9m8NPUFm+74YYPT1XlGG5QbmnIs3NlOZNHKy5A3gZt4e75JfQ+66R31WDI7TedUb8SoJa6bfdHfMR4EDRMvSYt6Bq4kX3p9lpttgclulL2BxoqJnof9p0W+c2VPzztGz+txu9rDufJ/uDZNuGHMJguyx/43zDfp9puvbxOM0YbSh/g26P2X+3NvGCMmUMT2dzvLqgTyyQKTovveuJhxEzFGrqT5nttR3zl1034DBYA92KK4CrLD9WXdHs/4r3PVdbo+Y4ijICvnuIkY+Ubfjm6zOunPmx58Yvb0JCJ/I4B/GsB/VVX/D2flXrSUUfHjpvh9UPyeG/CTApAdN/wSv5Qbflc37AL8VIYhrSFYT9zzluuDPG48///2zi9Ut6IM48/z7eNBQb0IhcBzsMCrQwVCSOBFkWFHOyRdFgXRbYKCIZrglXdBCRVEdBMkiFAiKFYG3SaWHQP7h0Rlkqh4oSjSOft7u5g1a96Z9WfP93ncs/b+nt/FOXutb9aad56Z9a55Z82stTZgxRRMhBaavlNEds4BaYQhLpT1k4DY9/v9CKvPN90hUmczpo8/5FOA4pSNVZ/YO0LfcQ0209lknU3eSRysjStPdyGWziZ/OtRlHe0isbL4JCAem0+ppJtSVaNNZiPSzXlKG3+OuDetxnDHTtTfttokLdD/7qePxURxKgYzEXMdg43upyKfcjt0rrM9vc19eaIGBqeZbzfRDOs6+UMby4GHPkDxN7My3+wkXkvLfgpTVtJ58m885SOnSStfB930um20Ka+LaJ+lVIBvN6k8KUib1iYci/5G2DeHA7Vxefe2oXsjXGxQBmJ/sv7mtCn9zVz9HeRPV6knlF33m8KurCcBnOReF4AZjOwCMiBOJRob3HeeJASLBlxYE2vGdcnxaVlap2z94rJkP7pf95jnkdpkLLm7LosST9nGkRRR5aBd9JPJc62A/slY0Cg/NrVu19EesYPFnoGN9OU377qSy+i3DWZ0AVY5ycl5Xhuea0yrbbSJneheA0s6xG/5+XNdsvqj98WxfNEf5M+Pe78/cnICfpZhFxgzsws2r82czdnTkYl2E6eI+uUQ5ZrLfLt3eFm+Y1c8i399MOttGl5n1gfd/dOhUpty2w7Wpm83RX6+d1Wuk8qvqe6TMq7OYraG7bUZSzOlVcwstf28/gxx4NmdewttyhShfOWgz7D+xBCSXwLwfQDXAniK5Hkz+zyAOwHcAOBBkg92yW81s9fmztfodfmGD/ECrlitcDnDW3GuXu3jHQDv2BqXWXho/O5+eHE4s8sqNcdyO5w7jiCkDsgJAGvEqX+hI5BGk1LquM6rH9HvPKZvqOmvdZFvZ022pmwqejf3f54vEBzSytBPXvIhSOzI5t3mWm0scwb5sflFmZc3pAoj9dl4bkpFvz2hTX+RD21OU1nmtPHlC3+FDjWRv58ozktfd/VXHru5NnR/p25KWb6pbbi/kgrDtEnX+NR3lZ1haLMvT3x6l56vpHbDvt3YZPmGObiOCcbqL+/8jJ1hFa+h+DrwUlHmdT/VbnxHYxttUqqwZ6+747qxXpePIb3lbVqbUgtzXcW8lse1KdOmbwv6luoDqaTVlDalx+nbhrNmE5+R15/XqnwlRR0nSZzkHk4gjFHvkVjZPi4gLaZ/ry/3eBuN+lwEsc/w2RND8JexhGnFrr9O885X2pfySV2fpIXXF4Bb3lHaOGJzlzaetzxf8nkpCOpbY3lsv51siwyeUDkbY20Nyzdmy7ATlqZw5eXrj6XTqutQbqvNmB1jncKVAeu+kEOtUvksK+OcNpPlG7FnzrYy/dS+WI82o01evhgapOm63o7eH7t2QljWya+zMU2Sm9IGGLa5VW/zfPni3ToMjI/bQaQ6mCpfWfdTbS7z4oY+4CuvKT/ts6z7VN7ttCltTHfn6fJN1d9Ym1xvrM3wnlHWn9eqvFctlnZvZXwcYbpiuf8hAA9tej6an9N0SJB8HcC/Dj3jea5B+OaAmEc61SGd6pBOdSxRp+vN7NraxPL7RxrpVId0qkM61bFEnTby+4cFyV8i6LUtb5jZ2Utlz/uhSWC2REj+fm7hnwhIpzqkUx3SqQ7p9MEgXeuQTnVIpzqkUx3SaTfZbj6KEEIIIYQQQohLhgIzIYQQQgghhGiMArPEjw9OIiCdapFOdUinOqTTB4N0rUM61SGd6pBOdUinHURrzIQQQgghhBCiMXpiJoQQQgghhBCNUWA2Asl7SBrJ9/PqzWMLye+Q/CvJP5F8vPu6uQBA8izJv5F8ieR9re1ZIiRPk/wtyT+TfJHkXa1tWjIk90j+keSTrW05zsjvzyO/P438fh3y/fXI7+8uCswKSJ4GcCuAf7e2ZcE8A+BjZvYJAH8HcH9jexYByT0APwRwG4AzAL5M8kxbqxbJRQD3mNkZAJ8C8E3pNMtdAP7S2ojjjPx+FfL7I8jvb4R8fz3y+zuKArMh3wNwL9IH0UWBmf3azC52m78DcKqlPQviJgAvmdk/zOx/AB4FcEdjmxaHmf3XzJ7v/n4b4eZzXVurlgnJUwC+AOAnrW055sjvH4D8/iTy+5XI99chv7/bKDBzkLwDwCtm9kJrW44Q3wDwdGsjFsJ1AF522/+BbjqzkPwIgBsBPNvYlKXyMELAsG5sx7FFfn8r5PcT8vtbIN8/y8OQ399ZTrQ24LAh+RsAHx756QEA30aYzrLzzOlkZk90aR5AmJrwyGHaJo4HJK8E8HMAd5vZW63tWRokzwF4zcz+QPIzjc050sjv1yG/Lw4D+f5p5PfFzgVmZva5sf0kPw7gowBeIAmEaRrPk7zJzF49RBMXwZROEZJfB3AOwC2mby5EXgFw2m2f6vaJApKXIdyYHzGzX7S2Z6HcDOCLJG8HcDmAq0n+zMy+2tiuI4f8fh3y+1shv78B8v0HIr+/4+g7ZhOQ/CeAT5rZG61tWRokzwL4LoBPm9nrre1ZCiRPICyKvwXhxvwcgK+Y2YtNDVsYDD3gnwJ408zubmzOkaAbOf2WmZ1rbMqxRn5/Gvn9ceT365Hv3wz5/d1Ea8zENvwAwFUAniF5nuSPWhu0BLqF8XcC+BXCoubHdHMe5WYAXwPw2a79nO9GB4UQy0V+fwT5/Y2Q7xfiAPTETAghhBBCCCEaoydmQgghhBBCCNEYBWZCCCGEEEII0RgFZkIIIYQQQgjRGAVmQgghhBBCCNEYBWZCCCGEEEII0RgFZkIIIYQQQgjRGAVmQgghhBBCCNEYBWZCCCGEEEII0Zj/A92f7p95HyaQAAAAAElFTkSuQmCC",
- "text/plain": [
- "<Figure size 864x720 with 6 Axes>"
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"targets = (16, 17)\n",
"vals = np.linspace(-5 + EPSILON, 5, 100)\n",
@@ -384,22 +326,9 @@
},
{
"cell_type": "code",
- "execution_count": 119,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAAJICAYAAAAUzce/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3iV5f3H8fdzRpKTk713QnbCDISdMBVFceCsHf6sbbWt29ZRR22r1lHrqNUOtdvWPREUJWAIK+wA2SQhe6+Tc5Izn98fBxEEQiIBjvp9XRfXJZD7ee5zwOfwyfe+v7eiqipCCCGEEEIIIc48zZmegBBCCCGEEEIINwloQgghhBBCCOEhJKAJIYQQQgghhIeQgCaEEEIIIYQQHkICmhBCCCGEEEJ4CAloQgghhBBCCOEhdGd6AqMRFhamJiUlnelpHMVsNmM0Gs/0NIQQQowBeaYLIcTXiyc+17dv396pqmr4sX7vKxXQkpKS2LZt25mexlHWrVvHggULzvQ0hBBCjAF5pgshxNeLJz7XFUU5cLzfkyWOQgghhBBCCOEhJKAJIYQQQgghhIeQgCaEEEIIIYQQHuIrtQdNCCGEEEII8c1ht9tpbGxkaGjoS18jMDCQsrKyMZzVyPn4+BAXF4derx/xGAloQgghhBBCCI/U2NiIv78/SUlJKIrypa5hMpnw9/cf45mdmKqqdHV10djYyLhx40Y8TpY4CiGEEEIIITzS0NAQoaGhXzqcnUmKohAaGjrq6p8ENCGEEEIIIYTH+iqGs898mblLQBNCCCGEEEKIE3A6neTk5LBs2bJTeh8JaEIIIYQQQghxAs888wxZWVmn/D4S0IQQQgghhBBiGI2NjXzwwQf88Ic/POX3ki6OQgghhBBCCI/36/f3UdrcP+pxTqcTrVZ7zN/LjgnggQvGn/Aat956K48//jgmk2nU9x8tqaAJIYQQQgghxHGsWLGCiIgIpk2bdlruJxU0IYQQQgghhMcbSaXrWE72HLQNGzbw3nvvsXLlSoaGhujv7+e73/0u//nPf770NYcjFTQhhBBCCCGEOI5HHnmExsZG6urqeOWVV1i0aNEpC2cgAU0IIYQQQgghPIYscRRCCCGEEEKIEViwYAELFiw4pfeQCpoQQgghhBBCeAgJaEIIIYQQQgjhISSgCSGEEEIIIYSHkIAmhBBCCCGEEB5CApoQQgghhBBCeAgJaCep0+Y401MQQgghhBBCfE1Im/2T0G61M7+4nCmqgRy7g0C9vJ1CCCGEEEJ83SQlJeHv749Wq0Wn07Ft27ZTdi+poJ2EAJ2W78aE8ilezC+uYHVn35mekhBCCCGEEOIUWLt2Lbt27Tql4QwkoJ0UH62Ge1NieJABgvVart5Tyw2lB+i2y7JHIYQQQgghxOjJmrwxkKI4+Sg3nT8caOfpA6182m3ikfQ4LogIOtNTE0IIIYQQ4uth1d3QumfUwwxOB2iPE3uiJsLSR094DUVRWLJkCYqicP3113PdddeNeh4jJQFtjHhpNPx8XBTnhQdya3k9P9pXx/ntgTyaHke4l/5MT08IIYQQQgjxJRUVFREbG0t7eztnn302mZmZzJs375TcSwLaGMv2M7Byajp/amjnibpW5m0p58G0WC6NDEZRlDM9PSGEEEIIIb6aRlDpOpZBkwl/f/+TunVsbCwAERERLF++nOLi4lMW0GQP2img0yjclBjJJ7kZpPh6c2NZPd/bU0vzkO1MT00IIYQQQggxCmazGZPJdOi/V69ezYQJE07Z/SSgnUJpRh/enZrGg6mxbOgxMb+4nJebu1BV9UxPTQghhBBCCDECbW1t5OXlMXnyZGbMmMH555/Pueeee8ruJ0scT1bNOhSX/bi/rVUUfhQfztlhAdxe3sDPKhp4t72HJzLiSTB4n8aJCiGEEEIIIUYrOTmZ3bt3n7b7SQXtZPTWw78vYdr2n0HTjmG/NMngzRtTUng8PY4d/RYWbK3gpcYOXFJNE0IIIYQQQhwkAe1kBCXAt/6L3m6CFxfDxw+Afei4X65RFK6ODWPdjExmBhq5t6qJS3ZWU2OxnsZJCyGEEEIIITyVBLSTlXEuW6c/CznfhQ1Pw5/zoH7LsEPifLz476Rkns6Mp8w8xKKt5fypvh2nVNOEEEIIIYT4RpOANgYcej+48Fn43tvgsMLfznEfpGczH3eMoih8KzqUT2dkMj/En1/vb+aCHVVUmI9fgRNCCCGEEEJ8vUlAG0spi+Cnm2DGj2DLn+BPc6C2cNghUd56/jFhHH/OTqRu0MrZWyt4uq4Vu0uqaUIIIYQQQnzTSEAba95+cN7v4JqVoGjgnxfAittgqP+4QxRF4eLIYD6dkcnS8EAerW1l6fZK9posp3HiQgghhBBCiDNNAtqpkjQXfrwB5twE2/8Bz8+Gqk+GHRLupecv45P424Qk2mx2zt1eyWM1LVhdrtMzZyGEEEIIIcRRkpKSmDhxIlOmTCE3N/eU3ksC2qnk5QtLHoIffOyurL18KbzzUxjsGXbYeeFBFM7I5JLIYJ460MaSbZXs6D/+fjYhhBBCCCHEqbV27Vp27drFtm3bTul9JKCdDnG5cH0hzLsDdr8Cz82E8g+GHRKs1/GHrERenpSMyeFk2fYqflPdzKBTqmlCCCGEEEJ8XenO9AS+MXTesOg+yLoA3rkBXvk2TLgUlj4OxrDjDlscGsCnMzJ5cH8zzze082FnH09lxjMzyO80Tl4IIYQQQogz67HixyjvLh/1OKfTiVarPebvZYZkcteMu054DUVRWLJkCYqicP3113PdddeNeh4jJRW00y16Mly3FhbeB6XvwXMzYO+bMMwZaP46LY9nxPP65BQcqsrFO6u5t7IRs8N5GicuhBBCCCHEN1NRURE7duxg1apVPPfccxQWDt+p/WRIBe1M0Oph/h2Qtcy9J+2Na2HvW3D+78E/6rjD8kP8WTs9g0dqW3ipsZPVXf08mRFPfoj/aZy8EEIIIYQQp99IKl3HYjKZ8Pc/uX8vx8bGAhAREcHy5cspLi5m3rx5J3XN45EK2pkUkeVuIHL2g1D9ibuatuu/w1bTjDotD6XF8U5OKl6KwuW79/Pz8gb6pZomhBBCCCHEmDObzZhMpkP/vXr1aiZMmHDK7icB7UzT6mDuze6W/BHZ8M5P4OXLoLdh2GEzg/z4ZHoGNyRE8N+WLuYXl/NxZ99pmrQQQgghhBDfDG1tbeTl5TF58mRmzJjB+eefz7nnnnvK7idLHD1FWKr7cOutL8Inv3Kfm7bkNzD1GtAcO0cbtBruT4lhWXgQt5bX8709tVwWGcyDabEE6+WPVgghhBBCiJOVnJzM7t27T9v9pILmSTQamHkd/HQjxE6FFbfBvy6E7tphh+UE+LI6N53bkyJ5p72HecXlfNDRe3rmLIQQQgghhBgzEtA8UXASXP0uXPAHaNkNf5oDm/8EruPvM/PWaLhzXDQf5WYQ5aXnB3vr+NHeOjps9tM3byGEEEIIIcRJkYDmqRQFpv0f/HQzJOXBh3fD35dCZ9Www8b7GVg5LZ17kqP5qLOP+cXlvNXWgzpM4xEhhBBCCCGEZ5CA5ukCY+Hbr8Hyv0BHBfxpLhQ9DU7HcYfoNQo3J0byyfQMxhm8+WnpAf5vTy0tVtvpm7cQQgghhBBi1CSgfRUoCkz+FtxQDGlnwycPwEtnQdu+YYelG314b2oav0qJobDHxPzicv7b0iXVNCGEEEIIITyUBLSToKoqVVW/RVUPnJ4b+kfClf+By//hbsP/l/mw7jFwHL8yplUUfpwQQcH0TLKNBm4vb+Cq3TU0DEk1TQghhBBCCE9zRgOaoigXK4rygqIoryqKsuRMzuXLsFpbaGl9G5f6IKVld2G1tp/6myoKjF/urqaNvxjW/RZeWAjNO4cdluzrzVs5qTySHkdxv5kFxeX8o6kTl1TThBBCCCGEGFZvby+XXXYZmZmZZGVlsWnTplN2rzEPaIqi/E1RlHZFUfZ+4dfPVRSlQlGUakVR7gZQVfUdVVV/BPwYuHKs53Kq+fjEMGd2AQrn0Nr6Lps2L6a27jmczqFTf3NjKFz6Inzrf2DuhBcWwye/Bvvx761RFL4fG8a66RnkBhi5u7KRS3dVU2uxnvr5CiGEEEII8RV1yy23cO6551JeXs7u3bvJyso6Zfc6FRW0fwBHHK2tKIoWeA5YCmQDVymKkn3Yl9x38Pe/cnQ6fzSay5k180NCQvKoqXmSzZvPprXt/dOz1yvzPLhhC0y5CoqehL/kQ0PxsEMSDN68MjmZJzPj2TcwyKKt5fyloR2nVNOEEEIIIYQ4Ql9fH4WFhfzgBz8AwMvLi6CgoFN2P91YX1BV1UJFUZK+8MszgGpVVWsAFEV5BbhIUZQy4FFglaqqO8Z6LqeTr28Skyb+iZ6ezVRWPcy+fbfS2Pgv0tLuIzBg8qm9uSEILnoOxl8C798CLy2BWT+FRfeBl+8xhyiKwrejQ1kY4s+dFY08UN3Me+29PJWZQLrR59TOVwghhBBCiFFq/e1vsZaVj3qcw+mkW6s95u95Z2USdc89w46vra0lPDyc73//++zevZtp06bxzDPPYDQaRz2XkVBORZXnYEBboarqhIM/vww4V1XVHx78+feAmUAl8H/AVmCXqqp/Psa1rgOuA4iMjJz2yiuvjPl8T9bAwAB+fn6Hfq6qLlQ2oKpvAf0ozEJRLkVRQk75XLQOC8k1/yK2eRWDPlFUZNxIb/DEYceoKmxAzz8wMITCZQxxAVa0yimfrhBCeJwvPtOFEEKcOYGBgaSmpgLQ+/snsVVWjv4iquru43AMXunpBP3s9mGH79ixg8WLF7N69WqmT5/OnXfeib+/P/fff/+Ibl9dXU1fX98Rv7Zw4cLtqqrmHuvrz2hAU1X1xtFcNzc3V922bdtYT/ekrVu3jgULFhz16w7HAHUH/kxDw0uAhsSE60hM/BFa7bGrWmOqrgjevRF6aiH3B3D2r8Hbf9ghHTY791Q28X5HL5P8DDyVlcB4P8Opn6sQQniQ4z3ThRBCnH5lZWUnvd/LZDLh7z/8v4OH09rayqxZs6irqwNg/fr1PProo3zwwQcjGn+s16AoynED2unq4tgExB/287iDv/a1ptP5kZryc2bN/JiwsEXU1v2BTZvPpqX1HVTVdWpvnpQHP9kIs2+EbX+D52dD9Zphh4R76XlhQhIvjk+i2WrnnG0VPF7bgs11iucqhBBCCCGEh4qKiiI+Pp6KigoA1qxZQ3Z29glGfXmnK6BtBdIURRmnKIoX8C3gvdN07zPOYIhj4oRnmTb1Vby8wigt/Rnbtl1Kb9/2U3tjL18452H4wWrQG+A/l8C7N8Bg77DDlkUEUTgzk4sjgnmyro0l2yrZ1W85tXMVQgghhBDCQz377LN85zvfYdKkSezatYt7TrBv7WScijb7/wM2ARmKojQqivIDVVUdwI3AR0AZ8JqqqvvG+t5nQn2XZcTdGoOCcpme+zbZWY8zZG1l+/Yr2Lv3FgYHT3ExMX4GXL8e8n8Gu/4Hz82E8pXDDgnR6/hjdiL/njiOPoeT87ZX8tD+ZgadUk0TQgghhBDfLFOmTGHbtm2UlJTwzjvvEBwcfMruNeYBTVXVq1RVjVZVVa+qapyqqi8d/PWVqqqmq6qaoqrqw2N93zOhvX+Ic58p5IltQ1S0mkY0RlE0REdfyuxZn5CUdCMdnR+zecvZ7N//exwO86mbrN4HFv8SflQAxjB45Sp484dg7hp22NlhgXw6I5NvR4fyx/p2zt5WQXHvwKmbpxBCCCGEEN9gp2uJ49dSsNGLny/JoLbPxdJnCrn37T10DYzs0GedzkhK8m3MnvUJ4eHnUHfgeTZtPovmljdO7f60mCnwo7Ww4B7Y9w48NwP2ve3ubnMcATotT2TG89rkFKwulYt2VnN/VSNmp/PUzVMIIYQQQohvIAloJ0Gv1XBt3jgen+fL1bOTeGVrAwt+t44XCmuwOUYWsnx8Ypgw/ilyp72Oj08MZWV3sXXbxfT0DH/Y9EnRecGCu+D6TyEoHl6/Bl77Hpjahh02L8SfddMz+H5sGC80drKwuIKinpFVDoUQQgghhBAnJgFtDPh5KfzqwvF8dGs+05KCeXhlGUue+pSP9rWOeH9aYOBUcqe9zvjsp7DZutix8yr27LmRwcGGUzfxyPHwg0/grF9D5Wp3NW33K8NW04w6Lb9Nj+OdnFS0Cly2az93VjRgckg1TQghhBBCiJMlAW0MpUb484/vz+Af35+OTqvh+n9v59svbKG0uX9E4xVFQ1TUhcye9QnJ426ls2sdmzYvobr6cRyOU1Sp0uog71b4yQYIz4C3r4f/XgF9wzcumRXkx5rpmfwkPpz/NHcxv7icNV0je51CCCGEEEKIY5OAdgosyIjgw1vy+c1F4ylv7ef8Z9dz95sldJhGtj9NqzUwbtxNzJ79CZGR53Og/i9s3LSYpqZXUNVTVKkKS4Pvr4JzH3Mfcv38LNj+z2Grab5aDQ+kxrJiahp+Wi3fKanh5rID9Ngdp2aOQgghhBBCfM1JQDtFdFoNV89OYt3PF3Lt3HG8sb2RhU+s4/l11QzZRxayfLyjGJ/9BNNz38bXN4nyinsp3noh3d0bT82kNVqY9WP3AdfRk+H9m+FfF0FP3bDDpgYa+Xh6OrclRvJmWw/zi8tZ1dF7auYohBBCCCHEaVRRUcGUKVMO/QgICODpp58+ZfeTgHaKBfrquX9ZNqtvm8es5FAe/7CCs578lJV7Wka8Py0gYBLTpr7KhPF/wOEwsXPX99hdcj0WS+2pmXTIOLj6PVj2FDTtgOfnwJa/guv4jU+8NRruSo7mw2nphHvp+P7eOq7fV0enTappQgghhBDiqysjI4Ndu3axa9cutm/fjq+vL8uXLz9l95OAdpJGGrKSw/148f9yefmHM/Hz1vHTl3dw5V82s6exb0TjFUUhMvJ8Zs38mJTkn9PTs4nNW5ZSVfVb7PZTsPdLo4Hca+GnmyBxNqy6A/5xHnRWDztsor8vH07L4K5xUazs6GNecRnvtPWM+H0SQgghhBDCU61Zs4aUlBQSExNP2T10p+zK3wAOu53/3nMbuogYBnOnYfDzP+GYualhfHBzPq9ubeD3qyu48LkiLp0axx3nZBAZ4HPC8VqtN0lJPyE6+jJqap6kvuFvtLS+TfK4W4mJuRKNZoz/SIPi4TtvwO7/wYd3w5/nwsJ7YfYN7iWRx6DXKNyWFMXS8EBuLWvgx6UHeLe9l0fT44j01o/t/IQQQgghxDfC+tcq6WwYGPU4p9OJVnvsf7eGxfuRf0X6iK/1yiuvcNVVV416DqMhFbSTYDUPEBARRcu2jbxww7UUvvx3zL09Jxyn1Sh8e2YCa+9YwHXzknlvVzMLn1jHs2uqRrw/zds7nKysR5gx/V2MxjQqKn9J8dZldHWtP9mXdTRFgSnfhhuKIWUxfHw/vHQ2tJcNOyzTaGDF1DR+mRLD2u5+5hWX82pLt1TThBBCCCHEV47NZuO9997j8ssvP6X3Ub5K/1jOzc1Vt23bdqancZRVb76Os7GWyk1FaHU6JixawvQLLyEgLGJE4w90mXlkZTkf7mslJtCHu5ZmcuHkGBRFGdF4VVXp6FxNddWjDA7VExq6kLTUX2A0ppzMyzrezWDfW7DyDhjqh/l3udv0a4evjO23DHF7eQNb+swsDPHndxnxxPl4jf38hBDiJK1bt44FCxac6WkIIYQAysrKyMrKOqlrmEwm/P1PvNLtRN59912ee+45Vq9ePapxx3oNiqJsV1U191hfLxW0MWAIDWfZLXfy/af+RGbefEo+WcVLN1/HR3/+Az2tzSccnxhq5M/fm8Yr180i2OjFLa/s4tI/bWRn/YmrceDenxYRfg6zZn1Iaurd9PZuZUvxeVRU/ga7vfckX91RN4MJl7qradkXwtqH4IWF0LJ72GEpvj68nZPKw2mxbOkzs6C4nH81deL6Cn2DQAghhBBCfHP973//O+XLG0EqaGPii99t7e9oZ+v7b7KnYDUuh5OMOfnMvPhywhKSTngtp0vlze2N/G51BR0mKxdPieHOczOJCTKMeD42Wyc1NU/T1PwqOp0/yeNuITb222g0p2D/V9kK+OB2MHdC3m0w/07QeQ875MCglZ9XNLC+Z4C5QX48mRlPomH4MUIIcbpIBU0IITyHp1TQzGYzCQkJ1NTUEBgYOKqxo62gSUAbA8f7MDf39rBtxdvsXr0Su3WI1OmzmLn8SqJS0k54zQGrgz+tq+aF9bVoFLhuXgo/np+Mr9fIm4AMDFRQWfUQPT0b8fVNIS31F4SGLhjx0skRG+yBj+6FXS9DeCZc9BzEHfPv2yGqqvLflm5+Vd2EQ4V7kqO5Ni4M7VjPTQghRkkCmhBCeA5PCWgnQ5Y4ehBjUDDzv3stP3rub8y69CoaSvfw8j238cbD99NYunfYsX7eOu44J5M1t8/nrKxI/rCmioVPrOOtHY24XCML1X5+GeRM+ReTJv0VVXWyu+SH7Nr9fQYGKsfi5X3OEAwXPw/feROsA+4GIh/dCzbLcYcoisJ3YkL5dEYmc4L8uL+6iYt3VFNlHhrbuQkhhBBCCPEVIgHtNDD4BzD3iu/woz/+nfxvX0PHgVpe/fXdvPLAXdTt2j5sV8P4EF/++O2pvP7j2UQG+HD7a7tZ/vwGth/oHtG9FUUhPGwxs2auIi3tPvr7d1O8dRnlFQ9gs43sGiOWdpb73LRp18CmP7pb8tdtGHZIjI8X/5k0jj9mJVBlGeKsbRU8e6ANxwhDqBBCCCGEEF8nEtBOksvlGvHXevv6MuOiy/jhsy+y8Jrr6Oto481HHuDle26nausm1GGuNT0phHd+OpffXz6Z1v4hLv3TJm787w4ae45fpTqcRuNFQvz3mT1rDbEx36a5+X9s2ryI+vqXcLlsI34NJ+QTAMuegv97H1SX+3DrD37urqwdh6IoXBYVQuGMTM4KDeDhmhbO21FJ2cDg2M1LCCGEEEKIrwDZg3YS7HY7f/nLX/D19eWKK67Az89vVOMddjulhQUUv/s6fW2thMYlMHP5FWTMzkdznMP0ACw2B3/+tIa/Fu7HpcKP8sfxkwWp+HmPYn+auYrqqt/S1V2IwZBIWuovCAs7a2z3p9nMUPAQbP4TBMbDhX+AlIUnHPZ+ey93VzbS73ByS2IkNydG4KWR7yUIIU4P2YMmhBCe45u4B00C2kkYGBhg1apV7Nu3D51Ox7Rp05gzZ86oO7u4nE4qNhay5Z3X6WqsJygymhkXX072vIVodcfvvNjcO8jjH5bzzq5mwv29ueOcDC6bGodGM/KQ1dm1jqqqR7BYqgkOnk1a2n34+2WOav4nVL8F3r0Buqpg6tWw5CHwGf496rI5+GV1E2+29ZBt9OGprAQm+/uO7byEEOIYJKAJIYTnkIDm4TwtoH3mgw8+wGazUVJSgqIo5OTkMHfuXEJCQkZ1HdXlonrbZra8/RptNdX4h4aTe8ElTFy8BL3X8dvQ76zv4TcrStlZ38v4mADuX5bNrOTQEd/X5bLT1Pw/amqeweHoJybmcpKTb8fbK2xU8x+WfQjWPQIb/wB+Ue5lkBnnnnDY6s4+7qxopMNu54b4CG5PisJHK9U0IcSpIwFNCCE8hwQ0D+epAe2zD/Oenh42bNjAzp07cblcTJw4kby8PCIiIkZ1PVVVqdu9gy1vv0pTeSm+gUFMO/9ipiw5Dy/DsatIqqry3u5mHltVTnPfEEsnRPGLpVkkhI686mS391Fb9yyNjf9Go/FhXNJPiY+/Bo1mDM8oa9oO794I7aUw6Uo491HwHT7I9tkd/Gp/M/9r6SbN15unMhPIDTSO3ZyEEOIwEtCEEMJzeEpAe+qpp3jxxRdRFIWJEyfy97//HR8fnxGNlYB2Bhx1UHV/P5s2bWLbtm3Y7XaysrLIz88nJiZm1NduLN3L5rdf5UDJTnyMfuQsvYCcpRdi8Dv2X7JBm5MX19fw/Lr9OF0q389L4saFqfj7jPyQarO5hur9j9LZuQYfn3jSUu8mPPycsduf5rDB+t/D+ifcLfrP/z1kX3TCYeu6+/lZeQPNVjvXxYVzV3I0vlJNE0KMMQloQgjhOTwhoDU1NZGXl0dpaSkGg4ErrriC8847j2uuuWZE4+UcNA8QEBDAOeecw6233sq8efOoqanhr3/9K//5z3+or68f1bXisidw2b0P8p2HnyQ2awKb3vgfL9xwLYUv/x1zb89RX2/w0nLT4jTW3bGACybH8JdPa1jwu3X8d0s9zhG2rjcak5k86a9MmfJPtFoDe/bewI6d36bfNPzZbSOm84KFv4Dr1kFADLx2tfvHQPuwwxaEBPDpjEz+LzaMvzR2sGhrORt6TGMzJyGEEEIIIY7D4XAwODiIw+HAYrF8qcLLSEkFbQyc6LutQ0NDFBcXs3nzZiwWC0lJSeTn55OcnDzqqlRHfR1b3n6Nyk1FaHU6JixawvQLLyEg7NjLKEsae3lwRSlb63rIjPLn/mXZzE0d+d4yl8tBc8tr1NQ8hd3eQ3T0paQk/wxv79Et2zwup8O9L23dI+DlB0sfh4mXwQnel409A9xeUU/doI3/iwnl/pQY/HTH73wphBAjJRU0IYTwHIdXn9b+46+0H6gZ9TWcDifa4/w7MSIxmYXXXHfCazzzzDPce++9GAwGlixZwssvvzzi+0sFzQP5+Pgwb948br31Vs455xy6urr497//zYsvvkh5efmwB1V/UXhCEstuuZPvP/UnMvPmU/LJKl66+To++vMf6GltPurrJ8UF8dr1s3n+O1MZsDr4zotb+OE/t1HbaR7R/TQaHXGx32bO7AISEn5Ia+u7bNq8mNq653A6h0Y87+PS6iD/dvhxEYSmwFs/hP9dBf1Hv5bDzQn2o2B6JtfHh/Ov5i7mF5eztqv/5OcjhBBCCCHEYXp6enj33Xepra2lubkZs9nMf/7zn1N2P6mgjYHRfrfV4XCwa9cuioqK6O3tJSIigvz8fMaPH49mlOd99Xe0s/X9N9lTsBqXw0nGnHxmXnw5YQlJR33tkN3J3zbU8lxBNTani6tnJ3HzojQCfUe+P81iqaN6/2N0dKzGxzuGlNQ7iYxYNjb701xO2PIXWPMb0HrBOQ9DzndPWE3b1mfmtvJ6qixWrooO4VcpMQTqR34mnBBCHE4qaEII4Tk8YQ/a66+/zocffshLL70EwL/+9S82b97M888/P6LxUkH7CtDpdOTm5nLTTTexfPlyXC4Xb775Js899xw7d+7E6XSO+FoB4REsvvYn/OiPf2PasovZv72Yf95xI+8+8RCt+6uO+FofvZafLkhl7R0LuHRqHH/bUMuCJ9by7011OJyuEd3P1zeJSRP/xNScl9Hpg9i371a277iCvv7do3oPjkmjhdk/hZ9sgKiJ8N6N8O/l0Dv8vr3cQCMf52ZwS2Ikr7V2M6+4nI86+05+PkIIIYQQ4hsvISHh0FYlVVVZs2bNSYfG4UgFbQyc7HdbXS4XZWVlrF+/ntbWVgIDA5k7dy45OTno9SOvbgEMmvrZsep9dn74HlazmcRJOcxafiVx2ROO+tp9zX08uKKUzTXdpEX4cd+ybOanh4/4XqrqpKXlTfbX/B6brZOoqItJSf45Pj7Ro5rzMblcsP1v8PED7p+f9SvI/QGcoMJYYrJwa1k9peYhLokM5sHUWEK9pJomhBg5qaAJIYTn8IQKGsADDzzAq6++ik6nIycnhxdffBFv75EdRSVt9s+AsfowV1WVqqoqCgsLaWxsxM/Pj9mzZ5ObmzvivwCfsVos7P54Jds/eAdLXy+xmeOZtfwKEidPPWI5oqqqrC5t47cryzjQZWFBRjj3nZ9FasTI/xI7HCbqDvyZhoa/ARoSE68nMeFHaLWGUc35mHrr4f1bYH8BJM6FC59171Ubhs3l4tkD7Tx9oI0AnZZH0uO4IDxw7I4JEEJ8rUlAE0IIz+EpAe1kSEA7A8b6w1xVVerq6igsLKS2thaDwcDMmTOZOXMmBsPoQo/dOsSegtVsff8tBro6iUxOZebyK0jNnYVyWDXK6nDyz411PLumGovdyfdmJXLL4jSCjV4jvtfgYAPV+x+nvX0l3t5RpKTcQVTkhSjKSa6kVVXY9TJ8eA84bbDoPpj1E/eSyGGUDQxya3k9u02DnB8eyCNpcUR4j64iKYT45pGAJoQQnkMCmof7pgS0wzU0NLB+/XoqKyvx8vJixowZzJo1Cz8/v1Fdx+mws+/TAra++wa9bS2ExiUwc/kVZMzOR6P9POh0Dlh56uNK/ldcj7+PnlvPSuO7sxLRj+JA6J7erVRVPYTJtJeAgMmkp91HYODUUc33mPpbYMVtULkKYnPhoucgInPYIQ6Xyp8b2vldXSsGjYYH02K5LDJYqmlCiOOSgCaEEJ5DApqH+yYGtM+0trayfv169u3bh06nY9q0acyZM4fAwMBRXcfldFKxaT1b3n6NrsZ6giKjmX7RZYyfvwit7vPqUnlrPw+tKKOoupPkcCP3nZ/FwoyIEQcbVXXR2vo21fufwGZrJzJiGSkpd2IwxI5qvse4MOx9E1beAbYBmH8XzL0FtMNXxqotQ9xW1sDWfjOLQwL4XUYcMT4jrw4KIb45JKAJIYTnkIDm4TwxoJm6h9hesvm0fZh3dHRQVFRESUkJiqIwZcoU8vLyCAkJGdV1VJeL6m2b2fL2a7TVVOMfGk7uBZcwcfES9F7u/W6qqlJQ3s7DH5RR02kmPy2M+87PJiNqNPvTzByo/yv19S8AkBD/AxITf4xOZxzVfI8y0AGr7oB9b0PUJHc1LXrSsEOcqsrfmzp5eH8LOgUeSI3lO9EhUk0TQhxBApoQQngOCWgeztMC2pDZzj/u3oDez8XMc9NJmxGFt+H0dAzs6elhw4YN7Ny5E5fLxYQJE8jPzyciImJU11FVlbrdO9jy9qs0lZfiGxjEtPMvZsqS8/Ay+AJgc7j4z+YDPP1JJQNWB9+emcBtZ6UT6jfyxiVDQ81U7/8dbW3v4eUVQUrKz4iOuuTk96eVvgcf/AwGuyHvdpj3c9ANP68Dg1ZuL29gQ+8A+cF+PJERT6JhdE1YhBBfXxLQhBDCc0hA83CeFtDsViflm1oo/rCSoV7QeWlInRZBdl4sUckBp6UyYzKZ2LhxI9u2bcNut5OVlUV+fj4xMTGjvlZj6V42v/0qB0p24mP0I2fpBeQsvRCDn/svdI/ZxjNrqvj35gP4emm5eVEa/zcnCS/dyENWX98OKqsepr9/F/7+40lLvY/g4BmjnusRLN3w0T2w+38QnuWupsVNG3aIqqr8p6WLX1c341Th3pRoro0NQyPVNCG+8SSgCSGE55CA5uE8LaB9Zu3atWSPm0ZpUTNVW9uwW50ERxvJnhtN5qxofPxOfedAs9nMli1b2LJlC1arldTUVObNm0dCQsKor9VaXcnmt19j/7bN6H0MTD57KbnLlmMMCgagut3EQx+Usa6ig6RQX35xXhZLsiNHtT+trW0F1fsfw2ptJSJ8Kampd2EwxI96rkeoXO1uyT/QCrNvhIX3gH74rpdNQzbuqGigoNvEzEAjT2bGk+Lrc3LzEEJ8pUlAE0IIz+EpAe2pp57ixRdfRFEUJk6cyN///nd8fEb2b0YJaGfA4R/mtiEH1dvaKd3QTFttPxqdQsqUcLLzYohND0bRnNoKzdDQEMXFxYdOO09MTGTevHkkJyePuqLXUV9H8TuvU7FxPVqdjgmLljD9wksICHMvo1xX0c5DH5RR3T7A7ORQ7l+WTXZMwIiv73QOUl//InUH/oKqOkmI/z5JST9BpzuJ/4GG+mD1/bDjnxCS4q6mJc4edoiqqrzW2sMvq5uwulzcMS6a6+PC0Z3iPyshhGeSgCaEEJ7DEwJaU1MTeXl5lJaWYjAYuOKKKzjvvPO45pprRjReAtoZcLwP887GAUo3NFO5pRWrxUFAuMFdVZsdjTHw1O55stlsbN++nY0bN2IymYiNjSU/P5+MjIxRB7WeliaK332D0sICALLnLWLGRZcRHB2Lw+niv8X1PPVxJb2Ddq7MjednSzII9x/F/jRrK/v3P0Fr69vo9aGkJN9OTMzlKMrw55wNa/9aeP9m6G2AGdfBWQ+A1/CNSdqsdu6qbODDzn6m+PvyVGY8WX5jcNi2EOIrRQKaEEJ4Dk8JaLNmzWL37t0EBARw8cUXc/PNN7NkyZIRjZeAdgac6MPcYXOyf2cHpUXNNFf1omgUkiaGkp0XQ8L4UDSnsFLjcDjYtWsXRUVF9Pb2EhERQX5+PuPHj0ejGV2Djv7Odra+9xZ7Cj7C5XCSMSefmRdfTlhCEn0WO38oqOKfG+vw0Wv56cIUrp07Dh/9yENWf38JlVUP0de3HT+/TNJS7yUkZM5oX/LnrAOw5jdQ/BcISoQLn4Xk+cMOUVWVd9t7uaeqEZPDxW1JkdyUEIleqmlCfGNIQBNCCM9xeLjpfX8/tmbzqK/hdDrQao/dyM8rxkjQBSknvMYzzzzDvffei8FgYMmSJbz88ssjvr8EtDNgNB/mvW0WSouaKd/cwqDJjl+wN5lzosmeG4N/yKnb++R0Otm7dy/r16+ns7OT0NBQ8vLymDRpElrt6CpV5t4etq14m90fr8I+NEhK7ixmLb+CqNR0ajoG+O3Kcj4payMu2MA952WxdELUKPanqbS3r6R6/2MMDTURFnYWaal34+s77su8bLcDG+HdG6F7P0y7Bs7+DfgMf35cp83BfVWNvNPey3g/H57OTGCiv++Xn4MQ4itDApoQQngOTwhoPT09XHrppbz66qsEBQVx+eWXc9lll/Hd7353RPeXgHYGfJkPc6fDRe3uTko3NNNQ1g1AQnYI2XkxJE0KQ6s9yfbzx+FyuSgrK2P9+vW0trYSGBjI3LlzycnJQa8fXTOTwQETO1e9x45V72E1m0mclMOs5VcSlz2BDdWdPLiilPJWEzOSQrh/WTYT40Z+qLbTaaWh4W/UHfgTLpeN+LirSUq6Eb1+5HvcjmAfhLW/hU1/BP9ouOAZSDv7hMNWdfRyV2UjXXYHNyVEcltSJN6jrDwKIb5aJKAJIYTn8IQljq+//joffvghL730EgD/+te/2Lx5M88///yIxktAOwNO9sO8v3OQso0tlG1swdxrxRDgRdbsKLLmxhAUcWqqNqqqUlVVxfr162loaMDPz4/Zs2eTm5uLt/fo9sdZLRZ2f7yS7R+8g6Wvl9jMbHdQm5jDa9sa+f3qCrotNi6dGscd52QQGTDySqHV2kFNzZM0t7yOXh9M8rhbiYm5Eo3mS54317gd3r0BOspg8lVwzm/Bd/hDvnvtDh6obubV1m7SfL15JjOBqYEnedC2EMJjSUATQgjP4QkBbcuWLVx77bVs3boVg8HANddcQ25uLjfddNOIxktAO83s7RY27CtmwcIFJ30tl9NF/b5u9hU1c2BvF6pLJTYjiOy5MSTnhKMbxX6ukVJVlbq6OgoLC6mtrcVgMDBz5kxmzpyJwTC6Bhl26xB7Cj5m6/tvMtDVSWRyKjOXX0HEhGk8/2kNfy+qQ6dV+Mn8FH40L3lU+9NMpn1UVj1Mb+8WjMY00lLvJTQ0f7Qv181hhcInoOhJMITAsich64ITDivo6ueOigZarHauiw/nznHR+J6iSqcQ4syRgCaEEJ7DEwIawAMPPMCrr76KTqcjJyeHF198ccRFDQlop5HTbKflt1uwebsInz8O36mRaP29xuTa5l7rwapaM/2dQ3gbdWTMjCI7L4bQGL8xuccXNTY2UlhYSGVlJV5eXsyYMYNZs2bh5ze6+zkddvZ9WsDWd9+gt62F0LgEZi6/Ap/0aTz2USUf7mslJtCHu8/L4oJJ0aPan9bRsZrq6kcZHKonNHQhaam/wGg88cbOY2opcVfTWktg/HJY+jvwCx92iMnh5MH9zfyruYtxBi+ezExgdtCp+fMQQpwZEtCEEMJzeEpAOxkS0E4j1e7CsqeD5o8rMPQooFEwZIdgnBGNd2rQmJx5prpUGit6KC1qpmZXBy6nSlRyANl5MaROi0TvPfZVtdbWVtavX8++ffvQ6XRMmzaNOXPmEBg48j1kAC6nk4pN69ny9mt0NdYTFBnN9IsuwxQ/hYdXVVLa0s/UhCDuX5ZNTkLwyK/rstLQ8E9q657D5RoiNvY7JI+7Gb0+aJSvFHDaYcMz8Olj4O0PSx+HCZfCCUJjUY+Jn5U3cGDIxvdjw7gvORqjbuz/LIQQp58ENCGE8BwS0DycpwU0AOqKKNw/wOyJ8zBvbcWyow2X2YE2yBtjbiS+06PQjdGZZ4MmG+WbWyktaqa3zYLeR0v69Eiy82KISPySzTOG0dnZSVFRESUlJQBMmTKFvLw8QkKG37P1RarLRfW2zWx5+zXaaqrxCw1j6rJLqQoZz5Of1NA5YGV5Tix3nptBdODIl1XabJ3U1DxNU/Or6HT+JI+7hdjYb6PRjK7ZCQDt5e5qWtM2yDgfzv89BEQPO8TsdPJYTSsvNHYQ66PnyYwE5oWcuf/5hRBjQwKaEEJ4DgloHs7jApq5E36XilOjR5u6CDLOQ01ewmCDDvPWVqxVvaCAT0YIxulR+GSGoGjHoKqmqrRU91G6oZnq7e047S7C4v0YnxdD2owovA1fsoHGcfT09LBhwwZ27tyJy+ViwoQJ5OfnExERMep5H9i9g81vv0pTeSm+gUFkn3sxm7wy+dvmBjQKXD8vhevnJ+PrNfLXMDBQQWXVQ/T0bMTXN4W01F8QGrpg1Ady43LC5j9BwYOg84ZzHoEp3z5hNW1rn5nbyuuptlj5TnQID6TGEiDVNCG+siSgCSGE55CA5uE8LqA57XBgI41rXiDOvBt66wEF4nIhYymOqHMw1/hh3taGy2RD4++FcVokxumR6EJH14DjeKwWO5XFbewraqarcQCdXkPqtAiy82KISgkcfUgZhslkYuPGjWzbtg273U5WVhb5+fnExMSM+lqNpXvZ/ParHCjZibfRSPyii1nlSuHD0g6iAny489wMLp4SO+JDvFVVpbOrgKqq3zI4WEdISD5pqffg55c+6rnRtR/euwkObICUxe6W/EHxww4Zcrr4fV0rz9W3E+mt57H0OJaEjW5JqBDCM0hAE0IIzyEBzcN5XEA7aN26dSyYPx/aS6F8JVSshOYd7t8MHoeadj5Dvudirg1mqLIHVPBODcI4PQrD+FAU3cl3AlRVlfYDJkqLmqna2obd6iQ42kj23GgyZkVh8Bub5iUAZrOZLVu2sGXLFqxWK6mpqeTn55OYmDjqa7VWV7L57dfYv20zeh8DhjkX8s5gPPtazUyOC+SXF2QzLXHkSypdLhuNTS9TW/sHnE4zMTFXkTzuFry8RrcsE5cLtr0EHz/grqCd/RuY9n04wRlou/ot3FZeT5l5iMsig/lNWiwh+rGtaAohTi0JaEII4TkkoHk4jw5oX/ww72+Gyg/dga32U3DawBCMI3E5FvVczAcCcfba0fjq8J0aiXFGFPoxOvPMNuSgens7pUXNtNX2o9EpJE8JJzsvhrj04DFpXgIwNDTE1q1b2bRpExaLhcTERObNm0dycvKoK3cd9XUUv/M6FRvXo9HpMOVezPsDUbQP2Fk2KZq7l2YSFzzy98dm66a29g80Nf8XrdaXcUk3ERf3PTSaUQbVngPw/s1Qsw6S8uHCP0BI8vD3drl45kAbzxxoI0in49H0OJZFBI3uvkKIM0YCmhBCeA4JaB7uKxXQDmcdgP1roGKVO7QN9qBqvLGGfwez42wGW/zBBV6JARhnRGGYGIbGa2z2MHU1DbCvqJnKLa1YLQ4Cwg1kz40mc3Y0xjFqXmKz2di+fTsbN27EZDIRGxtLfn4+6enpaE5QcfqinpYmit99k9LCNdgVHQcmXMwacyguFH6UP46fLEjFz3sU+9PMVVRX/Zau7kIMhkTSUn9BWNhZowuQqgo7/w0f3ete1rr4lzDzetAM/2dUOjDIrWX1lAwMsiw8kEfS4wj3+hINTIQQp5UENCGE8ByeEtCeeeYZXnjhBVRV5Uc/+hG33nrriMdKQDsDRvVh7nRAwxb3MsiKldBdg1MNxGL8LmbrAhxmA4qPFt8pERhnROE1RmeeOWxO9u/soLSomeaqXhSNQtLEULLzYkgYHzrivV7D3sPhYNeuXRQVFdHb20tERAT5+fmMHz9+1EGtv7Odre+9xd6C1fSq3uxNX8bWwSDC/b2545wMLpsaN6o5d3ato6rqESyWaoKDZ5OWdh/+fpmje4H9zbDiNnfIjpsBFz0H4cPvcXO4VP7U0M4Tda34ajQ8lBbLJZHBY7o3UAgxtiSgCSGE5/CEgLZ3716+9a1vUVxcjJeXF+eeey5//vOfSU1NHdF4CWhnwJf+MFdV6Kx0B7XylagNW7Gp2Zg1l2Cx5YJLiz7WiHFGNL6Tw9H4jM1ept42C6VFzZRvbmHQZMcv2JvMOdFkz43BP8TnpK/vdDrZu3cv69evp7Ozk5CQEPLy8pg0aRI63eheg7m3h20r3mb3x6toUP0pTjiXAw4j42MCuH9ZNrOSQ0d8LZfLTlPz/6ipeQaHo5+YmMtJTr4db6+wkU9IVWHP67DqTrBZYMHdMOdm0A7/uirNQ9xeXs+2fgtnhwbweEYc0d5jty9QCDF2JKAJIYTn8ISA9vrrr/Phhx/y0ksvAfDggw/i7e3NnXfeOaLxEtDOgDH7MB9od1dnKlbhqi7GYp2F2XUedlcCis6FYUIoxjkJeMX7j0kFxulwUbu7k9INzTSUdQOQkB1Cdl4MSZPC0GpPrnmJy+WivLycwsJCWltbCQwMZO7cueTk5KDXj26p3+CAiZ2r3mP7qvfYSzRbIufRq3qzdEIUv1iaRULoyPen2e191NY9S2Pjv9FofBiX9FPi469BoxnFks+BdvjgZ1D2HkRPcVfToiYMO8SpqrzU2MEjNS3oFIVfp8ZyVXSIVNOE8DAS0IQQwnMcHm5WrVpFa2vrqK/hdDrRao+9NSUqKoqlS5eecA4XXXQRmzZtwmAwsHjxYnJzc3n22WdHdH8JaKeZqqp8+umnY/9hbrNAzTrU8pXYSyswm2dicc5DxYAuYAjjjGiMczLQ+I7Nnqb+zkHKNrZQtrEFc68VQ4AXWbOjyJoTQ1DkyTUvUVWVqqoq1q9fT0NDA0ajkTlz5pCbm4u39+j2wVktFnZ/vJLNH7zPRiWR7cG5oNFybV4yNy5Kxd9n5O+H2VxD9f5H6excg49PPGmpdxMefs7oAtO+d2Dlz2GwB/J/Dvk/A93wlbFai5XbK+rZ1GtmXrAfT2TEk2AYm/2AQoiTJwFNCCE8hycENICXXnqJ559/HqPRyPjx4/H29ubpp58e0f2/UgFNURQj8DxgA9apqvrycF/vaQFNtdvZv2wZ/dExpH77KvzmzkVjNI79jVxOaNqOa++HWHZ3YO6bgl1NB+wYonowzknAO3cayij3eR37Vi7q93Wzr6iZA3u7UF0qselBZOfFkJwTjk7/5ZuXqKpKXV0dhYWF1NbWYjAYmDlzJjNnzsRgGN25cHbrEHsKPqZgxQd8Qhrl/pkEeSvcsTSbb81IRDuK/Wld3UVUVT2M2VxJUNAM0tLuJcB/+GrYEcxd8OHdsOc1iBgPFz8HMTnDDnGpKv9q7uLB/c2owH3J0VwTG4ZGqmlCnHES0IQQwnN4whLHL7rnnnuIi4vjpz/96Yi+/owHNEVR/gYsA9pVVZ1w2K+fCzwDaIEXVVV9VFGU7wG9qqq+ryjKq6qqXjnctT0toDl6emh75BF6P1mDxmJB8fLCd/Ys/Bctxm/BAvSREafmxl37sRUXYN49gKU3ExU/dNo2jPEd+M5JQ5udD7qTr8iYe62UbWqhbEMz/Z1DeBt1ZMyMIjsvhtCTbF7S2NhIYWEhlZWVeHl5MX36dGbPno2f3+iu63TY2fdpAe++/wkryaDFJ5px/hp+c/k08tNH/v67XA6aW16jpuYp7PYeoqMvJSX5Z3h7j+LPsGKVu4nIQDvMvRnm3w364ff0NQzZuKO8gXU9JmYFGnkyM4FkX6mmCXEmSUATQgjP4SkBrb29nYiICOrr61myZAmbN28mKChoRGM9IaDNAwaAf30W0BRF0QKVwNlAI7AVuAq4CFilquouRVH+q6rqt4e7tqcFtM+sW7OG6X7+DBQUYCoowN7QAIDPxIn4L16E38JFeKennZK9RmpvB5a1GzHvtWIzRwMODLrtGBO78c6dhJKxBHxHeUjzF+/hUmms6KG0qJmaXR24nCqR4wLIzoshLTcSvfeXr6q1trayfv169u3bh06nY9q0acyZM4fAwMBRXcfldFK+sZC/v7ueD9U0TPoAZoQr/PY7c0iNChrxdRwOE7V1f6Sh4Z9oNHoSE39MQvwP0GpH2DxlsBdW3+duyx+a5t6bljBz2CGqqvJKazcPVDdhc6ncNS6a6+LD0Uo1TYgzQgKaEEJ4Dk8JaPn5+XR1daHX63nyySdZvHjxiMee8YB28IZJwIrDAtps4Feqqp5z8Oe/OPiljUCPqqorFEV5RVXVbw13XY8NaId9mKuqiq26GtOaAkxrCxjaXQKAPi4Ov0UL8V+0GN9pU1FG2SRjJOzNPZgLdmIpd+FyeKOlHaPuE3wTetBNyIPM8054yPKJDJpslG9upWxDMz2tFvQ+WtKnR5KdF0NEYsCXvm5nZydFRUWUlLjfrylTppCXl0dIyOjCpepyUbplE0+/u5V1rkScio7z4+FX311AaNDI/8e0WOqo3v8YHR2r8fGOITX1LiIizh95yN5fAO/dAn0NMOsnsOg+8Bp++Wur1c6dFQ2s7upnaoAvT2UmkGE8+a6aQojRkYAmhBCew1MC2snw1IB2GXCuqqo/PPjz7wEzgbuAPwJDQNGx9qApinIdcB1AZGTktFdeeWXM53uyBgYGjrs0T9PXh3fJHrxLSvAqK0NxOHD5GrCOn4B18mRs47NRR7n/6oRcYGxTCamz4t1nBFz4aLZj1H6E06+FrvDpdIXOoD8gDZQvt29NVVUsndCzX6W/AVQn+ARDcLJCYCJovb5c9WdwcJCGhgZaWlpQVZWIiAgSExMxjnJvn6qqNNbW80apmd3aBHxUK+cEdnP+tHi8fEYeelS1HJf6CtAApKJRrkRRRhZytQ4LyTX/JrZ5JYM+UVRk3EBv8KQT3A82oucfGBhE4VKGuAArOimmCXHaDPdMF0IIcXoFBgaO+Lyx4xmuScjpUF1dTV9f3xG/tnDhQs8MaKqq3jia634VKmjDcVksmDduxLSmgIF163D29IBej3HGjIPVtUXoo6PHdG6O7iHMW1sxb23GNeBEox3AqKzCqPkInb8LMs6FjPMheT7ov1xQtFrsVBa3sa+oma7GAXR6DanTIsjOiyEqJfBLLe00mUxs3LiRbdu2YbfbycrKIj8/n5iYmFFfa23RDh5aVc5+ZyChjl5+mKnjmm+dh8FvZN9JUVUnLS1vsr/m99hsnURFXUxK8s/x8Rnhn1XdBnjvRuiugdxr4axfg8/w1cYOm517q5p4r72XiX4GnsqMZ4L/yXXTFEKMjFTQhBDCc0gFbYyMdImjqqqPjOa6X/WAdjjV6WRw1y5MBQUMrCnAVlcHgHd2Fv6LFuO/aCHeWVljtm9NdaoMVXRj3trKUHk3qODt34zR8QYGV4F7yWXKIvcyyLRzwC989PdQVTrqTewraqaquA271UlwlC/ZeTFkzIrC4Df6g5ktFgubN29my5YtWK1WUlNTyc/PJzExcdRze23NTn5XUEeny5txQw1cN9HAhZdeiDEoeETXcDhM1B34Mw0NfwM0JCZeT2LCj9BqRxBsbRZY+zBsfh78Y+CCZyDtrBMO+6Cjl7srG+mxO7gpIZJbkyLxHoNunUKI45OAJoQQnkMC2hg5RkDT4W4Sshhowt0k5Nuqqu4bzXW/TgHti6w1tQysLcC0poDBnTtBVdFFR+O/cCF+ixZhnDEdxWv0AedYnH1WzNvaMG9rxdljReOt4hu2H+Pgf9BbtgEKxM+EjKWQcR6Ep4/6HrYhB9Xb2yktaqatth+NTiF5SjjZeTHEpQejjKINPsDQ0BBbt25l06ZNWCwWEhMTmTdvHsnJyaMKsVaHk+c+2MlfNzdjdSlMHijj+1MCWbh8OQFhI+vYODjYQPX+x2lvX4m3dxQpKXcQFXkhykiWizZshXdvgM4KmPIdOOdhMAwfEHvsDn5Z3cTrrT1kGH14KjOeqQGn4DgHIQQgAU0IITyJBLQxoCjK/4AFQBjQBjygqupLiqKcBzyNu83+31RVfXi01/a0gKaqKre+ugu9pYNL509jUlwgRm/dSV/X0d3NwNp1mNYWYN6wEXVwEI3RiHFePv6LFuE3bx7aUXY5POb8XSrW6l7MW1sZLO0Cp4pXtBZjWBmG/v+iaTv4XoemHgxr50P8DNCMbg1vV9MA+4qaqdzSitXiICDcQPbcaDJnR2MMHF1LeZvNxvbt29m4cSMmk4mYmBjmzZtHeno6mlFUljoHrDz67k7e3NOJl9PKrL7tXJkTyeyLLyM4OnZE1+jp3UpV1UOYTHsJCJhMetp9BAZOPfFAhxU+fRyKngJjGCx7CjLPP+GwT7r6ubOigVarnR/HR3DHuCgMWqmmCTHWJKAJIYTnkIDm4TwtoHUNWLn8z5uo6TQDoFEgIyqAnIQgcuKDyEkIJjnMiGaU1aLDuYaGMG/axEDBWkxr1+Ls7AStFt/cXHcL/0WL8IqLO+nX4hywYdnRjrm4FUfnIIqPFt9sX4xBJXi1vQ2168FlB99QSD/XHdhSFp2wM+HhHDYn+3d2UFrUTHNVL4pGIWliKNl5MSSMDx3V++RwONi1axdFRUX09vYSERFBfn4+48ePH1VQK2/t51dv72bzgX6C7b3kdW/inCmJzFp+OWEJSSccr6ouWlvfpnr/E9hs7URGLCMl5U4MhhGEvJbd8M4N0LYHJlwKSx93B7Zh9DucPLi/mX83d5Fs8OapzHhmBkkzAyHGkgQ0IYTwHBLQPJynBbTPrFi9FmPieHbW97KzvoddDb2YhhwABPjomJIQfDCwBZETH0yg75drsa+6XAzt2eNuMrK2AGtVNQDe6enuJiOLF+MzfjzKSexRUlUVW20/5q2tWPZ0gsOFPtYPY04Qvr670NSuhKqPYKgPtN6QvOBgdW0p+EeN+D69bRZKi5op39zCoMmOX7A3mXOiyZoTTUDoyJuVOJ1O9u7dy/r16+ns7CQkJIS8vDwmTZqETjeyaqaqqhSUt/Pg+3up6x4i0drE3I4iZkxOZ9byK4hKPfEST4fDzIH6v1Jf/wIACfE/IDHxx+h0JwiwTjsUPQ2fPuZuHHLe72D8JXCCZZvru03cXtFA45CNa2PDuCc5GqPuzHUnEuLrRAKaEEJ4Dk8JaNdeey0rVqwgIiKCvXv3AtDd3c2VV15JXV0dSUlJvPbaawQHH711RQLaGfDFD3OXS6Wmc4Ad9b2HQltlmwnXwbc6OdxITnywO7AlBJER6Y/uSyxVs9XXu5uMFKzFsn07OJ3owsPxW7gQ/8WL8J01C4336JYQHs5lsWPZ1YG5uBV7qxlFr8EwORzjtDC81L0olaug/APoPeAeEDvNvWct4zyIyDphyABwOlzUlXRSWtRMfVk3AAnZIWTnxZA0KQztCN8Xl8tFeXk5hYWFtLa2EhgYyNy5c8nJyUE/wjPnbA4X/9l8gKc/qcQ0ZGeypZLcjo1kTshi1vIricuecMJrDA01U73/d7S1vYeXVwQpKT8jOuqSE+9Payt1701r3gGZy+D8358w8JodTh6pbeGlxk7ifLx4MiOe/JAz990hIb4uJKAJIYTn8JSAVlhYiJ+fH1dfffWhgHbnnXcSEhLC3XffzaOPPkpPTw+PPfbYUWMloJ0BI/kwH7A6KGn8LLC5Q1uX2QaAr5eWSXGB5BystE1JCCLCf3QHFDt6ejCvX49pTQHm9etxWSwovr74zZ2L36JF+C2Yj+4YiX4kVFXF3jiAubgVy+52VJsLXaQvxulRGHPC0QxUQ8VK94+m7e5BwUkHw9pSSJgD2hNXs/o7Bynb2ELZxhbMvVYM/noyZ0eTPTeGoMiRtZhXVZWqqirWr19PQ0MDRqOROXPmkJubi/cIw2qP2cYza6r496YDeGtczDTtIqutmITMTGYuv5KkyVNP2Jikr28HlVUP09+/C3//8aSl3kdw8Izhb+x0uLs8rn0YdD5w7qMw+VsnDLpbege4vbyB/YNWvhcTyv0pMQRINU2IL00CmhBCeA5PCWgAdXV1LFu27FBAy8jIYN26dURHR9PS0sKCBQuoqKg4apwEtDPgS7XZV1UaewbZUd/jDmwNvZQ292F3uv884oINhwJbTkIQ2TEBeI/wH90umw3Lli2HqmuOtjbQaDBMzcF/4SL8Fy/CKylplK/y4LWtDiy7D1bVGgdAp2CYEIZxehTeyYEoA21Qscr9o2YdOK3gEwRpS9wt/FMWn/AMMJfTRf2+bko3NFO3pwvVpRKbHkR2XgzJOeHo9Cd+H1RVpa6ujvXr11NTU4OPjw+zZs1i5syZGEZ4MHh1u4mHPihjXUUH0QaVOV0biW4rISo5lZnLryA1d9awy0lV1UVb2wqq9z+G1dpKRPhSUlPvwmCIH/7GndXualrDZkg9Gy54GgKH32c46HTxRF0rf6pvJ8pbz+MZ8ZwVOvz7LIQ4NgloQgjhOQ4PN5WVD2IaKBv1NZxOB9rjFAv8/bJIT79/RNf5YkALCgqit7cXcP/bMzg4+NDPj/caPiMB7RQbqw/zIbuTfc397PwstNX30Nw3BICXVsP42IAjlkbGBhlOWMlRVZWhfaUMFBRgKijAWl7uvl5ysrvJyMJFGCZPQvkSp6vbmgfce9V2dqAOOdCF+uA7PQrjtEi0/l5gHYCatVC+Eio/hMFu0Ohh3LzP962dIHiYe62UbWqhbEMz/Z1DePvqyJgZRXZeDKGxI2uO0djYSGFhIZWVlXh5eTF9+nRmz56Nn9/Ixq+raOehD8qobh9gYrDCrOY1+LRWEBqXwMyLLydjzjw0w7x/Tucg9fUvUnfgL6iqk4T475OU9BN0umG+k+NywdYX4JNfgaKFJQ/CtGtOWE3b0W/mtvIGKsxDXB4VzG9SYwnWn3xnUSG+SSSgCSGE5/iqBDSA4OBgenp6jhonAe0MOJUf5q19Q+xq6Dm0NLKkqZchuwuAcH/vQ90icxKCmBQXiK/X8P8Ytzc1YSpYy8DaAszFW8HhQBsait+C+fgvWoRxzhw0I6wwfUa1O7Hs6cRc3Iqtrh80CoasEIwzovBOO3jmmcsJDcVQ8YE7sHXvdw+Onvz5vrWoiccNIKpLpbGih9INzdTs7MDlVIkcF0B2XgxpuZHovU8cMFtbW1m/fj379u1Dp9Mxbdo05syZQ+AIjixwOF38t7ieJz+upG/QzjlxOibUrMLaWE1QZDTTL7qU7HmL0Q2z323I2sr+/U/Q2vo2en0oKcm3ExNzOYoyzNy7a+H9m6G20B1sL/gDhIwbdq5Wl4un69p4tr6NYL2Ox9LjOC886ISvUQjhJgFNCCE8hyxx9HDfxID2RXani4pW0+dVtoZeag+2+ddqFDIi/Q9W2NyhbVzo8dv8O00mBgoLGShYy0BhIS6TCcXbG+OcOe7q2oIF6MKGb/t+1PzaLZi3tWLZ3obL7EAb5I0xNxLf6VHoDj/zrKPy831rDcWACoHxn1fWEvNAd+yDuQcHbFRsbqW0qJmeVgt6Hy1p0yMZnxdDeIL/CauKnZ2dFBUVUVJSAsCUKVPIy8sjJCTkhK+vz2LnDwVV/HNjHT56DVemeRG39wO6ayvwCw1j+gWXMHHREvTex99D2N9fQmXVQ/T1bcfPL5O01HsJCZlz/JuqKuz4J3x0H6hOWPwAzLgOTtCtc6/Jwm3lDewZGOTCiCAeTosl3OvLdRAV4ptEApoQQngOTw5od9xxB6GhoYeahHR3d/P4448fNU4C2hlwpj/Mu802dje4l0TubOhlV30vJqu7zX+gQc+Uz1r8JwQzJS7omG3+VZsNy/bt7hb+BQXYm5tBUTBMmoTf4sX4L1qIV0rKCcPPoes5XAyWdmHe2oq1qhcU8EkPxjgjCp/MEJTDuzMOdLiXQFasgv0F4BgE7wBIPctdWUs7GwxBR99DVWnZ30dpUTPV29tx2l2ExfuRPTeG9JlReBuGryb29vayYcMGduzYgcvlYsKECeTn5xMREXHC11fTMcBvV5bxSVk78cEGfpDtjffW92iu2IdvYBDTzr+YyWefh7fvsZubqKpKe/tKqvc/xtBQE2FhZ5GWeje+vsNUx/oa4f1bofpjiJ8FFz0HYanDztPuUnm+vp3f17Xip9PwcFocF0cEjfjPUYhvojP9TBdCCPE5TwloV111FevWraOzs5PIyEh+/etfc/HFF3PFFVdQX19PYmIir7322jG/4S8B7QzwtA9zl0tlf8fAwQqbu9JW0Wbisz/qlHDjoQpbTnww6ZF+R7T5V1UVa0XFoSYjQwe/S6BPTDjUZMSQk4MywnPGHN1DmLe1Yt7WhqvfhsZfj3FaFMbpkei+eOaZfdDdXKRiJVR8COZ20OggcQ5knO+urgUnHnUPq8VOZXEb+4qa6WocQKfXkDotguy8GKJSAocNJCaTiY0bN7Jt2zbsdjuZmZnMmzePmJiYE762oqpOHlxRSkWbiRlJIVw33ovewnc4ULITb6ORnHMvZOrSCzD4H7thh9M5REPD36k78CdcLhvxcVeTlHQjev1xGnyoKpS8CqvuAscQLLwHZt1wwi6ZFeYhbiuvZ0e/hXPCAngsPZ4ob6mmCXEsnvZMF0KIbzJPCWgnQwLaaaSqKvdtuA9tt5ZLZl1CVmgW3tovf+7YqWQasrOnsY+dn1Xa6nuP2+Y/JyGYcP/PX4e9tZWBdeswrSnAsnkzqt2ONigIv/nz8Vu0COPcuWj9TnAgM6A6VYYqujFvbWWovBtU8E4Nwjg9EsP4MBTdF5bsuVzutv2fLYXscDc4IWK8uyNkxlKIzjliqZ+qqnTUm9hX1ExVcRt2q5PgKF+y82LImBWFwe/YyyYBLBYLmzdvZsuWLVitVlJTU8nPzycx8ehAeDiH08Wr2xp4cnUl3RYbl06N4//S9dR8/BbVWzej9/Zh8pLzyF22HGPQsY86sFrb2V/zJC0tb6DXB5M87lZiYq5EozlO8DK1wQe3Q/kKiJnqrqZFZg87T6eq8kJDB4/WtuClUfh1aizfigqRapoQXyABTQghPIcENA/naQGta7CL76z8Dk0DTQDoNDoygzOZFD7p0I84vziP/Aewqqo0dA8eqrDtrO9hX3M/Dtfwbf6dA2bMRUUMrC1gYN2nOPv6UPR6fGfPwn+RuyukPvLESwSdfVbM29owb2vF2WNF46vDd2okxhlR6COOc+ZZ1/7PW/jXbwTVBf7RkH4uZJ4PSfmg/3zvl23IQfX2dkqLmmmr7UejU0ieEk52Xgxx6QeblxzD0NAQW7duZdOmTVgsFhITE8nPzyflBEs8+4fsPFdQzd821KLXavjJ/BSWj9Oye8WbVGxcj0anZeKiJUy/8FICwo79HplM+6isepje3i0YjWmkpd5LaGj+sW+oqrDvbVh5Bwz1wfw7Ie820A5fGauxWLm9vJ7NfWYWBPvzu8x44n2OH1yF+KaRgCaEEJ5DApqH87SA9pn31ryHX5ofJR0llHSWsLdzL4OOQQBCfEKYFPZ5YJsQNgGj/sTVpjPB3ea/74jDtI/V5n9qorvKFm3UMbhzJwMFazEVFGCvrwfAZ8IEd5ORRYvwTk8fNtSoLhXr/l7Mxa0MlnaBU8UrMQDjjCgME8PQeB2nw6GlG6pWuytr1WvANgB6I6QuPrhvbQkYQw99eVfTAKVFzVRsacVqcRAQ5kN2XgyZs6MxBh676mmz2dixYwcbNmzAZDIRExPDvHnzSE9PRzNMg44DXWYeWVnOh/taiQ0ycNfSTPIiVLa++yalhQWASva8Rcy46DKCo2OPfk9UlY6O1VRXP8rgUD2hoQtJS/0FRmPKsW9o7nQvedz7BkROhIv+CDFTjjs/AJeq8o+mTh6qaUEB7k+J4eqYUDQe+M0EIU43CWhCCOE5JKB5OE8NaF/8MHe4HOzv3c/ujt2HQlttXy0AGkVDalCqO7CFTWJy+GSSApPQKMN35DtThmvzH+Hv/XnHyLhAMmxdOAo/ZaCggMGSElBV9LGx+C1ahP+ihfjm5qIM04beOWDDsqMdc3Erjs5BFG8tvjkRGKdH4TXcmWf2Iagrcrfwr1gFphZQNJAw+2BXyPMg1B1uHDYn+3d2UFrUTHNVL4pGIWliKNl5MSSMDz1mx0uHw8GuXbsoKiqit7eXiIgI8vPzGT9+/LBBbdP+Lh5cUUppSz9TE4K4f1k2Kb52tr73FnsLVuN0OEifncfM5VcQnpB01HiXy0pDwz+prXsOl2uI2NjvkDzuZvT6oGPfsPwDWHE7mDsg71aYd+cRFcVjqR+08vOKBgp7BpgdZOTJjATG+XrmMl0hThcJaEII4TkkoHm4r0pAO5Y+ax97O/dS0lHC7k53cDPZTAD46/2ZGD7xUGibGDaRIJ+gUz/xL+GzNv87DjtMu67LArjb/GdGudv85/qrjD9Qgs/WjZg3bkS1WtH4++M3bx7+ixdhzM9He5z/UVRVxVbb7z4Ee08nOFzoY/0wzojCd3I4Gp9hGmKoKjTvPLgUciW0uRucEJZxcN/aeRCbCxoNvW0WSjc0U76phUGTHb9gbzLnRJM1J5qALzYvAZxOJ3v37mX9+vV0dnYSEhJCXl4ekyZNQnechilOl8qb2xt5/KMKOgesLM+J5c5zMwhQh9j+wTvsWr0S+9AgKbmzmLX8CqJS04+6hs3WSU3N0zQ1v4pO50/yuFuIjf02Gs0xwu5gj7sd/67/uF/zRc9B/PTjv18H3+//tXTzQHUTDlXl7uRofhgXjlaqaeIbSgKaEEJ4DgloHu6rHNC+yKW6qOuvc1fYDv6o6q3CpbqrU0kBSYcC26TwSaQFp6E7XsOIM6zbbDuiyraroZeBw9r8z4gysNBcR+b+XRh3bMLV0wM6HcYZ0/FbtBj/hQvQxx691A/AZbFj2dWBubgVe6sZRa/BMCkc44wovEZw5hk9B9wt/Ms/gAMbwOUAY7h731rGeZC8AKfGh7qSTkqLmqkv6wYgISuE7LwYkiaHodUeWSVzuVyUl5dTWFhIa2srAQEBzJ07l6lTp6I/ToVwwOrgT+uqeWF9LRoFrp+XwvXzk1Fsg+xc9T47V73HkHmAxEk5zFp+JXHZE46+xkAFlVUP0dOzEV/fFNJSf0Fo6IJjvwfVn8B7t0B/E8y+ARbeC17H2dt3UIvVxp0VjXzc1U9ugC9PZSaQZhy+AifE15EENCGE8BwS0Dzc1ymgHYvFbmFf177Pl0Z2lNA11AWAQWcgOzSbSeGTmBw2mUnhkwj3DT/pe54KzkNt/j8PbZXt7jb/GtXFYrWDs7rLSd+/C5+WBgC8s7LwX7gQv8WL8MnOPip0qKqKvXEAc3Erlt3tqDYXukhfjNOjME6NQHOMs92OMtjrDi4VK6HqY7D2g84AKQvdSyHTz6V/yJ+yTS2Ub2xhoMeKwV9P5uxosufGEBR5ZMBRVZXq6moKCwtpaGjAaDQyZ84ccnNz8fY+9jLBhm4Lj35YzgclLUQF+HDnuRlcPCUWh3WQXatXsv2Dd7D09RKbmc3M5VeSNHnqEe+Fqqp0dhVQVfVbBgfrCAnJJy31Hvz8jq68MdQPn/wKtr0EwePce9OS8oZ9i1RV5a22Hu6rasLicvHzpCh+Eh+B7jgNVYT4OpKAJoQQnsNTAtq1117LihUriIiIOHRQ9euvv86vfvUrysrKKC4uJjf3mHlLAtqZcKo+zFVVpdncfESVrbS7FIfLXZ2KNkYfUWXz9Db/JY19n4e2hl66zTZiBzqY117Ggq4y4pv3o6guNBGRBCxeiP+ixfjOnIHG68gOgy6rg8HdnQxsbcXeYAKdgmF8GMYZUXgnD3/m2SEOm7ui9tlSyL4GQIG46ZB5Hq60pdS3hVK6oYW6PV2oLpWYtCCy82JImRqOTv958xJVVTlw4ACFhYXU1NTg4+PDrFmzmDlzJgbD0UslAbbWdfPgilJKGvuYHBfILy/IZlpiCHablT1rVrP1/TcZ6OokMjmVmRdfQer0WSiH7XdzuWw0Nr1Mbe0fcDrNxMRcRfK4W/DyOvpwRGrXw3s3Qk8dTP8hnPUr8B7+IdVhs/OLykZWdPQxyd/A05kJZPsd+7UI8XUjAU0IITyHpwS0wsJC/Pz8uPrqqw8FtLKyMjQaDddffz1PPPGEBDRPcjo/zK1OK+Xd5UeEtmZzM+Bu858VknVEaIv1i/XYNv/13ZZD+9h2NvTSWNvM1OZSZrXuI7ejEm+HDYePAWXGbKKXLiFo4Xy0QUFHXMfWYsZc3IJlZwfqkANdqA++06MwTotE6z/C1vGq6t6rVn7wvLWWXe5fD0mBjKWYY8+j7EA0ZZta6e8cwttXR8bMKLLzYgj9QvOSxsZG1q9fT0VFBV5eXkyfPp3Zs2fj53d0kxOXS+XtnU08/lE5bf1Wlk2K5u6lmcQF++J02CktXEvxu6/T29pCaFwCMy++nIw589BoPw+HNls3tbV/oKn5v2i1voxLuom4uO+h0XzhtdvMUPAwbH4eAuPggmfcHS9P4P32Xn5R2Uivw8EtiZHckhiJ1zCNUYT4OpCAJoQQnsNTAhpAXV0dy5YtOxTQPrNgwQIJaJ7mTH+Yd1g6KOn8PLDt69p3ZJv/cHe3yElh7jb/vvrh9yKdKUN2J3ub3G3+S2rbsBUXk75/F7Na9hFiNeFUNHQlZ6HJm0/ShecSl516KHyqdieWvV2Yi1uw1faDRsGQFeKuqqUd/8yzY+prgsqD563VFoLTBoYQ1LRzaPS9gNIDsdSU9OByqkSOCyA7L4a03Ej03p8Hp9bWVtavX8++ffvQ6XRMmzaNOXPmEBgYeNTtLDYHf/60hr8W7selwo/yx/GTBan4eetwOZ1UbC5iy1uv0tVYT1BkNNMvupTseYvRHbbfbcBcRXXVb+nqLsRgSCQt9ReEhZ11dDhvKIZ3b4DOSsj5Lix5GAxBw74d3XYHv6xq4o22HrKMPjyVmcCUAM/8OyTEWDjTz3QhhBCfOzzc3F/VyN6BwVFfw+lwotUd++imCX4GHkyLG9F1JKAdgwS0kXG4HFT3Vrs7Rh7cz1bXXwd89dr8t/QNsquum7qN21E2FZJUvp3E/lYAGgOjaR4/Hd28+aTmTWdiQjC+XjrsHRZ3B8jt7bjMdrRB3hhzI/HNjUIXNMoloEP9sL/AXVmr/AiGekHrzWD8OVSoF1FaG0VPuw29j5a06ZGMz4sh/LDmJZ2dnRQVFVFSUgLAlClTyMvLIyTk6KWIzb2DPP5hOe/saibc35s7zsngsqlxaDQKqstF9fYtbHnrNdpqqvALDWP6BZcwcdES9N6fN/Lo7FpHVdUjWCzVBAfPJi3tPvz9Mo+8kX0IPn0UNvwB/CJg2VPuPXgnsLqzjzsrGmm32flpQgQ/T4rCR+uZf2+EOBme9kwXQohvMgloHk4C2pfXZ+1jT+eez5dGdh6/zf+k8EkEeh9d6fEEdqeL8u3lNK/6CO3mIqLqytGqLrq9/SmOHk9Tdi7G2bOYlBxJTmwAUe1WzFtbsVb3AuCTHoxxRhQ+mSEoow0XTgfUbzq4b+0D6KlDVaEl8CJKbRewvykUhx3C4v3InhtD+swovA3uzpu9vb1s2LCBHTt24HK5mDBhAvn5+URERBx1mx31Pfzm/VJ2NfQyITaA+8/PZmay+9BtVVU5sHsHm99+jabyfRgCApl2/sVMWXI+3r7uqpbLZaep+X/U1DyDw9FPTMzlJCffjrdX2JE3atoB794I7ftg4uVw7mNHHO59LH12B7/e38x/W7pJ9fXmqcwEpgd65sHrQnxZX4VnuhBCfFPIEkcPJwFt7Iymzf/kiMmkBqV6ZJt/Z28vrR8X0LbqY3Tbt6C3DjKk9WJHRDqbosZTMW4SqWlxzA33Z+aASsj+flSTHY2/HuO0KIzTI9Ed48yzE1JV6Ch3V9bKV0LTNqwuXyqViykdOofOvgB0eg2p0yLIyoshOsXdvMRkMrFp0ya2bt2K3W4nMzOTefPmERMT84XLq7y3u5nHVpXT3DfE0glR/GJpFgmhny8tbCzby5a3X6Nu9w68jUZyzr2QqUsvwOAfAIDd3kdt3bM0Nv4bjcaHcUk/JT7+GjSaw6qIDhsUPQmFvwOfIDj/CRi//IQv/9NuEz+rqKdpyM4P48K4Ozkao/bY35kS4qvmq/hMF0KIrysJaB5OAtqp9cU2/7s7dtM95D4XzKAzMD50vDu0HQxuntbm32WzYSneSv+aNfR9sgY62nEpCrWRKawLzWBT9ATa/MK5ONCPC/FiXJ8DBfBKDsRvZhSG8WEoui+5ZM/Udmjfmrp/HR1Dseyznk/VYB52p57gSB+y8+PImBWFwc8Li8XC5s2bKS4uZmhoiJSUFObNm0diYuIRlx20OXlhfQ1/Wrcfp0vl+3lJ3LgwFX+fz/efte6vYsvbr1K9dTN6bx8mLzmP3GXLMQYFA2A211Bd/QidXQX4+MSTlno34eHnHLk/rXWve29ayy7IuhDOewL8I4d9yQMOJw/XtPD3pk4Sfbz4fWY8ecFn7owRIcbK1+WZLoQQXweeEtCuuuoq1q1bR2dnJ5GRkfz6178mJCSEm266iY6ODoKCgpgyZQofffTRUWMloJ0BX9cP88Pb/H8W2sq6yw61+Y8xxnwe2MInkRWShZd2hJ0TTzFVVRkqLWWgYC2mtQVYS8sAMEfGsi9pMisD0qj1jWOp4s0FeBGFBqtewZwaSNS8eCLGBX35m9vMsH8tVKzCVl5AdXcWpYNLaLOno9GoJE/wJ3tRKnHpwVhtVrZu3cqmTZuwWCwkJiaSn59PSkrKEQGqtW+I331UwZs7Ggnz8+JnSzK4Ijce7WHNTzrr69jyzutUbFyPRqdl4qIlTL/wUgLC3Msou7qLqKp6GLO5kqCgGaSl3UuA/2EHYjsdsOlZWPuI+1Drcx+DSVfACbqAbuod4PbyemoHbVwdE8r9KTH4H2edtxBfBV/XZ7oQQnwVeUpAOxkS0M6Ab9KHudVppayr7NA+tpKOElrMLQDoNfrP2/wf/BFjjPGINv/25mZMa9cysKYA89atYLdDUDC9k2dQkjCJOm0S2b2Qhw49ChU6lf3RPvhMCGVycihZ0QF4fZnqmssJjVuh/AO6du+ktCWdisH5WFV/AoxDZM0IJuucHPS+Gnbs2MGGDRswmUzExMQwb9480tPT0RzW1r6ksZcHV5Syta6HzCh/frksmzmpR+4t62ltpvidNygtLABUsvIXMuOiywmJicXlctDc8ho1NU9ht/cQHX0pKck/w9v7sL1wHZXualpjMaSd424iEhg77Mu0OF08XtvCXxs6iPbW87uMeBaFBoz+/RLCA3yTnulCCOHpJKB5OAlonqnd0s6ejj3s7nRX2fZ17mPIOQRAqE/oobA2OXwy40PHn/E2/06TCfP69ZgK1jJQWIirvx/F2xufmbPonTSXbl0qIc1OwmwqA6h8jJ1VWgeGOH9y4oPISQgmJyGI6ECf0YfPziocpauo2VxLaWMSTbaJKDhJiuwge04kMfmz2FNWTlFRET09PURERJCfn8/48eMPBTVVVVm5p5XfriyjqXeQs7Mjuee8LMaFHdmso7+zg23vv8WeNR/hdDhIn53HzOVXEJ6QhN3eT92B52ho+CcajZ6kxJ8QH38tWu3BjpAuJxT/FT75NWj1sOQhmHr1Catp2/vM3FpeT5XFypVRIfw6NYYgveftXRRiON/0Z7oQQngSCWgeTgLaV4PD5aCqp+qIKtvhbf7TgtKOqLIlBZy5Nv+q3Y5l+3ZMBQUMrCnA3tQEgM/kSRjnLMPmlY6r0Y7GqdLgBW84hljlsmEBIgO8yYl3h7WchGAmxgZi8BrF0j5zJ71bP6F0QyvlTYkMugIxarvJim8gY24cBwxxrN+8nc7OTkJCQsjLy2PSpEnodO7AM2R38rcNtTxXUI3N6eL/Zidx0+I0Ag36I2/T28P2D95h1+qV2IcGScmdyczlVxCdmoHFUkf1/sfo6FiNj3cMqal3ERFx/ufBs7sG3rsZ6tZD8gK44A8QnMhwrC4XT9W18Wx9G6F6HY+nx3NuuGd2BRXiWOSZLoQQnkMCmoeTgPbV1TvU627zfzCw7enYg8l+sM2/l/+h9v6TwicxMWziGWnzr6oq1soqBgrWYCpYy9CePQDox6XjO3M5ilcqzn4VVafQEu3LWh8XK7tMHOi2AKDVKGRF+x8R2pJCfUdUZXMOmqlbs4HSzV3Ud7qbryR47yYrvpGh5HiKWnS0dnQTEBDA3LlzmTp1KvqDB1W3m4b4/UeVvLa9gSCDntvPTueqGQnovnCMwOCAiZ2r3mfnqvcYMg+QOCmHmcuvIC5rAj29m6mqepiBgTICA6eSlnYfgQGT3QNdLtjxD1j9S1BdcNavYPoPQTN8qN5jsnBreT37Boa4OCKIh9LiCPOSaprwfPJMF0IIzyEBzcNJQPv6cKku6vrq3M1HDoa26t7qo9r8Tw6fzKTwSWekzb+9rY2BteswFazBsmkzqt2OLm48hmkXgy4BnAq6SF+UyWGUhujZ3mZiZ0MPuxv6GLC6G6kE++qZctiyyMnxQQT46Ie9b3+HmbLVOynfZmJg0BuDppcMQwG+kd3s0KXT0A9Go5E5c+aQm5uLt7e7bf6+5j4eXFHK5ppu0iL8uG9ZNvPTj+60aRu0sGv1SrZ/8A6Wvl5iMrKZdcmVJE6aTGvrW+yv+T02WydRUReTkvxzfHyi3QN7G+D9W2D/GkiYAxf9EUJThn8PXSp/rG/jybo2/HUafpsWx0URQR6xL1GI45FnuhBCeA4JaB5OAtrXm9luZl/nPko6P+8aebw2/5PDJxNmCDvBFceOy2xmYMMGBtYUMLBuHU7zEPqEWXhnLUHRh4NWwTAhDOOMKHRJAezvMLOzvoed9b3sbOihqn0AVXVv4UoN9ztUYctJCCItwv+IboyH7ulSqd/XRWlBFXXlFlRVIdprL+HGTdQYgqh1ReLjpWXWzNnMmD0HX19fVFVldWkbv11ZxoEuCwszwrn3/GxSI/yOur7dZmVvwWq2vvcWpq4OIpNTmXnxFSTljOdAw19paPgboCEx8XoSE36EVmtwn/+2+3/w4d3gsMKi+2DWT0Ez/NLOsoFBbitvYJfJwtKwQB5NjyPSe/igKsSZIs90IYTwHBLQPJwEtG8WVVVpGmg6Yi+bJ7T5Vx0OBnfuxFSwFlPBGpw9TvSJeeiT5qJofdD4a/GbG49xWiRaf/d8+ofslDT0uUNbQy8763vosdgBMHppmRwf5A5t8cFMSQgizM/7iHuae62UbWqhbH0j/d02vHVWonw/pcunm1pNDF4aF9NTQpl99iX4RcRjdTj558Y6nl1TjcXu5HuzErllcRrBxqPfH6fDTmnhWorffZ3e1hZC4xKYefHlJOSMo6bu97S3r8TbO4qUlDuIirwQRdGAqRVW3A4VH0DsNLjoOYgY/uHpcKn8tbGDx2tb8NZo+E1qLFdEBUs1TXgceaYLIYTn8JSAdu2117JixQoiIiIOHVT9+uuv86tf/YqysjKKi4vloGpPIh/mp89I2/x/tjQy2hh9SgOAqqrYamrcTUYKPsXeqUefmIcuLB1woY/WELA4A5/scJTDqmSqqnKgy8LOhoNVtvpeSlv6cbrc/z8mhPgeDGzuSttnbf5Vl0pjZQ+lRc3U7OrA5VAJDGnGqi+hAQM6xclUvw7m5mQSOPkCOn3ieerjSv5XXI+/j55bz0rju7MS0WuP3j/mcjqp2FzElrdepauxnsDIKGZcdBkxkwOpqX0Uk2kvAQGTSU+7j8DAqe5q2r63YOUdYDXB/Dth7q3uro/D2G8Z4vbyBrb0mVkY4s8TGfHE+njG+XlCgDzThRDCk3hKQCssLMTPz4+rr776UEArKytDo9Fw/fXX88QTT0hA8yTyYX5mDdfmP8wQdkQDklPd5t/R2cnAunWY1m3D3uGDLmY6Gu8AUC14JWoIujAHr7hjL80ctDnZ29x3aGnkjvoe2vqtAHjpNEyMDWTqYUsjg7RaKja3UlrUTE+rBcXHgia0knZnH6gupiilzA3uJDR7PuVh5/DQdi1F1V0khxu57/wsFmZEHDO8qi4X1du3sOWt12irqcIvJJTcC5cTMWGIugPPYLO1ExmxjJSUOzEYYsHc6Q5p+96CqIlw0fMQPWnY98mlqvy9qZOHa1rQAA+kxvDd6FCppgmPIM90IYTwHJ4S0ADq6upYtmzZoYD2mQULFkhA8zTyYe5Z7C471T3Vh/axlXSWcKD/AOBu858enH5EaEsMSDwlbf5dg4MMbNiEqWAfji5fNEGp7t+wNeGd6k3gspl4J8YNe42WvsGDFTZ3aCtp6sPmcDdSiQrwISchiCnxgaRpvbBXmqjb2YHVaUGNaKaPJlRcTKCSfLYQblAoiLyah5tzqemH/LQw7l+WTXrksR9YqqpyoGQnm996labyfRgCApl6/lJCspppavkHAAnxPyAx8cfodEYoex8++BlYuiDvNph3B+i8j3ntzxwYtPKz8gaKegfIC/Lj95nxJBqGHyPEqSbPdCGE8ByHh5tfv7+P0ub+UV/D6XSi1R57v3x2TAAPXDB+RNc5XQFNel6Lrx29Rk9WaBZZoVl8K/NbgLvN/2dLIks6SlhZu5LXKl8DIMArgInhE5kc5l4WOSFswpi0+dcYDASctYiAsxahOp0MbNyFaW0VTkcQtgZ/2p7ahTrwCoZsP/zPzsNnwvijKkjRgQaiJxo4b6K7k6LN4aKspf+wvWy9rNrbCoBOozAxxZ8ZmjBC2gJRemKx+jezz1fHHjWDTJ2FeU3v8KHtGf7tdR7P1FzCuU918O2pEdx23mRCv7DvTVEUkiZPJWnyVBrL9rLl7dfY8L9X8DYamXLeDfinllF34HmaW94gJeVnRGdegpI4Fz66Fwp/5w5sFz0Hccd+WAEkGrx5fUoKL7d086vqJhYUV3BvSjTXxoahkWqaEEIIIb6BpII2BuS7rV89LtVFbV8tJR0lh1r9V/dUo+L+/2Fc4LhDVbbJ4ZNJCUoZszb/qlNlYH05pvUHcA4YUBQNjo4yXN0l+EwKJ+CsRfjOnInGa2T7sjoHrOw62C1yZ30vuxt6MVudRDoVpru8SLU5sfk0MWhsRlUcjIsMZkFIKwGNBTzdPZP/OM/CV2Pnlow+rl4yG6+oTHe7yWNo3V/FlrdfpXrrZvTePkw6fxKGxO0MWPbi7z+etNT7CA6eAVUfu1vym1pg9g2w8F7QG4Z9HU1DNu6saGRNdz8zAo08mRlPqq/PqN9fIU6WPNOFEMJzyBJHDycBTZxKZruZvZ17D1XZSjqPbPM/IWzCEUsjx6LNv7PPiqmoDnNxC6pVi2ozY6/fhKNtK745afgvXoRx3jx0wcEjv6ZLparddGhpZEldD7qmISbbIci7FYtvE6rWjo8xnLycRMIGq3l0h5Z1g8kkKa3cE/QJZ09ORslcCvGzQHt0MO2sr2PLO69TsXE9Gp2GiRckoI/Zit3eTkT4UlJT78KgBMLHv4Ttf4eQFPe5aYlzhp27qqq80dbD/VVNDLpc3JEUxY/jI9Ad4xgCIU4VeaYLIYTnkIDm4SSgidNJVVUaBxo/D2wdJZR3l+NQ3W3+Y/1ijwhsmSGZX7rNv+pSse7vZWBzM0OlXaAqOPsPYKsuwNG6E9/JE/FbtAj/xYvwSkgY9fX7Bu2UNPayc087nbs7MJjqsRsbcWltDDn96A9JxTc4gOIDvdQPejNbU8r9un+RbTRB2jmQsRRSF4P3kQ+3ntZmit95g9LCAhStk+wL/NGH70bFRUL890lK+gm6+u3w3s3QewBmXAeLHwDvo89lO1y71c7dlY2s7Oxjsr+BpzMTyPIbvgInxFiRZ7oQQngOTwloV111FevWraOzs5PIyEh+/etfExISwk033URHRwdBQUFMmTKFjz766KixEtDOAPkw/+YYcgxR3l1+RAOSVrN7D9hne98mhZ1cm3/ngA3LjnbMxa04OgdBceLs2sPQ7vdx9TXglZqC/0J3WPOZNAlFM/oGJ3abg02f1rNjwzb6HTW4dEM4Hb6U26PZRjCKRsGlqpznv59f8gJR9gbQesG4eZBxnjuwBcQcul5/Zwfb3n+LPWs+QvEaJON80AVXoteHkpLyM2JCz0Up+C1s+QsExcMFf4CUhcPOUVVV3uvo5Z7KJvodTm5NjOSmxAi8vsTrFWI05JkuhBCew1MC2smQgHYGyIf5N1ubuY09nXsO7Wcr7Sodkzb/qqpiq+vHXNyKZU8nOFwoPlacbdswb3wDrGa0YWH4L1yA38JFGOfMRuMz+j1b3S0DrF25ibIDO3FoLGidBgZ04/jQ5k+f0wWoJGo6uTlwPQtdmwixNrkHxuQcDGvnQeR4UBTMvT1s/+Addq1eic6/m9QlFrR+7fj5ZZGWdi8h/cB7N0JXNUy9GpY8BD7DN2TptDm4v6qRt9t7yTb68FRWApP9T91RCULIM10IITyHBDQPJwFNfBXYXXaqeqqO2Mv2WZt/raIlLTjtiNCWFJB0wiqby2LHsrsDc3Er9hYzil5BG2zF0bQJ86fv4hoYQPHxwTh3Lv6LFuK3YAG60NBRzdthd7L+o2K27tyMxdmHxumNzied9dpgynoH8dJpcLlcJLoaWaLdwVKvnUxQK9GgYjXGos06H132+ZA4l8HBIXauep+dq97FJ7KF+PxetD5mwsLOJi3xVnyL/wsbnwW/KLjgaUg/54Tz+7Cjj7sqG+i0O7ghPoLbk6LwOcaB20KcLHmmCyGE55CA5uEkoImvqp6hnkNVtpKOEvZ07mHAPgAc1uY/fDKTwyYzIXwCAV4Bx7yOqqrYGwcwb23FsqsD1eZEF2FAFz6EvWY9A+s+xtHSAoqCYcoU/Bcvwm/RIryTk0c8V1VVKdmxj3UFn9Jj7kBx6ulzpFDsHULjkJ3s6ADyUkNpM1k5cKCW9P6NnK3ZTr5mDz6KnUGtH51R8/AZv4yAzIWUFG1i+6o3MCbUEjWtB41OJT7+GpK98tCtuBM6ymDSt+DcR8A3ZNi59dod/Kq6mVdau0nz9eapzARyA40j/4MQYgTkmS6EEJ5DApqHk4Amvi5O1OY/OTD5UIVtUtgkUoNS0WqOPGDRZXUyuLuDga2t2BtMoFMwjA9DH2llaF8R5rUFDJWWAuCVlORuMrJoIYacHJTjHNZ4OFVVqa2t45MPC2hub0B16qgbSmGbLhCLqnJJTix3Ls1Eq1HYVd/LnroWXNUFJHUVMp/thCn92NFS6TOZjqgF9Dkiad9XSGBaOSEZfWgVf1KTbyauphml6CkwhMD5v4fsC084t7Vd/fy8ooFmq53r4sK5KzkaX6mmiTEiz3QhhPAcEtA8nAQ08XU2YBtgb9feI7pG9lh7AHeb/4lhEw8FtonhE49o829rMWPZ2op5RzvqkANdqA++06PwigNL8XoG1hRgLi4Gux1tcDB+8+fjt3gRfnPmoDGeuALV2NjIuoJPqa6pwu7Ss28olRLFD71W4doZidxyfiY+enfoc7pUqlp7adizHl3VKlK6C0lwNQKw15nIpsFJ2NV+YnNq8YuxoCOGSdE/IPjTl6C1BLIvhvOeAL/wYedkcjh5aH8z/2zuIsngxe8z4pkbfOYevuLrQ57pQgjhOSSgeTgJaOKbRFVVGk2N7O7cfSiwVXRXHNnm/+BB2pPC3G3+dS4Nlr1dmItbsNX2g0bBJysE44wo9NF6LBs3YFpTwMCnn+Lq70fx8sI4ezZ+ixbht3AB+oiIYefU2tpK0foi9u7bi8nlww5rKrWKgSCNhuunJHDtBel4G/RHjTM1ldGx7R28939EdP9uUF1s7k+k3BhM1LQ2vAPt9PelMNGeSUrF/1C8/GDp4zDxsuMemv2ZDT0mbi9v4MCQjf+LCeX+lBj8dCeuEApxPPJMF0IIzyEBzcNJQBPfdEOOIcq6yz5fGtlRQpulDQAvjZe7zf9nSyOVLHz3OrHsaMdltqMN8saYG4lvbiRaoxbL9h0MrC3AtKYAe6O7wuUzaZK7yciiRXinpR23eUlnZydFRUWUlJTQ7PBjmz2ZTlVPrFPD99OjueDsZCIS/Y893tyJWvkRlj0r8KpbS53JwJ7wEPwm9aPoXDSXJzCju48s134awuczcNbvSE1NQz/MEkaz08njNa38tbGDGG89v8+MZ0HIsffxCXEi8kwXQgjP4SkB7dprr2XFihVEREQcOqj6jjvu4P3338fLy4uUlBT+/ve/ExQUdNRYCWhngHyYizOp1dx6RAOSfV37sDqtAIQbwpkSOpnFQ7PJPBCLd4MLAJ/0YIzTo/DJCgGNgrWqioGCtZgKChgqKQFAHxfnbjKycBG+06ai6I+ujPX29rJhwwa2bd9BpT2YnY4ELKqWbJuWi4ICmTMvnvQZkXj7Hj0WAPsQ1Bailq9g/651lEeo+KRacNkUgkt8mDjYig09j7q+R1XMReQkhpATH0ROQjBRgUcfKbCtz8xt5fVUWaxcFR3Cr1JiCNTrxuidFt8U8kwXQgjP4SkBrbCwED8/P66++upDAW316tUsWrQInU7HXXfdBcBjjz121FgJaGeAfJgLT2J32ansqTxiL1u9qR6AaHs43xo6n7mdkzEOeaMaNfjnxuA3IwpdqME9vr2dgbXrGCgowLxpE6rNhiYwEL958/BftBBjfj5aP78j7mkymdi0aRMbirezYzCMUmc0CgozhnTMdnqRNS2S7LwYolMCj3+kgMsFzTvZX/QXqtSN6CMH0bYqTK4aIFgdpFKXzvWDN1DrdO9Niw70ISchiJz4YHISgpgQG4iPXsuQ08WTda0819BOmF7H4xnxnBM2/FlrQhxOnulCCOE5PCWgAdTV1bFs2bJDAe1wb7/9Nm+88QYvv/zyUb8nAe0MkA9z4ek+a/P/2bLIfR37yOpJ5NzeucwYmIAWLZ0RA5Djz7iZEwj0DQLAZTYzsHEjA2sKGFi3DmdvL+j1GGfMwG/xIvwXLkQfHX3oPhaLhS1btvDxxh1sNEdQ5wohUKswf9CLdItCSJSRrLkxZM6OwuDnddz5qqpKdfEfqOt4AY3BQmipiwmdvWgVMEdMY1P0d/nQkkVxk4WG7kEAdBqF7JiAQxU2nzAfHm/poNQ8xCWRwTyYGkuol1TTxInJM10IITzHEeFm1d3QumfU13A4Hei0x/k3QNREWProiK4zXEC74IILuPLKK/nud7971O9JQDsD5MNcfNU4XU53m//OEqobyvEvU8htzSTaHka/doBt4eV0ZFpJSE451OZfo8Lgrl3uJiNr1mA74D582zs7C/9Fi/FftBDvrCwURWFoaIitW7fyVuFuCgci6FKNjPPTcR7++DYOodEqJE8JJzsvhriMYBTNsatqLpeNir3P0tT6Ij62QVJ3W4n6f/beMzqu67y/3tMHU9B7750ACRKsAEmAklUoWZJrHKc4juM4LnGL7b9tJXbc4yK32ImT2IkTv44tOyqWRFWCDWAn0Uj0QrRBr9Pbve+HCwKE2ClAHFFnr8WlxeHM3Dtzlg7OD89z9vG7CEgqtHoD5N7FQsbdnDVs4eSEisbBOZqH53D5ggBEWfRYS6LpidBg0aj5Wm4y70qJveK1BIKLiDldIBAIQoc3QkD7+te/zunTp3niiSeu2CkkAtptQPwwF9wJ2D12eppb8Z+ZJWHIjEbWcD6slxciGzgT3UFefP6S5r8srgzL6DyOOkUy4m5qAllGm5SEtaYGy55azJWV+IHTZ87wi7pzHLXH4kLP9uQw3hEVz0zjDF5XgPBYI0U7kinanoQ5wnDFe/P5Zug4/00mpp8g0eYlv8+JRgaPJgKzNAuoIG0LFN5PMO8+uoKJNA7O0Tg4S+PQHF0uD/7SKOQIPRFzfu6R9exIi2JDehS5cRbUVwmIgjcnYk4XCASC0CHUWxz/67/+i5/97Gfs378fk8l0xdeJgHYbED/MBXcaQYcP59lx5o8Po5oJ4NMGOB3bweNh++g0XgAg1ZK6ZIws12aS1GzDdeAQzoYGZI8HtcWCuboKa+0ejNu3cbqnjx+93MFpRyQqFTxSFMEf52QxcGKSka45VGoVGaUxlFQlk14SjfoK1kaHs5v281/GM91AfruLhAUvs6oE5Jy7iHa0KueoAcTkQsH9yp+0zcx7Jc4OzvJvw5McUvmQAzLa9jnUo27CDVrWp0cutUauT4skynz19kvBnY+Y0wUCgSB0COWA9sILL/CpT32KQ4cOERd39fNbRUC7DYgf5oI7FVmW8V1YwHlyDFfrFAQk/PFqerPGecV6nFOzZ5hwTQCK5r84ppj1EcVUDulJaRolWH+c4NQ0aLWYNm3CXLObM/Fp/ODUJO0uC2Z1gPdtjOF9W8voPjFBx7FR3HY/5kgDRduTKNqRRPiivORSpqYP0tn+FSKGO8nvcqEJynToq4i+99MkBXugcx/0HwHJD6YYyL9XCWs5NfQENHyyfZBTCy5KtTrWzQTpGpinY8xOUFLmw6xY82JgU0JbQaL1mpp/wZ2FmNMFAoEgdAiVgPae97yHgwcPMjU1RUJCAv/4j//IN7/5TbxeLzExMQBs3bqVf/3Xf73stSKg3QbED3PBmwHJ5cfVPInz5Bj+UScqnZqwsji863S0GrppmWqhZaqFtum2Jc1/giGOPc4MKnsgqXEI9YURAPT5+TRsvZt/cScy6g8jTuvhw9sSeM+eSkba52mrtzHYNgNAelE0RTuSySqPRaNdDkmS5GfE9r8MtX+XnM4xEqa8jHvNNJsepOjtHyU1Kw1Vbx10Pg/dL4JnHjQGyN5NsOB+fhFZzTdGHGhVKr6cm8LDMeG0jiysaI2ctCufw6hTU5ZyMbApoS0h/HLNv+DOQMzpAoFAEDqESkB7LYiAdhsQP8wFbyZkWcY/7MB5agxX0ySyL4g2wYS5MhHThngkI3TNdinGyClF8z9kHwIgeVbNvcPRbOyWiO2eRJZkntm8l18nb2cBAzn6BT6yI4W9u7fgdUi0Hx2l4+gojlkvYVYdhVuTKK5KJjJhucfb75+jv//HeJv+g4LuBbR+iRNTaQxG38PmR95D5vqNqKQADB6Djn3Q+RzMKccOXMi4h09lfoijRFMdaeG7hWlkhBmWPufInHsxsM3RODTL+ZEFfEHlLLnkCCMb0qOWQltJsqL5F7zxEXO6QCAQhA4ioIU4IqAJBKGF5A3ibp7EeWoM35AdNCrCSmMxVyZiyI5YsjPOeGZonWxdCm3nps6hmnewoVdmW5+W/H41vy28h2fStxFUqVmnm+CDm5Oo2bMbozGMwfPTtNXbuNA6jSzJJOdFUlyVTM6GOLR6JRQ5nX30n/8yMadfIGnCyxwmnu3PQ07awNZH3k1u5VZUajXIMky0KW2Qnc8jjZzlV0kP8JWcjyCptXwxJshflGxErb38cG1vIEibbbHKNqRU2oZnFc2/TqOiOCl8ObSlRZEWHXb1c98EIYuY0wUCgSB0EAHtdUalUj0M7AXCgZ/LsvzStZ4vAppAELr4Rp24To3hPDuB7AmgiTFirkzEvDEBjXWldCMoBemb71MO0p5qoc3WhLGll8I+C63GhzgeW4YRPxs1Q+y1zvOWBx8htqQE57yXjmOjtNXbWJjyYDBpyd+SSElVMjEpyuHZ0zP1TDZ8mszWLgw+ifNyFvs7k4hIyWLzw++kcPtO1JpLKl0Lo9D1AsM99XxGv5UDUZVsWTjPY3ITOXnbIWcPGMOv+rkn7B6aLglsLcPzS5r/GLN+qSVyQ1okZWmRWAziLLZQR8zpAoFAEDqIgHYTqFSqXwAPABOyLJde8vi9wA8BDfAfsixf92ABlUoVBXxXluW/vNbzREATCEIf2R/EdW4a58lRfP0LoFZhLIrGvDkRY97Vzzyz++ycmzpHy0Qz5462caqvmDFtGlEqJ1tVF9g0cY7oaIjfs5v8bXvx2HS01dvoa5pECsgkZIVTXJVM7sZ4tHoYHfgl6pf/kSTbPK4wC4ftmzjfHSQiIZHND72D4p170OpWVslkj53Hz5/kH+YseIHP9v+cvx59Gk3mDii4TxGNRKRc8/MHghJd4w4ah2aX9rP1TjoBUKmgIMG6VGHbkB5JjtD8hxxiThcIBILQob29ncLCwtfUkXI7A5osy3R0dLxuAW0n4AD++2JAU6lUGqALuBsYBk4B70EJa9981Vu8X5blicXXfQ/4/2RZPnuta4qAJhC8sfBPunCeGsd1ZhzJ6UcTYcC0KQFzZQLayGtLNiRJ4n9OnecHz/cx69GSrp5hk3qQ8oFOUi60M5wOji3FRFbuIXaikOnGIHNjbnQGDXmVCRRXJROVLDNx4rPENPwOoyfIRFoZB/pLGekewhIdQ+WDb2PdnnvQGVbey7jXz+c6B3lh2s4GaYbv9zxG4egR5R+TyqFgrxLYEtcpqes6zLv8NA0vykcWQ9uCJwCAVWj+Qw4xpwsEAkHo0N/fj9VqJSYm5pZD2u0KaLIsMz09jd1uJysra8W/rVmLo0qlygSevSSgbQO+LMvyPYt///zizb06nF18vQr4FvCyLMuvXOU5HwQ+CJCQkLDxN7/5zS3f71rhcDiwWCy3+zYEgtBFAvMERAypCZtWHnLFwkKahDMOuIbB3heUeWnAzzO9fvxBmSLNGGUaGzkjFyg510aYc56WLBWNuRpc6VvIsFcRPpaKSlJjjITIHBUxqQPkDH2XNNsQbqOO5sS30NxkxTE6gtYYRkL5JuJK16PRLx+ULctwDB3/SRguVPyRb4IPjj9H4tQJwhc6USHjMcQxFbuZ6ZjNzEWWIKsv37d2xa9Dlhl3yvTOB+mdk+idkxiyS1ycjRNMKnIiNeREqsmJUJNqVaMVVbbXDTGnCwQCQeigUqkwm81oNLcu4pJl+bbtCQ8GgzidTl6duWpqal63gPYO4F5Zlj+w+Pc/BbbIsvzRq7z+b4E/R6m0NcmyfPnBAZcgKmgCwRufwIwH5+kxXKfHCS74UFt1mDcmYK5MRHuFM88uMmH38L0Xu3j89BAmHaxXD5HDGBlI5J0+SVzvALIKupPVnM4LYyJuE+nuaiIdSaCViCsxsLngFImn/wmjy8NERir2si/S9FInF5rOYDCb2XDvg1Tc91bCrMt7zqZ8Ab7YPczTE3OUWsL4fmEa61QO6HpRUfj31kHADYZwyL0LCvcq/w2LvKnvxekN0Doyv1RhOzs4x5RDaP5vB2JOFwgEgjuLUJzXX88K2k0FtJtFBDSB4M5BDsp4umZwnhzD0zkDEhiyIzBvTiSsJBaV7spltfO2eb7yTBsn+mdINqvYQB9xwSmyEhNZ73Zjra/He74NgIV4M2fy0xgJ30CsZxN6yYjPYuOu9J9SOnMer17N+Oa7Uad9grPPHKDn1DF0BiPlb7mfjXsfxhIVvXTdfZNz/L+uYab9AT6WnsAnMxMwqNXgc0H/Ieh4DrpeAOckqLWQsUPZs1ZwH0Rl3Pz3c1Oa/yhKksOF5n+VEHO6QCAQ3FmE4rwesi2ON4sIaALBnUlwwYvz9DjO0+MEZzyoTVpMG+Ixb05El2C+7PmyLPPi+XG+sa+dwRkX6+O1FHnbMXjnSE9PZ/u6dcR3d+M4cBDX8ePIfj++yCh6ynYxElaKxptEfFgTe2K/S7TfyUi8kVMlNVjN78DR0E3vsWOotRpKa97C5re+nfC4eABm/QG+1DPC42Oz5JuM/KAwjYqIS+5PkmDk9JLCn8kO5fGE0mXJSNJ6UF+jp/MaXFfznxyxuJctkor0KFKjhOb/VhBzukAgENxZhOK8/noGNC2KJGQPMILSuvjHsiyfv+WLXIIIaALBnY0syXh753CeGsN9fhqCMvqMcMyVCYSVxaHWr6wQeQNBfnn0Aj/e34PbH+SuTAPpC634HHMkJydTXV1NXmoqroaj2Ov24zh0GGl+HmdEGiPrHmRMn0VlxK9Zb9iHXw9ns8L5N60FjzePsr4o9B0zqGQoqq5hy8PvIjpZMTjun17gM51DjHn9fDAtjs9mJWHSXCF0TfcqQa1zn3JQtiyBNWk5rGVWg+61tSq+WvPfPDSP269o/mMtetanLR+mXZYqNP83gpjTBQKB4M4iFOf1tbI4/i+wG4gFxoEvybL8c5VKdT/wAxRz4y9kWf76LV3gCoiAJhC8eQg6fLjOTuA8NUZg0o3KoMG0Pg7z5iT0KSsFDlMOL4+93MVvTg5iNWp5e0EYlrFGFuZmiYuLY+fOnZSUlKCSJFxnzuKoq8NeV4dnZJTJ2PV4i4uoTPgfYlQ2xuP0nExP59ceLX3TXkr7wikYsqKWVagLEim6/x62lO9Bp43gq702/ts2TVaYnscK09kWeQ2xhGtmcd/aPujZD34n6C2QU6uEtfx7wBR99dffIBc1/2cvGiOHZulb1PyrVZCfYF1qjaxIjyQ7Vmj+X42Y0wUCgeDOIhTn9ZA9qPpmEQFNIHjzIcsyvgsLOE+N4WqZgoCELsWCuTIR0/o41MblilDH2AJfe7ad+p4psmPNvLckDHfvaaamJomOjqaqqoqysjK0Wq3yvj092OsOYK/bz0y3DfMGA3lpZwhqoSvXzKh1N86Et3BuvofZhhbiOnzogmoG412MlxnJLCwjzLqVpxyZjPrhL1JieTQ7CbP2OnvB/B64cGS5FdI+Cio1pG9b3rcWk7Nq3+Gcy0fT0NxSa2TTpZp/o5b1i4r/DYu6/0jTm1vzL+Z0gUAguLMIxXldBLQ1JhQHXSC4E5HcAVxNEzhPjuEfdaLSqQkri8O8ORF9uhWVSoUsy9R1TPD159rpm3JSnRfLe4uMDLQeZ3R0lPDwcHbs2EFFRQW6Sw6qDkxOYj9wAPfhp7AYGgi3zjERbaA9OwLHxL3k5H+EuKIoDj7zKwYO1CN7/EzGBzmdNclYDHii343DfBfhag8fSvDwx+lFJJoTb+BDSTDatBzWxs8pj8cWQOH9SmBL2XTL+9aufEmZvimnci7bYnDrHFtAWvxxkB1rVs5mS49iQ1okhYlWtFdq4bxDEXO6QCAQ3FmE4rwuAtoaE4qDLhDcyciyjH/YoVTVmiaRfUG08SbMmxMxbYhHY9bhC0j8z/EBfvhKFw5vgD/enM5DOVpaTx9jcHAQs9nMtm3bqKysxGAwrHh/yWHH9/svou//FUE1dOeFMRgez2zrg8QHKii6r5AR23lOP/skrvk5TJlJOCpiOBwu0aipJaBLxOg4QKb3FSpiCyiLLaMsrozimGKM2uvsOZu9AJ0vKIFtoAGkAJjjIP9eReGftQv0plX/Tp3eAC3D8zQOLR+mPeXwARCm07AuNWKxwhZFRXok8Xew5l/M6QKBQHBnEYrzughoa0woDrpA8GZB8gZxt0ziPDmGb8gOGhVhpbGYKxMxZEcw5/bzg1e6+NWJQUx6DR/fk8euZDjWUE9fXx9Go5EtW7awZcsWTKZXBZ/pXuSnP4Jq8BgzVgttRTrmXVmMN70bo81MTkYAKdVP65mj2KeniM/KYd1b385/WsN5fEomDDeJ9sexz+4HQKvSkh+dvxTYyuPKSbOmXd206J5V9qt1PAc9r4B3AbRhi/vW7lNCmyVuTb5XWZYZnnUvyUcaB+c4b5vHH1R+ZqREhilVtrQ7T/Mv5nSBQCC4swjFeV0EtDUmFAddIHgz4h9z4jw5hvPsBLIngCbGiLkyEfPGBPpcXr6+r52DnZNkxpj4wv1FFEcEOHLkCJ2dnej1eiorK9m2bRsWyyWyD0mCU/+B/MqXkQnSmxnBYGIA11A5o61/hDxnJsneQljiNBc8EyzMzxKdkkbEw+/hR4Y4OlxeHow18VbrKP0zzbRMttA61Yor4AIgyhBFWVzZ0p/SmFIs+ivIRgI+GKhftEI+D/NDgArSNi9aIfdCbB6soVbf4w/SNrqwVGFrHJxjZO7O0/yLOV0gEAjuLEJxXhcBbY0JxUEXCN7MyP4g7nPTOE6O4eufB7UKY1E05s2JHJf8fP35DnomHGzLjuHvHygmRuPmyJEjnD9/Ho1GQ0VFBdu3bycyMnL5TWcvwB/+FvoP4U7MoinDg8sA/sHdDJy+n0DAgnW+D7P9CDMRDhYCXsxxifQ88j5+o7EQqdXyrfxUHoiPJCgF6Z3vpWWyZelP73wvACpU5ETmUB5XroS22DKyI7NRqy7ZAybLMNa6GNaeg9Fm5fHonOV9a2lbQL32Fa2JBc/SPrbGwVlahq+u+S9PjcT8BtD8izldIBAI7ixCcV4XAW2NCcVBFwgECv5JF85T47jOjCM5/WgiDOgq4nlG6+eHDf3Mu/38UWUan7q7ALXPQX19Pc3NSuApLy+nqqqKmJgY5c1kGc7+N7z0KLLkZ6xkPW3WLnS6WHSeP6P3lULmF9SoAx6sUy/jpAuHQcVCUgYv3/9e+nQmHoiL4Jv5qcTpdSvuc8G3wLnJczRPNS+FtgXfAgAWnYXS2NKltsh1seuIMkYtv3h+ZFky0n8YJD+ERSstkAX3KS2RhmscAbCKBIISneP2xcD2xtT8izldIBAI7ixCcV4XAW2NCcVBFwgEK5EDEu72aZwnx/D2zAHgywnnl9oA/1/XOEadho/U5PIXOzLxOO00NDRw9uxZJEmipKSE6upqEhISlDebH4FnPwHdLxFILqUjP4JxqROLpYgY08cZOJ1C9+kxAn4Zo7uZgL2eBWOAs2VV1FfuwaJR8/XCdN6WGH3VFkBZlhlYGKBlarnK1jXbRVBWqlPp1vQVrZH5Ufno1DrwLEDvfiWsdb0InjnQGCB71+J5a/dCeNLaf+GX8GrNf+PgLPYraP4r0iNZHwKafzGnCwQCwZ1FKM7rIqCtMaE46AKB4OoEZjw4T4/hOj1OcMHHsEnNv4QFODTtIC06jM/fV8R9pYk4HA6OHTvGqVOn8Pv9FBYWUl1dTUpKilJNa3kcnv8sst+No/IRWixteHw24mLvJj31Mwy3Gjhfb2NqyAGBIVSuQwxbZV7Y/Qi2xHSqJm18M85MzrYtqI3XtyK6/C7aptuWQlvzZDNT7ikADBoDJTEly6EttowEYzQMHleqax3PwdyA8kbJFcutkPHFa7pv7UpcV/MfZ2bDJa2RBQmvr+ZfzOkCgUBwZxGK87oIaGtMKA66QCC4PnJQxtM1g/PkGJ7OGU5JAf5Z56fX76cyI4p/eLCEdakRuFwuTpw4wYkTJ/B4POTk5FBdXU1mZibYx2Hfp6H9GeSkcmyba+heeBJJ8pGW+mdkZn6UWRu01dvoOjWO12FDDpzgWF48RyrvQhcM8KE//JY/1kpYa2qx1OxGGxV1vVtX7l+WGXOOrWiLbJtuwy/5AUgwJSy1RZbFrqNI0mDsflmpro0szqWRGUpQK7xfOShbo7vGFdeOi5r/s4vykaahlZr/stSI5cO00yOJt66d5l/M6QKBQHBnEYrzughoa0woDrpAILg5ggtenGfGmT85xtOzdv4DL/PIvK0kkc89VEJ8uBGPx8Pp06c5duwYTqeT9PR0du7cSU5ODqq2p+G5T4NnnsD2v6Er0cPoxJPodFFkZ32C5OR3E/Sr6DkzTlu9DVt3H1P6dvZtL2MoOYvCC1187j9/SubUJGEbNmCtrcVSW4MhK+umPocv6KNzppOWKaXC1jLZwohjBFA0/wXRBUqFzZJB+fwkqf1HUfUdhKAXjBGQ9xYlsOXeBcbwNfimb4yLmv+Lga1xaI62V2n+N1w8TDs9kpLkcAza1ZGiiDldIBAI7ixCcV4XAW2NCcVBFwgEt4YsyXh75xg7buPf2mw8LvvQqVT8VXESH3pbCSazHp/Px9mzZzl69CgLCwskJSWxc+dOCtJiUb/4BWh9HBJKcd79KToW/o+5uROYzXnk5X6RmJhqAKZHHLQ12DjX0M6x+EkObFoHwNvOneR99XUY2zsA0GdlYd1Ti6W2lrDyclSamw8hU+4pWidbl1ojW6dacQcUPX6UIYqymGLK1GbKZm2U9p/A4pwGtQ6yqpWwVnAfRKSu0jd863j8Qc7bFpZaI5su0fzrNWqKk8OXQ1ta5C1r/sWcLhAIBHcWoTivi4C2xoTioAsEgtdO0OGj48gQ3z7WzyGflwTUfCI3nrfdk4chLZxAIEBzczP19fXMzs4SFxdHdXU1JbohNPs+DY4J5B0fZ7K4gp4Lj+H2DBITU0Ne7ucxm3MACPiD9DVOcvBIJ/+Z4KE/JYFUWz9/3tfBPdFWjGcacZ48CYEAmuhoLLt3Y91Ti3nbNtSvPlj7Rj+XFKRnrmeFgKRvvg9Y1PybkyiXdJTNDFM2PUy23486sQwK9yphLbHsdd+3djXGFzxLtsjGwTlahufw+CUAYi2GpZbIDWlRlKVG3JDmX8zpAoFAcGcRivO6CGhrTCgOukAgWD1kWebI0UG+/koXnW4f69DwydhINlelY1ofj6xTcf78eY4cOcLk5CRRUVHs2rKesrHHUTf9CmLzkR78PkO00X/hJ0iSh5SU95Kd9bfodJFL15kdc/LD4138Z1iAoAqqTr3M3dN2qh55mCT7NPb9dTgOH0ay21EZDJi3bcOypxbr7t1o4+Je02e8puZfrWNdQE3Z/ARlXi9l+lgi8+9TwlpmNWhvr3XxUvxBic4x+5Itsmlwjr6pZc1/QeJilW3RHJkda75M8y/mdIFAILizCMV5XQS0NSYUB10gEKw+QUnm8WMDfPelTqa9Ae5Bx4e0YWSUJ2DenIguzUJnZyeHDx9mdHSU8PBw7s83UND1U1QLI7D1w/iq/4a+oZ8xYvstWq2V7KyPk5Lyx6jVy3KOEZeXj53q5qgUIGl8mHsP/h9pUjgV972djfdsxtfciL3uAI79+/HbbKBSEVZWhqW2FuueWvQ5ObfU2ncpV9b8dxKUlepUhj9ImcdDWVBFWeJG8gofQZd/L4TdmODk9WTW6aNpePkw7aahuSXNf7hRy/rFlsiLlbbGkw1iThcIBII7iFBcq4uAtsaE4qALBIK1w+EN8NMDPfzHkT7UMvwxBt4j6bDGmzFvTiRsfRz9owMcOXKEwcFBIk1a3hXdRvLwcxCVBW/9MY64eLq6v8bs7FFMphzycj9PTMzupWAlyzJPTczx+c4hHP4A284cprKxDr02ibwte9n+jj1EJpjwdnVh378fR90BPOfOAaBLT8daU4NlTy2migpU2uu39d0ILr+L89PnlcA20UjL+Fmm/HYAjJJEsc9PuSGOspRtlJW+h/ikjaty3dVG0fw7ODu4HNq6xu1Lmv9Es4odBSm3TfMvEAgEgtUlFNfqIqCtMaE46AKBYO0ZmnHxrRc6eK5llIQwHR8Os1AzE0CtURNWGou5MpExzRxH6o/Q29tLnn6CR9T7MXnGYNNfIt/1ZaYcp+ju/gZu9wWio6vJy/0CFkv+0jUmfX6+0DXCM5NzZHo91L7wW2JGu1Fp4onLqqHywT3kViSg1Wvwj4/jOHAAe10drmPHkf1+NBERWHbvwlJTi7mqCo3FvGqfX5ZlRp2jtEw00XxhPy1jp2n3zeBfLN4lSirKzCmUpVZRnn0fRXElGDSGVbv+auLwBmhZrLK90tjDoFPDtPNyzX9FeiTr11jzLxAIBILVJRTX6iKgrTGhOOgCgeD149SFGb76bBstw/OUJVj5VFwUeT0OZE8ATYwRc2Ui8ylB6k8fo6/zHHepT7BZOo1sTUb90I+QsncyPPwr+i/8iGDQRXLye8jO+jh6ffTSNZ6dmOPz3cPM+gO8w2cn+/e/xD8/hkodjTFiGyW7dlO6M42YFAsAQYcTZ0MDjrr9OA4eIjg/j0qnw7R1K9baGiy1tegSElb9u/AFfXRc2E9L51O0TDTRElhgRKdU8LSoKDSnUpaynbKEDZTFlZFqSX3N7ZirzcGDB9m1a9c1Nf+pUWFLtsgN6ZEUr6LmXyAQCASrSyiu1UVAW2NCcdAFAsHriyTJPNk4wrdf7GB8wcuD6xL524x4Is7P4uufBzUYC2Nw5Ws5OdzC3LmXeYiXiWMab/E7MTz4HXwamf7+HzFi+zUajYmszL8lNfVPUKsVCceMP8A/dI/w+/FZCkwGPu6dZuZ3v2J+YhiVOgKNsZKkvK2U7kwnd1M8eqMSjORAAHdjI/b9ddjr6vAPDgJgLClRJCO1tRgKCtYmKLlmmGp7kpbup2mZbqNFq+KcwYB7UcwRbYikLG69cjZbXBmlsaWYdatX5bsVrjanr9D8L7ZG2uY9gKL5L0kJZ0Pa8mHaKZG3pvkXCAQCweoSimt1EdDWmFAcdIFAcHtw+QL866E+fnaoF4C/qs7mA6VJ0DyN68w4ktOPJsKAt8RIs7ud6Pafs4OT+LQR+O75NuGV78bh7Ka7++vMzBwhLCyTvNzPExu7Z2mx//LUPJ/tGmbc6+dDqXG8fXaIs0/8hon+HtRaK2rdRozh68nfnEpxVTLxGdYVe9t8vb2KZKSuDndzM8gyuuRkRTJSW4OpshKVTnfVz3jLBLzQf4RAx7P09r5Ic3CBFoOBFksE/SpF2qFCRW5ULmWxZZTHlVMWV0ZWRBZq1eu3B+xm5vSxeQ9NQxcD2xwtI8ua/zirYckWuSE9krLUCEz61dkPKBAIBIIbJxTX6iKgrTGhOOgCgeD2MjLn5tsvdPB0k404q4HP3FPA28uS8XbO4jw1hrd7FgB/toFBVT2Fwz8lgUkGI7ZgfOSHxGcWMTV9kO7ub+By9RIVtZ28vC9itRQCsBAI8pUeG78anSYnzMBjhWkkDHZz4onfMtx+Dq3ejFpXgUpXRmxaDMU7kinYkoDBtDJ4BSYncRw6hH1/Hc6jR5G9XtRWK5bqaix7arFUV6MJD1/9L0iWYbQJOp+Hjn3MT57jnMFAS1QyzeExtATt2AMuACw6C+ti1y1V2cpiy4g0Rq7+PS3yWub0Jc3/Ja2R/Zdo/gsTLzlMOz2SrJjLNf8CgUAgWF1Cca0uAtoaE4qDLhAIQoOzg7N85Zk2mobmKE0J5+/3FrMlO4bAjAfn6TFcp8cJLvjwmLwETP9NnuMZPBhoTHovWXs/SVJyAiO2/6Wv74cEAgskJ7+LnOxPotfHAnB4xs6nO4cY9vj4y9RYPp+dxGx3ByeefJwLTWfQ6sMIi9yEz1uK1mAmtyKe4qpkknIjLmu/k9xunEePYq+rw3HgIMGZGdBqMW+uxFKjVNd0KSlr80XNDSphrXMfXKhHkgIMhMfTklZGiyWKFt8sXfM9SBc1/+EZlMWWLYW2vKg8dOrVqfqt9pw+6/TRtHguW+PQHE2Dc9i9SsUwIkzH+ouK//Qo1qdGEmFag+qlQCAQvIkJxbW6CGhrTCgOukAgCB1kWeYPzTb+6fkObPMe7itN5PP3FZEeY0IOyni6ZnCeGsfTMY0k9xAe9n0ipQHayeVcxvuprNlLSkok/f0/ZnjkV6jVRrIyP0xa2vtQqw04A0G+3jfKL0amSDfqeawwjaooK+N9PRx/4rf0nDqGVm8gJm0rDnsxQX8YkQkminckU7gtkTDr5QdNy8Eg7uYWHAfqsO+vw9fXB4ChsHBRMrIHY0nx2uyx8sxD98tKYOt+GbzzoDXiytrJ+bT1tJgttMz30TzZzLRnGgCjxkhxTPFSW2RZXBnxpvhbuvxaz+mSJNM76VissCmVts5xOxd/HOfEmZcqbBvSoshPsAjNv0AgELwGQnGtLgLaGhOKgy4QCEIPty/Ivx/p418O9hKUZP6iKpOP1uRiNSoVk+CCF+eZcZwnbegX/j8idb/Gh5YX2MVs2j3s3LWLxCQVvT3fYmq6jjBjOrm5nyMu7h5UKhXH5xx8smOQfrePP02O4e9zkgnXapgaGuDkU7+jo+Ewaq2GlKIdSNJ6pkbUqDUqssrjKKlKJrUwCtVV2u28/f046g5gP1CH+2wjSBLahAQstTVYa2sxbdmCWn950HvNBHwweBQ69imBbX4QUEHqJuT8+xjN2ExL0EHzVAstUy20T7fjl/wAJJmTlloiy+LKKIopuiHN/+2Y0+0eP63D8zRerLQNzi1p/k36Zc3/xT1tcdbQPK5AIBAIQpFQXKuLgLbGhOKgCwSC0GVs3sN3Xuzk/84OE2vR8+m3FPCuTWloFsORLMl4e+dwN5wgrO9LGNUd9JHDU9RgTsxn566dxMVN0tP7TZzOLiIjN5OX90XCraW4ghLf6R/lZ0OTJBp0fKcgjT0xyh6yubFRTv7h95w/uB+Qya6oIixqG4NtEl5ngPBYI0XbkynanoQ58uoBIDAzg+PQYUXhX9+A7HajNpkwV1cr1bVdu9BERq7+FyfLMH5uuRXS1qg8Hp0NBfdDwf34kjfQMd+jHKY92ULzZDM2pw0ArVpLUXTRitCWYkm5rAoYCnO6LMsMzbiXKmyNg7Octy0QkITmXyAQCG6WUJjXX40IaGtMKA66QCAIfZqH5vjqs22cHpilMNHKPzxQzPbc2BXPCdo9+J/5Afqu7yPJcIAaGlQFxEbFUr27iqjo81y48EP8/lmSkt5OTvanMRjiOTvv5BMdQ3S5PLwzMYqv5KYQtXge2cLUJKeffYLWV14kEPCTv2UHSQV7GO7UMNI5h0qtIqM0huKqZDJKolFfo71O8npxHT+OfX8djgMHCExOgkaDqaJiSeGvT09fmy9wfgS6XlDCWv9hCPogLBry74GC+yCnFgxWJl2TtEy1LIW289PncQfcAEQboymLWzRGxpZRElvCqYZTITmnK5r/+SVjpND8CwQCwY0Rimt1EdDWmFAcdIFA8MZAlmWeax3lm/s6GJlzc3dxAl+4v4is2JVngckz/ciPfxj12FFm5SKelGsZVOuJNIWzY2cF4dENjIz8D2q1jsyMvyEt7f0EVHp+cGGcHw2OE63T8k/5qdwfF7n0ns65Wc7se5rml57D53aTvXEzJbseYtpmpv3YGO4FH+ZIA0XbkyjankR4bNi1P4sk4Tl3TpGM1B3A29UFgD43B2vtHqy1NRjLylCp12A/ldcOPfsX9629CO5Z0Ogha5cS1gruh/AkAAJSgJ65nqUKW8tkCxcWLgCgVqlJ1CayPWv7kuo/MyLzddX83wxC8y8QCATXJxTX6iKgrTGhOOgCgeCNhccf5Of1/fz0QA++oMSfb8vkY3vyiAi7xOgny3Dmv5BfehQCQS5o38VznnSm1A4sOhNbKjKxJu9nevoVjIZkcnM/R3z8Xs453HyyY4hzDjdvjY/k63kpxOmX39fjcND4wjOcff4PeBx20tetp/KhdxL0J9HWMMpgmyLiSCuKpnhHMlnlsWi01w8svqEhHAcOYN9fh+v0aQgG0cTGYq3ZjaW2FvO2baiNxtX+KiEYgKHjiwr/52C2X3k8eQMU7FUCW0IJXFJdmvfO0zrVSstkCwc7DzIsDWP32QGw6qysi1u3ojUywhCx+ve9ClxL869RqyhMtC7JRzakR5IVaxZVNoFAcMcTimt1EdDWmFAcdIFA8MZkwu7hey928fiZIaJMej55dz7vqUxbafGbH4ZnPgE9LyMlVNKhez+HhiYYV80RptKzqTAMU9rLuDydRERUkJf3KCZLGT8ZHOexC+NYtGq+kZfKQ/GRKxbnPreL5lde4PQzT+CanyM5v4gtb3sXsemldBwdpf3oKI5ZL2FWHQVbkyjekURUovnyD3EFgvPzOA4fxl5Xh/PwESSnE5XRiHnHDqy1tVh270IbE7PK3yZKqJ3shM7nlMA2fBqQITJ9cd/afZCxAzTLgfXgwYPs3LWTCwsXltoiWyZb6J7rXtL8Z4ZnrghseVF5aNWhWZ2acfpoXpSPnB2co2loDsclmv9LA1t5WuTKXwoIBALBHUAortVFQFtjQnHQBQLBG5tzI/N89dk2TvTPkJ9g4dG9xezMj1t+gixD82/ghc9BwItU/f/oclXRcPYUQ/4J9LKailwHYWkHCEgzJCY+TE7233EhGMkn24dotLu4Nzacb+WnkWhYuSD3+7ycO/Ayp/7wf9inJonPzGHL295FzsatDLXP0t4wSn/LFLIkk5wXSXFVMjkb4tDqb0xSIft8OE+ewlFXh72ujsDYGKhUhG3YsKTwN2RnrebXuYx9fHHf2vPQdwACHjBEQN7dSljLu5uDxxuvOKe7/C7OT59faotsnmxmxjMDQJg2jOKYYmU/W6yi+o8zxV32HqFAcEnzv9wa2TWxrPnPjbesaI3MT7AuCWwEAoHgjUgortVFQFtjQnHQBQLBGx9Zlnnx/Djf2NfO4IyL2sJ4vnB/EbnxluUn2cfguU9Dx7OQXAEP/YSBcT2H9h+kb34YozpIWdYAxuQTqDRaMjL+mtS0D/Bzm4N/6h/FoFbzj7nJvDsx+rJWt2DAT9uRA5x6+vfMjtqITkljy8PvpHDHLtyOAB3HRmlrGGVh0o3BpCV/cyLFVcnEplq4UWRZxtvejn1/HfYDdXjb2gHQZ2YuSUbC1q9HpVkDQ6HPCX0HFYV/1wvgmgK1lpmIEqK3/gkU3KtU2q5x7zanbUWVrW2mjYCkVKduVfN/O7B7/LQMz69ojZy5RPNfnnrJYdppkULzLxAI3lCE4lpdBLQ1JhQHXSAQ3Dl4A0F+efQCP97fg9sf5E+2ZvCJu/KINC2eOybLcP5J2Pd34FmAXZ+Fqk8yNjbJoX0H6BjpJszgpDSrDUN8B3p1PLkFn8MVfg+f7hzm+LyTmmgr3ylII9V4+VlmkhSk61g9J576HVODF4hISGTzW99B8a49aDRaRrpmaau30ds0iRSQic8Mp6QqmdxN8eiNN9f257fZsB84gKPuAM6TJ8HvRxMVhWX3biy1NVh27EBtMq3G1/qqDxlU2h87n8PZ+H+YXcPK44nrlhT+JJWv2Ld2JbxBLx0zHStC281q/kMBWZYZnHEt2SIbh+Zou0TznxYddokxMoripHD0N7AvUSAQCG4HobhWFwFtjQnFQRcIBHceUw4vj73cxW9ODmI16vjEXXn8ydYMdBf3pzmn4PnPwbnfQ8I6ePgnkFTO9PQ0h185SGvHOazWcYqym9CFj2OWi8jJf5RnVDl8rW8UFfAPOcn8aXIM6iuEBlmS6D17ihNP/Iax3m4s0TFseuBtlN11DzqDEY/DT+eJMc7X25gddaIzaMjbFE9xVQrxmdabDiJBux1nfb2i8D98GGlhAZVej3nbNix7arHs3o0uPn4VvtmVHDx4kN2lqYq+v/N5RTgiSxCeAvn3QuH9kFkN2hurIt2o5r88rpySmBJMujUIoKuAxx/k3Mii5n/RHDl6UfOvVVOaHL7UFrkhPYrkCGNIhk+BQPDmIxTX6iKgrTGhOOgCgeDOpWNsga892059zxTZcWYe3VtETUH88mK44zl49lPgnISqTyoVNa2Bubk5GuobaDx7hpi4bnIym9EYnEQ6dmJI/RRfUYVxeM7B9kgLjxWmkRl25QAiyzIDrU2cePK3DLedIyw8go33P8T6e/ZiMJmRZZmxvgXa6kfoOT1BwC8Rk2KhuCqZ/M0JGM03L6GQ/X5cZ84oCv/9dfhHRgAwlpUpkpHaGgx5easSCC6b051T0P2S8r321oHfBXor5O5RKmt5d4Mp+obf/3qa/7zIPKXKtvgnMzx0Nf+j826aFlsiGwdnaRmexxtQRCrxVsNSWNuQFsk6ofkXCAS3iVBcq4uAtsaE4qALBII7G1mWqeuY4OvPtdM35aQ6L5a/f6CY/ASr8gT3LLz4KDT9CmIL4OGfQqryc8But3Ps2DHOnjlGQmIjqantqFERbdvL6aT38W2DTACZz2cn8ZepcWiuEXqGO85z4snHudB0BoPJzIZ7H2DDfW/FFK5o6L3uAN0nlara1JADjU5NbkU8xVVJJOVG3lKgkmUZb1c3jgN12PfX4WltBUCXlqZIRmpqMW3aiEp7a2HgmnO63wP9h5ara45xUGkgY/vyeWvRNy84uaj5vxjYWidbsfsXNf9661JLZFlcGeti14W05r9j1L5UYWscnOXCtAsQmn+BQHD7CMW1ughoa0woDrpAIHhz4AtI/M/xAX74ShcOb4A/3pLOJ+/KJ8ayWP3qeQX+8HGw22Drh6Hmi6BXWuhcLhcnTpygsXE/ScnHiI+/gMobjrr/T/lpei2HzbDJauL7Renkma99Xtl4Xw8nnnyc7pNH0RmMlN19H5seeARL1HJlaXLQzvl6G10nx/B7gkQmmCjekUzhtkTCrJfvfbtR/OMTynlrB+pwHTuO7POhjojAsnMn1j21mKuq0FhuXFxyw3O6JIGtcTGs7YOJNuXxuCKlDbLgfkXccgsHc0uyxIX5C0pgW2yP7JnruUzzXx6nGCNzI3NDVvM/7fDSPDy3ZIy8VPMfadKxPk1o/gUCwdoSimt1EdDWmFAcdIFA8OZi1unjB6908asTg5j0Gj6+J48/25apiBs8C/DKl+D0LyA6G976z5C5Y+m1Ho+H06dP09LyJEnJ9YSHT6FypNE2/rf8OCMLt1bFpxJi+GhRKtrr6NanhgY4+dTv6Gg4jFqroXT33VS+9e1ExCcsPcfvDdJzZpy2ehtjfQuoNSqyyuMoqUomtTAK1WtQuktOJ46GBhx1B3AcPEhwbg50OsxbtmCprcFaW4suMfGa73HLc/pMv1JV69wHA0dBDoIlQdm3VnA/ZO8CXdgtfS4Ap9/J+anztEwtt0ZeqvkviSlZqrKVx5UTGxZ7y9daS4TmXyAQvN6E4lpdBLQ1JhQHXSAQvDnpHrfz9X3tHOycJDPGxBfuL+Lu4gSljaz/MPzhYzB7ASr/Cu76EhisS6/1+XycPXuGtvb/IjHxKAaDC4ejmv/1/hUHY80Uu+E7MTFs2JCM+jpnns2NjXLyD7/n/MH9gExRVQ2bH34H0cmpK543bXPQXj9Kx4lRvM4A4bFGirYnU7gtCUvUa1O5y4EA7qYmReFftx//wCAAxuJiLLW1WPfUYigsvKzFblXmdNeMUr3seA569oPPDjoT5NQqYS3/HjC/tgAlyzIjjhFFPrJYZWufaV/S/Cebk1fsZSuKLkKvufVK5VpyLc2/Wa+h7BLN/4b0SGItQvMvEAhunFBcq4uAtsaE4qALBII3Nwc6lf1pPRMOtufE8PcPFFOUFK6c/VX3NTj+LxCRBm/9oRIaLiEQCNDUdJKu7n8mNvY0KhU0Bj7If6prWdCo+MvBAB+JjCCqMgl9qvUqd6CwMDXJ6WefoHX/SwT8PvK3VrH1kXcRl7Fyn1bAH6SvaZK2ehsjnXOoVJCxLpbiqmQySqJRa16bJEOWZXz9/dj378dRdwB3UxPIMtrkJKw1imTEXFmJSq9f/Tk94IUL9cv71hZGQKWGtC2L+9b2QmzuqlzKG/TSPt2+IrSNOkcB0Kl1y5r/xT/J5uSQ3AN2Pc1/erRpcS+bEtqKhOZfIBBcg1Bcq4uAtsaE4qALBAKBPyjx6xODfP+VLhbcft5dmcan7i5QDhkePAFPfwSmu2HDn8JbvgZhkSteHwwGaWk5TH//Y0REtjHrj+O32kc5ok4l1yHxpVY3ZZYwzJsTMa2PR32NM89c83Ocee4pml56Dp/bTfbGzWx95N0k5RVc9ty5CRftDaO0HxvFveDDHKGnaEcyRduTCI+99RbBSwlMTeE4dAj7/jqcR48iezyoLRYsO6sZSkyk8kMfQhMevirXWoEsw2jzcivkWIvyeEyeEtYK90JqJahX72DuCdcErZOtNE8pbZHnp87jCSp6/BhjzIq2yDeS5v/swBxjC8ua/3UpEStaI5OE5l8gECwSimt1EdDWmFAcdIFAILjIvMvPD/d389/HLmDUafhobS5/sSMTg+yHQ9+Chh8qe6Ue+AEU3HvZ6yVJorX1GYaGv0dY2AjHfDX82vBB5tHz5xMyf9nswKhRE7YuFvPmRPQZ4VddGHscDhpfeIazz/8Bj8NOemk5W9/2blKL1132mmBQYqBlmvP1NgbbpgFIK4yiuCqFrPJYNKtUMZHcbpzHjmOv24/jwEGC09Og1WLatGlR4V+LPjVlVa51GXND0PWC0gp5oR4kP5hiF/et3Qc5NaA3r+ol/ZKfntmeFVW2N7Lmf6nKNjhH68iy5j8h3LDiMO11KRGEXac1VyAQ3JmE4lr9jglo0RlF8t1f+MXtvo3LmJubIzIy8nbfhkAgEFwTty/I4KyLOZcfg1ZNerSJKJOOHH83H5p/jIzABY4Ya/iviL/Bob5C9UiWKDLuZ1PCE0iGIL/wfoTjxq2Ee4L8ZbeXt48GMcowpoMTVjVnLCqcmisHNXXAS7ytkcTB4+h9TuwRqdgydjAfkwNXCHcGn0TidJCE6SBGv4xPC+PRWsZiNLiNqxceVLJERHcLGyd6KOxtJG5GaQ8cj02lI2c9ndkbGE3IQF6DwBImOVnvPc0mz3HWe09hkR340NNq2MBp41bOGLYwr7nx89ZuhgAO3Op+5Y+qD7e6H0mlHKatlk2ESVmEyVmYpGzCpCw0rG5oXC1kGVy+AA5vALtH+e/FwAZg0muwGrRYjFosBi1GnQhsAsGbgVBcqz/+oe0ioK0loTjoAoFAcDXm3X4Gpl24/UGsRi0Z0SbC9TKPOH7DI47f4FBb+UX4RzgRVn3F12tUPiosT7Au7kXOq0r4N/ljzGkiyJjx8fBggOp5iUwvBIBWs4oTVhU9RhXyFYKXKugnbrSZpIFjGLwLOC0J2DKrmI0ruGJQQ5aJWpBImg4QMy+hAubNakZjNUxFapBWwfZ36ZwePTtOQV8jBb1NpNu6UcsyC+ZIurLX05GzngtpRQS0q6+F18gBCn3n2OQ5zibvMeKD4wB06wo5bdzKacNWhrUZV/6OVgEZCZ9qHLe6D9diYPOqRkClrBn0UgJhcvZiYMvGICejIjTDTiAoKYHNG8CxGNoWt7KhUatWBDaLQSuMkQLBHUgortXvmIAmWhwFAoFgdQgEJX57eojvvdTFrMvHOypS+cw9BcS7euDpDyv7pIofgvu/C5b4K76H1ztB67mvMjp3gP+V/4w6zVuIlwN8ryCd3RozzpNjOBsnkN0BNDFGzJsSMW9MQBN+uUkwGPDTfuQgJ5/+HbOjNqJT0tjy8Dsp3LELtebKC3/nvJeOY6O0NYyyMOnGYNKSvzmR4qpkYlNv/NyzV3O1OT0wO4vj0CFF4V9fj+xyoTKZsFRVYamtwbJrF9qoqFu+7lWRZeWMtY7F89ZsZ5XHo7IUI2TBfZC+DTRrew7a9TT/pbGlKw7UDmXNf8/EJZr/oVm6JxzIspJ3c+MsK4yRefFC8y8QvNEJxbX6HdPiKAKaQCAQrC4LHj8/qevhFw396DRqPrw7hw/sSMd48idw8FvKodb3fRvWvfOq1Rq7/Tznzn+JMy4vP5M/yqQ6gd1+B9/dWExKeCTu81M4T47h7ZsHNRgLYzBvTsSYf/mZZ5IUpOtYPSee+h1TgxeIiE9g80PvpHjXHrS6K1eqZElmpGuWtnobvU2TSAGZ+MxwinckkVeZgP4a8pIrcSNzuuT14jpxAvv+Ohx1dQQmJ0GtxlRRsaTw12dk3NR1b5gFm7JvrfN56DsEQS8YIxV1f8H9kLtnxfEJa8VFzf/FsNYy2ULHTAcBWdH8p1hSVgS2wujCkNX8L3j8tAzNLxkjGwdnmXX5AUXzX562qPlPi2K90PwLBG84QnGtLgLaGhOKgy4QCAQ3w4UpJ998vp0Xz4+TEhnG5+4r5MGkBVR/+BgMn1SkFQ98H8KTr/h6WZaZnHyJls5/4v/z7+YFHsDic/O+gIMPbdtETEwM/ik3zlNjuM6MIzn8aCL0mDYlYq5MQBtpXPl+kkTv2VOceOI3jPV2Y4mOYdMDb6Nszz3ojMYr3gOAx+Gn88QY5+ttzI460Rk05G2Kp7gqhfhM6w1Z/W52TpclCc/5NkUyUncAb2cnAPqcnEXJSA1h5eWo1Gsg2vA6oLdOqax1vQDuWdDoIbMaCu+H/PsgYo0EJ1fAE/DQMdOxHNqmWhhzjgGLmv+YIspiFWNkWVwZSeakkDQtyrLMwLSLxqHlw7TbR4XmXyB4oxKKa3UR0NaYUBx0gUAguBWO9U7z1WfbaBtdYGNGFH9/fwHrbb+F/V8BjQ7u+bqi5b/KolqSvAwN/ZIX+57nX+W/xKZKpWiin7/QytxTtYOEhATkgIS7fQbnqTG83bMAGPKisGxOxFgUjeqSM89kWWagtYkTT/6W4bZzhFnD2bj3YdbfsxeD6eqiClmWGetboK1+hJ7TEwT8EjEpFoqrksnfnIDRfPV9Y691TvcND+OoO4C9rg7XqVMQDKKJicFSsxtrbS3mbdtQh63OcQErCAZg6MTieWv7YKZPeTxpvVJZK7wfEkrXbN/a1Rh3jtM61UrLpNIa2TbdtqT5jw2LXVFlC2XNv9sX5Jxt+TDts4OzjC94gStr/pMj12CMBQLBLRGKa3UR0NaYUBx0gUAguFWCkszvzwzxnRe7mHJ4eWRDCp/faiD+wGfgwhHI3g0P/giirt7C5/VN0dH7Q346quIZHsIUdFPV2co9MZHs3LmTlBSlqhOY9eA8PY7r9BjBeR9qiw7zxgRMlYnoXnXm2XDHeU48+TgXms5gMJnZcO8DbLjvrZjCI675ebzuAN2nxmmrtzE5aEejU5NbEU9xVRJJuZGXVXBWc04Pzs/jOFKPo24/jsNHkBwOVEYj5u3bse6pVfatxa7BXi1ZhqkuJah17IPhU4AMEemLh2PfBxk7QPv6txz6JT/ds91LbZEtUy0MLAwAoFFpyIvKWxHaMsIz3jCa/5aReXyL1sjEcOPiXjYltJUmC82/QHC7CMW1ughoa0woDrpAIBC8VhzeAD890MN/1PejVsFfV2fxkfAj6Ou+rASAu/8RNv0lXKN1z+7o4Pn2f+e79moGVZmULvSw8VwXJWmp7Ny5k8zMTEDZR+bpmsV5cgxPxzRIYMiOwLw5kbCSWFS65WuM9/Vw4snH6T55FJ3BSNnd97HpgUewRF1fQT85aOd8vY2uk2P4PUEiE0wU70imcFsiYVYlrKzVnC77fDhPnVqqrgVGR0GlIqy8HMueWqy1teizs9em5c8xsbxvrfcABNxgiIC8uxb3rd112UHlryezntmlKlvLZAutU604/A4AwvXhrItbR3ms0hZZGltKhOHaofx24QtIdIwtLIe2oTkGpl0AaNUqipLCl0NbWhQZMaaQbPEUCO40QnGtLgLaGhOKgy4QCASrxdCMi2+90MFzLaMkhhv58i4r9/R9C1XvfkjfDg/9M8TkXPX1siwzOrGfb3ed4nf+uzCpfNw12Ex8/wQZ6elUV1eTm5u7tFANLnhxnhnHeWqc4IwHtUmLaUM85s2J6BKW2xqnhgY4+dTv6Gg4jFqroXT33VS+9e1ExCdc9zP5vUF6zkzQVm9jrG8etUZFVnkcJVXJ9Iw3U1NT89q/uGsgyzLejg7sdXU49tfhaWsDQJ+RsSQZCVu/HpV2DcyMPhf0HVzet+acBLVWqagV7lX2G16jOvp6IMkS/fP9S22RLVMt9Mz2IKOsWbIispaqbOVx5eRE5qBVr63F8laZcnhpWrRFNg7O0Tw0h9MXBCDKpFNaIhdbI8vSIgg3rv6xDQLBm51QXKuLgLbGhOKgCwQCwWpz6sIMX322jZbhecpTwvlhUTuZp78GAS/UPgpbPwzqq7dwSZKPQ72/59FhI71ks5k+trT14Z90kJSUxM6dOykoKEC9WJGTJRlv3xzOk2O4z09DUEafbsVcmUhYeRzqxXaxubFRTv7h95w/uB+QKaqqYfPD7yA6OfWGPte0zUF7/SgdJ0bxOgPozFCxJ4vCbclYol4fW59/dBT7gQM46g7gPHEC/H40kZFYdu3CsqcWy44dqM1rcDi0FISRM9DxnFJdm1IEJySULiv8kze87vvWroTD5+D89PmlKlvzZDOzXmUP4xtN8989YV/RGtk9oVQLVSrIi7ewIS1qqTUyN94iNP8CwWskFNfqIqCtMaE46AKBQLAWSJLMk40jfPvFDsYXvLy3RM+j8r8T1vcipGyCh34C8YXXfA+Xd5pvn3ueny/ko8fH+7VdWBrnmJ1ZIC4ujurqakpKStBccv5Z0OnHdXYc58kxApNuVAYNpvVxmCsT0acqSnn79BSnn3mClv0vEvD7yN9axZaH30l8ZvYNfbaAP0hf0yRHn2nDOaEsljPWxVJclUxGSTRqzeuzDyrocOCsr1cU/ocOIS0soNLrMW3birWmFktNDbqEK59N95qZ7l2UjDwPg8dAlsCatLhvbS9kVYM2NBTzsiwz7Bhe3sv2Btb8z7v9tAzPrWiNnFvU/FsMWsrTIpZC2/q0SGKE5l8guClCca0uAtoaE4qDLhAIBGuJ0xvgZ4d6+dnhPkDmu0W9PDD8GCqfA3Z9FnZ8QrE+XoOWqU4+0dZDWzCFCnU7HzX66D9tZ3JyiqioKKqqqigvL0d7SZufLMv4BhaUqlrrFLJfQpdsxlyZiGlDPGqjFtf8HGeee4qml57D53aTvXEzWx95N0l5BTf02Q4ePMj64s20N4zSfmwU94IPc4Sewu1JFO9IJjz29bPzyX4/rrONOOr2Y99fh394GADjunWKZKSmFkN+3trsY3JOQ/dL0Pkc9NSB3wl6C+TUKq2QeW8B0/X3/b2eXEvzr1frFc3/YmArjy0n0ZwYknvAZFnmwrRrxWHa7aN2goua/4wY0wpjZGGi0PwLBNciFNfqIqCtMaE46AKBQPB6MDLn5tsvdPB0k40Ci4f/iPstaaMvQuI6eOinkFR2zddLssyPu47xmE2LSg7wV6Z6Hggr5cSJYWw2G+Hh4Wzfvp2Kigr0+pXVD8kdwNU0gfPkGP5RJyqdmrB1sZg3J6LPCMfrdNL4wjOcff4PeBx20kvL2fq2d5NavO6ai/JL5/RgUGKgZZrz9TYG26YBSCuMorgqhazyWDSv46JYlmW83d1LkhFPSwsAutRULLU1WGtrMW3ciOoqB3q/JvwexeB5sRXSMQYqDaRvU6prhfdD9I1VKl9vrqX5jwuLWwpsZbFlFMcUh7Tmv3VkpeZ/wq5o/g0XNf/py6EtKUJo/gWCi4TiWl0EtDUmFAddIBAIXk/ODMzy1WfbaBqa469iz/GZwL+h981B1adg599dty2u3+nkY61nOe22UiK38oX4IVJ1b6GhoYXBwUHMZjPbtm1j06ZNGF91ULUsy/hHHMoh2E2TyN4g2vgwpapWkUBQE6D55ec58+yTOOdmSc4vYsvb3kXW+k1XDGpXm9PtMx7aG2y0Hx3FMevFaNFRuDWR4qpkohLXYH/YdfBPTOA4eBDH/jqcx44h+3yow8Ox7NyJdU8t5upqNBbL6l9YkmC0UQlqHftg4rzyeFzhcitkysZr2j1vJ37JT9ds14rWyEH7IKBo/vOj8leEtozwjJCtso3Oe1a0RbZeQ/O/LiUCo05o/gVvTkJxrS4C2hoTioMuEAgErzeSJPNMi41vPd+Ba36Kn8X9nq32lyCuSNmblrrxmq+XZZlfDg/zld4xgnKQP1L9ng9l5oFcQ339CXp7ezEajWzZsoUtW7ZgMl1e6ZC8QdwtkzhPjeEbtINGRVhJDObNiWhSTZw/9Aon//B77FOTxGfmsOWRd5K3eTuqS8LE9eZ0SZIZapuhrd7GhZYpJEkmKTeCkqpkciri0d6Gs64klwtHQwOOugM4Dh4kODsLOh3mykpF4V9Tgy45eW0uPntBCWud++BCA8hBMMdDwb2KaCR7N+hCu5pzUfN/sTWydaoVp98JQIQhgnWx65baIkvjSgnXh9/mO74yvoBE++jCUmBrHJxjcEZo/gWCUFyrh3RAU6lUZuAQ8GVZlp+91nNFQBMIBILQx+0L8u9H+viXg71UyWf5nuk/sfqnUG37KNR84bqL9RGPj0+1dXFoPkC+3M7H9E+yK//9+Hyl1NfX09HRgU6no7Kykm3btmG1Wq/4Pv4xJ85TYzjPTiC7A2hijJg3JWJcH01X01FOPv07ZkdtRKekseXhd1K4Yxdqjeam5nTnvJeOY6O0NYyyMOnGYNKSv1mpqsWmrkH16gaQg0HcTU1LCn/fhQsAGIqLsNYoCn9DUdHaLMzds9D9ihLWel4B7wJow5R9awX3KQp/S9zqX3eVCUpBRfM/tWyM7J3rXdL8Z0dkr6iy5UbmormGwfR2ci3Nf7RZv7iXbVHznxqBVWj+BXcgobhWX5OAplKpfgE8AEzIslx6yeP3Aj8ENMB/yLL8reu8z1cAB9AmAppAIBDcOYzNe/j2ix28fLabfwz7LW+TX0aOzkH10E8gY9s1XyvLMr8bn+XRrgE8wQBvl/+X90SMUZj/BdyuOOrr6zl37hxqtZqKigp27NhBZGTkld/LL+E+P4Xz5BjevnlQg7EwBtOmOAZn2znx1ONMDV4gIj6Byre+g2m1jto9d93UZ5UlmZHuOdrqbfQ2TiAFZOIzwynekUReZQJ64+07o8vb169IRuoO4G5sBFlGm5iItbYGS+0ezJsrUenXwG4Y8MFAvdIG2fk8LAwDKkjbvKjwvx/i8lf/umuEw+fg3PS5Fa2RFzX/Jq1J0fwvBrayuDJiwmJu8x1fmetp/vPjrStaI3PjLKiF5l/wBicU1+prFdB2ogSr/74Y0FQqlQboAu4GhoFTwHtQwto3X/UW7wfKgRjACEyJgCYQCAR3Hs1Dc3z12Tb0Q0d4zPgfJEiTqDZ/EPb8AxiuXWUa9/r5XOcgL0zbyaGfv5J/xOakzeRkfxqHQ0N9fT3Nzc0AlJeXU1VVRUzM1RfG/im3slftzDiSw48mQo9pYwKThjFOvPQ4Yz1d6MwWdrz9PZTtuQfdq/a73Qgeh5/OE2Ocr7cxO+pEZ9CQtyme4qoU4jOtt7WlLDA9jePgIewH6nDWNyB7PKjNZsw7q7HW1mLZuRNNRMTqX1iWYax1UeG/D0aVMSMmd3Hf2v2QtuWa5+iFGrIsM2wfpnmqeSmwdc50rtT8Lx6kXRaraP511zGb3i4u1fyfXQxt825F8281aClfqrJFsj4timhzaB5XIBBcjVBcq69Zi6NKpcoEnr0koG1DaVW8Z/HvnweQZfnV4ezi678OmIFiwA08IsuydLXriYAmEAgEb0xkWea51lF+8Fwj73X+kj/XvkTQmorukX9W9ihd57V/mJzj851DLAQCPMzveVi1j9zMD5KW9n7sdg9Hjx7l7NmzBINBSkpKqK6uJiEh4ervGZBwt8/gPDWGt1upghjyonAluHnxlV9gtw0RZg1n496HWX/PXgymm5eAyLLMeP8C5+tt9JweJ+CTiEmxUFyVTP7mBIzm27tYlzwenMeO4airw37gIMGpKdBoMG3apFTX9uxBn3pjh33fNPPDy/vW+o+A5AdTDOTdoxghs2uuG95DEU/AQ/tM+1JbZMtkC+OuceCNp/nvn3IuKf4bB+foGFvW/GfGmJZskRvSoihMsqJ7nc4JFAhuhVBcq7+eAe0dwL2yLH9g8e9/CmyRZfmj13mf93GVCppKpfog8EGAhISEjb/5zW9u+X7XCofDgWUtTFkCgUBwh+ELyrx0wY+tv5Wvqf+dbPUoAwlvYTDvfQS11w5BC7KK/yKMo+hJl8f4IN8li3lUqneiohK/38/Q0BA2m41gMEhMTAwZGRmEh19b6KB1Q/iwCuuICp1HhV8nMRPpoGOsnrHBVjR6A3HrNpCwrgJt2K0p2IM+mflBmO2V8cwqhvrwVIjKUWGK4/Yv0iUJ3YULGFpaMDS3oB0dBcCfnIy3vAxvWTmBjPQ1MTNqAi6iZxqJnTpB9MxpdAEnkkrHbFQ5U7GbmY6pxGcIrfPWbobZwCwD3gEu+C7Q7+1nyDeEX1aqU+GacDL1mWQZssg0ZJKmT8OgDs1DqL0BmQsLEr1zQXrnJXrmJOa9yhpSp4asCDXZERpyItXkRqqJMorAJggdQnGtXlNTE9oB7UYRFTSBQCC4M5iwe/jh862ktfyQv9I+h8cYh/HhH6EpvPe6r31hcp7PdQ0x5fPziO4Qe33/SlxEGfl5jxIeXobL5eLkyZMcP34cj8dDdnY2O3fuJDMz85rvK0synq5ZBvadwzKlAglUSXr6HC2cbn0WtV5L+V33senBt2GJuvXAMDlop63eRtfJMXyeIJEJJop3JFO4LZEwa2i0jvkGBrAfOIBjfx2uM2dAktDGxWGpqcFSW4N52zbUhjUIEkE/DB5bVPg/B3MDyuMpG5cV/vFFymapNyg3qvkvjyunLK6MdGv67Q/wV0CWZWzznuXDtAdnOTeygC+oNEIlRRiXKmwb0iMpFZp/wW0kFNfqIdvieLOIgCYQCAR3FudG5vn1E0/y55PfoUA9zHjWIyS88zEwXTsAzfkDfLnHxm/GZsjSe/nL4GNkBU6TmPgwOTmfwWhIxOv1curUKY4dO4bT6SQ9PZ3q6mpyc3Ove1B1dcV2nGfGcZ4aIzjjAYOaKZ2N053P45BnKd19N5VvfTsR8Vdvo7wefm+QnjMTtNXbGOubR61RkVUeS3FVMmmF0ahCRMwQmJ3Fefgw9roDOI8cQXK5UJlMWHZsx1K7B8vuXWijolb/wrIME+3L+9ZGziiPR2ZA4V4lsKVvgxDd13UzzHhmODd17qqa/4vikbK4MtbFrsOqv7K59HbjDQRpH7Uvh7ahWYZm3ICi+S9ODl+0RiqhLT1aaP4Frw+huFZ/PQOaFkUSsgcYQZGE/LEsy+dv+SKXIAKaQCAQ3HnIssxLLUPYnvkaf+L/PS5NOK63fIekre+87msPTC/wd51D2Lx+3mUd4F77P2BUBcnI+Gsy0j+ARhOG3+/n7NmzNDQ0sLCwQFJSEtXV1RQWFqK+QsvepXO6LMl4++ZwnhzDfX4agjIug5PztnqGXB3k79jB5offSXTya9urNW1z0F4/SseJUbzOANYYI8U7kijclowlKnRa3iSfD9eJE4rCv+4AgfFxUKsJ27BBkYzU1mDIylqbi9vHFvetPQ99ByHoBWMk5L1FCWu5d4ExNM8nu1kuav6bJ5uXVP8XNf8qVCs1/3Fl5ETkhKzmf9LupWlo2RjZPDyHS2j+Ba8zobhWXyuL4/8Cu4FYYBz4kizLP1epVPcDP0AxN/5CluWv39IFroAIaAKBQHDn4g0EefbFFyk6+QWKVf2ci9xD2nt/TERcyjVfZw8E+VqvjV/apskwqPmY8RmS5n6BwZBIbs5nSUh4EJVKTSAQoKWlhfr6emZmZoiLi6O6upqSkhI0muXF7dXm9KDTj+vsBM5TowQm3ATVQQbsbfTMNxK3IZctj7yT+Mzs1/QdBPxB+pomaasfZaRzFpUKMkpjKK5KJqM0BnUIiRhkWcZzvm1J4e/t6ABAn529pPAPKy9DpVmD4OB1QN8BJax1vQCuaVDrIKt6UeF/H0SskeDkNmH32Tk3taj5Xwxtc945QNH8XzxM+2KVLZQ1/13jl2j+h+boEZp/wRoTimv1kD6o+mYQAU0gEAjufKbmHZz5339k9+gvcKnCaC79Ajse/mt02msv9Otn7Xy6Y4gBj4/3xAZ5yP1Ngo5GwsPXk5/3RSIiKgAIBoO0tbVx+PBhJicniYqKoqqqivLycrRa7XXndFmW8Q0s4Dw5hqtlEgIyc/5JeucbUeUa2PS2d5CcX/iav4e5CRftDaO0HxvFveDDHKGncHsSxTuSCY+99mHftwP/yAj2ugM4DtThPHkKAgE00dFYanZjra3FvH076rA1uG8pCEMnofM55cy1mV7l8cSy5VbIxLI39L61KyHLMkP2oaW2yJapFrpmupY0/6mW1GVjZFw5BVEFIa35bx6aW2GNFJp/wWoSimt1EdDWmFAcdIFAIHij09d2Gumpj5Dr66BBuxn2Psb29aXX3LPiDAb5p74x/n14kmSDji/GDxA39lV8vgkSEh4kN+ezGI3JAEiSRGdnJ0eOHMFmsxEeHs727dtxOp3s2bPnhu5RcgdwNU9gP24jOOYmIPsZcnTgjHNS/Pa3kFZa9pr32ASDEgMt07Q12Bg4Pw0ypBVFUVyVQlZ5LBpt6FTVLhJcWMBx5AiO/XU4Dh9GcjhQGQyYt2/HUluDtaYGbWzs2lx8smtx39rzMHQCkBVlZsF9isI/owq0d+YC3x1w0z7dvhTYmieamXBPAIrmvzimeEVoSzAlhOQeMKH5F6w2obhWFwFtjQnFQRcIBII7ATkYoPsP3yGj+TG8spbfxvwNu971CfITr73X6NS8k092DNLj8vLuhHD+Qv8ss8P/CkB6+gfISP9rtItaf1mW6e3t5fDhwwwODqLT6di5cyeVlZUYb+Kgat+wnYVjI7iaxlEH1cz7ppgyjpH24EaytlauykLYPuOh/ego7Q02HLNejBYdhVsTKa5KJirx5s9qez2QfT5cZ85g31+HvW4/AdsoqFSElZVh2bMHa20N+pyctQkKjknoflGprPXWQcANhnDI3aMYIfPugrA1EJyEEGPOsWVj5FQLbdNteINeAOLD4lfsZSuOKSZMG3rVWQCXL0Dr8DyNi/vZzg7OMWlXPodBq6YsNYKKi6EtPYqE8Js/ZF5w5xKKa3UR0NaYUBx0gUAguJPwTXQz/eu/JmnuDIelMk6Wfon37915zVYnT1DiexfG+OnQBHE6HV/LMpE5+0PGx59Br48nJ+fTJCW+DZVq+TfvAwMDPPXUU8zOzmI0GtmyZQtbtmzBZLrx888kbxBH4yjTdd3oFrQE5QBTjBJRlUb2fdtRX6dV84auIckMtc3QVm/jQssUkiSTlBtBSVUyORXxaPWhKYyQZRlvZ6ciGdlfh+e84hDTpacvSUZMFRWotNrVv7jfrchFOvdB5wvgnAC1FjK2L+9bi8pc/euGGP6govm/VEAyZB8C7izNf3KEcbnKlh5JSbLQ/L+ZCcW1ughoa0woDrpAIBDccUgSzqP/hrbuy/iDMt9X/QlJtX/Dn23PRn+NNr+mBRef7Bik3enhbQlRfCZhmqn+r7Ow0ITVWkpe3qNERVYuPf/gwYPk5eVx5MgROjo60Ol0VFZWsm3bNqzWm9Obe0YWGHn6DOqBIDqVAZdsR11gIuORLeiiVqdS4Zz30nl8jLZ6G/OTbgwmLfmbEymuSiI2NTR17Bfxj43hOHAAe90BXMePI/v9aCIisOzehaV2D+YdO9BY1qAyKEmKtv+iwn9SEZwQX6K0QRbcB0kb1uRg7lBkxjND62TrUmhrnWzFFXABEGmIvExAEuqa/7MDs0uVtuFZRfOv06goTgpf0RqZFh0WkuFTsPqE4lpdBLQ1JhQHXSAQCO5YZgdw/d9HMA0f4bhUxI/Nf8ufP1DL3cVX30/jkyR+NDDBDwbGiNBq+WZeMpvlI/T0fhuvd4z4uPvIzf0cYWFpK+b08fFx6uvrOXfuHGq1moqKCnbs2EFkZORN3XLQ66f/6WO4z0wQpUpAkiUCcRLx95ZgLo5blTPPZElmpHuOtnobvY0TSAGZ+AwrxVXJ5FUmoDeuQVVqFQk6nDjr63EcqMNx8BDB+XlUOh2mrVux7qnFUlODLuHWz527JtO9ywr/waMgS2BNgvx7lepa1k7QvXla5oJSkL75vhXGyCtp/i9W2bIjskNW8z9h99A0OLcU2FqG55c0/zFm/VJL5Ia0SMrSIrEYQvv/E8GtEYpr9TsnoGVGyKe/VHW7b+My5ubmbvqHtUAgEAheA7IMjnECswMEJPhO4N106Et5NP4YRcbpq76sTZfAJ2LfToshhb3Oc3xt5mnclkEGwqeRVZC+EEXUoJaY8JUHZU/7DdQvJNHsUNTlZeZpqiJGidV5b/q2+8aiGB8vJ16/DqPGTJAFwqNasEa1oNUt3Px3cQU8fiOd00W0TZQx445Fq/aRH9NBcXwr8eaxkBcaypKMa9iDo8eFvduJf04xExoTDVhyTVjzTBji9GtT/ZD84J5V1P3uWSWsqdTKXrWwaOUQdXVo2hDXEjsS5/DRgpcWlZcWfMyplHZCs6yiFD1lGCiXDaxDTzShGdhkZFy+IA5vAIcngN0bwOMPLv27SafBYtRiMWixGLWE6TSoCPH/YQTXJRTX6qr377szAlpslll+8EtFt/s2LiMQCKBdi355gUAgEFyTyECAP5ueYIPbSaOUzd/5/xpX+DjZcXXotc4rvkZCTX/4PfREvhWN5KVo9jfkeI6yIcJNjsWHO6CieT6MXqce+VULM03ASPh8DhZHOipZjctsYz6iB7/efnM3LoN1ykjF4AZKVJtIDMsClUxPWBeno47RYT2HtLj4fU3IYHakEzexhajpcjSSHpdplKn4E0zHNhLUul/7NdYaWSZmWia3O0Bud5AUm/K9zIer6MnT0J2nZThNjaRZi0W0rGj8g36QAkpYA2XvmkarBDXVm6MN8kp4kXEg4UDCiYwLmYv/yxhkMKPGghozKkyoQzbmyMgEpZV/Lq6OVYBGrVrxRwS2Nx6huFb/r784c4cEtPxY+cEfPXi7b+MyQjGVCwQCwZsGWWbr9BB/3N+CIRjkB4G38x/yvaRmdJGW2oNafeWg41BF0aq9izl1MnHBfkoCdaSqRlkvd5KkdzEjmTkTzGFcjrzstWqfmvDRcKzjVtSSGleUi/mUeXwW303fvmncT1azhlJnEVnWdZi14Th0bhoTuzmd1MWMaXWqahq/jujhTGIv5GGej0FSB5hNHmQysxtHzARvlDWnecFHzvk5cs/NkNE1j84v4zFq6CuOpKc0ir6iSHxha7QQ8zmUypprBnyLvwDQmZSqmikGDBbeMF/kGiDJEk6/E6fficPvwOl34peU88xUqDDrzJh1Ziw6C2adGb0mdI87cPuDODwBpdLmDeDyBbi4ZDbqNFgXK2wWgxaTXhvyVek3O6G4Vv+v+/7rzghoYg+aQCAQCK6KYwL2/R20Pc2APo8P2d+PI6qQL9xXxL2liVdshwvKMj8fnuSbfaNoVSq+nJtCUmcLJcUuenr/CY9nhLjYu8nN/X+YTJmXvd7lcnHy5EmOHz+Ox+MhOzubnTt3kpGRcdPtd+N9PZx44nEc58bIidhAclgOKlTosyKwbE4krDQWlW51qjWTg3ba6m10nRzD5wkSmWCiaEcShVuTMIWH7qL51UguF85jx7Dvr8Nx8CDBmRnQajFvrsRSuwdrzW50KSlrc/HZAeh6ATqeg4EGpcJmjoP8exSFf/Zu0N+4/fNORJZlxl3jy4dpTyqaf5+k/CIj3hSv7GOLXdb8G7WhudfP6Q3QOjK/ZIw8OzjHlENpcTbq1JSlLB+mLTT/oUcortXvnD1oIqAJBAKB4Hqcfwr2/R2Sa5Zf69/BP87fz4aseP7hgWJKUyKu+JILbi+f6hji6JyDdfj5+dYyUvQyQ0O/4MLAvyBJftJS/4zMzI+i011+BpvX6+XUqVMcO3YMp9NJWloaO3fuJDc396aD2vTwICee+h0Xjp8my7KOgtjN6AMGVGFazBviMW9ORLdKZ575vUF6zkzQVm9jrG8etUZFVnksxVXJpBVGr4q85PVCDgZxNzfjqKvDvr8OX38/AIbCwkWFfy3GkuK12bfmnoOeVxQjZPfL4F0AbRjk1ChGyPx7wRK/+td9A+IP+umc7VwR2oYdwwBoVVryo/OXAlt5XDlp1rSQNC3KsszInHsxsCkHap8Xmv+QJRTX6iKgrTGhOOgCgUDwpsY1Ay/8P2j5LXOWXD7i+gBH3em8oyKVz9xTQPwVfrstyTL/Y5vmS11DqDUavpidxF+kxOL3TdLb9xijo79Hp4siO/uTJCe9C7X68jY6v9/P2bNnaWhoYGFhgaSkJKqrqyksLER9k8r2ufExTj39e84dfIU4Qyrrs+4i0hMDEujTrZgrEwkrj0O9SmeeTdsctDeM0nl8DI/TjzXGSPGOJAq3JWOJMqzKNV5PvH39OA7UYa87gLuxESQJbUICltoarLW1mLZsQa1fg2phwKdU1DqfVwLb/BCggtRKJawV7oXYfERP3DLT7mlap1qXAlvr1ErNf1lc2VJoK40tDWnNf5ttYTGwCc1/KBGKa3UR0NaYUBx0gUAgEKAcSPzsJ5Ad4xxPfC8fGLwLWWPkw7tz+EB19hV/o/37A4f4v+hUDszY2Rph5rHCdLJNBhbs5+ju/jpzcycxm/PIy3uUmOgrm4UDgQAtLS3U19czMzNDXFwc1dXVlJSUoNHcXKCyT09x+pknaNn/IuqghsqSB0jV5sFsAJVBg6k8TqmqpVhWZbEX9Ev0NU1yvt7GSOcsKhVklMZQXJVMRmkMas0bT4oRmJnBcfCQovCvb0B2u1GbTJirqxWF/86daNZif4osw/g56Fg8b220SXk8OnvxcOz7IW2LIhwRLBGUgvTO9y4FtpbJFnrnewFlL1tOZM6K0PZG0vw3D83j9l9B858eSVmq0PyvFaG4VhcBbY0JxUEXCAQCwSLuOXj57+Hsf+OPzOEx88f5l95YUiLD+Nx9hTxYlrQi2Bw8eJBdu3bx27EZvtRjwytJfC4riQ+mxaEGJidforvnm3g8Q8TG1JKb+3nM5uwrXjoYDNLW1sbhw4eZnJwkKiqKqqoqysvLb9oo5pqf48xzT9H00nP43G7Kyu6iKGE7qgE/sl9Cl2TGvDkR04Z41Kt05tnchIv2hlHaj43iXvBhjtBTuD2J4h3JhMeuzkHbrzeSx4Pz+HEcdQewH6gjODkFGg2mjRuV6tqePejT0tbm4vMj0LV43lr/YQj6FHV//j1KdS1nz6JoRPBqFnwLnJs6txzaplqY984DYNaZKY0tpSxWaYtcF7eOaGP0dd7x9hAISnSNO2gcml3az9Y7qQhn1CrIT7AuBbaK9EiyYy2o30CtxqFKKK7VRUBbY0Jx0AUCgUDwKnrr4A8fh/khRgv/nA+PPUDjmI+NGVH8/QPFrE+LBFbO6WNeP5/rGuLFqQU2WE18vyiNQnMYkuRlaOiX9F/4CZLkITXlT8jK+hg6XeQVLy1JEp2dnRw5cgSbzYbVamXHjh1UVFSgv8k2O4/DQeOLz3B23x/wOOxklVSwqfRBDMMa/DYnKp2asHWxmDcnos8IX52qWlBioHWatnobg+enkWVIK4qiaEcy2evj0GjfeFU1AFmS8Jw7p0hG6urwdncDYMjLxVJTi3VPLcZ161DdZHvqDeG1Q89+pbLW9SJ45kCjh6xdUHg/5N8H4Umrf907BFmWGbQP0jLZsrSfrWu2i6CsVKfSrGlLVbby+HLyo/LRhej5dfMuP03Dc5wdmKVxaI6mwVkWPMrZf1ajlvVpkZe0RkYSaXrjiHxChVBcq4uAtsaE4qALBAKB4Ap4HbD/H+HkvyFHZXIw/+/5zJlIphxe3rYhhc/cW0Bn44kVc7osyzw9MccXuodxBCQ+lZnAR9IT0KlVeH1T9PV9H5vtcbTacLKz/paUlD9GfZWFoCzL9Pb2cuTIEQYGBjCZTGzbto3KykqMxpuzvvk8blpefp7Tzz6Jc26WpPxCtu16JxEL0bibJ5G9QbTxYZgrEzFVJKAxr87i1D7jof3oKO0NNhyzXowWHYVbEymuSiZqleQltwvf4CCOAwew1x3Adfo0BINo4mKx7q7BUluDeds21Dc5TjdEMABDxxdbIZ+D2QvK48kVi62Q90FCidi3dh3cATdt021LVbbmyWYm3ZMAGDQGSmJKlNC2GNwSzAm3+Y6vjCTJ9E05aRycXWyNnKNzbAFpccmeHWtm/cXWyLRIChOtaN+ArcevJ6G4VhcBbY0JxUEXCAQCwTW40AB/+CjM9OHb8D5+ovlT/uX4JGoV3Juh4Zt/toewV8k3Jn1+Hu0e4emJOUotYfygMI1Sq6JRtzs66O7+OrOzRzGZcsjL+wKxMbuveQsDAwMcPnyY3t5ejEYjW7ZsYcuWLZhMN6dmD/h8nDvwMif/8HvsU5PEZ+aw5cF3kKzPxXV6HN+gHTQqwkpiMG9OxJAduSp2RkmSGWqfoa3exoXmKSRJJik3gpKqZHIq4tGukrzkdhGcm8Nx5Aj2/XU4Dx9GcrlQhYVh3rEda00tlprdaKPXoI1OlmGyQ6msdeyDkcV1T2T68r61jO2gCc1qUChxqeb/YpWtfbp9SfOfYEpYskWWxZVRFF0U0pr/luH5Fa2RUw7lc4TpNKxLjViSj1SkR15RhPRmJhTX6iKgrTGhOOgCgUAguA4+Fxz8Bhz7CViTmdz9T3y5PZnnWkdJijDy2XsLeKg85bL9H/sm5/hc1zCz/gAfS0/gE5kJGNRqZFlmamo/3T3fxO2+QHR0NXm5X8Biyb/mbYyMjHDkyBE6OjrQ6XRUVlaybds2rNabM9UFAwHajxzg5NO/Y3bURnRyKpsffic5uZV4zk7iPDuB7A6giTZirkzAvDERzSqdeeac99J5fIy2ehvzk270YVoKNidQXJ1MbGpoGvduBsnnw3Xi5JIVMjA2BioVYRs2KJKRmloM2Vlrc3H7uHLeWuc+6DsIAQ8YIyDvLUplLfcu5e+CG8IX9NE500nL1HJr5IhjBFA0/wXRBUtVtvLYclKtqSFpWpRlmeFZ95J8pHFwjvO2efxBZV2fEhmmVNkW2yNLksPf1Jr/UFyri4C2xoTioAsEAoHgBhk+DU9/RKlarH8v/+m7hyfGY2gdmac8LZJ/eKCYjRlRK14y6w/wpZ4RHh+bJd9k5AeFaVREKO19kuRjePhX9F/4EcGgi+Tk95Cd9XH0+mtXW8bHx6mvr+fcuXOo1WoqKirYsWMHkTdpF5SkIF3HGzj55ONMDl4gIj6Byre+g+Idtfi75nGeHMPbNw9qMBYqVTVjftSqVNVkSWake462ehu9jRNIAZn4DCvFVcnkVSagXyV5ye1ElmU8bW049tdhP3AAb3s7APrMTCx7arHW1hK2fj2qm7R13hA+J/QeUCQjXS+AawrUOsisWm6FjFwjwckdzJR7itbJVlqmljX/7oCix48yRC23RcaVURpTikUfmiIXjz9I2+jCUoWtcXCOkblLNP/JEYuBLZKK9ChSo948mv9QXKuLgLbGhOKgCwQCgeAmCHjh8HfgyGN4deHoHvlnnnCt59svdDBh9/JgeTKfu7eA1KiV7Yf7pxf4TOcQY14/f50Wx2ezkghb3Avi883Q3/8jRmy/RqMxkZX5t6Sm/glq9bWrVtPT0zQ0NNDU1ARAWVkZVVVVxMbG3tRHkmWZvrMnOf7Ebxnr6cISFc2mB99G2Z57wSHjOjWG88w4ksOPJlyPaVMC5spEtFGr0xrlcfjpPDFGW4ONGZsTrUFD3qZ4iquSSchcHXlJKOC32bDXHcBRV4fz5EkIBNBERWHZvRvrnlrM27ejvsm21RtCCsLwqeVWyGlFcELiOijYq4S1pHKxb+0WCEpBeuZ6lgJby2QLffN9wLLm/2JbZFlsGdmR2ahVobkHbGLBs7SPrXFwlpbhZc1/rEXP+rTlw7TLUyMx36Ga/1Bcq4uAtsaE4qALBAKB4BYYbcbxqz/H4uyH0rfj3PMNfnZqnp8dVhZnf1Wdzd/szlmxiLEHgny118Z/26bJDjPwWGEaWyOXf8PucHbT3f11ZmaOEBaWSV7u54mN3XPdgDI/P09DQwNnz54lGAxSUlJCdXU1CQk3JzaQZZnB1mZOPPlbhtpaCbOGs3Hvw6y/Zy96Qxie9hkcJ8fwds8CYMiLUg7BLopGtQp2RlmWGe9f4Hy9jZ7T4wR8EjEpZoqrksnfnIhxleQloUDQbsd55IgS2A4dQrLbURkMmLdtw1Jbg2X3bnTx8Wtz8aluJax1Pg9DJ0CWIDxFCWoF90FmNWjfeAeOhwoLvgXOTZ6jeap5KbQt+BYAsOgsiuZ/cT/buth1RBmjrvOOt4dAUKJz3L4Y2OZoHJql702g+Q/FtboIaGtMKA66QCAQCG6NQ3WvsEvTCIf+CYzhcP93GEm5j2+/2MnTTTbirQY+c08Bb69IXbFwOTJj59OdQwx6fLw/JZYvZidh1i63uU1NH6S7+xu4XL1ERW0nL++LWC2F170fh8PBsWPHOHXqFD6fj4KCAqqrq0lNTb3pzzbS0caJJ39Lf9MZDCYz6+95gIr734opPILAnAfnqXFcp8cIzvtQW3SYNipVNd0qnXnmcwfoOjVOW72NyUE7Gq2anIo4iquSSc6LvGOqagCy34/rzBlF4b9/P36bDQBjeRnWRYW/Pjd3bT6zc0pR93fuU46X8LtAb4XcPVC4V9m3ZgrNc8LeKMiyzMDCwIoq26Wa/3Rr+orWyFDW/M+5fDRdrLJdQ/NfkR7J+jeo5j8U1+oioK0xoTjoAoFAILg1lub08TZlb5rtLBQ+AHu/x5kZA199to2moTlKU8L5+73FbMmOWXqtMxDkm/2j/Hx4ilSjnu8VpLEzelmSIUl+Rmz/S1/fDwkEFkhOfhc52Z9Er79++6LL5eLkyZMcP34cj8dDdnY2O3fuJCMj46YX+eN9PZx46nG6Tx5Dq9dTftd9bHrgESzRMciSjKdrFufJMTwd0yCBPisCy+ZEwkpjUelWp5VrctBOW72NrpNj+DxBIhNMFO1IonBrEqZVkpeECrIs4+3qwlGnSEY8ra0A6NLSsNbWYqmtxbSxAtVNHl5+Q/jdyqHYHc8p+9Yc46DSKCbIi/vWotdIcPImw+V3KZr/qWXN/5R7CrjDNP9xZjZc0hpZkBD6mv9QXKuLgLbGhOKgCwQCgeDWWDGnBwNw/Kdw4OtKe9i930Ja90c80zrKt57vYHTew/3rEvn8fUWkRS/vMzox5+BTHUP0ur28NymaL+WmEH5JNc3vn6O//8cMj/wKtdpIVuaHSUt7H2r19VvQvF4vp0+f5ujRozidTtLS0ti5cye5t1CNmR4e5MRTv6Oj4RBqtZrSmrupfOs7iIhXFo7BBR/OM+M4T40RnPGgCtNi3hCPeXMiulU688zvDdJzZoL2BhujvfOoNSqyymMprkomrTB6VeQloYZ/fBzHgYPY6/bjOnYc2e9HHRGBZddOrLW1mKuq0VjW4Ew5SVJ+4XCxFXKiTXk8vnixFXIvJG+AtTiY+02ILMuMOcdWtEW2Tbfhl/zASs1/eVw5hdGFIa/5P7soH2kaWqn5L0uNWHGYdqhp/kNxrS4C2hoTioMuEAgEglvjinP6VI9ybtrgMaU97IEf4DYl8+9H+viXg70EJZn3V2XxkZocrEaljckdlPjuhTH+ZXCCBIOOb+encnfsSh2609lHT883mZquI8yYTm7u54iLu+eGgpbf7+fs2bM0NDSwsLBAUlIS1dXVFBYWor7JBfbc+Binnv495w6+gixLFFfXsPnhdxKdrLRRypKMt28e56kx3OemICijT7cqe9XK4lAbVsdYOGNz0tZgo/P4GB6nH2u0kaIdSRRtT8YSdWfunwo6nDgbGnDU1eE4eJDg/DwqnQ7Tli2LCv8adImJa3PxmT7oXFT4DxwFOQiWRCi4V6muZe0E3eq0twoUrqn5V2spjCpc0RqZagltzf/FwNY4NEfbqzT/Gy4epp0eSUlyOAbt7dP8h+JaXQS0NSYUB10gEAgEt8ZV53RJglP/Aa98GVRqeMtXoOJ9jNl9fPvFDp44O0KsRc+n31LAuzaloVms/DQuuPhExyCdTg/vSIjiK3kpROtWtrJNz9TT3f01nM5uIiM3k5/3KFZryQ3dbyAQoKWlhfr6emZmZoiLi6OqqorS0lI0N6l6t09PcfqZJ2jZ/yIBv4/8LTvY8si7iM/MXnpO0OnHdXYC56lRAhNuVAYNpvI4paqWYlmVxWTQL9HXNMn5ehsjnbOoVJBRGkNxVTIZpTGoQ7yd6laRAwHcjY3Y6w5gr9uPf2AQAGNx8ZLC31BYuDYLdtcMdL+shLWeV8DnAJ0JcmqVsJZ/L5hjrv8+gpvmWpr/aGM0ZbGXaP5jSzHr1qC6ugp4/EHO2xaWWiObLtH86zVqipPDl0NbWuTrqvkPxbW6CGhrTCgOukAgEAhujevO6bMX4A8fU/b1ZFbDW38M0Vk0D83x1WfbOD0wS2GilX94oJjtucreMq8k8cOBcX40ME6UTsu38lPZGxe54m0lKYBt9HH6+r6P3z9LUtI7yMn+FAbDjVn/gsEgbW1tHDlyhImJCaKioqiqqqK8vBztTe5tcs3PcWbf0zS9+Cw+t5vsikq2PPJukvOXpSayLOMbWMB5ahx3yySyX0KXZMa8ORHT+njUYauzn2p+0kVbwygdR0dxLfgwR+gp3J5E8Y5kwldJXhKKyLKMr69PkYzU1eFubgZZRpuctCQZMW3ahEq/Bvv1Al64cERpg+x8HhZGlF9KpG1Z3Ld2P8Tmrv51BQAEpAC9c71LFbaWqRb65/sBRfOfG5VLWWzZkuo/KyIrZDX/4wueJVtk4+AcLcNzePwSALEWw9I+tg1pUZSlRqyZ5j8U1+oioK0xoTjoAoFAILg1bmhOl2U4+0t48VGlLWzPP8DmDyKr1DzXOso393UwMufm7uIEvnB/EVmxym+8z9ldfLJjiFaHmwfjIvlGfgpx+pVmN79/gQsX/pmh4f9GrdaTmfEh0tLej0ZzY3s6JEmiq6uLw4cPY7PZsFqt7Nixg4qKCvQ3uZj3OBw0vvgMZ/f9AY/DTnppGVse+SPSStat+M235AngaprAeXIMv82JSqcmbF0s5s2J6DNW58yzYFBioHWatnobg+enkWVILYyiuCqZ7PI4NKskLwlVAlNTOA4exF53AOfRo8geD2qLBcvOaiy1e7DsrEYTHr76F5ZlGG1e3Le2D8YUwQkxeVC4GNZSK0F9+9rX3gzMe+c5N3VOkY9MNdM62bpC878udt0KAUmkMfL23vBVCAQlOsbsi/KRWZoG5+ibWtb8FySGL+1j25AeRXaseVU0/6G4VhcBbY0JxUEXCAQCwa1xU3P6/DA8+0nofkmpLjz0E4jNw+MP8vP6fn56oAdfUOLPt2XysT15RITp8EsyPx2c4HsXxrBo1XwtL5VH4i9XzLtcF+jp+RaTUy9jNKaQm/NZ4uP33nDYkWWZ3t5ejhw5wsDAACaTiW3btlFZWYnReHMb+H0eNy0vP8/pZ5/EOTdLUn4hWx95N1kbNl12P75hO85TY7iaJpG9QbTxYZgrEzFVJKBZpTPP7DMe2o+O0t5gwzHrxWjRUbg1keKqZKJWSV4SykhuN85jx7Dv34/jwEGCMzOg1WKq3IS1RrFC6lNT1ubic0OLlbV9SpVNCoApVmmBLLgPcmpAf+ePwe1GkiVF878oH2mZUjT/kqxUpzLCM1a0RuZF5YWs5n/W6aNpePkw7aahOeyLmv9wo5b1iy2RG16D5j8U1+oioK0xoTjoAoFAILg1bnpOl2Vo+S08/zlFaV7zBdj2UdBombB7+N6LXTx+Zogok55P3p3PeyrT0GrUdDo9fLJjkLMLLt4SE84/FaSSZLh84TEze4zu7q/jcLQTEbGR/LxHCQ8vu6nPNDAwwOHDh+nt7cVoNLJ582a2bt2KyWS6/osvIeDzce7Ay5z8w++xT00Sl5nNloffRd6WbahfVUGRfEHcLZM4T47hG7SDRkVYSQzmykQMOZGrYmeUJJmh9hna6m1caJ5CkmSSciMorkompyIenf7Or+rIwSDu5hYcBxSFv6+3FwBDQQGW2hqstXswlhSjWgszo2de2a/WsU/Zv+adB60Rsncv71uzhqZK/k7E5Xdxfvr8Umhrnmxm2jMNgFFjpDimeKktsiyujHjTGh2a/hpRNP8Ozg4uh7aucftr0vyH4lpdBLQ1JhQHXSAQCAS3xi3P6fZxeO5T0PGsoip/6CeQoIg+zo3M89Vn2zjRP0N+goVH9xazMz+OoCzz70OTfKt/FL1axZdzU3hPYvRlVSlZDmIb/T29vd/D758mMfFhcnI+g9Fwc3a/kZERjhw5QkdHBzqdjsrKSrZt24bVar3+iy8hGAjQXn+Qk0/9jtnREaKTU9n88Dsp3LELzRX2u/nHnEpVrXECyRVAE23EXJmAeWMimlU688w576Xz+Bht9TbmJ93ow7QUbE6guDqZ2NSb+3xvZHwXLixJRtxnG0GS0MbHL4a1Wkxbt6Jei31rQb9iguzcpwS2+UFABamblhX+cQUQgkbCOxVZlhl1ji6FtZapFtqn25c0/4nmxKUqW3lcOUUxRRg0oWlLdXgDtCxV2ZTQNu28iuY/PZJ468ougVBcq4uAtsaE4qALBAKB4NZ4TXO6LEPbU/Dc3ynVhZ2fgapPglaPLMu8eH6Mb+zrYHDGRW1hPF+4v4jceAt9Li+f6hjk+LyTXVFWvluYRprx8kV0IGDnwsC/Mjj4C1QqDRkZf01G+gfQaG5OljE+Pk59fT3nzp1DrVZTUVHBjh07iIyMvKn3kaQgXccbOPnk40wOXiA8LoHND72Dkt13odVd3k4l+yXc56dwnhzD2zcPajAWRGPenIixYHXOPJNlmZGuOdrqbfQ1ThIMSMRnWCmuSiavMgG9cW0kBKFIYHYWx8FDisK/oQHZ5UJtMmGuqsK6pxbzzp1oo6JW/8KyDOPnF1shnwNbo/J4VJZSWSu8H9K2gubNMxahgi/oo2OmY0Vr5JtB8z/d08TdtTW3+a5XIgLaGiMCmkAgENw5rMqc7pyGFz4Hrb+DhFJ46J+VqhrgDQT5r4YL/LiuB48/yJ9szeATd+URHqbjl7ZpvtprQwU8mpPMnyfHoL7C4sjtHqKn99tMTOzDYEgkN+ezJCQ8iOomTW7T09M0NDTQ1NQEQFlZGVVVVcTGxt7U+8iyTN/Zkxx/4reM9XRhiYpm04Nvo2zPveiust/NP+XGdWoM55lxJIcfTbge06YEzJWJaKNW55Bbj8NP54kx2hpszNicaA0a8jbFU1yVTELm6shL3ihIXi+u48ex1x3AUVdHYHIS1GpMFRVY9uzBWluDPiNjbS6+YFs2QvYfgqAPwqIg7x6lupa7BwxvnipnqDHlnloR2M5NnbvjNP/bk7X8+m/vuc13uBIR0NYYEdAEAoHgzmFV5/SOfYpExDkJOz4Ouz4HOiV8TDm8PPZyF785OYjVqOOTd+Xx3q0ZjPr8fKZzmEOzdrZFmnmsIJ0s05XbjmbnTtHd/VXs9vOEh68nP++LRERU3PRtzs/P09DQwNmzZwkGgxQXF1NdXU3iTR6QLMsyg63NnHjytwy1tRJmDWfj3odZf89eDKYrL+rkoISnfQbHyTG83bMAGPKilEOwi6JRaV/73ilZlhnvX6Ct3kb36XECPomYFDPFVcnkb07EuErykjcKsiThOX9ekYzUHcDb1QWAPicHa20tltoawsrL12bfmtcOvXVKWOt6AdyzoNErh2IX3KdU2MKTV/+6ghvmWpp/tUpNTmTOkua/PK6czIjMkNf8D3Wf568e2XO7b2cFIqCtMSKgCQQCwZ3Dqs/p7jl46YvQ+CuIzVf2pqVtXvrnjrEFvvpsGw090+TEmXl0bzG78mP5zfgsX+4ZwS/J/L/sJD6QGofmChUfWZYYG3uSnt7v4vNNkJDwILk5n8VovPlFrsPh4NixY5w6dQqfz0dBQQHV1dWkpqbe9HuNdLZz4snf0t94GoPJzPp7HqDi/rdiCo+46msCcx6cp8ZxnR4jOO9DbdFhqkjAXJmALu7mhCZXw+cO0HVqnLZ6G5ODdjRaNTkVcRRXJZOcd7lN882Ab3gYR50iGXGdOgXBIJrYWCy7d2Gt3YN521bUYWtw5lwwAEMnFvetPQezSgggaT0U7lUCW0Kp2LcWArxa898y2YLdZwfA+v+zd9/hcdVXwse/UyXNqNeRLMnqzd1Wsa1iXAjGNsWEwCZvdrObzZvNbioECKEk2RBCQgiEtM3mTdmS3Q2ExRQDJrihZkuy3C3J6sUa9ZFGml7uff8YQgpG1sgz9tj8Ps+T54kd3TK6ztE9Or/fOZooViSteLfF/4rEFSHX5j8U39VFghZkofjQBUEQhMUJWkzvPgCvftHXmn/9P8GWR0DrSzpkWeZA+ziPv95O36SVmoIkHtlZTFRsGA+cv8BbU7Osi9bxTFEmBfqLL//zeKwMDP4rg4O/ACAz81MszfwH1Gr/lyPZbDaam5s5evQoDoeDnJwcampqWLp0qd8JzFhvN00vPU9X8xHUWi2rtt1M6a7dRMYnvO8xsiTj6JzG2jyKo2MKJNBmxxBZbiBieSKKAM08mxico63eSGfzKC6Hl9gUHcWVqRStT0UXoOYl1xqv2Yylto65gwew1tYhWa0owsPRV1YStWUzkTfcgDrh/Z/doskyTHb6ErXzb8CFFkCGmMx3Kms3Q1YVqD5Y1c5Q9adt/v9Qaeua6Xq3zX9WdNa7Cdsf2vyrlVdvz2EovquLBC3IQvGhC4IgCIsT1JjunIP934CWX/gaJtz6I8iufvd/dnkk/vPoAM/u78Tq8vKx8ky+tC2ft602Hu68gNUrcV+2gX/MSEbzPg01HA4j3T1PMjb2KlptMrm5XybVcIff+9MAnE4nx44do7GxEavVSkZGBjU1NeTl5fmdqE1dGKTppd/R0fA2SqWS5ZtvpOzWO4lJnr8Nu3fWhfX4GNaWUbxTDhQRavRrktGXG9AEaOaZ2+Wlp3WctnojIz1mlCoF2asSKalMI6M4MM1LrkWyy4W1ucVXXTt0CM/ICCgURKxe7esKuXUr2uzs4FQdLeO+JZAdr0PvIfA4ICwG8rf5lkHmbYOI2MBfV1i0P7T5f3dp5MTpd9v8R6gjKEko8XWMTPS1+k/SJV2xewvFd3WRoAVZKD50QRAEYXGuSEzvq4NXPgfT/VD693DjP/9ZkwST1cUP9nfyX02D6LQqvrg1nx3rlvD13hFenZhhZWQEzxRnsizy/Zedmc3H6ex6nNnZk0RFLSc//xHiYssWdbtut5vjx4/T0NDA7OwsqampVFdXU1RUhNLPfUozY6O0vPwC597ejyRJlFRvpvz2jxCfNv8ySlmScfaasbaMYj87CV4ZbUYU+nIDESuTUIYFZuaZyWilrcHI+aOjOKxuouLDKa5MpXhjKpEBal5yLZJlGWd7+7st/J1t7QBoly59t8lIxJo1KFRBmD3nskHvYV9HyPP7wDYJSrWvola4w1ddi80M/HWFyyLLMkar8Y8NSCZO02ZqwyP5hlCn6lP/rMoWzDb/ofiuft0kaCsTEuRXd+y82rfxHjMzM363JhYEQRBC05WK6QqFh9j4DqJievB6IpiaWI3D/ueDY/vV0fwkZjXN4aks8czxT+aTOJP1fK9yC7Nh4fztqWb+7lQTGkm66DVkZCw5E0yVDuDRu9D3JZB4LAuNZXGJhhfoiYridGwsc1oNsS4XK6dnyLZY8Lc+Z5clznvt9ElOvEC6UkuRMpzYhSyDUoahiMhHoS9CoYlDllzI9h5kawe4Jxfxyd7Li5JR1VIGNflMqdJAlkj2DpPp6STZewEl1877UzBILhfemWm80zNIc3O+JYoqFarYWFRxcahiolEog5CsIfsq0TYT2KZ8w+EBtHrQxYMuAbSRQbiuEAgSEja3DavbisVtweqy4pScAChQoNPoidTo0WsiidTo0arCCER9NhTf1bN+858iQQumUHzogiAIwuJc6ZiuDTORmHwCjdaCZTYT09RyZOnP99kcDTPw05jVDGhiWOsY4xP2NvaUrmVfXgm5pkkeqX+Tksmx972GpPIys3yY6RXDyEqZ2HNpxJ9OR+le3J4QCeiP1HMqNo6ZMC1RbjcrpmfIm5vD31dyhyzR5XXQIznwAKkKDUWqCBIWul9Fm4xCV4QiIheFUo3smkK2dSDbukF2+Xk3F2dVRDGkzmdInYdTqSNMspHh6SLD04VetgTkGtcy2evFazbjnZnBOzMDXi8oFCijo33JWmwsyovMxQsItx3s7yRrzncSRXUYRMT7ErbwGAjRDoOCj0tyY3VbfEmby4LVY0OSvQBolBr0Gj2Rmkj0mkj0Gj2qRTzPUHxXv24SNLHEURAEQQi2qxLT3Q54+7vQ8Czok2DXM75hvn/6JV6J/24a5Jn9ncza3dxdlsG6dal868I44y43/5iZzH1ZBiJU7//y4nCO0tPzFKOje9BoEsjN/TJpqXeiUCyu0iFJEp2dndTW1mI0GomKiqKyspK1a9ei1frXZMNhsXDizVc5/vorOCxzZC5fScXuu8lYtnJBe5wkhwfbyXGszaO4jVYUGiURKxLRlxvQLg3MzDOvV2LgzBRt9UYGz00hy5BeFEdJVRo5q5JQBah5ybVMdruxtR5n7uABLAcO4h72DUEOX7GCqK1biNy8hbCC/ODsW7NOQdebvq6Q3QfBbfVV0/K2+pZC5n/Il7QJIc0jeeie6f6zBiT9s/2Ar81/Xmzeu0sjF9rmPxTf1a+bJY4iQRMEQRCC7arGdOMJePlzMHYWVnwEtn8X9H/eMc9sc/PsgS7+40g/4RoVn9qUQ3+Kht+Oz5AbEcYzRRmUx86/xMs8e4qurm9hNh8nMrKY/PyHiY/bsOjblmWZnp4e6urqGBgYQKfTsWHDBsrKygh/n0HV78flsHP6rTc4tncP1plpUguKWL/7brLXlC74pd41bMHaPILt5ASy04s6KQJ9mQHd2mRUkYHpzjhnctBxZIS2BiMWk5PwSA2F6w0sq0ojLkDNS651sizj7Op6t4W/4/RpADTp6b4mI1u2olu3FkUwqmtuB/TV+pK182+AZRQUKsjc4PvlR+HNEJ8T+OsKQWF2mjkzeebPBmq/X5v/lUkriQn783EeofiuLhK0IAvFhy4IgiAszlWP6R4X1D8Dtd/zLc/a+RSU3P6eWVA9ExaeeL2d/e3jZMRHcFt1Fv8j2zA6Pfx9eiJfzUlFP0/DBlmWGR9/je6eJ3E4hklKvJG8vAfR6bIu6/YHBgaoq6uju7ub8PBwysvLWb9+PTqdf3PMPC4XZw/vp/nl3zE3OUFSVg4Vt99FfsUGlAvc2yS5vNhPT2BtHsU1OAcqBRHLEtCXGQjLjQ1Id0ZJkhlqN9FWb6T/1CSSJJOaF0NJVRq5a5PRaIOxD+va5B4bx3L4MHMHD2A7chTZ5UIZHU1kTQ1RW7egr65GFRmE/WOSBCMnfB0hz78B4+d8f59U9E6TkR2wZB0EYzC3EBSSLNE/2/9nDUjma/NvPG1k62YxqDooRIImCIIgBFvIxPSxc/DyZ31VteJbYMf3Ieq9Lenruib41t52zo/NUZoVR+LKRF5y2sgM1/J0UQZVcVEXOfkfeb0OhoZ+Rf/AvyBJbjIyPkF21udQq+c/7lKMRiO1tbV0dHSg0WgoKytjw4YNREX5d16vx0N7/WGaX/od0yPDxKelU377Ryiq3IRKvfA9dO5RK9aWUWwnxpFsHlTx4ejLUtCvM6AK0Mwz26zLV1WrN2KesKONUFNYnkJJdRqJ6Zf3/bzeSFYrlsZGLAcOYjl82Ld3TaNBX17+TnVtC5rU1OBc3NT3Tgv/12CgEWQv6JOhcDsU7oScTaAJwmBuIaj+ss3/qYlTmBwmAMr15fzyzl9e5Tv8cyJBC7KQ+WEuCIIgXLaQiuleDxz5MRz6tu+F8ebvwsq731NN83glftsyxNNvdTJtc1Gz3ED7Eg2DssRfpyXwtdw0otTzV3KcznF6ep9mhxt/JAAAmKFJREFUZOQFNJo4cnLuIS31LpSXOVx2fHycuro6zp49i1KpZO3atVRWVvq9YV+SvHQebaB5z/NMDPYTnZRC+W0fZtmmbaj92O8muyXs5yaxNo/i7DWDEsIL49GXGwgviEehuvyqmizLGDtnOFdvpPfEBF6PRPLSKEqq0sgvS0EbfvUG9oYi2evFfuIEcwcPYTlwANfAAABhJcVEbfG18A8rLg7OvjX7NHTt97Xw79oPrjlQR0DuFt9SyPybIPLKzesSAudP2/wPnx/mU9s/dbVv6c+IBC3IQuqHuSAIgnBZQjKmT3b5qmlDTb5GB7t+ADFL3vNlZrubnxzq5tcNfahVSopXJnM0VoFBp+V7hRlsTYi+5KVm587S1fU4MzPN6PX55Oc/QkJ81WV/hKmpKRoaGjh58iQAK1eupKqqisTERL/OI8syvcebaXrxeUa6z6OPi6fsljtYuXU7Gj/3u7kn7dhaRrG2jiFZ3KiitehKU9CXGVAHaOaZw+rm/NFR2hqMmIxW1GEq8kuTKalKIyUrMM1LrieyLOPq62PuwAEsBw9hP3kSZBl1aipRmzcTuWUL+vIyFH42oVkQjwv663zLIM+/AbMXAAVkVPj2rBXthMT8wF9XCLpQjOsiQQuyUHzogiAIwuKEbEyXvND8/+DAP/uG9H7oW7D2b95TTQPon7TyxBvtvHlujMToMOTCWIbjVNyVGs8/5y0hTjN/BUeWZSYmfk9X9xM4HEMkJmwhL++r6PWX31TBbDbT2NhIa2srHo+HZcuWUV1djcFg8Os8siwzePYUTS8+x1DbGSKiolm74zbWbN9FmM6/Jh2yV8LRbsLaMoqjcxqAsPw49GUpRBQnoFBf/t4kWZYZ65ulrd5I17ExPC6JhCV6iivTKKwwEK4PUhv6a5xnauqdfWuHsDY0IDscKPV69DXVRG3ZSmRNNaqYmEufyF+yDKOnfYlax2u+/w6QkPfHfWsZ5RCUWW9CoIViXBcJWpCF4kMXBEEQFifkY7qpD175vO83/dmb4NYfQlzWRb+0sWeSx/a20z4yiyFFz4VsHfFJOr5bkM7NSbGXvJQkORka+nf6+n+CJDlIX/JxsrM/j0Zz6WMvxWKxcOTIEVpaWnC5XBQUFFBTU0N6errf5xo+307TnufoO3GMMJ2e1TftYu2OW9FF+//i7plxYG0Zw3ZsDK/ZiTJSg25tCvqyFDRJ/jU6eT8uu4fOljHa6o1MDM6hUivJXZtESVUaafmxoqr2PiS7HeuRo1gOHWTu0GG8k5OgUqErLfW18N+yBe0i/v0siPnCO5W116GvDiS3byh2wXZfdS13i29YthCSQjGuiwQtyELxoQuCIAiLc03EdEmC4/8Gv/8ayBJs+waUfeqiXei8kswLrUN8781OJi1OIjMjmcyO5LbMBB7PTydRe+n9UE7XJL29z2A0Po9aHU1O9hdYsuRjKJWXX/Wx2+00NTVx9OhRHA4HOTk5VFdXk5WV5XeiMtbbTdNLz9PVfAS1Vsuqbdsp3XUHkfEJlz74L8iSjKNz2ldVa58CCbTZMUSWG4hYnoBCE5jKycTgHG31RjqbR3E5vMSm6CiuTKVofSq6ADUvuR7JkoTj9GnmDhxk7tBBXN09AIQVFPiajGzdSviyZSiC0ZnRMQvd+30JW9eb4DCDKgxybvDtWyvYDlH+VYSF4ArFuC4StCALxYcuCIIgLM41FdNnhmDvl3wvi5kb4NYfQ2LeRb90zuHmp4d7+GV9HxIyrqwo9PnRPFGUyW3JC6vazFk66Op6nOnpRnS6XPLzHyIx4YaAfBSn08mxY8dobGzEarWSkZFBTU0NeXl5fidqUxeGaH7pedob3kapVLJ8842U3XonMcnv7YK5EN45F9bWMawto3inHCgi1OjXJKMvN6AJ0Mwzt8tLT+s4bfVGRnrMKJUKslclUlKVRkZxfEBGAlzPXAMD7zYZsR0/DpKEOimJyM2bidq6Bd369SjDwgJ/Ya8bBo+808L/NZgZ9P39knV/XAqZXHzRpcjClROKcV0kaEEWig9dEARBWJxrLqbLMpz6H9j3IHicsPlh2PDZ990bM2Sy8Z03OnjtzAjqCDW2vChuXJHCk4WZpIRduiImyzKTkwfo6n4Cu72f+Phq8vMeIjKyICAfx+12c+LECRoaGjCbzaSmplJdXU1RURFKP6shM2OjtLz8Aufe3o8kSRRX3UD57R8hYUnGou5NlmScvWasLaPYz06CV0abEYW+3EDEyiSUYYGpqpmMVtoajJw/OorD6iYqPpziylSKN6YSGaDmJdczz/Q01tpa5g4cxFJfj2yzodDpiKysJHLLFiJv2IQ6Li7wF5ZlGG/743Ds4Vbf38dlvZOs3QyZG0ElunheaaEY10WCFmSh+NAFQRCExblmY/rcKOy91/db/CXr4Laf+H5z/z6a+0x8c+85zg7PQowGzbJ4HivL5m5D/IIqVpLk4sKF39DX/0O8XhtpaR8lJ/uLaLXxAfk4Ho+H06dPU19fj8lkIjExkerqapYvX45qngHcFzNnmuTYq3s4vX8fHreLgopKKnbfRXLW4pueeK1ubCfGsTaP4hm3odCq0K1OQl9mQJMeGZB9ZF63RO+pCdrqjVzomEahgMzlCZRUppG1IgGlSgxWvhTJ6cTW1MTcwYNYDh7CMz4OSiURa9cQtXkLUVu3oM3KCs7FZ0d889bOvw69b4PXCeGxvk6sRTsgdyuEX7qzqnD5QjGuiwQtyELxoQuCIAiLc03HdFmGcy/C6/f79sls+gpUfQlUF6+MSZLMiyeGeeKNdqYsLryGCMrK0/jh2hzSwxe2/8nlMtHX90OGjf+NSqUjO+sLpKd/HKUyMPunJEni3Llz1NXVMT4+TlxcHJWVlaxevRq1H4OqAWzmGVpff5mTb76Gy24jZ20ZFbvvIq3g/RPZS5FlGdfgHNbmUeynJ5DdEppUPfpyA7rVySgjAlMtMU/YaGsYoaNxBNusC12MluINqRRXphGTJIYqL4QsSTjOtfmajBw4iPP8eQC0OTm+JiObtxCxaiUKP38BsCBOC/Qe8i2F7NwHdhMoNZBd46usFe646OgMITBCMa6LBC3IQvGhC4IgCItzXcR066QvSTv3IhhW+Kppqave/8udHn72dg//8nYPHhkU2VF8dVsBn8pKRrnASpDF2kVX1+OYTHVERGSRn/dVEhO3BqwjoSRJdHZ2Ultbi9FoJCoqisrKStauXYvWz5lYDquFk/v20vr6yzgsc2QuX0nF7rvJWLbysu5XcniwnfRV1dxGKwqNkogViejLDWiXBmbmmdcrMXBmirYGI4Nnp5BlSC+Ko6QqjZxVSag0oqq2UK4Lw1gO+pqM2FqOgceDKiGByBs2EbV1K/oNG1BGBCH5lby+mYbnX/clbCZfgxNSV/1x35phhdi3FkChGNdFghZkofjQBUEQhMW5rmJ6+6vw2pd9CVvVPbDpAVC/f6OE4Rk7X3+tjf1nRpHDlGStSubX25eRo1v4vqfJqcN0dX0bm62HuLiN5Oc/TFRkUSA+DfDOoOreXmpraxkYGECn07FhwwbKysoI93NQtcth5/Rbb3Bs7x6sM9Ok5hey/o6/IntN6WUnU65hC9bmEWwnJ5CdXtRJEejLDOjWJqOKDEx1cc7koOPICG0NRiwmJ+GRGgrXG1hWlUZcgJqXfFB4Z2ex1NZhOXgQS20tksWCIiwM/caNvuraDTeg9nOo+oLIsm8Q/fnXfPvWhpoBGWIy3qms3QxLq0AtOnpejlCM6yJBC7JQfOiCIAjC4lx3Md1mgjcfhlP/DUlFvmpa+kXfCd7V2m/ii3vOcGHMAtEa/nprLt8oz0G1wKRFktwMG/+H3t5n8XhmSUu7i9yce9BqA/uCOzAwQF1dHd3d3YSFhVFRUcH69evR6fybV+ZxuTh7eD8tr7zA7MQ4SVk5VNx+F/kVG1Be5iBiyeXFfnoCa/MorsE5UCmIWJaAvsxAWG5sQLozSpLMULuJ9nojfacmkSSZ1LwYSqrSyF2bjEYrhin7Q3a5sB079m4Lf49xBBQKIlatInLLFqK2bEabmxuceXWWiXf2rb0BPQfBY4ewaMjb5qus5d8IEbGBv+51LhTjesgmaAqFQgk8BkQDx2RZ/vf5vl4kaIIgCEKwXbcxvestePWLMDcC6//J1+1R+/6JjCTJ/PuxQZ7Y14HL5iE6PZIf376SmvSFd79zu2fo6/sRF4Z/g1IZTnbWZ8nI+ARKZWDbnRuNRmpra+no6ECj0VBaWsrGjRuJiory6zxej4f2+sM0v/Q7pkeGiUtLp+L2j1BUuQmVn/vdLsY9ZsXaPIrtxDiSzYMqPhx9aQr60hRU0YH5nthmXe9W1czjdrQRagrKUyipSiMpw7/vh+Cr2Do7OnxNRg4cxNHWBoBmaea7TUYi1qxBEYB/H+/hskHf29Dxmi9ps06AUg1LN0LhTl91LW5p4K97HQrFuB6UBE2hUPwK2AWMy7K8/E/+fjvwLKACfiHL8nfmOcdu4HZgCnhNluUD811TJGiCIAhCsF3XMd0xC299DVp/DfE5vrlpWZXzHmJzevjSG+f4fcswsiRTvtrAz29ZQZxu4UuurNZeurufYHLqIBHhmeTlPUhS0ocCXoEYHx+nrq6Os2fPolQqWbt2LZWVlcTGxvp1Hkny0tXUSNOLzzEx2E90Ugrlt32YZZu2ofZzv9vFyG4J+7lJrM2jOHvNoITwwnj05QbCC+JRqC7/+yLLMsbOGc7VG+k9MYHXI5G8NIqSqjTyy1LQhotW74vhHh3FcugQcwcOYm1qArcbVWwskZs2+Vr4V1Wi1Adheakk+dr2/2Ep5ESH7++Tl/k6QhbeDKlrLjqsXgjNuB6sBK0GsAD/8YcETaFQqIBO4EbgAtACfBRfsvbEX5zik+/8Z1qW5X9VKBQvyLJ853zXFAmaIAiCEGwfiJje+za88nmYGYCy/wvbvgFhkfMecnZijk+9eIrRPjOqMBWf25bPFypzUPmxRG9qqo6u7sexWruIja2gIP9hoqKWXeaHudh1pmhoaODkyZMArFy5kqqqKhL93EMkyzK9x5tpevF5RrrPo4+Lp3TXblZtuxmNn/vd3o9n0o712CjWY2NIFjeqaC260hT0pQbU8YG5hsPq5vzRUdoajJiMVtRhKvJLkympTCMlOzDNSz6IvBYL1vp6X3Xt7VoksxmFRoNuw3qitvi6QmpSkoNz8akeX6J2/nXfoGxZgqhUKNgORTshqxo0YmbeH4RiXA/aEkeFQpEF7P2TBG0D8A1Zlm96589fBZBl+S+Tsz8c/3HAJcvy8wqF4jlZlu+e73oiQRMEQRCC7QMT011WOPAYNP3M15Dg1h9C7uZ5D5FlmR+fucAzb5xHmnaSmBDB07evoCY/acGXlSQPxpHn6e19Brd7mtTUO8nNuZewsMC/yJrNZhobG2ltbcXj8bBs2TKqq6sxGAx+nUeWZQbPnqJpz/MMnTtNRFQ0a3fcxuqbdhKunz+xXfA1vBKOdhPWllEcndMAhOXF+oZgFyegUF9+ZUSWZcb6ZmmrN9J1bAyPSyI+TU9JVRqFFQbC9ZceVC5cnOx2Yzt+wtcV8uBB3ENDAIQvX+5rMrJlC2EFBcFJhm0m6Pq9bylk9wFwW0Gjh7yt7+xb+xDoEwJ/3WtIKMb1K5mg3Qlsl2X5U+/8+a+BClmWP/c+x+uAHwE2oEOW5Z9c5Gs+DXwaICUlZd1vf/vbRd9vsFgsFiIjAxOgBUEQhKvrgxbTo83tFHX8EJ3diDH1Rnpy/w6vev4lWmYJfjCmpPe8DYXDS2Gymk8WakjRLzyJkGUbsvwqMgcANQrFThTciEIR+G51LpeLoaEhjEYjXq+XhIQEli5dSnS0/0OCLaPDjLQeZXawD6VWS/LytaSsXIs6wr/GJPNR2yH6goKoYQUahwKPVmZuicxsuow7QKvnvG4Z8wBM98g4pkGhhOgMiMtRoEtGVNUuhyyjGhkh7NQpwk6fRtvXD4A3IQHnypU4V63ElZ8PQZi3pvS6iJ05Q8JUM4mTzYS5TMgoMccUM5lYzlRCBXZdasCvG+pCMa5v3rw5NBM0f4kKmiAIghBsH8iY7rbD4e9A4w8h0gC7noHC7Zc87NURE/e92Y6jy4xKhk9szOJLW/OJiVh4JcZm66e7+ztMTL5FePgS8nIfIDl5Z1ASBLvdTlNTE01NTdjtdnJycqiuriYrK8vv64319dC853k6mxtRa7Ws2rad0l13EBkfuEqFLMk4uqaxNo/iaDeBJKPNjkZfnopueQIKTWBe8CcG52hrMNLZNIrL4SUmOYKSyjSKNqSiixbt3S+Xe3wcy+HDWA4ewtrYiOxyoYyKIrKmhqitW9BXV6Pys6HNgkgSjJz841LIsbO+v08sfGff2g5YUvqB2LcWinE9ZJc4+kskaIIgCEKwfaBj+nArvPw5GG+DlXfD9u+ALn7eQ8xuDw+eGeDVhkHUwzaiIjQ8cFMhHy3LQK1a+IufafoIXV2PY7G0ExOzjoL8R4iOXnm5n+iinE4nx44do7GxEavVSkZGBtXV1eTn5/udqE1dGKL5pedpb3gbpVLJshu2UX7bncQk+7eM8lK8cy6srWNYW0bxTjlQhKvRr01GX25AE6CZZ26Xl57WcdrqjYz0mFEqFWSvSqSkKo304niUARgJ8EEn2WxYGxuZO3AQy+HDeKenQa1GX15G5JatRG3ZjCYtLTgXnx74Y7I20ACSB/RJvn1rhTsg54Z5O7tey0Ixrl/JBE2Nr0nIVmAYX5OQj8myfG7RF/kTIkETBEEQgu0DH9M9Lqj7PtQ9BRFxsPP7UHLbJQ87bJrli03dTJ+eQjntIi85kq/tKqGmYOH702TZi3HkBXp6vo/bPYXBcDu5ufcTHhbYZOcP3G43J06coKGhAbPZjMFgoKamhqKiIpR+VhVmxkZpeeUFzh3ejyRJFFfdQPntHyFhSUZA71mWZJy9Zqwto9jPToJXRpsR5durtjIJZVhgqmqmESttDUbOHxnFYXUTFR9OcWUqxRtTiYwTzScCQfZ6sZ88+W4Lf1d/PwBhxcVEbd5M5NYthJeUBGe5qX0Guvf7krWut8A5C+oI3z7Uwh1QcBNEBqnByVUQinE9WF0c/we4AUgExoCvy7L8S4VCsQP4Ab7Ojb+SZfnxRV3gIkSCJgiCIASbiOnvGD0DL38WRk75ErQdT13yhc3i8fJYj5H/PHGBiM5ZvDYPW4qSeWhHMXnJC9//4fHM0T/wMwYHf4VCoWLp0n9gaeanUKkiLvdTvc/1PJw+fZr6+npMJhOJiYlUV1ezfPlyVH7uE5ozTXLs1T2c3r8Pj9tFQUUlFbvvIjkrJ+D37bW6sZ0Yx9o8imfchkKrQrc6CX2ZAU16ZEBe7L1uid5TE7TVG7nQMY1CAZnLEyipTCNrRQJKP6qkwvycvX1YDh1k7sBB7CdOgCyjNhiI3HwDUVu2oqsoRxmAMQ/v4XH5KmrnX/dV2MxDgALSy/64FDKxAK7hfYmhGNdDdlC1v0SCJgiCIASbiOl/wuvx7Us7/ARoI+HmJ2HFnZd8UWuctnBP2wAXzpuI6LOAV+bj65fypW35xPoxP81uH6K750nGx18nLMxAXu4DpKTcgkIRnKRAkiTOnTtHXV0d4+PjxMXFUVlZyerVq1H7OYjYNmvm+Osvc2LfXlx2Gzlry6jYfRdpBcUBv29ZlnENzmFtHsV+egLZLaFJ1aMvN6BbnYwyIjAzz8wTNtobRmg/MoLN7EIXo6V4QyrFlWnEJAUnef6g8phMWA4dZu7QQawNjch2O0q9Hn11NVFbNhNZU4PKz/l+CyLLvl/OnH/DN3Nt5JTv7+NzfbPWinZCejmorq05eqEY10WCFmSh+NAFQRCExREx/SImzvuqaRdaoOBm2PU0RM+/T8bmlfhu3wg/7x4lus+Ca9BCdLiGe7bl83/WL0XjR+VleqaFrq7HmJs7R3T0agryHyYmZu3lfqr3JUkSnZ2d1NbWYjQaiYqKYuPGjaxbtw6tnxUMh9XCyX17aX3jFRxzs2QsW8n6O+4mY9nKoCxdkxwebCcnsLaM4h62gFqJbkUi+nID2qzAzDyTvBL9Z6ZoazAyeHYKWYb0ojhKqtLIWZWESiOqaoEkORxYjxzBcvAQc4cO4Z2cBJUK3bp177bw12YEdintu8zD0PkGdLwOfbUguSEi3rcEsnAH5G655AzFUBCKcV0kaEEWig9dEARBWBwR09+H5IWmf4UD3wSVFm56HNZ8/JLVtGNmK/d0DNI9ZiG9z8rEiJXcJD2P7CzhhsKkBScMsiwxOrqH7p6ncLnGSUm5hbzcBwgPD1JDBd4ZVN3bS21tLQMDA+h0OjZs2EBZWRnhfg6qdjnsnN6/j2Ovvoh1ZprU/EIqdt9NztqyoLW0dw1bsDaPYDs5gez0ok6KQF9mQLc2GVVkYJbKWaYdtDeO0NZgxGJyEh6poXC9gZLKNOJTAzQTQHiXLEk4zpzxNRk5dBBnVzcAYfl57zYZCV+xAkUwOjM6ZqHngK+61vkmOGZAFQY5m3zVtYKbITo0W/iHYlwXCVqQheJDFwRBEBZHxPRLmOqBV74AA/WQs9k34Do2c95DHF6JZwbG+PHAKDEmN5Hdc4xPO6gpSOKRncUUpCy8xbjHY2Vg8F8ZHPwFAJmZn2Jp5j+gvsTstss1MDBAXV0d3d3dhIWFUVFRQUVFBXq9f9f1uFycPbyflldeYHZinKSsHCpuv4v8ig0olYGfiwUgubzYT09ibRnFNTALKgURyxLQlxkIy41FEYDujJIkM9Ruor3eSN+pSSRJJjUvhpLKNHLXJaPRBuezfdC5Bgd9TUYOHsLW2gpeL6qkRKJu8DUZ0a9fj9LPXyYsiNcNg0f/uBRyut/392lr/7hvLbkkZPathWJcv24StLyMEvl7X/rN1b6N95iZmSE2GOuABUEQhCtOxPQFkCWy3a+yzPmvAJwL+zR9mlt9047nMRgB/7FUwXA4ZHVYmLkwh0uW2RCuY7s+ikg/fuuv0EwQnvZfaOIbkNxxOI0fxW3aBAR3eZ3NO8O4qwuzZwQlKhI0WSRpc9Eo/XsJliUvlqnTzIzU4nZMoQlPJDa1msiElSiClKgBhHskkhxuEh0e1DI4lAomw9VMhqtxB6jhh+SVsM26sJpdeN0SCiVERGnRx4ShCVCXSeG9ZI8Hr9mMd3oar9nsq3orVaiio1HFxaGKjUGhXviMQr+4bWCbApsJnHO+v1OH+8Z06OIhPAa4eslaKMb1O+5bJxK0YArFhy4IgiAsjojpCxchjbLG8X1SvMeYVK3kePgDWJVL5j3Go4A3U+ANg4Jwu5fcM3N0m21oFQpu0kVSFaFH7cdv3VX684Qv+TdU+m68thwcF/4WrzXwjTj+ksM7y5irixnPMAqUxGsySdbmoVX6N0dKliWspjZmjG/jso+h1sYSm1ZNZOJqlMogvUwDClkmzuklyeEm2i0hAzNaFRPhasxaVcAqH067B5vZiX3ODYAmTIUuRosuShuQyp3wPmQJ7+wc3plpvNMzyG4XoEAZGYkqLhZVbFxwKmsAXhfYTb5kzT4DsgRKNejifPvXIuJ8f76CQjGuXzcJmljiKAiCIASbiOl+kmU4+V+w7yHfi9mWR2D9P8IlqkDtFjtf6hjk1JydTZpwFB0zHO2eIitBx8M7S9hWnOzX/rSxsVfp7nkSp3OU5OQd5OU+QEREkBon/AmTyUR9fT0nT54EYOXKlVRVVZGYmOjXeWRZpvd4C00vPsdI93n0cfGU7trNqm03ownWi/Q7PJN2rMdGsR4bQ7K4UUVr0ZWmoC81oI4PzLUdVjfnm0ZpqzdiMlpRh6nIX5dMSVUaKdmBaV4iXJwsyzjOtWE5eJC5gwdxdnQAoM3OJnLLZqK2biVi1SoUfo6UWBCXFXoO+Vr4d+7zVdmUGsiq8nWELNgOscH//2koxvXrZomjSNAEQRCEYBMxfZFmR2DvPb6Ob0tK4bafQHLRvId4JJmfDY3zvf5RIpRKPqbW8XbjED0TVirzEnhkZwnFqdELvgWv18bA4C8YGPg54CUj45NkLf0MavXC97gtltlsprGxkdbWVjweD8uWLaO6uhqDwb8h27IsM3j2FE17nmfo3GkioqJZu+M2Vt+0k3B9cLvlyV4JR7sJa8sojs5pAMLyYn1DsIsTUKgvfwmkLMuM9c3SVm+k69gYHpdEfJqekqo0CisMhOuDVzUUfNzDw8wdOozl4AGszS3g8aCKjyfyhhuI2rIZ/caNKHX+VYIXRPLCUPM789ZehylfgxMMK3171op2+P57EJL1UIzrIkELslB86IIgCMLiiJh+GWQZzv4vvH4/uCyw6StQ+UVQzf/S3W1zcE/7EC2zVm6IjWTDLPz67V5m7W7uLsvkyx8qIDEybMG34XCM0NP7FKOjL6HVJpKTcy9pqXeiUAR//5PFYuHo0aM0NzfjcrkoKCigpqaG9PR0v881fL6dpj3P0XfiGNoIHWu272LtjtvQRccE4c7/nGfGgbVlDNuxMbxmJ0q9Bt26ZN8Q7KTAvLy77B66jo3RVm9kfGAOlVpJzpokllWlkVYQK6pqV4B3bg5LbS2Wg4ew1NYizc2hCAtDv2GDr7q2eTPqpKTgXHyyy5eodbwOQ02ADNFLfB0hC3dAVjWoA9NtNBTjukjQgiwUH7ogCIKwOCKmB4BlAl6/D9pe8v1G/LafQOrKeQ/xyjK/Hp7k8Z4RVAq4Pz2Z0bNT/OfRAcI1Kj63JY+/q8wiTL3wJMs8e4qurm9hNh8nMrKY/PyHiY/bcJkfbmHsdjtNTU00NTVht9vJzs6mpqaGrKwsvxOPsb4emvc8T2dzI2qtllXbtlO66w4i4xOCdPd/JEsyjq5prM2jONpNIMlos6PRl6eiW56AQhOYpHdiaI62eiOdzWO47B5ikiMoqUyjaEMquujAvKQL85NdLmytrcwdPITlwAHcRiMA4atWEvVOC39tXl5wEmfrpK91//nXoeegr+mINgryt/mStfwbfXvXFikU47pI0IIsFB+6IAiCsDgipgdQ28vw2n2+hgFV90LNfaCevxI2YHdyb8cQDTMWqmIj+WJiPP92oIcDHeNkxuv46s1FbF9u8GN/msz4+Gt09zyJwzFMUuKN5OU9iE6XFYAPeGlOp5Njx47R2NiI1WolIyOD6upq8vPz/X7RnbowRPNLz9Pe8DZKpZJlN2yj/LY7iUn2bxnlYnnnXFhbx7C2jOKdcqAIV6Nfm4y+3IDGEJgxB26Xl57j47TVGxnpNqNUKshelUhJVRrpxfEoRWORK0KWZZydncwdOIDl4CEcZ88CoMnMJGrzZiK3bEG3bi0KdRCafbjt0Pv2O0sh3wDrOChUsHTjH5dCxmX5dcpQjOsiQQuyUHzogiAIwuKImB5gNhPs+yqc/i0kFfuqaenr5j1EkmV+Y5zimz1GvDI8nJtKvk3m2691cH5sjvLseL62q4TlSxa+1M/rdTA09Cv6B/4FSXKTkfEJsrM+d0X2pwG43W5OnDhBQ0MDZrMZg8FATU0NRUVFKP0cKjwzNkrLKy9w7vB+JEmiuOoGym//CAlLgt9sAXxVNWefGWvzKPazk+CV0WREEVlmIGJVEsoAtdI3jVhpazBy/sgoDqubqPhwiitTKd6YSmRccBunCH/OPTqK5fBh5g4cxHb0KLLbjTImhshNNURt2Yq+qgpVZBBmEUoSGI9Dx2u+ZG2i3ff3ySW+ZK1wB6StgUv8fygU47pI0IIsFB+6IAiCsDgipgdJ55vw6pfAMgobPgebHwJNxLyHXHC4uP/8EIdMc5TH6HmqYAnNZyd4+q1Opm0u7lybzv03FZIcvfCXdadznJ7epxkZeQGNJo6cnHtIS70L5RVq++3xeDhz5gx1dXWYTCYSExOprq5m+fLlqPzsojdnmuTYq3s4vX8fHreLgvKNVNxxN8lZOUG6+/fyWt3YToxjbR7FM25DoVWhW53k26uWHhmQ5XBet0TvqQna6o1c6JhGoYDM5QmUVKaRtSIBZYDmtwkL47VYsTY0YDl4AMvht/GazSg0GnTr1xO1xVdd06SkBOfipt53hmO/AQONIHsh0gCF233JWvYm0Lw3HoRiXBcJWpCF4kMXBEEQFkfE9CBymOH3j8Lxf4f4XF81ben8e8JkWeb50Wm+1j2MU5K4PzuVjybE8rO3e/h1Qx8alZLPbs7j76uyCfdjP9Ts3Fm6uh5nZqYZvT6f/PxHSIivutxPuGCSJHHu3Dnq6uoYHx8nNjaWqqoqVq9ejdrPZWO2WTPHX3+ZE/v24rLbyFlbRsXuu0grCP48uD+QZRnX4JyvqnZ6AtktoUnVoy8zoFuTjDIiMAmwecJGe8MI7UdGsJld6GK0FG1IpaQyjZik+RN+IfBkjwfb8eNYDh5i7uBB3IODAIQvW/ZuC/+wwsLg7FuzmaDrLTj/GnQf8DUm0ughd7OvhX/+TaD37dMMxbguErQgC8WHLgiCICyOiOlXQM8hePULMDME5Z+GbV8H7fzLo8acbr7SOcS+yVlWR+l4piiDCIfEE2+08+a5MZbERvDgzUXsWpnq1/60iYnf09X9BA7HEIkJW8jL+yp6/ZWrQEmSRGdnJ7W1tRiNRqKioti4cSPr1q1Dq/WvOYbDauHkvr20vvEKjrlZMpatZP0dd5OxbOUV7YgoOTzYTk5gbRnFPWwBtRLdikT05Qa0WYGZeSZ5JfrPTNHWYGTw7BSyDOlFcZRUpZGzKgmVRlTVrjRZlnH19LzbZMR++jTIMpq0NCK3bCFqy2Z0paUo/Px3vSAeJ/TX+TpCnn8D5oygUEJGBRTuoMmcRMWOjwb+updBJGhBJn6YC4IgXD9ETL9CnBY48E1o/leIXQq3/ghyNs17iCzLvDw+w0NdF5jzSNyTlcLnM1No6Zvisb3ttI/Msm5pHI/uKmF1RuyCb0WSnAwN/Tt9/T9BkhykL/k42dmfR6NZ+DkulyzL9Pb2Ultby8DAADqdjg0bNlBWVka4n4OqXQ47p/fv49jePVinTaTmF1Kx+25y1pZd8db1rmEL1pZRbCfGkZ1e1EkRvqra2mRUkYF5UbdMO2hvHKGtwYjF5CRcr6FwvYGSqjTiU4OwL0pYEM/EBHOHD2M5eAhrYyOy04kyKorI6moit2whsqYaVfTC5xwumCzDyElfotbxOoydYcSwjdTP/G/gr3UZRIIWZOKHuSAIwvVDxPQrbKARXv4cmHpg3d/Cjd+E8Pmbf0y6PDzSdYGXxmdYFhnOD4oyKdFH8ELrEN97s5NJi5M71izh/u2FpMYsfNmb0zVJb+8zGI3Po1ZHk5P9BZYs+RhK5ZUdnjwwMEBdXR3d3d2EhYVRUVFBRUUFer1/yYbH5eLs4f20vPICsxPjJC3NpmL3XeRXbESpDP5MuD8lubzYT09ibRnFNTALKgURJQnoyw2E5caiCEB3RkmSudBuoq3eSN+pSSRJJjU3hpKqNHLXJaPRXtnPLPyRZLNhPXKEuYMHsRw6jNdkArUaXVkpUVu2Erl5M9r0JcG5+MwgR480sv7mvwrO+RdJJGhBJn6YC4IgXD9ETL8K3HY49G048mOISoVbnvXNPbqENyZm+ErnBabcHj6fmcI9WSm4XF5+eriHX9b3oVTAZzbl8g81uUT48XI+Z+mgq+txpqcb0elyyc9/iMSEGy7jAy6O0Wikrq6O9vZ2NBoNpaWlbNy4kago/zpPej0eOhrepuml3zFtvEBcWjoVt3+EospNqILRJv0S3GNWrM2+qppk86CKD0dfmoJ+XQqqmIUPJJ+PbdZFxxFfVc08bkcboaagPIWSyjSSMq9M507h4mSvF/up01gOHmDu4CFcvb0AhBUWErV1C5GbtxC+fFlAq72hGNdFghZkofjQBUEQhMURMf0qutAKL3/W10p71Ufhpm+DLn7eQ2bcHr7ebeS5URP5ujCeLcpkbYyeIZON77zRwWtnRkiNCeeB7YXctmrJgudoybLM5OQBurqfwG7vJz6+mvy8h4iMLAjEJ/XL+Pg4dXV1nD17FqVSyZo1a6isrCQuzr/BvZLkpaupkaYXn2NisJ/opBTKb/swyzZtQx2MfUGXILsl7Od8VTVnjxkUEF4Uj77MQHhhPArV5b+gy7KMsWuGtnojPccn8HokkjKjKKlKo6AsBW2AmpcIi+fs6/M1GTl0EPvxEyBJqFNSiNx8A1Fbt6KrqEB5mf8+QzGuiwQtyELxoQuCIAiLI2L6VeZxQu1TUP80RMTDrqeh+JZLHnZwapb7zw8x4nTz6YwkHshORadS0txn4rG9bZwZNrMqI5av7Sph3dKFJzaS5OLChd/Q1/9DvF4baWkfJSf7i2i18yeOwWAymaivr+fkyZMArFy5kqqqKhITE/06jyzL9B5voenF5xjpPo8+Lp7SXbtZte1mNH7udwsUz6Qd67FRrMfGkCxuVNFadKUp6EsNqOMDc08Oq5vzTaO01RsxGa2ow1Tkr0umpCqNlOzANC8RLo/HZMLydq2vhX99A7LdjlKnQ19VRdTWLehralD7+YsJCM24LhK0IAvFhy4IgiAsjojpIWLktK+aNnoalu2Gm78HkUnzHjLn8fJYj5H/ME6RHaHl6aJMNsRGIkkyL54Y5sl9HYzPObl1VRpfubmIJbEL35/mcpno7XsWo/F/UKl0ZGd9gfT0j6NUXvnKk9lsprGxkdbWVjweD8uWLaO6uhqDweDXeWRZZvDsKZr2PM/QudOER0Wz7uZbWb19F+H6yCDd/SXuySvhaDdhbRnF0TkNQFheLPpyAxHFCSjUl9+dUZZlxvpnaas30nVsHI/TS3yanpKqNAorDITrr+yeQ+HiJKcT65Ej71bXvBOToFKhW7vW1xVy6xa0mZkLOlcoxnWRoAVZKD50QRAEYXFETA8hXjc0/ADefhLCouDmJ2H5h+ESlY766Tm+3DHEgMPF3y1J5OGcVCLVKqxODz97u4ef1/r2vHy6JofPbMpFH7bwZW4WSydd3d/GZKojIiLrnf1pW65K9cVisXD06FGam5txuVwUFBRQU1NDenq63+cydrbTtOd5eo+3oI3QsWb7LtbuuA1d9PwNW4LJM+PEdmwUa8sYXrMTpV6Dbl2ybwh2ki4g13DZPXQdG6Ot3sj4wBwqtZKcNUksq0ojrSBWVNVChCxJOM6e9TUZOXAQZ1cXANq8XKI2+5K18JUrUSgvnsCHYlwXCVqQheJDFwRBEBZHxPQQNN7uq6YNt0LhTtj5fYhOnfcQq9fLd3pH+MWFSZaEa/h+YSab4n3NIYZn7Hz3jQ5eOWUkOSqM+28q5MNr0/3anzY1dZiu7iew2XqIi9tIfv7DREUWXfZHXQy73U5TUxNNTU3Y7Xays7OpqakhKyvL7wRjrK+H5j3P09nciFqrZdW27ZTuuoPI+IQg3f2lyZKMo2saa/MojnYTSDLa7Gj05anolieg8GNA+XwmhuZoqzfS2TyGy+4hJjmCkso0ijakoou+8pVS4f25hoawHDzI3MFD2I4dA68XVWIiUZtvIHLzFvQbN6D8k+W6oRjXRYIWZKH40AVBEITFETE9REleOPpTOPgtUIfBTU/A6o9dsprWPGPhno4heuxOPpYaz9dz04jR+CpmrQPTPLa3jZNDM6xYEsOju0ooz1743jJJcjM8/N/09j2LxzNHWtpd5Obcg1br356wQHE6nRw7dowjR45gsVjIyMigurqa/Px8vxO1qQtDNL/0PO0Nb6NUKll2wzbKb7uTmGT/llEGmnfOhbV1DFvLKJ4pB4pwNbo1SejLU9EGaOaZ2+Wl5/g4bfVGRrrNKJUKslYlUlKVRkZx/IITeeHK8M7MYKmrY+7gQay1dUhWK4rwcPSVlURt2ULkDZuoP3Mm5OK6SNCCTPwwFwRBuH6ImB7ipnp8c9MGGyF3q68lf2zGvIfYvRLf7x/lp4PjJGs1PFmYzocSfUv3JEnmlVNGvruvgxGzgx0rDHz15mIy4he+hM7tnqGv70dcGP4NSmU42VmfJSPjEyiVgWkZ7y+3282JEydoaGjAbDZjMBiorq6muLgY5fssAXs/M2OjtLzyAucO70eSJIorN1F++10kpM//PQ82WZJx9pmxNo9iPzsJXhlNRhSRZQYiViWhDAtMVc00YqWtwcj5I6M4rG4i48MoqUyjeGMqkXFXp6GK8P4klwtbc8u7Lfw9o6OgUGDdsoXSn/z4at/enxEJWpCJH+aCIAjXDxHTrwGSBMd+CW993VdBu/GbsO7v4BLJx4lZG/d0DNJhdfDhlDgey19C/DvVNLvLy89re/nZ2z14JZlPVmXz2c25RIUvvGGE1dpLd/cTTE4dJCI8k7y8B0lK+tBV28fk8Xg4c+YMdXV1mEwmEhMTqa6uZvny5ahU/iUwc6ZJWvfu4dRb+/C4XRSUb6TijrtJzsoJ0t0vnNfqxnZiHGvLKJ4xGwqtCt2qJPTlBjTpkQH5/nvdEr2nJmirN3KhYxqFAjKXJVBSlcbSFQmoVJffvEQILFmWcbS1YTl4iG6Xiw1fvvdq39KfEQlakIkf5oIgCNcPEdOvIdMD8OoXoPcwZFXDrT+E+PkTBpck8ezAGM8OjBGrVvNEQTq3JMe++7+Pmh08+WYHLx4fJjFSy30fKuQjpRmo/FjWNjVVR1f341itXcTGVlCQ/zBRUcsW+SEvnyRJtLW1UVtby/j4OLGxsVRVVbF69WrUfg6qts2aOf76y5zYtxeX3UbO2jIqdt9FWkFxkO5+4WRZxjU456uqnZ5AdktoDHr05QZ0q5NQ6gLTndE8Yae9wUj7kRFsZhe6aC1FG1MpqUwlJkDNS4TACsW4LhK0IAvFhy4IgiAsjojp1xhZhhP/CW8+7Ov6uPVrUPEPoJy/QnTOYuee9kFOW+zsTIrhOwXpJGn/+AJ/amiGb+5to3VgmuLUaB7dVczG3IXvLZMkD8aR5+ntfQa3e5rU1DvJzbmXsLDkRX/UyyVJEp2dndTV1TE8PExUVBQbN25k3bp1aP0cBOywWji5by+tb7yCY26WjGUrqdh9F5nLV4VE50PJ4cF2cgJryyjuYQuolehWJKIvM6AN0MwzySvRf2aKtgYjg2enkGVIL4qjpDKNnNVJqDSiqhYqQjGuiwQtyELxoQuCIAiLI2L6Nco8DHvvga43Ib0cbvsJJBXMe4hHkvmXoXG+1zeKXqXksfwlfDgl7t2Xd1mWee3MCE+83sHwjJ0PlaTw0I5ishIX3ozC7Z6lv//HDF34D5RKLVlLP0NGxidRqa7e/iVZlunt7aW2tpaBgQF0Oh3r16+nvLyccD8HVbscdk7v38exvXuwTptIzS+kYvfd5KwtC4lEDcA1bMHaMortxDiy04s6KQJ9mQHd2mRUkYHpzmiZdtDeOEJ7wwhzJgfheg2F6w2UVKURH6DmJcLihWJcFwlakIXiQxcEQRAWR8T0a5gsw5nfwRsPgMsGNzwIG78AqvmX8XVaHdzTMUjrrI1tCdE8WZBOWvgfX9wdbi+/rO/jp4e6cXkl/nZjFp/bkk9MxMKXzNls/XR3f4eJybcID19CXu4DJCfvvOpJzODgILW1tXR3dxMWFkZFRQUVFRXo9f4lFR6Xi3Nv76f55ReYnRgnaWk2FbvvIr9iI8pLVDOvFMnlxX56EmvLKK6BWVApiChJQF9uICw3FkUAujNKksyFdhNt9Ub6Tk0iSTKpuTGUVKWRuy4ZjTY0vhcfNKEY10WCFmSh+NAFQRCExREx/TpgGYfXvgztr0Dqal81zbB83kO8sswvL0zwRO8IaoWCb+Qt4WOp8X+WQI3POnjq9+f5XesF4nRa7rmxgI+WZaD2o0GEafoIXV2PY7G0ExOzjoL8R4iOXrnYTxowRqORuro62tvb0Wg0lJaWsnHjRqKiovw6j9fjoaPhbZpe+h3TxgvEpaVTcftHKKrchMrP/W7B5B6zYm0Zw3Z8DMnmQRUfjr40Bf26FFQxgem+aZt10XF0hLZ6I+ZxO9oINQXlKZRUppGU6d/3Vbg8oRjXRYIWZKH40AVBEITFETH9OnLuJXj9PrBPQ/V9UP1lUM+/pK3P5uTe84McmbFSExfJU4UZZEb8+Qv72WEzj+1to6nPREFKJI/sLKGmIGnBtyXLXowjL9DT833c7ikMhtvJzb2f8LCrO2MMYHx8nPr6es6cOYNSqWTNmjVUVlYSFxfn13kkyUtXUyNNe55nYqCP6KQUym79MMtv2Ibaz/1uwSR7JOznJrE2j+LsMYMCwovi0ZcZCC+MR6G6/KqaLMsYu2ZoqzfSc3wCr0ciKTOKkqo0CspS0EaETuJ6vQrFuC4StCALxYcuCIIgLI6I6dcZ6xTsexDOPA/Jy+D2n0DamnkPkWSZ/zBO8ViPERl4OCeVv1uSiPJPqmmyLPPmuVG+/XoHgyYbW4qSeWhHMXnJkQu+NY9njv6BnzE4+CsUChVLl/4DSzM/hUoVsdhPGzAmk4n6+npOnjwJwIoVK6iuriYx0b8h3LIs03u8haY9zzHSdR59XDylu3azatvNaPzc7xZsnkk71mOjWI+NIVncKKO1vqpaqQF1fGDu1WF1c75plLZ6IyajFbVWSX5pCiVVaaQEqHmJ8F6hGNdFghZkofjQBUEQhMURMf06df4NXxMRyzhUfgE2PQia+V+6hxwu7u8Y4vD0HOtj9DxdlEmO7s+raU6Pl39r6OdHB7txuL18fP1SvrQtn1jdwqtEdvsQ3T1PMj7+OmFhBvJyHyAl5RYUiqvfBdBsNtPY2Ehraysej4dly5ZRXV2NweBftU+WZYbOneboi88xdO404VHRrLv5VlZv30W4fuFJ7ZUgeyUcHSaszaM4OqcBCMuLRV9mIKIkAYX68p+LLMuM9c/SVm+k69g4HqeX+DQ9JZVpFK43EK4PzEgAwScU47pI0IIsFB+6IAiCsDgipl/H7DPw+0d8bfkT8n170zIr5j1ElmV+O2ri693DuCSZr2Sn8umMJFR/UemYtDh5+q1Ofts8SFS4hnu25fN/1i9F48f+tOmZFrq6HmNu7hzR0aspyH+EmJj5q31XisVi4ejRozQ3N+NyuSgoKKC6upqMjAy/z2XsbKdpz/P0Hm9BG6FjzfZdrN1xG7romCDc+eXxzDixHRvF2jKG1+xEqdegW5eMvsyAJkAzz1x2D13HxmirNzI+MIdKrSRnTRLLqtJIK4gVVbUACMW4ft0kaMtS8+Tn/+6pq30b7+HxePwe9CgIgiCEJhHTr396xVnS1L9GwxQm6UbGvHciM39jiMkwFT8oTuBIko7iGSf3tU2SZXW/5+v6ZPh/sopTKElH5v8qvJQqFv6uJSNhTz2GJe8NpLBZwkfXENW1E5XTvz1gweLCQ7dyki7VBC6Fl2QpkmJvCklyJAr8SyQkScLrdiF5vKAAlVqDSq0JSDfFgJNBjQatHIYaLQoUeHDjUjhx48TPj/7+l5FkvB4ZySshy6BQgkqlRKlWIvK0xQvFuL78id0iQQumUHzogiAIwuKImP7BoMROsup3JKgO4JKTGPb8PTa5eN5jZOCQQc+PCuOxq5X8de8Md/ebUf/Fq5QsQxMKfimrMKJgLRKfUnhZ6scLtqRyYl16EOvSwwDoBzajH9iM0huYDoOXy4OXHuUUnapxHAoPCZKOYm8KBjna70RNliQ8bjeSxwOASq1GpdGgUF79JZ4Xo5CVaGUtGsJRoUJGwoULl8KBpPAG5iIyeL0SkldG8vr+gSlVClRqJUqlImAJ4QdFKMb16yZBE0scBUEQhGATMf0Dpr8BXvkcmHqh9JOw7Z8hPHreQyZcbh7uGuaV8RmWR0bwg6IMlke9d7mbyyPxH0f6efZAFzaXl4+VZ3LPjQXE6xe+P83hMNLd8yRjY6+i1SaTl3sfBsPukNifBuB2uzlx4gQNDQ2YzWYMBgPV1dUUFxej9DPBMo+P0vzyC5w7vB9Jkiiu3ET57XeRkO7/MsorQZZlnL1mrM2j2M9OgldGkxGFviwF3aoklGGBSQhMI1baGoycPzKKw+omMj6M4o1pFG9MJSpAzUuud6EY16+bJY4iQRMEQRCCTcT0DyCXDQ49Dkd+AtFL4JZnIX/bJQ97bWKGBzsvMO328PnMFL6UlULYRZISk9XFD/Z38l9Ng+i0Kr64NZ+/2ZCF1o9mEzPmVrq6Hmd29hRRUcspyH+U2NiLvttdFV6vl9OnT1NXV4fJZCIxMZHq6mqWL1+OSuXfcOY50ySte/dw6q19eNwuCso3Ur77LlKyc4N095fPa3VjOzGOtWUUz5gNhVaFblUS+nIDmvTIgOwj87olek9N0FZv5ELHNAoFZC5LoKQqjaUrElD5sd/xgyYU47pI0IIsFB+6IAiCsDgipn+ADbXAy5+FyfOw+v/ATY9DxPx7v0xuD1/rGuaFsWkK9eE8U5TB2mj9Rb+2a2yOx15rp7ZzguxEPQ/tKGZbcfKCX95lWWJs7FW6e57E6RwlOXkHebkPEBEROhUmSZJoa2ujtraW8fFxYmNjqaqqYvXq1X4vMbPNmjn++suc2LcXl91G9ppSKnbfzZLC+ZeiXk2yLOManPNV1U5PILslNAY9+nIDutVJKHWB6c5onrDT3mCk/cgINrMLXbSWoo2plFSmEhOg5iXXk1CM6yJBC7JQfOiCIAjC4oiY/gHndkDtk1D/A9Anwq5noGjnJQ97a9LMA50XGHO6+UxGMvdnG4h4n4rGofPjfGtvGz0TVirzEnhkZwnFqfMvq/xTXq+NgcFfMDDwc8BLRsYnyVr6GdTqqAWfI9gkSaKzs5O6ujqGh4eJiopi48aNrFu3Dq2fg6odVgsn33yN1tdfxjE3S8aylVTsvovM5atCusOh5PBgOzWBtXkU97AF1Ep0KxLRlxnQBmjmmeSVGDg7RVu9kYGzU8gypBfFUVKZRs7qJFQaUVWD0IzrIkELslB86IIgCMLiiJguAGA86aumjZ2F5R+Gm5/0JWzzmPV4+Wa3kd+MTJETEcYzRRlUxF58xpfbK/HfTYM8s7+TWbubu8sy+fKHCkiMXHgTEIdjhJ7epxgdfQmtNpGcnHtJS70ThcK/JYXBJMsyvb291NXV0d/fj06nY/369ZSXlxPu56Bqt8PBqf1vcGzvHqzTJlLzCqm4425y1paFdKIG4Bq2YG0ZxXZiHNnpRZ0Ugb7MgG5tMqpI/xLW92OZdtDeOEJ7wwhzJgfheg2F6w2UVKURn3rxqu4HRSjGdZGgBVkoPnRBEARhcURMF97lcUHDD+DtJ32NQ3Z8D5bdwaX6ndea5vjy+SEuOFx8ckkiD+WkoldfPGmasbl49kAX/3lkgHCNis9tyePvKrMIe5+vvxjz7Cm6ur6F2XycyMhi8vMfJj5ugz+f9IoYHByktraW7u5uwsLCqKiooKKiAr3ev+TB43Jx7u39NL/8ArMT4yQtzaZi913kV2xEqQyd5PRiJJcX++lJrC2juAZmQaUgoiQBfbmBsNzYgIwYkCWZoXYTbfVG+k5NIkkyqbkxlFSlkbsuGY02tL9HwRCKcV0kaEEWig9dEARBWBwR04X3GGvzVdOMx6FoF+z8PkQZ5j3E6vHy7d4Rfjk8SUa4lqcLM6iOf/8liD0TFr79WjsHOsbJjNfx1ZuL2L7c4Mf+NJnx8dfo7nkSh2OYpMQbyct7EJ0uy59PekUYjUbq6upob29Ho9FQWlrKhg0biI5e+DJPAK/HQ0fD2zS99DumjReIS0un4vaPUFS5CVWItVS/GPeYFWvLGLbjY0g2D6q4MPSlBvSlKahiAjNOwTbrouPoCG31RszjdrThKgrKfVW1pMzQWRIbbKEY10WCFmSh+NAFQRCExRExXbgorweO/gQOPg6aCNj+HVj1V5esph2dsXBvxxC9dicfT03ga3lpRM9THavrmuBbe9s5PzZHeXY8X9tVwvIlMQu/Ta+DoaFf0T/wL0iSm4yMT5Cd9bmQ2p/2B+Pj49TX13PmzBmUSiVr1qyhsrKSuDj/hnJLkpeupiM07XmOiYE+opNSKLv1wyy/YRtqP/e7XQ2yR8J+bhJr8yjOHjMoILwoHn2ZgfDCeBSqAFTVZBlj1wxt9UZ6jk/g9UgkZUZRUpVGQVkK2ojQT2gvRyjGdZGgBVkoPnRBEARhcURMF+Y12QUvfw6GjkLejXDLDyAmfd5D7F6J7/WN8rOhcVLCNDxZkM6Nie+fdHm8Er9tGeLptzqZtrm4c206999USHL0wvdsOZ3j9PQ+zcjIC2g0ceTk3ENa6l0olaH3Im4ymWhoaODEiRPIsszKlSuprq4mMXH+PX9/SZZl+k4c4+iLv2Wk6zz6uHhKd+1m1bab0fi53+1q8UzZsbaMYW0dRZpzo4zWol+Xgr7MgDpAM88cVjedzaO01RuZGrai1irJK01hWVUaKQFqXhJqQjGuiwQtyELxoQuCIAiLI2K6cEmSBC3/D/Z/AxQq+NBjsO5vL1lNOz5r5Z6OIc5bHdyZEsdj+UuI07x/wmS2u/nJoW5+3dCHRqXks5vz+PuqbMI1C99DNDt3lq6ux5mZaUavzyc//xES4qsWfPyVZDabaWxspLW1FY/HQ0lJCTU1NRgM8y8n/UuyLDN07jRHX3yOoXOnCY+KZt3Nt7J6+y7C9Rdv2hJqZK+Eo8OEtXkUR+c0AGF5sejLDESUJKDwY4be+15Dlhnrn6Wt3kjXsXE8Ti/xaXpKKtMoXG8gXB+YkQChIBTjukjQgiwUH7ogCIKwOCKmCwtm6oNXvwB9tZBdA7f8EOKz5z3EKUn8oH+MHw2OEadR852CdHYmxc57TP+klSfeaOfNc2MsiY3gwZuL2LUy1a/9aRMTv6er+wkcjiESE7aQl/dV9PqchX7SK8pisXD06FGam5txuVwUFBRQXV1NRob/896Mne007Xme3uMtaCN0rNm+i7U7bkMXvfBlo1ebZ8aJ7dgo1pYxvGYnSr0a3doU3xDsAM08czk8dLWM0VZvZHxgDpVaSc6aJEqq0lhSEHvNV9VCMa6LBC3IQvGhC4IgCIsjYrrgF1mG4/8Obz4Cshe2fh3KPw3K+SscZ+ds3NMxxBmLnVuSYvl2wRKStPNXLBp7JnlsbzvtI7OsWxrH13aVsCojdsG3KklOhob+nb7+nyBJDtKXfJzs7M+j0Sz8HFeS3W6nubmZo0ePYrfbyc7OpqamhqysLL8ThvH+Xpr2PE9nUwNqrZaVW7dTestuouL9W0Z5NcmSjLNr2jcEu90Ekow2K9o3BHtFIgo/KqvzmbwwR1udkfPNY7jsHmKSIiipSqNoQyq66NDf03cxoRjXRYIWZKH40AVBEITFETFdWBTzBXj1S9D9FmSsh9t+Aol58x7ilmR+OjjO9/tHiVQr+VZ+OruT569WeCWZ3x0b4qnfn2fS4uKONUt4YHsRhhg/9qe5JuntfQaj8XnU6mhycr7IkrSPolSG5pI2p9NJa2srjY2NWCwW0tPTqampIT8/3+9EberCEM0v/472+sMolUqW3bCN8tvuJCbZv2WUV5t3zoW1dQxbyyieKQeKcDW6NUnoy1PRBmjmmdvlpef4OG31Rka6zSiVCrJWJVJSlUZGcTzKAIwEuFJCMa6LBC3IQvGhC4IgCIsjYrqwaLIMp5+DN74CHgdsfgjWfxZU8zfmOG91cE/HIMdnbXwoIZrvFqaTGjZ/pWLO4eanh3v4ZV0fKqWCz2zK5dM1OUT4MeNqbq6dru7HmZ4+gk6XS37+QyQm3LDg4680t9vNiRMnaGhowGw2YzAYqK6upri4GOUlKpZ/yTw+Sssr/8vZQ28hSRLFlZsov/0uEtL9X0Z5NcmyjLPXjLVlFPvZSfDIaDKi0JeloFuVhDIsME1hpkettNUb6Tg6isPiJjI+jOKNaRRvTCUqQM1LgikU47pI0IIsFB+6IAiCsDgipguXbW4MXrsXOvZC2lpfNS2lZN5DvLLM/xua4Dt9I2iVCv45bwl/ZYi/ZIVoyGTjO2908NqZEVJjwvnK9iJuXZW24OqGLMtMTh6gq/vb2O0DJMTXkJf/EJH6/AV/3CvN6/Vy+vRp6urqMJlMJCYmUlVVxYoVK1Cp/FvmN2eapHXvHk7t34fH5aKgfCPlu+8iJTs3SHcfPF6rG9uJcawto3jGbCi0KnSrknx71dIjA7KPzOuW6D01QVu9kQsd0ygUkLksgZKqNJauSECluvzmJcEQinFdJGhBFooPXRAEQVgcEdOFgJBlOLcHXr8fHGbY9ABU3QOq+ZcR9tqc3NsxyFGzlRviovheUQYZ4Zfe99PcZ+Kbe89xdniW1RmxPLqrhHVLFz5PTJJcXLjwG/r6f4jXa2NJ2sfIzv4CWm38gs9xpUmSRFtbG3V1dYyNjREbG0tVVRWrV69G7eegatusmeOvv8KJfa/istvIXlNKxe67WVJYHKS7Dx5ZlnENzvmqaqcmkN0SGoPet1dtdRJKXWCWspon7LQ3GGk/MoLN7EIXraVoYyollanEBKh5SaCEYlwXCVqQheJDFwRBEBZHxHQhoKyTviWPZ1+AlBVw248hbfW8h0iyzL8NT/Kt3hEUwKO5afxNWgLKS1RAJEnmxRPDPLmvg/E5J7euSuMrNxexJDZiwbfrcpno7XsWo/F/UKn0ZGd9nvT0j6NUhm5zCFmW6ezspLa2luHhYaKioti4cSPr1q1D6+egaofVwsk3X6P19ZdxzM2SsWwlFbvvInP5qmuyk6Hk8GA7NYG1eRT3sAXUSnQrEtGXGdAGaOaZ5JUYODtFW72RgbNTyDIsKYxjWVUaOauTUGmuflUtFOO6SNCCLBQfuiAIgrA4IqYLQdHxGuy9F6wTUPUlqHkANPPv3Rm0O7nv/BC10xY2xOp5ujCTbF3YJS9ldXr42ds9/Ly2F4BP1+TwmU256P3Yj2SxdNLV/W1MpjoiIrLe2Z+2JaSTFFmW6e3tpa6ujv7+fnQ6HevXr6e8vJxwPwdVux0OTh/YR8urL2KdNpGaV0jFHXeRs7Y8pL8H83ENW7C2jGI7MY7s9KJOikBfZkC3NhlVZGAScMu0g/bGEdobRpgzOQjXayhcb6CkMo34tMA0L1mMUIzrIkELslB86IIgCMLiiJguBI192teO/+RvILHQtzcto2zeQ2RZ5n9GTHy9exiPLPNgTiqfSk9CtYAkYXjGznff6OCVU0aSo8K4/6ZCPrw23a/9aVNTh+nqfgKbrYe4uI3k5z9MVGTRgo6/mgYHB6mtraW7u5uwsDDKy8tZv349er1/SYLH5eLc2/tpfvl/mZ0YIykzi4o77ia/YiNKZWDa2l9pksuL/cwk1uZRXAOzoFIQUZKAvsxAWF4sigB0Z5QlmaEOE231RvpOTiJJMoacGEqq0sgrTUbjRzObQAjFuC4StCALxYcuCIIgLI6I6ULQde+HV74Is8Ow4bOw+WHQzr9nx+hw8UDnBfZPzbIuWsczRZkU6BdWFWodmOaxvW2cHJphxZIYHt1VQnn2wveWSZKb4eH/prfvWTyeOdLS7iI35x602tCfIWY0Gqmrq6O9vR2NRkNpaSkbNmwgOjrar/N4PR46Gt6m6aXfMW28QFxaOuW33Ulx1Q2o/NzvFkrcY1asLWPYjo8h2Tyo4sLQlxrQl6agirl0tXYhbLMuOo76qmozYza04SoKyg2UVKWRlBkVkGtcSijG9ZBN0BQKRSbwQ8AEdMqy/J35vl4kaIIgCEKwiZguXBGOWdj/DTj2S4jL9u1Ny6qa9xBZlnlxbJpHuoaxeiXuyzbwTxnJqBdQ8ZAkmVdOGfnuvg5GzA52rDDw1ZuLyYhfeDMHt3uGvr4fcWH4NyiV4WRnfZaMjE+gVAbmRT6YxsfHqa+v58yZMyiVStasWUNlZSVxcQtvpAIgSV66mo7QtOc5Jgb6iE5KpuzWO1l+wzbUfu53CyWyR8J+zldVc/aYQQHhhfHoyw2EF8ajUAWgqibLGLtmaGsw0tM6gdcjkZQZRUlVGgVlKWgjgpfohmJcD0qCplAofgXsAsZlWV7+J3+/HXgWUAG/mC/pUigUO4E4WZZ/o1AonpNl+e75rikSNEEQBCHYREwXrqi+Wnjl8zDdD2Wfgm3fgLD5qwoTLjcPdl7gtQkzKyMjeKY4k2WRC2sEYnd5+XltLz97uwevJPPJqmw+uzmXqPCFd/azWnvp7n6CyamDRIRnkpf3IElJH7om9maZTCYaGho4ceIEsiyzcuVKqqurSUz0rxooyzJ9J45x9MXfMtJ1Hn1cPKU7b2fljTejDV94U5ZQ5JmyY20Zw9o6ijTnRhmtRb8uBX2ZAXWAZp45rG46m0dpqzcyNWxFrVWSV5rCsqo0UgLUvORPhWJcD1aCVgNYgP/4Q4KmUChUQCdwI3ABaAE+ii9Ze+IvTvFJwAu8AMjAf8qy/Ov5rikSNEEQBCHYREwXrjiXFQ5+C47+C8Skwy3PQt7WSx726vgMX+28wIzHwxeWpvClpSloFziwedTs4Mk3O3jx+DCJkVru+1AhHynNQOXH/qOpqTq6uh/Hau0iNraCgvyHiYpatuDjryaz2UxjYyOtra14PB5KSkqorq4mNTXVr/PIsszQudM07XmOwbOnCY+KZt3Nt7J6+y7C9ZFBuvsrQ/ZKODpMWJtHcXROgwxh+bHoywxElCSgUF9+d0ZZlhnrn6W93kjnsXE8Ti/xaXpKKtMorDAQHhmYkQChGNeDtsRRoVBkAXv/JEHbAHxDluWb3vnzVwFkWf7L5OwPx98HNMuyXKtQKF6QZfnO+a4nEjRBEAQh2ERMF66awSZ4+bMw1QVrPg4fehwiYuc9ZMrl4Wvdw/zv2DRF+nB+UJTJ6uiFL1s8NTTDN/e20TowTXFqNI/uKmZj7sKrSZLkwTjyPL29z+B2T5Oaeie5OfcSFpa84HNcTRaLhaNHj9Lc3IzL5aKgoIDq6moyMjL8Ppexs52mPc/Te7wFbYSO1TftZN3O29FFxwThzq8sz4wT27FRrMfG8M44UerV6Nam+IZgB2jmmcvhoatljLZ6I+MDc6jUSnLWJFFSlcaSgtjLqqqFYly/kgnancB2WZY/9c6f/xqokGX5c+9z/HLgG8AkYJFl+b6LfM2ngU8DpKSkrPvtb3+76PsNFovFQmTktf1bEkEQBMFHxHThalJ6XSwd+C2Zg3twaWPpLPhHphLLL3lcq6zmF+iYQcEtOLkTB9oFvs/KskzLqJfnzruYcsisTVZxd6GWFP3CKySybEOWX0XmAKBGodiJghtRKK6NfVlut5vh4WEuXLiAx+MhNjaWpUuXEhvrf2Jgmxxn9PhRpns6UajVJJWsImVVKdrIK9MQI6hk0E1C9AUl+nFQyArscTKz6TIWg4wcoOaMjmmZ6V6ZmX6Q3KCNhNhcBXHZoA73P1ELxbi+efPm0EzQ/CUqaIIgCEKwiZguhITh4/Dy52D8HKz4CGz/LugT5j3E7Pbwzz1G/nvERJ4ujKcLMyiPXfhLqcPt5Zf1ffzkUDdur8Tfbszic1vyiYlY+DIzm62f7u7vMDH5FuHhS8jLfYDk5J3XxP40AKfTSWtrK42NjVgsFtLT06mpqSE/P9/vzzA1PETzS7+jvf4wSqWSZZu2UXbbncSmGIJ091eWd86F7fgY1uZRPFMOFOFqdGuSfEOw0wKTDHlcXnqOj3Ou3shItxmlUkHWqkRKKtPIKIlf8MiIUIzrIbvE0V8iQRMEQRCCTcR0IWR4XFD/NNR+D8JjYedTsGz3JQ972zTHl88PMuxw86n0RB7MSUWvWnhpY3zWwVO/P8/vWi8Qp9Ny740F/FVZBmrVwitqpukjdHU9jsXSTkzMOgryHyE6euWCj7/a3G43J06coKGhAbPZjMFgoLq6muLiYpQL3Of3B+bxUVpe+V/OHnoLSZIortxE+e13kZDu/zLKUCTLMs5eM9aWUexnJ8Ejo0mPRF9uQLcqCaUfA9LnMz1qpa3eSMfRURwWN5HxYRRvTKN4YypRl2heEopx/UomaGp8TUK2AsP4moR8TJblc4u+yJ8QCZogCIIQbCKmCyFn9Kxvb9rISSi+FXY8BVEp8x5i8Xh5vHeEXw9Pkhmu5emiDKri/Ftid3bYzDf3ttHcZ6IgJZJHd5VQnZ+04ONl2Ytx5AV6er6P2z2FwbCb3Nz7CA+7dipIXq+X06dPU19fz9TUFImJiVRVVbFixQpUfiS9AHOmSVr37uHU/n14XC7yyzdQsftuUrJzg3T3V55kc2M9Po61ZRTPmA2FVoluVbJvr1p6ZEAqqV63RO+pCdrqjVzomEahgMxlCZRUpbF0RQKqi/wiIRTjerC6OP4PcAOQCIwBX5dl+ZcKhWIH8AN8nRt/Jcvy44u6wEWIBE0QBEEINhHThZDk9cCRH8GhJ3xDrbd/F1beBZd44T0yY+HejkH67C7+Ji2BR3PTiFIvPLGQZZk3z43y+OvtDJnsbC1K5qGdxeQmLXwJm8czR3//vzA49GsUChVLl/4DSzM/hUp17bSjlySJtrY26urqGBsbIzY2lqqqKlavXo3az0HVtlkzx19/hRP7XsVlt5G9ppSK3XezpLA4SHd/5cmyjGtoDmvzKPZTE8huCY1Bh77MgG5NMkpdYLozzk7aaWsw0t44gs3sQhetpWhDKiVVqcT8SfOSUIzrITuo2l8iQRMEQRCCTcR0IaRNdPqqaReaIf8m2PUMxCyZ9xCbV+LJvhF+PjSBIUzD9woz2JoQ7ddlnR4v/9bQz48OduNwe/nrDUv54tZ8YnULbwJitw/S3f0k4xNvEBZmIC/3AVJSbkGhuPx27VeKLMt0dnZSW1vL8PAwUVFRbNy4kXXr1qH1c1C1w2rh5Juv0fr6yzjmZskoWUHFHXeTuXzVNbNnbyEkhwfbqQmszaO4hy2gVqJbkejbqxagmWeSV2Lg7BRt9UYGzk4hy7CkMI5lVWnkrE6irqE25OL6dZOgZWVlyV//+tev9m28x8zMDLGxsVf7NgRBEIQAEDFdCHUKWaJ4ro51M3uRUNEcdxtdkesvWU0bDNPxvwmZjGsjWGuZYqdpGJ3k9evaFo+CQ5ORnDCHE66U2ZRopTTWjsqPd+ywsAHi4t5CGzaK07mEadONuFzpft1HKHA4HMzMzOB0OlEqlURHRxMVFeX3HjVZkrDOmJidmkRye9BGRBCdlEz49dD18S/ILi/eWReSxY0syyjUSlTRWlSRWvz6RzQPr0fCNuvCZnbh9UgolArUETJJabEBOX+gfPKTnxQJWjCJH+aCIAjXDxHThWtFlHuSyqnfkursZji8gMaEu7Go5+/06EHBwVgDb8ekoPd6uM00xDKb2e9rjzlUvDkRRZ9NS6LWw4eSLORHuvw4g4xef5qY2EOo1Ras1mXMTG/B6732ZoY5nU7MZjN2ux2FQkF0dDTR0dH+J2qyjG1mmtmpCbwuN5rwcKISk66LOWrvIYNkdfuSNacHAJVegzJKizIiME1FAJw2D1azEwk3iamxATtvIFw3CZpY4igIgiAEm4jpwjVFkuD4v8HvvwayBNu+AWWfgkskB2fmbHypY5BzFge3JcfyeH46iVr/XoxlWWZ/+zjffr2dvkkrNQVJPLKzmIKUhVd+PB4rA4P/yuDgLwDIzPy/LM38NGq13q97CQVGo5G6ujra29vRaDSsW7eOjRs3Eh3t33JSr8dDR8PbNL/0O0zGC8SlLqH89o9QXHUDKj/3u10L3GNWrC1j2I6PIdk8qGLD0JcZ0JemoIoJC8g1QjGuXzdLHEWCJgiCIASbiOnCNWlmCF79IvQcgMyNcNuPIWH+7oBuSebHg2M83T9GlFrJt/PTuS3Z/8HMLo/Efxzp59kDXdhcXj5Wnsk9NxYQr1/4niyHw0h3z5OMjb2KVptMXu59GAy7r6n9aX8wMTFBXV0dZ86cQalUsmbNGiorK4mLi/PrPJLkpavpCE17nmNioI/opGTKbr2T5TdsQ+3nfrdrgeyRsJ+bwtoyirN7BhQQXhiPvtxAeGE8istYAhmKcV0kaEEWig9dEARBWBwR04VrlizDyf+GN78KHidseQTW/xMo5+/a2G6xc0/HECfnbNycGMN3CtJJCfO/y57J6uIH+zv5r6ZBdFoVX9yaz99syEKrXniSNWNupavrcWZnTxEVtZyC/EeJjb3oO2zIM5lMNDQ0cPLkSSRJYuXKlVRVVZGUtPBRBeCrVPadOMbRF3/LSNd59HHxlO68nZU33ow2/NrphOkPz5Qda8sY1tZRpDk3ymgt+nUp6MsMqC8x8+xiQjGuiwQtyELxoQuCIAiLI2K6cM2bHYHX7oXzr8OSdXDbTyB5/hbuHknmXy9M8GTfCOFKJd/MW8JdhrhFddjrGpvjsdfaqe2cIDtRz0M7itlWnLzgc8myxNjYq3T3PInTOUpy8g7ych8gIuLaHOw8OztLY2Mjx44dw+PxUFJSQnV1NampqX6dR5Zlhs6dpmnPcwyePU14VDRrb76FNdtvIVy/8LEH1xLZK+HomMbaMorjvAlkCMuPRV9mIKIkAcUCk/9QjOsiQQuyUHzogiAIwuKImC5cF2QZzv4vvH4/uCyw6QGo/BKo5q+Mddsc3NsxRLPZyub4KL5XmEF6+OKW0x06P8639rbRM2GlMi+BR3aWUJy68P1YXq+NgcFfMDDwc8BLRsYnyVr6GdTqa7O7ocVi4ejRo7S0tOB0OsnPz6empoaMDP8TT2NnB017nqP3eAvaCB2rb9rJup23X58NRd7hmXFiOzaK9dgY3hknSr0a3VpfVU2TrJv32FCM6yJBC7JQfOiCIAjC4oiYLlxXLBPwxgNw7kUwrIDbfgqpK+c9RJJlfjU8yeM9I6gU8LXcND6eloByEdU0t1fiv5sGeWZ/J7N2N3eXZfLlDxWQGLnw5g8Oxwg9vU8xOvoSWm0iOTn3kpZ6JwrFwgduhxK73U5zczNHjx7FbreTnZ1NdXU12dnZflcsx/t7adrzPJ1NDag1WlZu207pLbuJik8M0t1ffbIk4+zyVdXsbSaQZLRZ0ejLDehWJKLQvPffRSjGdZGgBVkoPnRBEARhcURMF65L7a/C3nvBboKqe6DmflDPnyQN2J18uWOI+hkLlbGRPF2UwdKIxXXVm7G5ePZAF/95ZIBwjYrPbcnj7yqzCFMvPMkyz56iq+tbmM3HiYwsJj//YeLjNizqfkKB0+mktbWVxsZGLBYL6enp1NTUkJ+f73eiNjU8RMvLL9BWdwilUsmyTdsou+1OYlMMQbr70OCdc2E7Poa1ZQzPpB1FuArdmmTfEOy0Py77DMW4LhK0IAvFhy4IgiAsjojpwnXLZoI3H4ZT/w1JRb69aenzN+CQZZn/GjHxje5hvDI8lJPKJ9MTUS2imgbQM2Hh26+1c6BjnMx4HQ/tKOKmZQY/9qfJjI+/RnfPkzgcwyQl3khe3oPodFmLup9Q4Ha7OXnyJPX19ZjNZgwGA9XV1RQXF/s9S808PkrLK//L2UNvIUkSRZWbqLj9IySkZwbp7kODLMs4e82+qtrZSfDIaNIjfVW1VUnUHqkPubguErQgEz/MBUEQrh8ipgvXva63fC3550Zgw2dh88Ogmb8b4LDDxf3nhzhomqMsWs/TRRnk6/3vpvcHtZ0TfOu1NjrHLFRkx/PorhKWL1n4/imv18HQ0K/oH/gXJMlNRsYnyM763DW7Pw3A6/Vy+vRp6uvrmZqaIjExkaqqKlasWIFK5d9yTotpimN793Bq/xt4XC7yyzdQsftuUrLnH71wPZBsbqwnxrE2j+IZs6HQKplc6mHV32+62rf2Z0SCFmTih7kgCML1Q8R04QPBMQtvfQ1afw3xub65aUs3znuILMu8MDbNo13D2CWJ+7IM/GNGMmrl4qppHq/Eb1uGePqtTqZtLj6yLp37PlRIcvTCEz+nc5ye3qcZGXkBjSaOnJx7SEu9C6Xy2h3oLEkSbW1t1NXVMTY2RmxsLJWVlaxevRqNxr/xB7ZZM8dff4UT+17FZbeRvaaUit13s6Rw/q6e1wNZlnENzWFtHqXfPsLavxYJWlCIBE0QBEEINhHThQ+U3sPwyhdgZgDKPw1bvw5h87dsH3e6ebDzAq9PmlkZFcGzRZkURy5+HpfZ7ubHB7v4t8Z+tCol/7Q5j7+vyib8Is0e3s/s3Fm6uh5nZqYZvb6A/PyHSYivWvQ9hQJZluns7KS2tpbh4WEiIyPZuHEjpaWlaP0cVO2wWjj55mu0vv4yjrlZMkpWULH7bjJXrFrUKIVrTSjGdZGgBVkoPnRBEARhcURMFz5wnBY4+Bg0/SvEZsAtP4TczfMeIssyr0zM8FDnMLMeL19cmsIXliaj9XPP1J/qn7Ty7dfb+X3bGEtiI3jw5iJ2rUz1a3/axMSbdHV/B4djiMSELeTlfRW9PmfR9xQKZFmmr6+P2tpa+vv70el0rF+/nvLycsLD/Vtm6nY4OH1gH8defRHLtAlDXgHr77ibnLXl13WiFopxXSRoQRaKD10QBEFYHBHThQ+sgSPwyudgqhvW/g186FsQPv++sEmXh0e7LrBnfIYSfTjPFGeyKmr+mVSX0tgzyWN722kfmaV0aRyP7iphVUbsgo/3ep1cuPBv9PX/FElykJ7+12RnfR6N5tqfETY4OEhdXR1dXV2EhYVRXl7O+vXr0ev1fp3H43Zz7vB+ml9+gdmJMZIysyjffRcF6ytRKq/N8QXzCcW4LhK0IAvFhy4IgiAsjojpwgea2w6Hn4DGH0GkAW75ARTcdMnD9k2Y+UrnEJNuD5/NSObeLAPhqsVX07ySzO+ODfHU788zaXFxx5olPLC9CEOMH/vTXJP09j6D0fg8anU0OTlfZEnaR1Eq/dvHFYqMRiN1dXW0t7ej0WhYt24dGzduJDp64YPAAbweDx0Nb9P80u8wGS8Ql7qE8ts/QnHVDajU1+4+vr8UinFdJGhBFooPXRAEQVgcEdMFARhuhZc+CxPtsPKvYPsToIuf95AZt4dvdBv57aiJfF0YzxRlUhrjX2XnL8053Pz0cA+/rOtDpVTwmU25fLomhwjtwqs8c3PtdHU/zvT0EXS6XPLzHyIx4YbLuq9QMTExQV1dHWfOnEGpVLJ69WqqqqqIi4vz6zyS5KWr6QhNe55jYqCP6KRkym75MMs334jaz/1uoSgU47pI0IIsFB+6IAiCsDgipgvCOzxOqPu+7z8R8bDz+1By6yUPOzQ1y33nhzA63Xw6PYmv5KSiu4xqGsCQycZ33ujgtTMjpMaE85XtRdy6Kg3lAjtIyrLM5OQBurq/jd0+QEJ8DXn5DxGpz7+s+woVJpOJhoYGTp48iSRJrFy5kqqqKpKSkvw6jyzL9J04xtE9zzHS2YE+No7SXbtZeePNaMMX3wjmagvFuC4StCALxYcuCIIgLI6I6YLwF0bPwEv/BKOnoeR22PEURM7/4j/n8fKtHiP/bpwiK0LL9wszqIy7/BllzX0mvrn3HGeHZ1mdEcuju0pYt3Th1SJJcnHhwm/o6/8hXq+NJWkfIzv7C2i181cHrxWzs7M0NjZy7NgxPB4PJSUlVFdXk5qa6td5ZFlm6NwZmvb8lsGzpwmPjGLtjltZs/0WwvXzd/kMRaEY10WCFmSh+NAFQRCExRExXRAuwuuGxh/C4e+ANhJufhJW3AmX6PzXMD3HvR1DDDhcfCItgUdz04hUX14TCkmSefHEME/u62B8zsmtq9L4ys1FLIldeIXH5TLR2/csRuP/oFLpyc76POnpH0epvPaX8wFYLBaOHj1KS0sLTqeT/Px8ampqyMjI8Ptcxs4OmvY8R+/xFrQROlbftJN1O29HF33tNF0JxbguErQgC8WHLgiCICyOiOmCMI+J8/DyZ+FCCxTcDLuehui0eQ+xer082TvKzy9MkBam4anCDDYn+NfM4qLndXr42ds9/Ly2F4BP1+TwmU256MMW3tzCYumkq/vbmEx1RERkvbM/bct103LebrfT3NzM0aNHsdvtZGVlUVNTQ3Z2tt+fcby/l6Y9z9PZ1IBao2Xl1psoveUOohISg3T3gROKcV0kaEEWig9dEARBWBwR0wXhEiQvHP0X3+w0VRjc9Dis+fglq2nHzFbu6Riky+bko6nxfCM3jRjN5XcKHJ6x8903OnjllJHkqDDuv6mQD69N92t/2tTUYbq6n8Bm6yEubiP5+Q8TFVl02fcWKpxOJ62trTQ2NmKxWEhPT6e6upqCggK/E7Wp4SFaXn6BtrpDKBRKlt+wjbLb7iQ2xRCku798oRjXRYIWZKH40AVBEITFETFdEBZoqgde+TwMNEDOZrj1hxCbOe8hDq/E9/tH+enQOIkaNU8WZnBTYmCWyrUOTPPY3jZODs2wYkkMj+4qoTx74XvLJMnN8PB/09v3LB7PHGlpd5Gbcw9abehXiBbK7XZz8uRJ6uvrMZvNGAwGqqurKS4uRunnkHHz+Cgtr/wvZw+9hSRJFFVuouL2j5CQPv+/gashFOO6SNCCLBQfuiAIgrA4IqYLgh8kCY79Et76uq+Ctu0bUPr3cImX/ZOzNu7pGKTd6uCOlDgey1tCgvbyq2mSJPPKKSPfeaOD0VkHO1ek8uDNRWTEL3x4tts9Q1/fj7gw/BuUynCysz5LRsYnUCrDLvv+QoXX6+X06dPU19czNTVFQkIC1dXVrFixApXKvz2CFtMUx/bu4dT+N/C4XOSXb6Bi992kZOcG6e79F4pxXSRoQRaKD10QBEFYHBHTBWERpgfg1S9C7yFYWuWrpiXM/4LukiR+ODDODwZGiVGreaIgnVuSYgKy/8vm8vDz2l7+9e1evLLM31dl80835BIVvvAh1VZrL93dTzA5dZCI8Ezy8h4kKelD183+NABJkmhra6Ouro6xsTFiY2OprKxk9erVaDT+DfS2zZo5/vornNj3Ki67jezV66jYfTdLikqCdPcLF4pxXSRoQRaKD10QBEFYHBHTBWGRZBlO/AbefBi8Ltj6KFR8BpTzV2TaLHa+1DHI6Tk7O5NieCI/neQw/5KD9zNitvO9fed58cQwiZFh3PehAj5SmoFqgfvTAKam6ujqfhyrtYvY2AoK8h8mKmpZQO4vVMiyTGdnJ7W1tQwPDxMZGcnGjRspLS1F6+egaqfNysk3X6P1tZewz82SUbKCit13k7li1VVLbkMxrosELchC8aELgiAIiyNiuiBcplkj7L0HOvdBehnc9hNIKpz3EI8k8y9D4zzVP0qEUslj+Uu4MyUuYC/0J4dmeGxvG60D0xSnRvPormI25i58b5kkeTCOPE9v7zO43dOkpt5Jbs69hIUlB+T+QoUsy/T19VFbW0t/fz86nY7169dTVlZGRIR/g6rdDgenD+zj2KsvYpk2YcgrYP0dd5OztvyKJ2qhGNdFghZkofjQBUEQhMURMV0QAkCW4cwL8Mb94LLCDQ/Cxi+Aav7KWJfVwT0dgxybtbE1PprvFaaTFh6Y2WSyLLP39AjfeaOD4Rk7HypJ4aEdxWQl6hd8Drd7lv7+HzN04T9QKrVkLf1HMjI+iUp1/exP+4PBwUHq6uro6uoiLCyM8vJy1q9fj16/8O8XgMft5tzh/TS//AKzE2MkZWZRvvsuCtZXorxEdTVQQjGuiwQtyELxoQuCIAiLI2K6IASQZRxevx/aXoLUVb5qmmHFvId4ZZlfXZjk271G1AoFX89bwv9JjQ9Y1cXh9vLL+j5+cqgbt1fi7yqz+dyWPKL92J9ms/XR3f1dJibfIjx8CXm5XyE5ecd1tT/tD0ZGRqirq6OtrQ2NRsO6devYuHEj0dH+zbLzejx0NLxN80u/w2S8QFzqEspvu5Pi6s2o1JffIGY+oRjXRYIWZKH40AVBEITFETFdEIKg7WV47ctgn4bqL0P1faCevzLWb3dyb8cQjTMWquMieaowg6URgatUjc86eOr35/ld6wXidFruvbGAvyrLQK1aeLt5k6mRru7HsVg6iIlZR0H+I0RHrwzYPYaSiYkJ6urqOHPmDEqlktWrV1NVVUVcXJxf55EkL93NRzi653km+nuJTkqm7JYPs3zzjaj93O+2UKEY10WCFmSh+NAFQRCExRExXRCCxGaCfV+F07+F5BK47cewZN28h0iyzG+MU3yzx4hXhodzU/nkkkSUAaxUnR028829bTT3mShIieTRXSVU5yct+HhZ9mIceYGenu/jdk9hMOwmN/c+wsNCd3Dz5TCZTDQ0NHDy5EkkSWLlypVUVVWRlLTw7xm8s9/txDGO7nmOkc4O9LFxlO7azcobb0Yb7t9+t0sJxbh+3SRoJSUJ8n/+5qarfRvvMTMzQ2xs7NW+DUEQBCEAREwXhOCKHhtj6amzaBwOxvJyMBYWIF9i9ta4FMWP7Ddx3JPDMtUQX4zYxxLVdMDuSZahaTiDfz+1hnFrFOtSL/CJVcdZEj3nxzk8OBxGnM5RQEF4eCphYakoFFdmn9WV5vV4MM/OMjc3hyzL6PU6YmJi0Gr9rXLKOK1WZifHcVqtKFUqIuMTiIxPROnnTLb3E4pxvXTd/4gELZhC8aELgiAIiyNiuiAEn9LtJr2tnaSBIRx6Pf2rV2JNiJ/3GFmGA+5l/Ny+FTcqPh7ewO3aFlSKwL3Lur1KXusq5IW2Fbi8KrbndfKRkjNEhbkWfA5JcmC3D+F2m1AoNEREZKLVJgDX3/408A29npudZXZuFkmS0UVEEBMbQ1hYuN/nctlszE6O47DMoVAqiYxPICo+EeVl7lELxbh+3SRoYomjIAiCEGwipgvCFdRzCF79AswM+WambX0UtPN3CRxzuvlK5xD7JmdZHaXjmaIMiiMDuyRuYs7J02918lzLINERGr60NZ//s34pGj/2p01PN9PV/S3m5s4RHb2agvxHiIlZE9D7DCV2u53m5maOHj2K3W4nKyuLmpoasrOz/W6eMt7fS9NLv6PzaD1qjZaVW2+i9JY7iEpY+GiEPxWKcf26WeIoEjRBEAQh2ERMF4QrzGmBA/8MzT+H2KVw648gZ9O8h8iyzMvjMzzUdYE5j8Q9WSl8PjMFjR8DqBeifWSWb73WRkP3FLlJeh7ZVcLmwoXPPpNliZHRF+np+T4u1zgpKbeQl/sA4eFpAb3PUOJ0OmltbaWxsRGLxUJ6ejrV1dUUFBT4nahNDQ/R8vILtNUdQqFQsvyGbZTddiexKf7t7wvFuC4StCALxYcuCIIgLI6I6YJwlQw0wsufBVMvrPs7uPGbED5/K/dJl4eHuy7w8vgMyyLD+UFRJiuidAG9LVmW2d8+zrdfb6dv0kpNQRKP7CymICVqwefweKwMDP4rg4O/ACAz8/+yNPPTqNX+zRS7lrjdbk6ePEl9fT1ms5mUlBSqq6spKSlBqVx4JRLAPD5Kyyv/y9lDbyFJEkWVm6i4/SMkpGcu6PhQjOsiQQuyUHzogiAIwuKImC4IV5HLBoe/DUd+AlGpcMuzkH/jJQ97fWKGBzsvMOX28PnMFO7JSiHMzyTgkrfmkfiPI/08e6ALm8vLx8ozuefGAuL1C28N73AY6e55krGxV9Fqk8nLvQ+DYTcKRWDvNZR4vV7OnDlDXV0dU1NTJCQkUF1dzYoVK1D52QTEYpri2N49nNr/Bh6Xi/zyDVTsvpuU7Nx5jwvFuC4StCALxYcuCIIgLI6I6YIQAi4c81XTJjpg1cfgpsdBN38TkWm3h693D/P86DT5ujCeLcpkbUzgK1Qmq4sf7O/kv5oG0WlVfHFrPn+zIQuteuFJ1oy5la6ux5mdPUVU1HIK8h8lNvai7+rXDUmSaGtro66ujrGxMWJjY6msrGT16tVoNAsfEg5gmzVz4o1XOLFvL06blezV66jYfTdLikou+vWhGNdFghZkofjQBUEQhMURMV0QQoTHCbXfg7qnQZ8IO5+G4l2XPOzA1Cz3nx9i1Onm0xlJPJCdis6P5h4L1Tk2x2N726jrmiQ7Uc/DO4rZWpy84H1WsiwxNvYq3T1P4nSOkpy8g7zcB4iIyAj4vYYSWZbp7OyktraW4eFhIiMj2bhxI6WlpWj9HFTttFk5+eZrtL72Eva5WTJKVlCx+24yV6z6s+fw/9u77/Aoq7z/4+8z6QmEEAIhhJAQSAihKhCK0osgWBZx7RVFFHUtrI9t17Wtoth4BGy4ytpFRUQURLqU0KWlASmQUENNz8z9+yM8v8fHNeMEMplJ/LyuK9fF3OF7z5eZXAc+nDnneOO4roDmZt74pouIyNnRmC7iZQq2wtxJcHAbdBoLF79YFdicOFVp5+nd+czOP0rbIH9eTmpD37BGtd6aZVksSz/MM9/uZPfhIi5o34zHRyfTMcr52rlfstuLycl9h5yctwA7MTG3Ehc7EV9f19e41UeWZbF3715WrFhBdnY2QUFB9OnTh5SUFIKCarYrZ0VpKT//+D0bvvmS08cKadk+kd5/uop2PVIwxnjluK6A5mbe+KaLiMjZ0Zgu4oXsFbDqVVg+pWrjkFEvQOcr4Hdmq1YWnuLB9DxyS8u5JTqCx+OjCPGt/YOjK+wOPlybwyuLMzlVWsFVvdrw4IhEIhq5fmhzaWkBu/dM5cCBufj7RxAf/wCtosY12IOufykvL48VK1aQmZlJQEAAKSkp9OnTh5CQmn1EtbKigh3LFrN+3hxOHDpIRJs4ev/pzxSUVjJ4yBA3dX92FNDcTH+Zi4g0HBrTRbzYoV0w9y7I3wQdRsOYl6Gx8y3XiyrtPLe3gFn7jhAd6MfLHdowINw9s1PHi8t57cdM/r0mhyA/H+4e0p6bL4gjoAah8MTJrWRmPsOJE5to1KgjCQmPEd60r1v69TYFBQWsXLmSnTt34ufnR48ePejXrx+hoa7PSAI47HbSflrOuq8+ozB/H+GJydzy9Atu6vrsKKC5mf4yFxFpODSmi3g5eyWsnQFLnwXfALjoOeh+7e/Opq07fpoH0vLYXVLGdVHhPNE+mlA3zKYB7D58mn9+u4sf0w7RJjyYRy9O4qJOLWuwPs3i0KFvycqaQmlZPs2bj6B9u4cJDo51S7/e5vDhw6xcuZJt27Zhs9no3r07F154IU2bNq3RfRwOO1mpa8jIzmXM1de6qduzo4DmZvrLXESk4dCYLlJPHMmCeXdD7hpoN7RqS/4w5xtslNgdTM0+wMzcQ0QG+DElsTUjIpq4rcUVGVXr0zIOnqZ323D+NiaZztGuP5/dXkpu3ixyct7A4aggJuYm2sbd3eDXp/2PwsJCfvrpJ7Zs2YLD4aBLly7079+f5s2b1+g+3jiuK6C5mTe+6SIicnY0povUIw4HrH8HFv+jagZt+FNVh1z/zhlom08Wc19aLulFpYyLbMpTCdGE+/m6pcVKu4NP1ufx8g8ZHCsu58oerZk8ogMtQgNdvkdZ2SF273mJgoIv8PNrSnz8/bSK+jM2m3t69jYnT55k9erVbNiwgcrKSpKTk+nfvz9RUVEu1XvjuK6A5mbe+KaLiMjZ0ZguUg8dy4Z598Le5RDXHy6dBuHxTkvKHA5eyznItJyDhPn68nxia8a0CHNbiydKKnh9SSbvrc7G38fGXYPbM/7CtgT6uf4xy5OntpOZ+SzHj6cSEpJIQsJjNAu/0G09e5uioiLWrl1LamoqZWVlJCQkMGDAAGJinM+ceuO4roDmZt74pouIyNnRmC5ST1kWbJoNix4HRyUM/TukTACb8wC043QJ9+3KZdvpEsY0b8Jzia1p7l+zg5NrIvtIEf9csItFOw8SHRbEw6OSGNM1qkbr0w4fXkhm1vOUluYR0WwI7ds/QkiI80DakJSUlJCamsratWspKSkhLi6OAQMG0LZt2998Hb1xXFdAczNvfNNFROTsaEwXqedO7If590HmIojpDZe+Ds0TnZZUOCxm5h1i6t4DhPjYeCYhmrGRTV0OTWdj9e4jPD1/F7sKTtIztil/G5NMt5gwl+vt9jL27XuPvdkzcDhKad36BtrG3YOfn/vW1HmbsrIyNm7cyOrVqzl9+jTR0dEMGDCAxMREHVRdVxTQRETE3TSmizQAlgU/fwbfPQQVJTD4Eeh7D/g4X7OVUVTK/Wm5bDxZzPBmobzQoTVRAf5ua9PusPh8Qx5TF6Vz5HQ5Y8+L5qGRSbRsUoP1aeVH2LPnFfLzP8PXN5T4+L8Q3eoabDb3zQJ6m4qKCrZs2cKqVas4ceIEkZGR9O/fn+TkZGw2m1eO6wpobuaNb7qIiJwdjekiDcipg7DgQdj1DUR1h8tnQGQnpyV2y+KdfYd5fk8BvsbwZPtorokKd+ts2qnSCmYs282slXvxsRkmDmzHhAHxBPm7vj7t1KldZGY9y7FjawgObkdCwqNENBvktp69kd1uZ9u2baxcuZKjR4/SrFkz+vfvT2FhIUPq0UHVzre4ERERERGprxpHwlUfwJXvw4l98OZAWPY8VJZXW+JjDHfEtGBJryQ6Nw7igfQ8rtq6m9ySMve1GejHf41M4scHBzIkqQWvLM5gyEvLmLt5Pw6Ha5MpjRt35Lzu/6ZrlzexrEq2bh3Pli23cLoo0219exsfHx+6d+/OpEmTGDduHL6+vsydO5f09HRPt1YjmkGrBfrfVhGRhkNjukgDVXQUvn8Ytn0GkZ3hsteh1XlOSxyWxez8ozy9Ox8LeDw+ipujI7C5cTYNIHVvIU/N38H2/SfpHhPG3y9J5vw2rh/S7HCUs2/fB+zNnobdXkx0q2tp2/Ze/P3D3di197Esi4yMDNLT07n00ks93c7/oRk0EREREfljC2kGV7wNV38MRUfg7aGw+EmoKK22xGYMN0dHsCwliZTQEB7N3M/YzVnsKXbfbBpASttw5k26kBfHdSX/eAljZ6zm3o83s/94iUv1Nps/bdrcSt8+S2jV6hr253/EmrVDyc19F4ej+tnDhsYYQ4cOHQgNDfV0KzWigCYiIiIifxxJF8OkddD9Glj1MrzZH/JSnZbEBPrzcbd4Xk6KYWdRCUPWpzEz9xB2N34SzWYzXNkzhqWTB3HPkPYs3HGAIVOX8fKidIrKKl26h79/OEkdniSl13xCQ7uRmfUsa9eN4vCRH6lPn6L7o1FAExEREZE/lqAwuGw6XP9l1S6Ps0bA949CeXG1JcYYro1qxvKUJPo3bcyTu/O5ZFMm6UXVz8DVhpAAXx4c0YElkwdxUaeWTFuSxeCpy5izcZ/L69MaNUqke7d/0a3rOxjjw88/T2Dzlhs5dTrNrb3L2amzgGaMiTfGzDLGzPnFtRBjzPvGmLeNMdfVVS8iIiIiIrQfCnetgV7jYe10mNkP9q50WhIV4M/sLm2ZkRzL3uIyhq9P57Xsg1S4GJbOVnRYENOuOY8v7uxLVFgQkz/fymXTf2J9dqFL9cYYIiIG0zvlWxIT/s6pUztITb2EXWmPUV5+xK29S824FNCMMe8aYw4ZY7b/6vpIY0y6MSbLGPOws3tYlrXHsqzxv7o8FphjWdbtgHet3BMRERGRhi+gMYx+CW7+turx+2Ng/gNQdqraEmMMYyObsqJ3EhdFNOG5vQVcvDGD7aeqn4GrLT1iw/nqzn68elV3Dp8q48o31jDpw03kFbr23DabHzExN9Gv7xJiWt9IQcEcVq8ZSk7OWzgc7l1bJ65xdQbtPWDkLy8YY3yA6cAoIBm4xhiTbIzpYoyZ/6uvFtXctzWQd+bX9pq3LyIiIiJSC+IuhDtXQ9+7YcO7MKMvZC12WtLc34+3O8fxTqc4CsoqGLkxgyl7CihzONzaqs1muPy8aJZMHsh9wxJYknaIoS8vZ8r3aZwqrXDpHn5+YSQm/o3eKQsIC+tF1u4prF07kkOHF2p9moe5FNAsy1oB/Hr+NAXIOjMzVg58AlxmWdY2y7LG/OrrUDW33kdVSHO5FxERERERt/APhouehfGLwC8IPrgC5k6CkmNOy8a0CGNF7yQub9GUV3IOMmJDBptOFrm93WB/X+4blsiSyQMZ0yWKmct2M3jqcj5JzcXu4kcuQ0La0b3bO3Tv9h42nwC2bbuLTZuv49SpHW7uXqrj8jloxpg4YL5lWZ3PPB4HjLQs67Yzj28AeluWdXc19c2AZ4HhwDuWZT1njAkBXgdKgVWWZX34G3UTgAkAkZGRPT755JOa/QnrwOnTp2nUqJGn2xARkVqgMV1EAGz2cmJzPqVN7peU+zchI/FOjkb0/t26TZYv7xDMMQxjKONKSvF377Fp/9+e43Y+Sisn67iDmMY2rk3yp2MzH5frLcuOxQosay5QhOECjBmLMU3c1nNd8MZxffDgwdWeg1ZnAa026KBqERFxN43pIvJ/5G+BryfBwe3QeRyMeqHqTDUnTlbaeSornw8KjhIfFMArSTH0DqubgGBZFvN/LuD579LYf7yEEcmRPHpxR+IiQly+R0XFSbKzXydv32xsNn/iYu8kJuZWfHwC3Ni5+3jjuO6ug6r3AzG/eNz6zDURERERkYahVXe4fSkMehR2fg3TU2D7l+BkkiPU14epSTF81q0dFZbF5ZuzeCxjH0WV7t9ywRjDJd1a8eODA/nrRR1YlXWE4a8s558LdnHS5fVpoSQkPEqf3t8R3rQfu/dMZe264Rw8+K3Wp9WBc5lB8wUygKFUBbP1wLWWZbntA6tBMR2sdvfNdNftz1plZSW+vr6ebkNERGqBxnQRqU6CPYenS1+nsyOLxb69eTrgDo7amjqtsYBSh4MKh4UBgnxs+Jo6+swj4HBYlBdVUFlqBwMBIX74BvlSkw4sqxK7owwsOxhffGwBVO0XWD9447i+Y/LQc5tBM8Z8DKwBOhhj9hljxluWVQncDSwEdgGfuTOciYiIiIh4UqZPLNcFP89L/jfSv3IT84ru5dKKpU5n0wwQZLMR7GPDGCi2OyhxOKireSibzRDY2J+gpgHYfG2Una6guLCUynLXZ/OM8cXXJwSbLQgsB3Z7EXZ7CRbu3a3yj8rlGTRvoDVoIiLibhrTRcQlRzKr1qblrYP2w+GSV6FJa6clxXYHL+4t4M28w7QM8OOFDjEMaxZaN/1StT5t4Y4DPLtgF3mFJQxNasGjozvSrrnr6+MqK0+RnT2T3Lx/YYwPsbF3ENvmNnx8gtzY+bnxxnHdXWvQRERERET+mCIS4JbvYOQUyPkJpveBDf9yOpsW7GPjifbRzD8/gUY+Plz/8x7u2ZXDsYrKOmnZGMPIzlEsfmAgD49KYt3eQi56ZQVPfrOD48XlLt3D17cx7ds/RN8+C4loNoi9e19lzdphHDjwNZalGbXaoIAmIiIiInI2bD7QZ2LVAdetusP8+2D2pXAs22nZ+U1C+KFXIvfHRvLlwWMMSE1jweHjddBwlQBfHyYObMfSyYO4smcM76/OZtDUZby/OpsKu2shKyioDV26vM75532Mv38zdux8gA0br+TEic1u7r7hU0ATERERETkX4W3hpm9gzKuwfzPM6Avr3gRH9WEnwGbjv+Kj+L5HIpH+fty6PZsJO7I5XO7aTou1oXnjAJ4b24X59/QnOSqUJ+btYOSrK1iafsjlezRtmkKvnnPp2HEKpaX5bNg4ju077qO0NN+NnTdsCmgiIiIiIufKGOh5C0xaC7EXwHcPwXsXw5Esp2VdGgfzXY9EHm7bku8Pn2BgahpfHTxWp9vZJ7cK5cPbevP2jT2xOyxu+dd6bno3lcyDp1yqN8ZGq6hx9O2zmLi4SRw+vIg1a4exe88rVFYWubn7hkcBTURERESktjRpDdd9DpfPhEM74Y0L4KfXwF79OjM/m+G+uJYs6pVIbGAAd+7M4ebtezlQVnezacYYhidHsuj+gTw+uiObco8x8rWV/P3r7RQWubo+LYR28Q/Qt89imjcfQXb266xZO4yCgi+0Pq0GFNBERERERGqTMdD9WpiUCu2Gwg9/h1nD4eBOp2VJIUHM75HA39u1YnnhKQak7uLjgqN1Opvm72vjtv7xLP/rYK5NacOH63IZ9OJS3lm5h/JK10JWYGArOnd6lR49PiMwMIqdux5i/YY/cfy49+3G7o0U0ERERERE3KFxS7j6Qxj3LhzPgTcHwPIXwF79zJiPMdzVpgU/9upAx5Ag7k/L45qte8grdW0Wq7aEh/jz9OWd+e4v/ekWE8Yz3+7ioldXsHjnQZcDY1iTHvTsMYdOyS9TXn6EjZuuYtv2eygpyXNz9/WbApqIiIiIiLsYA52vqJpNS74Ulj4Lbw2Ggq1Oy9oFB/LVee15NiGa1JNFDEpN4739R3DU8RnGiZGNmX1rCv+6uRc2A7fN3sD1s9axq+CkS/XG2GjZ8jL69vmBtm3/wpEjS1i7bgRZu6dSWXnazd3XTwpoIiIiIiLuFhJRNZN21YdQdKgqpP34NFSWVVtiM4bxrZuztFcHzg8N5uGMfYzbspvskupr3MEYw+CkFnx/3wD+cUky2/efZPS0lTzy5TaOnHatFx+fYOLb3kvfPotp0eJicnJmsmbtUPLzP8Oy7G7+E9QvCmgiIiIiInWl4xiYtA66XQ0rp8Ib/WGf87VZsUEBfNatHS91iGHbqWIGp6bxVt4h7HU8m+bnY+PmC9qy/K+DuKlfHJ9vyGPwi8t4c/luyipdC1mBgVF0Sn6Jnj2/JCgwhl1pj5C6/nKOHVvr5u7rDwU0EREREZG6FNQULp8B130B5UVVG4gsfAzKi6stMcZwXatmLE9Jol9YY/6elc9lmzLJLCqtw8arhAX788QlnVh4/wBS2obz3HdpDH95Bd9vL3B5fVqT0G706PE5nTu9RmXFcTZtvo6ft91JcXGOm7v3fgpoIiIiIiKekDAM7loDPW6GNa9Xbcmf/ZPTklaB/nzQtS2vd2xDVnEZwzak8985B6l01O1sGkC75o2YdXMvZt+aQqCfjYkfbOLqt9ayff8Jl+qNMURGjqFPnx+Ij3+AwsJVrF13EZlZz1FZ6doZbA2RApqIiIiIiKcEhsKYV+Cmb8ByVB1u/e1kKKs+oBhjGNcynBUpSQxrFsqzewq4eFMGO0+X1GHj/2tAYnMW3NufZy7vTOah01zy+ioemrOVQyddm93z8Qmkbdwk+vb5kZYtLyM3dxar1wxh3/6PcDiqPz+uoVJAExERERHxtLYD4M7V0OcuWP8OzOgHu5c4LWkR4Meszm15u1Mc+0srGLEhnRf3FlDuqPtDoX19bFzfJ5alkwdx24Vt+WrzfgZPXcb0pVmUVri2Pi0goAXJHafQq9dcQkLak57+N1LXX8LRwlVu7t67KKCJiIiIiHgD/xAY+RzcuhB8A+Dff4Kv74aS407LLmkRxoqUJC5r0ZSXsg9y0YYMtpysfj2bOzUJ8uOx0cn8cP9ALmgfwYsL0xn60nLm/5zv8vq00MadOf+8j+jSeTp2ewlbttzE1q23U1S0x83dewcFNBERERERb9KmN0xcBRfeD1s+hBl9IP17pyXN/H2ZnhzL7C5tOVZh5+KNGTyzO59Se93PpgHERYTw1o09+ei23jQO9OXujzZz5Rtr+HnfcZfqjTG0aDGSPr0X0r7dQxw7nsq61FFkZD5DRYVra9zqKwU0ERERERFv4xcIw/4Bt/0IQeHw8VXwxe1QXOi0bEREE5andODqqHBezz3EsA3prD9RVDc9/4Z+7SP49t7+PD+2C9lHi7j09Z944LMtHDjh6vq0AGJj76Bv3x+JihpHXt77rF4zhLx9s3E4KtzcvWcooImIiIiIeKvo82HCMhj4MOz4EqanwI65Tkua+PnyclIbPukWT4ndwaWbMvlb5j6K7J45ENrHZrg6pQ1LJw9i4sB2zN9awOCpy3htcSYl5S6uT/OPoGPSs6T0mkfjxh3JyHiSdamjOXJ0mXub9wAFNBERERERb+brD4MfgQnLIbQVfH4TfHoDnD7ktGxQeCjLU5K4KTqCt/cdYUhqOquOeW77+saBfjw8KonFDwxkcFJzXlmcwZCXljF3834cLh4T0LhxR87r/m+6dnkTy6pk69bxbNlyC6eLMt3cfd1RQBMRERERqQ9adobblsDQJyBjYdVs2s+fgZPNNxr5+vB8Ymu+7N4eY2Dclt08lJ7HqUrPzKYBtGkWzIzrevDphD40a+TPfZ9uYezM1WzKPeZSvTGG5s2H0af39yS0f4wTJzeTmjqa9PR/UF7u/COg9YECmoiIiIhIfeHjC/0fgIkroVl7+PJ2+PhqOJnvtKxf00Ys6ZXEHTHN+Xf+UQalprHk6Mk6avq39Y5vxrxJF/LiuK7kHy9h7IzV3PvxZvYfd+08N5vNnzZtbqVvnyW0anUN+/M/Ys3aoeTmvovDUe7m7t1HAU1EREREpL5p3qFqO/6LnoM9y2F6b9g02+lsWrCPjSfbRzP//ASCfWxc+/Me/rIrl+MVnjsM2mYzXNkzhqWTB3HPkPYs3HGAIVOX8fKidIrKXOvL3z+cpA5PktJrPqGh3cjMepa160Zx+MiPLm/t700U0ERERERE6iObD/S9C+78CVp2hXn3wL8vh2M5Tst6NAnhh54d+EtsJHMOFjIgNY3vD3t26/qQAF8eHNGBJZMHcVGnlkxbksXgqcuYs3Gfy+vTGjVKpHu3f9Gt6zsYY+PnnyewZctNWNY+N3dfuxTQRERERETqs2bt4KZvYPRLsG8DzOgLqW+Do/oz0AJ9bDwSH8V3PRKJ8PPl5u17mbgjmyPlnptNA4gOC2LaNefxxZ19iQoLYvLnW7ls+k+sz3ZtbZkxhoiIwfROWUBiwt85eWo7lrXYzV3XLgU0EREREZH6zmaDXrfBXWuqDrpeMBneGw1Hdzst69o4mO97JvLXuJZ8e/gEA1J3MffgMY9/NLBHbDhf3dmPV6/qzuFTZVz5xhomfbiJvMJil+ptNj9iYm6iX98lGHOFm7utXQpoIiIiIiINRVgbuP5LuGw6HNwBM/vB6v8GR/W7NvrbbDzYtiWLeiYSE+jPxJ053Lo9m4Nlnj0I2mYzXH5eNEsmD+S+YQksSTvE0JeXM+X7NE6Vutabn18YxjR2c6e1SwFNRERERKQhMQbOux4mrYP4wbDocZg1Ag6lOS3r2CiIb89P5PH4KJYUnmRAahqfFhR6fDYt2N+X+4YlsmTyQMZ0iWLmst0MnrqcT1Jzsbu4Pq0+UUATEREREWmIQqPgmo/hillQuAfe7A8rXgR79bNPvjbD3bGR/NirA4nBgfwlLZfrft7D/lLPb1sf1SSIl6/qztxJFxDbLJiHv9zGmP9exerdRzzdWq0ynk7ENdEzrom14YkLPd3Gfzh+/DhhYWGebkNERGqBxnQRaZDs5VUhrfgI+IVARAL4N3JaYmFxoKyCnNJyDBAbFECkvy8GUzc9/05vR4vKyT1aTLndQdNgf2KbBRPo6/Mfv9cbx3Vz64KNlmX1/K3vaQZNRERERKSh8/GH5klVX/ZyKNgCx3PAqn6nR4MhKsCf7o2DCfHxYU9xGTtPl1LqZHfIumIwRIQE0D0mjJimQZwoqWBr3nFyCouo9IL+zoWvpxuokYgEuOVbT3fxH7YsW8agQYM83YaIiNQCjeki0uAVF8LCR2Hrx1WzaJdNh9Y9qv3tgUAny+KDgqM8mZWP3YLH2kVxa3QENuPZ2TQbEA34nSzlxYXpzNm0j/Bif+4fnsjVvWLw9bF557h+a/Wvm2bQRERERET+SILD4U9vwLWfQ9lJmDUMFv0NKkqqLTHGcEOrCJanJNE3LITHM/dz+eYssopL67Dx6rUIDeTFK7vxzd0X0q5FIx6fu53R01axMvOwp1urMQU0EREREZE/osQRVeemnX8jrJ4GMy+AnDVOS6ID/fmwazzTOrYhvaiUoevTeT3nIJVespti5+gmfDqhDzOvO5/iikpumJXKBzvLPN1WjSigiYiIiIj8UQU2gUtegxu/BkcF/GsULHgIyk5XW2KM4c8tw1mRksSQ8FCe2VPA6E0Z7Dpd/QxcXTLGMKpLFD/cP5CHRyXRpfl/bhzizRTQRERERET+6OIHwZ1roPcdkPoWzOwLe5Y5LYkM8OPdznG82SmWvNJyRmzI4KW9Byj3kk06Av18mDiwHd2a169tNxTQREREREQEAhrBqClwy3dVuz7Ovgzm3QulJ6otMcZwWYumrEjpyJjmTXgx+wAjN2Sw9VRxHTbesCigiYiIiIjI/4rtCxNXwQV/gc3/hhl9IWOR05IIf19mdorjvc5tOVpRycUbM/jn7nxK7d4xm1afKKCJiIiIiMj/5RcEw5+C8YshIBQ+uhK+mli1Rb8TI5s3YXlKEldGhjMt9xDDN6Sz4URRHTXdMCigiYiIiIjIb2vdA+5YDgMegm2fw/TesOsbpyVhfr682rENH3WNp9ju4JJNmTyRuZ9izaa5RAFNRERERESq5xsAQx6D25dC45bw6fXw+c1w2vkZY0OahbIsJYkbWjXjzX2HGbI+jZ+OnaqbnusxBTQREREREfl9UV3h9iUw5G+Q9i1MT4Ftc8Cq/gy0xr4+vNAhhjnd22FZcMWW3fxXeh6nK+112Hj9ooAmIiIiIiKu8fGDAZPhjpUQHg9fjIdProWTBU7LLmzamCUpHZjQujmz848yMDWNZYUn66jp+kUBTUREREREaqZFEoxfBCOehd1Lqtambf7A6WxaiI8PTyVEM+/8BIJ8bFy9dQ/3p+VyoqKyDhv3fgpoIiIiIiJSczYf6Hc33LkaWnaGryfBB2PheK7Tsl5NQljcswP3tGnBpwWFDEhNY+GR6s9a+6NRQBMRERERkbPXrB3cNB8ungq566rOTVv/Djiq37Ux0MfGY+1asaBHIuF+vty0bS937czhaLlm0xTQRERERETk3NhskHI73LUGWveEbx+E9y+Bo7udlnUPDWZhz0QejItk3qFjDEhNY96h43XTs5dSQBMRERERkdrRNBZumAuX/jcc+BlmXgBrpoOj+l0b/W02/to2ikU9OxAd4MeEHdmM376XQ2UVdde3F1FAExERERGR2mMMnH8jTFoH8QNh4aPw7kVwON1pWXKjIBb0SOSx+CgWHz3JwNQ05hwoxHKy8UhDpIAmIiIiIiK1L7QVXPMJjH0bjmbBGxfCypfAXv06M1+b4Z7YSH7o2YF2wQHcvSuXG7btJb+0vA4b9ywFNBERERERcQ9joOufYVIqdBgFPz4F7wyBA9ucliWGBPL1+Qk81b4VPx07xcDUND7MP/qHmE1TQBMREREREfdq1AL+PBuufB9O5sNbg2DpP6Gy+pkxH2OYENOCpSlJdGkczIPpefx5625ySsrqrm8PUEATEREREZG60enyqtm0zlfA8inw1kDYv8lpSVxQAHO6t2NKYms2nSxm8Pp0Zu07jKOBzqYpoImIiIiISN0JDoexb8E1n0LJMXhnKPzwBFSUVltiM4aboiNYnpJE7yYhPJa5nz9tzmJ3cfU19ZUCmoiIiIiI1L0OI+GutdD9Ovjp1apNRHLXOS1pHejPR13jeTUphrSiUoauT2dG7iHsDWg2TQFNREREREQ8IygMLnsdbvgKKsuqtuP/7mEoL6q2xBjD1VHNWJ6SxMDwxjy1O58xGzNJKyqpu77dSAFNREREREQ8q90QuGs19LoN1s2Emf1g7wqnJS0D/Hivc1tmJseSU1rG8PUZvJJ9gApH/Z5Nq9OAZoyJN8bMMsbM+cW1y40xbxtjPjXGjKjLfkRERERExEsENIbRU+HmBWBs8P4lMP9+KD1ZbYkxhj9FNmV5ShKjmjdhyt4DjNqYwbZTxXXYeO1yOaAZY941xhwyxmz/1fWRxph0Y0yWMeZhZ/ewLGuPZVnjf3VtrmVZtwMTgatq0ryIiIiIiDQwcRfAxJ+g792w8T2Y0RcyFzstae7vx1ud4pjVOY6D5RWM3JjB83sKKHM46qbnWlSTGbT3gJG/vGCM8QGmA6OAZOAaY0yyMaaLMWb+r75a/M79Hz9zLxERERER+SPzD4aLnoVbF4F/CHx4Bcy9q2rXRydGNw9jRUoSYyOb8mrOQYavzyDT8qmjpmuHqclp3MaYOGC+ZVmdzzzuC/zDsqyLzjx+BMCyrOd+5z5zLMsad+bXBnge+MGyrP+IxsaYCcAEgMjIyB6ffPKJy/3WldOnT9OoUSNPtyEiIrVAY7qIiHcxjgrisj+lTe4XlPs3ISPxTo5G9P7dus2WL28TTNeKYib6V9ZBp64bPHjwRsuyev7W93zP8d7RQN4vHu8Dqn21jDHNgGeB84wxj5wJcvcAw4Amxpj2lmW98csay7LeAt4C6NmzpzVo0KBzbLn2LVu2DG/sS0REak5juoiINxoOBfcQMHcSXbb/s+qg61EvQEhEtRWDgPGVdn5aubJejevnGtBqxLKso1StNfvltWnAtLrsQ0RERERE6pmobjBhKax6FZZPgT3L4OIXodNYMOY3S0J9fQj67W95rXPdxXE/EPOLx63PXBMREREREaldPn4w8K9wxwoIi4U5t8Kn18OpA57urNaca0BbDyQYY9oaY/yBq4F5596WiIiIiIhINSKTYfwPMPxpyFoM01Ngy0dQg/01vFVNttn/GFgDdDDG7DPGjLcsqxK4G1gI7AI+syxrh3taFREREREROcPHFy64t2pL/hbJMPdO+HAcHM/7/Vov5vIaNMuyrqnm+gJgQa11JCIiIiIi4qqI9lWHW69/Bxb/o+rctBFPwfk3g+1cPzBY9+pfxyIiIiIiIr9ks0HvCXDXaog+D+bfD7MvhcK9nu6sxhTQRERERESkYWgaBzfOg0teg/wtMLMfrfZ/5+muakQBTUREREREGg5joMfNMGktxF2IsbzrkOrfo4AmIiIiIiINT5PWcO1n7I8e7elOakQBTUREREREGiZjwNSvyFO/uhUREREREWnAFNBERERERES8hAKaiIiIiIiIl1BAExERERER8RIKaCIiIiIiIl5CAU1ERERERMRLKKCJiIiIiIh4CQU0ERERERERL6GAJiIiIiIi4iUU0ERERERERLyEApqIiIiIiIiXUEATERERERHxEgpoIiIiIiIiXkIBTURERERExEsooImIiIiIiHgJBTQREREREREvoYAmIiIiIiLiJRTQREREREREvIQCmoiIiIiIiJdQQBMREREREfESCmgiIiIiIiJeQgFNRERERETESxjLsjzdg8uMMYeBHKAJcKKWblsb94oAjtRCL+IZtfnzVJ/V59fB23r3RD918Zzueg6N6VLbvG1M8JT6+jp4W9+e6kfjeu3dyxvH9VjLspr/1jfqVUD7H8aYtyzLmuAt9zLGbLAsq2dt9CN1rzZ/nuqz+vw6eFvvnuinLp7TXc+hMV1qm7eNCZ5SX18Hb+vbU/1oXK+9e9W3cb2+fsTxGy+9l9RP+hmoUp9fB2/r3RP91MVzuus5NKZLbdPPQZX6+jp4W9+e6kfjeu3fq16olzNo3qa+pXIREamexnQRkYalvo3r9XUGzdu85ekGRESk1mhMFxFpWOrVuK4ZNBERERERES+hGTQREREREREvoYAmIiIiIiLiJRTQREREREREvIQCWi0zxoQYY943xrxtjLnO0/2IiMi5McbEG2NmGWPmeLoXERE5d8aYy8/8W/1TY8wIT/fzawpoLjDGvGuMOWSM2f6r6yONMenGmCxjzMNnLo8F5liWdTtwaZ03KyIiv6sm47plWXssyxrvmU5FRMQVNRzX5575t/pE4CpP9OuMAppr3gNG/vKCMcYHmA6MApKBa4wxyUBrIO/Mb7PXYY8iIuK693B9XBcREe/3HjUf1x8/832vooDmAsuyVgCFv7qcAmSd+Z/VcuAT4DJgH1UhDfT6ioh4pRqO6yIi4uVqMq6bKlOA7yzL2lTXvf4eBYizF83/zpRBVTCLBr4ErjDGzAS+8URjIiJyVn5zXDfGNDPGvAGcZ4x5xDOtiYjIWaju3+v3AMOAccaYiZ5ozBlfTzfQ0FiWVQTc4uk+RESkdliWdZSqdQoiItIAWJY1DZjm6T6qoxm0s7cfiPnF49ZnromISP2kcV1EpGGpl+O6AtrZWw8kGGPaGmP8gauBeR7uSUREzp7GdRGRhqVejusKaC4wxnwMrAE6GGP2GWPGW5ZVCdwNLAR2AZ9ZlrXDk32KiIhrNK6LiDQsDWlcN5ZleboHERERERERQTNoIiIiIiIiXkMBTURERERExEsooImIiIiIiHgJBTQREREREREvoYAmIiIiIiLiJRTQREREREREvIQCmoiIiIiIiJdQQBMREREREfESCmgiIiIiIiJe4v8BszKEA6cVlZ8AAAAASUVORK5CYII=",
- "text/plain": [
- "<Figure size 864x576 with 1 Axes>"
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"z = 0.5\n",
"ns = [4, 5, 5, 6, 7, 8, 8, 9, 10, 11, 11, 12] # np.arange(4, 13)\n",
@@ -439,6 +368,59 @@
"# _ = ax.legend([f\"z={zi}\" for zi in z[0]])\n",
"# _ = [ax.axvline(x) for x in zeros]\n"
]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "bests = []\n",
+ "N = 200\n",
+ "step = 1 / (N - 1)\n",
+ "a = 11 / 8\n",
+ "b = 1 / 2\n",
+ "x = np.linspace(step, 1 - step, N + 1)\n",
+ "ns = np.arange(2, 13)\n",
+ "for n in ns:\n",
+ " zeros, weights = np.polynomial.laguerre.laggauss(n)\n",
+ " est = np.ceil(b + a * n)\n",
+ " targets = np.arange(max(est - 2, 0), est + 3)\n",
+ " rel_errors = np.stack([np.abs(evaluate(x, target)) for target in targets], -1)\n",
+ " best = np.argmin(rel_errors, -1) + targets[0]\n",
+ " bests.append(best)\n",
+ "bests = np.stack(bests, 0)\n",
+ "\n",
+ "fig, ax = plt.subplots(clear=True, constrained_layout=True, figsize=(5, 3))\n",
+ "v = ax.imshow(bests, cmap=\"inferno\", aspect=\"auto\")\n",
+ "plt.colorbar(v, ax=ax, label=r'$m$')\n",
+ "ticks = np.arange(0, N + 1, 10)\n",
+ "ax.set_xlim(0, 1)\n",
+ "ax.set_xticks(ticks, [f\"{v:.2f}\" for v in ticks / N])\n",
+ "ax.set_xticks(np.arange(N + 1), minor=True)\n",
+ "ax.set_yticks(np.arange(len(ns)), ns)\n",
+ "ax.set_xlabel(r\"$z$\")\n",
+ "ax.set_ylabel(r\"$n$\")\n",
+ "# for best in bests:\n",
+ "# print(\", \".join([f\"{int(b):2d}\" for b in best]))\n",
+ "# print(np.unique(bests, return_counts=True))\n",
+ "\n",
+ "targets = np.mean(bests, -1)\n",
+ "intercept, bias = np.polyfit(ns, targets, 1)\n",
+ "_, axs2 = plt.subplots(2, sharex=True, clear=True, constrained_layout=True)\n",
+ "xl = np.array([1, ns[-1] + 1])\n",
+ "axs2[0].plot(ns, intercept * ns + bias)\n",
+ "axs2[0].plot(ns, targets, \"x\")\n",
+ "axs2[1].plot(ns, ((intercept * ns + bias) - targets), \"-x\")\n",
+ "print(np.mean(bests, -1))\n",
+ "print(f\"Intercept={intercept:.6g}, Bias={bias:.6g}\")\n",
+ "\n",
+ "\n",
+ "predicts = np.ceil(intercept * ns[:, None] + bias - x)\n",
+ "print(np.sum(np.abs(bests-predicts)))\n",
+ "# for best in predicts:\n",
+ "# print(\", \".join([f\"{int(b):2d}\" for b in best]))\n"
+ ]
}
],
"metadata": {
diff --git a/buch/papers/laguerre/scripts/gamma_approx.py b/buch/papers/laguerre/scripts/gamma_approx.py
new file mode 100644
index 0000000..90843b1
--- /dev/null
+++ b/buch/papers/laguerre/scripts/gamma_approx.py
@@ -0,0 +1,197 @@
+from pathlib import Path
+
+import matplotlib as mpl
+import matplotlib.pyplot as plt
+import numpy as np
+import scipy.special
+
+EPSILON = 1e-7
+root = str(Path(__file__).parent)
+img_path = f"{root}/../images"
+
+
+def _prep_zeros_and_weights(x, w, n):
+ if x is None or w is None:
+ return np.polynomial.laguerre.laggauss(n)
+ return x, w
+
+
+def drop_imag(z):
+ if abs(z.imag) <= EPSILON:
+ z = z.real
+ return z
+
+
+def pochhammer(z, n):
+ return np.prod(z + np.arange(n))
+
+
+def find_shift(z, target):
+ factor = 1.0
+ steps = int(np.floor(target - np.real(z)))
+ zs = z + steps
+ if steps > 0:
+ factor = 1 / pochhammer(z, steps)
+ elif steps < 0:
+ factor = pochhammer(zs, -steps)
+ return zs, factor
+
+
+def laguerre_gamma_shift(z, x=None, w=None, n=8, target=11):
+ x, w = _prep_zeros_and_weights(x, w, n)
+
+ z += 0j
+ z_shifted, correction_factor = find_shift(z, target)
+ res = np.sum(x ** (z_shifted - 1) * w)
+ res *= correction_factor
+ res = drop_imag(res)
+ return res
+
+
+def laguerre_gamma_simple(z, x=None, w=None, n=8):
+ x, w = _prep_zeros_and_weights(x, w, n)
+ z += 0j
+ res = np.sum(x ** (z - 1) * w)
+ res = drop_imag(res)
+ return res
+
+
+def laguerre_gamma_mirror(z, x=None, w=None, n=8):
+ x, w = _prep_zeros_and_weights(x, w, n)
+ z += 0j
+ if z.real < 1e-3:
+ return np.pi / (
+ np.sin(np.pi * z) * laguerre_gamma_simple(1 - z, x, w)
+ ) # Reflection formula
+ return laguerre_gamma_simple(z, x, w)
+
+
+def eval_laguerre_gamma(z, x=None, w=None, n=8, func="simple", **kwargs):
+ x, w = _prep_zeros_and_weights(x, w, n)
+ if func == "simple":
+ f = laguerre_gamma_simple
+ elif func == "mirror":
+ f = laguerre_gamma_mirror
+ else:
+ f = laguerre_gamma_shift
+ return np.array([f(zi, x, w, n, **kwargs) for zi in z])
+
+
+def calc_rel_error(x, y):
+ return (y - x) / x
+
+
+ns = np.arange(2, 12, 2)
+
+# Simple / naive
+xmin = -5
+xmax = 30
+ylim = np.array([-11, 6])
+x = np.linspace(xmin + EPSILON, xmax - EPSILON, 400)
+gamma = scipy.special.gamma(x)
+fig, ax = plt.subplots(num=1, clear=True, constrained_layout=True, figsize=(5, 2.5))
+for n in ns:
+ gamma_lag = eval_laguerre_gamma(x, n=n)
+ rel_err = calc_rel_error(gamma, gamma_lag)
+ ax.semilogy(x, np.abs(rel_err), label=f"$n={n}$")
+ax.set_xlim(x[0], x[-1])
+ax.set_ylim(*(10.0 ** ylim))
+ax.set_xticks(np.arange(xmin, xmax + EPSILON, 5))
+ax.set_xticks(np.arange(xmin, xmax), minor=True)
+ax.set_yticks(10.0 ** np.arange(*ylim, 2))
+ax.set_yticks(10.0 ** np.arange(*ylim, 2))
+ax.set_xlabel(r"$z$")
+ax.set_ylabel("Relativer Fehler")
+ax.legend(ncol=3, fontsize="small")
+ax.grid(1, "both")
+fig.savefig(f"{img_path}/rel_error_simple.pgf")
+
+
+# Mirrored
+xmin = -15
+xmax = 15
+ylim = np.array([-11, 1])
+x = np.linspace(xmin + EPSILON, xmax - EPSILON, 400)
+gamma = scipy.special.gamma(x)
+fig2, ax2 = plt.subplots(num=2, clear=True, constrained_layout=True, figsize=(5, 2.5))
+for n in ns:
+ gamma_lag = eval_laguerre_gamma(x, n=n, func="mirror")
+ rel_err = calc_rel_error(gamma, gamma_lag)
+ ax2.semilogy(x, np.abs(rel_err), label=f"$n={n}$")
+ax2.set_xlim(x[0], x[-1])
+ax2.set_ylim(*(10.0 ** ylim))
+ax2.set_xticks(np.arange(xmin, xmax + EPSILON, 5))
+ax2.set_xticks(np.arange(xmin, xmax), minor=True)
+ax2.set_yticks(10.0 ** np.arange(*ylim, 2))
+# locmin = mpl.ticker.LogLocator(base=10.0,subs=0.1*np.arange(1,10),numticks=100)
+# ax2.yaxis.set_minor_locator(locmin)
+# ax2.yaxis.set_minor_formatter(mpl.ticker.NullFormatter())
+ax2.set_xlabel(r"$z$")
+ax2.set_ylabel("Relativer Fehler")
+ax2.legend(ncol=1, loc="upper left", fontsize="small")
+ax2.grid(1, "both")
+fig2.savefig(f"{img_path}/rel_error_mirror.pgf")
+
+
+# Move to target
+bests = []
+N = 200
+step = 1 / (N - 1)
+a = 11 / 8
+b = 1 / 2
+x = np.linspace(step, 1 - step, N + 1)
+gamma = scipy.special.gamma(x)[:, None]
+ns = np.arange(2, 13)
+for n in ns:
+ zeros, weights = np.polynomial.laguerre.laggauss(n)
+ est = np.ceil(b + a * n)
+ targets = np.arange(max(est - 2, 0), est + 3)
+ gamma_lag = np.stack(
+ [
+ eval_laguerre_gamma(x, target=target, x=zeros, w=weights, func="shifted")
+ for target in targets
+ ],
+ -1,
+ )
+ rel_error = np.abs(calc_rel_error(gamma, gamma_lag))
+ best = np.argmin(rel_error, -1) + targets[0]
+ bests.append(best)
+bests = np.stack(bests, 0)
+
+fig3, ax3 = plt.subplots(num=3, clear=True, constrained_layout=True, figsize=(5, 3))
+v = ax3.imshow(bests, cmap="inferno", aspect="auto", interpolation="nearest")
+plt.colorbar(v, ax=ax3, label=r"$m$")
+ticks = np.arange(0, N + 1, N // 5)
+ax3.set_xlim(0, 1)
+ax3.set_xticks(ticks, [f"{v:.2f}" for v in ticks / N])
+ax3.set_xticks(np.arange(0, N + 1, N // 20), minor=True)
+ax3.set_yticks(np.arange(len(ns)), ns)
+ax3.set_xlabel(r"$z$")
+ax3.set_ylabel(r"$n$")
+fig3.savefig(f"{img_path}/targets.pdf")
+
+targets = np.mean(bests, -1)
+intercept, bias = np.polyfit(ns, targets, 1)
+fig4, axs4 = plt.subplots(
+ 2, num=4, sharex=True, clear=True, constrained_layout=True, figsize=(5, 4)
+)
+xl = np.array([ns[0] - 0.5, ns[-1] + 0.5])
+axs4[0].plot(xl, intercept * xl + bias, label=r"$\hat{m}$")
+axs4[0].plot(ns, targets, "x", label=r"$\bar{m}$")
+axs4[1].plot(
+ ns, ((intercept * ns + bias) - targets), "-x", label=r"$\hat{m} - \bar{m}$"
+)
+axs4[0].set_xlim(*xl)
+# axs4[0].set_title("Schätzung von Mittelwert")
+# axs4[1].set_title("Fehler")
+axs4[-1].set_xlabel(r"$z$")
+for ax in axs4:
+ ax.grid(1)
+ ax.legend()
+fig4.savefig(f"{img_path}/schaetzung.pgf")
+
+print(f"Intercept={intercept:.6g}, Bias={bias:.6g}")
+predicts = np.ceil(intercept * ns[:, None] + bias - x)
+print(f"Error: {int(np.sum(np.abs(bests-predicts)))}")
+
+# plt.show()
diff --git a/buch/papers/laguerre/scripts/integrand.py b/buch/papers/laguerre/scripts/integrand.py
index 43fc1bf..0cf43d1 100644
--- a/buch/papers/laguerre/scripts/integrand.py
+++ b/buch/papers/laguerre/scripts/integrand.py
@@ -20,29 +20,30 @@ t = np.logspace(*xlims, 1001)[:, None]
z = np.array([-4.5, -2, -1, -0.5, 0.0, 0.5, 1, 2, 4.5])
r = t ** z
-fig, ax = plt.subplots(num=1, clear=True, constrained_layout=True, figsize=(6, 4))
+fig, ax = plt.subplots(num=1, clear=True, constrained_layout=True, figsize=(5, 3))
ax.semilogx(t, r)
ax.set_xlim(*(10.0 ** xlims))
ax.set_ylim(1e-3, 40)
-ax.set_xlabel(r"$t$")
-ax.set_ylabel(r"$t^z$")
+ax.set_xlabel(r"$x$")
+ax.set_ylabel(r"$x^z$")
ax.grid(1, "both")
-labels = [f"$z={zi:.1f}$" for zi in np.squeeze(z)]
-ax.legend(labels, ncol=2, loc="upper left")
+labels = [f"$z={zi: 3.1f}$" for zi in np.squeeze(z)]
+ax.legend(labels, ncol=2, loc="upper left", fontsize="small")
fig.savefig(f"{img_path}/integrands.pgf")
z2 = np.array([-1, -0.5, 0.0, 0.5, 1, 2, 3, 4, 4.5])
-r2 = t**z2 * np.exp(-t)
+e = np.exp(-t)
+r2 = t ** z2 * e
-fig2, ax2 = plt.subplots(num=2, clear=True, constrained_layout=True, figsize=(6, 4))
+fig2, ax2 = plt.subplots(num=2, clear=True, constrained_layout=True, figsize=(5, 3))
ax2.semilogx(t, r2)
# ax2.plot(t,np.exp(-t))
-ax2.set_xlim(10**(-2), 20)
+ax2.set_xlim(10 ** (-2), 20)
ax2.set_ylim(1e-3, 10)
-ax2.set_xlabel(r"$t$")
-ax2.set_ylabel(r"$t^z e^{-t}$")
+ax2.set_xlabel(r"$x$")
+ax2.set_ylabel(r"$x^z e^{-x}$")
ax2.grid(1, "both")
-labels = [f"$z={zi:.1f}$" for zi in np.squeeze(z2)]
-ax2.legend(labels, ncol=2, loc="upper left")
+labels =[f"$z={zi: 3.1f}$" for zi in np.squeeze(z2)]
+ax2.legend(labels, ncol=2, loc="upper left", fontsize="small")
fig2.savefig(f"{img_path}/integrands_exp.pgf")
-plt.show()
+# plt.show()