diff options
author | tschwall <55748566+tschwall@users.noreply.github.com> | 2022-08-19 11:10:07 +0200 |
---|---|---|
committer | tschwall <55748566+tschwall@users.noreply.github.com> | 2022-08-19 11:10:07 +0200 |
commit | 3dd42149bf496fe5cca749e69f839c2f6ab888a7 (patch) | |
tree | 6deb4e76ef891e22712f711515a9bad7a288de6e /buch | |
parent | verbesserungen (diff) | |
download | SeminarSpezielleFunktionen-3dd42149bf496fe5cca749e69f839c2f6ab888a7.tar.gz SeminarSpezielleFunktionen-3dd42149bf496fe5cca749e69f839c2f6ab888a7.zip |
Corrected errors
Diffstat (limited to 'buch')
-rw-r--r-- | buch/papers/parzyl/img/Plane_2D.png | bin | 99330 -> 209118 bytes | |||
-rw-r--r-- | buch/papers/parzyl/teil2.tex | 27 |
2 files changed, 20 insertions, 7 deletions
diff --git a/buch/papers/parzyl/img/Plane_2D.png b/buch/papers/parzyl/img/Plane_2D.png Binary files differindex 7c32877..f55e3cf 100644 --- a/buch/papers/parzyl/img/Plane_2D.png +++ b/buch/papers/parzyl/img/Plane_2D.png diff --git a/buch/papers/parzyl/teil2.tex b/buch/papers/parzyl/teil2.tex index d37c650..f0b5c34 100644 --- a/buch/papers/parzyl/teil2.tex +++ b/buch/papers/parzyl/teil2.tex @@ -12,7 +12,7 @@ Die parabolischen Zylinderkoordinaten tauchen auf, wenn man das elektrische Feld \centering \begin{minipage}{.7\textwidth} \centering - \includegraphics[width=\textwidth]{papers/parzyl/img/plane.pdf} + \includegraphics[width=\textwidth]{papers/parzyl/images/halfplane.pdf} \caption{Semi-infinite Leiterplatte} \label{parzyl:fig:leiterplatte} \end{minipage}% @@ -23,11 +23,12 @@ Die parabolischen Zylinderkoordinaten tauchen auf, wenn man das elektrische Feld \label{parzyl:fig:leiterplatte_2d} \end{minipage} \end{figure} -Das dies so ist kann im zwei Dimensionalen mit Hilfe von komplexen Funktionen gezeigt werden. Die Platte ist dann nur eine Linie, was man in Abbildung \ref{parzyl:fig:leiterplatte_2d} sieht. +Das dies so ist kann im Zweidimensionalen mit Hilfe von komplexen Funktionen gezeigt werden. Die Platte ist dann nur eine Halbgerade, was man in Abbildung \ref{parzyl:fig:leiterplatte_2d} sieht. + Jede komplexe Funktion $F(z)$ kann geschrieben werden als \begin{equation} - F(s) = U(x,y) + iV(x,y) \qquad s \in \mathbb{C}; x,y \in \mathbb{R}. + F(s) = U(x,y) + iV(x,y) \quad s = x + iy \qquad s \in \mathbb{C}; x,y \in \mathbb{R}. \end{equation} Dabei müssen, falls die Funktion differenzierbar ist, die Cauchy-Riemann Differentialgleichungen \begin{equation} @@ -59,23 +60,31 @@ Aus dieser Bedingung folgt 0 }_{\displaystyle{\nabla^2V(x,y) = 0}}. \end{equation} -Zusätzlich kann auch gezeigt werden, dass die Funktion $F(z)$ eine winkeltreue Abbildung ist. +Zusätzlich kann auch gezeigt werden, dass die Funktion $F(z)$ eine winkeltreue Abbildung ist. + + Der Zusammenhang zum elektrischen Feld ist jetzt, dass das Potential an einem quellenfreien Punkt gegeben ist als \begin{equation} \nabla^2\phi(x,y) = 0. \end{equation} -Dies ist eine Bedingung welche differenzierbare Funktionen, wie in Gleichung \eqref{parzyl_e_feld_zweite_ab} gezeigt wird, bereits besitzen. +Dies ist eine Bedingung, welche differenzierbare Funktionen, wie in Gleichung \eqref{parzyl_e_feld_zweite_ab} gezeigt wird, bereits besitzen. + + Nun kann zum Beispiel $U(x,y)$ als das Potential angeschaut werden \begin{equation} \phi(x,y) = U(x,y). \end{equation} -Orthogonal zum Potential ist das elektrische Feld +Orthogonal zu den Äquipotenzialfläche sind die Feldlinien des elektrische Feld \begin{equation} E(x,y) = V(x,y). \end{equation} + + Um nun zu den parabolische Zylinderkoordinaten zu gelangen muss nur noch eine geeignete komplexe Funktion $F(s)$ gefunden werden, welche eine semi-infinite Platte beschreiben kann. + + Die gesuchte Funktion in diesem Fall ist \begin{equation} F(s) @@ -93,6 +102,8 @@ Dies kann umgeformt werden zu i\underbrace{\sqrt{\frac{\sqrt{x^2+y^2} - x}{2}}}_{V(x,y)} . \end{equation} + + Die Äquipotentialflächen können nun betrachtet werden, indem man die Funktion, welche das Potential beschreibt, gleich eine Konstante setzt, \begin{equation} @@ -103,7 +114,9 @@ Die Flächen mit der gleichen elektrischen Feldstärke können als \tau = V(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} - x}{2}} \end{equation} beschrieben werden. Diese zwei Gleichungen zeigen nun, wie man vom -kartesischen Koordinatensystem ins parabolische Zylinderkoordinatensystem kommt. +kartesischen Koordinatensystem ins parabolische Zylinderkoordinatensystem kommt. + + Werden diese Formeln nun nach $x$ und $y$ aufgelöst \begin{equation} x = \sigma \tau, |