diff options
author | Andreas Müller <andreas.mueller@ost.ch> | 2022-03-11 22:34:32 +0100 |
---|---|---|
committer | Andreas Müller <andreas.mueller@ost.ch> | 2022-03-11 22:34:32 +0100 |
commit | ced982f32f430b7e3b82b3cc062411b8130b0bfd (patch) | |
tree | 1c8c8897129d82c96fcf0e2e7649f7a9f8311c80 /buch | |
parent | fixes session MSE 2 (diff) | |
download | SeminarSpezielleFunktionen-ced982f32f430b7e3b82b3cc062411b8130b0bfd.tar.gz SeminarSpezielleFunktionen-ced982f32f430b7e3b82b3cc062411b8130b0bfd.zip |
Bohr-Mollerup und Eindeutigkeit der Gamma-Funktion
Diffstat (limited to 'buch')
-rw-r--r-- | buch/chapters/040-rekursion/Makefile.inc | 2 | ||||
-rw-r--r-- | buch/chapters/040-rekursion/bohrmollerup.tex | 196 | ||||
-rw-r--r-- | buch/chapters/040-rekursion/gamma.tex | 2 | ||||
-rw-r--r-- | buch/chapters/040-rekursion/integral.tex | 103 |
4 files changed, 303 insertions, 0 deletions
diff --git a/buch/chapters/040-rekursion/Makefile.inc b/buch/chapters/040-rekursion/Makefile.inc index c5887f7..ed8fd51 100644 --- a/buch/chapters/040-rekursion/Makefile.inc +++ b/buch/chapters/040-rekursion/Makefile.inc @@ -6,6 +6,8 @@ CHAPTERFILES = $(CHAPTERFILES) \ chapters/040-rekursion/gamma.tex \ + chapters/040-rekursion/bohrmollerup.tex \ + chapters/040-rekursion/integral.tex \ chapters/040-rekursion/beta.tex \ chapters/040-rekursion/linear.tex \ chapters/040-rekursion/hypergeometrisch.tex \ diff --git a/buch/chapters/040-rekursion/bohrmollerup.tex b/buch/chapters/040-rekursion/bohrmollerup.tex new file mode 100644 index 0000000..96897be --- /dev/null +++ b/buch/chapters/040-rekursion/bohrmollerup.tex @@ -0,0 +1,196 @@ +% +% bohrmollerup.tex +% +% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\subsection{Der Satz von Bohr-Mollerup +\label{buch:rekursion:subsection:bohr-mollerup}} +Die Integralformel und die Grenzwertdefinition für die Gamma-Funktion +zeigen beide, dass das Problem der Ausdehnung der Fakultät zu einer +Funktion $\mathbb{C}\to\mathbb{C}$ eine Lösung hat, aber es ist noch +nicht klar, in welchem Sinn dies die einzig mögliche Lösung ist. +Der Satz von Bohr-Mollerup gibt darauf eine Antwort. + +\begin{satz} +\label{buch:satz:bohr-mollerup} +Eine Funktion $f\colon \mathbb{R}^+\to\mathbb{R}$ mit den Eigenschaften +\begin{enumerate}[i)] +\item $f(1)=1$, +\item $f(x+1)=xf(x)$ für alle $x\in\mathbb{R}^+$ und +\item die Funktion $\log f(t)$ ist konvex +\end{enumerate} +ist die Gamma-Funktion: $f(t)=\Gamma(t)$. +\end{satz} + +Für den Beweis verwenden wir die folgende Eigenschaft einer konvexen +Funktion $g(x)$. +Sei +\begin{equation} +S(y,x) = \frac{g(y)-g(x)}{y-x} +\qquad\text{für $y-x$} +\end{equation} +die Steigung der Sekante zwischen den Punkten $(x,g(x))$ und $(y,g(y))$ +des Graphen von $g$. +Da $g$ konvex ist, ist $S(y,x)$ eine monoton wachsende Funktion +der beiden Variablen $x$ und $y$, solange $y>x$. + +\begin{proof}[Beweis] +Wir halten zunächst fest, dass die Bedingungen i) und ii) zur Folge haben, +dass $f(n+1)=n!$ ist für alle positiven natürlichen Zahlen. +Für die Steigung einer Sekante der Funktion $g(x)=\log f(x)$ kann damit +für natürliche Argumente bereits berechnet werden, es ist +\[ +S(n,n+1) += +\frac{\log n! - \log (n-1)!}{n+1-n} += +\frac{\log n + \log (n-1)! - \log(n-1)!}{1} += +\log n +\] +und entsprechend auch $S(n-1,n) = \log(n-1)$. + +\begin{figure} +\begin{center} +\begin{tikzpicture}[>=latex,thick] +\draw (-6,0) -- (6,0); + +\node at (-5,0) [above] {$n-1\mathstrut$}; +\node at (0,0) [above] {$n\mathstrut$}; +\node at (3,0) [above] {$n+x\mathstrut$}; +\node at (5,0) [above] {$n+1\mathstrut$}; + +\node[color=blue] at (-5,-2.3) {$S(n-1,n)\mathstrut$}; +\node[color=red] at (-1.666,-2.3) {$S(n-1,n+x)\mathstrut$}; +\node[color=darkgreen] at (1.666,-2.3) {$S(n,n+x)\mathstrut$}; +\node[color=orange] at (5,-2.3) {$S(n,n+1)\mathstrut$}; + +\node at (-3.333,-2.3) {$<\mathstrut$}; +\node at (0,-2.3) {$<\mathstrut$}; +\node at (3.333,-2.3) {$<\mathstrut$}; + +\draw[color=blue] (-5,0) -- (-5,-2) -- (0,0); +\draw[color=red] (-5,0) -- (-1.666,-2) -- (3,0); +\draw[color=darkgreen] (0,0) -- (1.666,-2) -- (3,0); +\draw[color=orange] (0,0) -- (5,-2) -- (5,0); + +\fill (-5,0) circle[radius=0.08]; +\fill (0,0) circle[radius=0.08]; +\fill (3,0) circle[radius=0.08]; +\fill (5,0) circle[radius=0.08]; + +\draw[double,color=blue] (-5,-2.5) -- (-5,-3.0); +\draw[double,color=orange] (5,-2.5) -- (5,-3.0); + +\node[color=blue] at (-5,-3.3) {$\log (n-1)\mathstrut$}; +\node[color=orange] at (5,-3.3) {$\log (n)\mathstrut$}; + +\end{tikzpicture} +\end{center} +\caption{Für den Beweis des Satzes von Bohr-Mollerup wird die +Sekantensteigung $S(x,y)$ für die Argumente $n-1$, $n$, $n+x$ und $n+1$ +verwendet. +\label{buch:rekursion:fig:bohr-mollerup}} +\end{figure} +Wir wenden jetzt die eben erwähnte Tatsache, dass $S(x,y)$ monoton +wachsend ist, auf die Punkte $n-1$, $n$, $n+x$ und $n+1$ wie +in Abbildung~\ref{buch:rekursion:fig:bohr-mollerup} an, wobei +$0<x<1$ ist. + +Die linke Ungleichung in Abbildung~\ref{buch:rekursion:fig:bohr-mollerup} +ist +\begin{align} +\log(n-1) +&< +S(n-1,n+x) += +\frac{\log f(n+x) -\log(n-2)!}{n+x-n+1} +\notag +\\ +(x+1)\log(n-1) + \log(n-2)! +&< \log f(n+x), +\notag +\\ +x\log(n-1) + \log(n-1)! +&< \log f(n+x) +\label{buch:rekursion:bohr-mollerup:eqn1} +\intertext{sie schätzt $\log f(n+x)$ nach unten ab. +Die Exponentialfunktion ist monoton wachsen, wendet man sie auf +\eqref{buch:rekursion:bohr-mollerup:eqn1} an, erhält man} +(n-1)^x (n-1)! +&< +f(n+x). +\label{buch:rekursion:bohr-mollerup:ungllinks} +\end{align} +Ganz ähnlich folgt aus der Ungleichung rechts in +Abbildung~\ref{buch:rekursion:fig:bohr-mollerup} +\begin{align} +\frac{\log f(n+x)-\log (n-1)!}{n+x-n} +&< \log n +\notag +\\ +\log f(n+x) - \log(n-1)! +&< +x \log n +\notag +\\ +\log f(n+x) +&< +x\log n + \log(n-1)! +\notag +\intertext{und nach Anwendung der Exponentialfunktion} +f(n+x) +&< +n^x (n-1)! +\label{buch:rekursion:bohr-mollerup:unglrechts} +\end{align} +Die Funktion $f(n+x)$ können wir jetzt mit der Funktionalgleichung ii) +durch $f(x)$ ausdrücken: +\begin{align*} +f(n+x) +&= +(x+n-1)f(n+x-1) +\\ +&= +(x+n-1)(x+n-2)f(n+x-2) +\\ +&\vdots +\\ +&= +(x+n-1)(x+n-2)\dots x\,f(x) += +(x)_n f(x). +\end{align*} +Zusammen mit den Ungleichungen +\eqref{buch:rekursion:bohr-mollerup:ungllinks} +und +\eqref{buch:rekursion:bohr-mollerup:unglrechts} +erhalten wir +\begin{align*} +(n-1)^x (n-1)! +&< +(x)_n f(x) +< +n^x (n-1)! +\\ +%\underbrace{ +\frac{(n-1)^x (n-1)!}{(x)_n} +%}_{\displaystyle\to \Gamma(x)} +&< f(x) +< +\frac{n^x (n-1)!}{(x)_n} += +%\underbrace{ +\frac{n^x n!}{(x)_{n+1}} +%}_{\displaystyle\to \Gamma(x)} +\cdot +%\underbrace{ +\frac{x+n}{n} +%}_{\displaystyle\to 1} +. +\end{align*} +Der Ausdruck ganz links und der erste Bruch rechts konvergieren +für $n\to\infty$ beide gegen $\Gamma(x)$ und der Bruch ganz rechts +konvergiert gegen $1$. +Daher muss auch $f(x)=\Gamma(x)$ sein. +\end{proof} diff --git a/buch/chapters/040-rekursion/gamma.tex b/buch/chapters/040-rekursion/gamma.tex index 737cf7f..af5d572 100644 --- a/buch/chapters/040-rekursion/gamma.tex +++ b/buch/chapters/040-rekursion/gamma.tex @@ -714,4 +714,6 @@ Die Genauigkeit erreicht sechs korrekte Nachkommastellen mit nur % % % +\input{chapters/040-rekursion/bohrmollerup.tex} +\input{chapters/040-rekursion/integral.tex} diff --git a/buch/chapters/040-rekursion/integral.tex b/buch/chapters/040-rekursion/integral.tex new file mode 100644 index 0000000..df52a58 --- /dev/null +++ b/buch/chapters/040-rekursion/integral.tex @@ -0,0 +1,103 @@ +% +% integral.tex +% +% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Hochschule +% +\subsection{Integraldarstellung und der Satz von Bohr-Mollerup +\label{buch:subsection:integral-eindeutig}} +Die Integralformel +\[ +f(x) += +\int_0^\infty t^{x-1}e^{-t}\,dt +\] +für die Gamma-Funktion erfüllt die Funktionalgleichung der Gamma-Funktion. +Aus dem Satz von Bohr-Mollerup~\ref{buch:satz:bohr-mollerup} folgt, +dass $f(x)=\Gamma(x)$, wenn gezeigt werden kann, dass $\log f(x)$ +konvex ist. +Dies soll im Folgenden gezeigt werden. + +\subsubsection{Logarithmische Ableitung} +Die Ableitungen der Funktion $\log f(x)$ sind die erste und +zweite logarithmische +Ableitung +\begin{align} +\frac{d}{dx}\log f(x) +&= +\frac{f'(x)}{f(x)} +\notag +\\ +\frac{d^2}{dx^2} \log f(x) +&= +\frac{f''(x)f(x)-f'(x)^2}{f(x)^2}. +\label{buch:rekursion:eqn:zweiteablteitung} +\end{align} +Durch Ableiten unter dem Integralzeichen können die Ableitungen +von $f$ als +\begin{align*} +f'(x) +&= +\int_0^\infty \log(t)\, t^{x-1} e^{-t}\,dt +\\ +f''(x) +&= +\int_0^\infty \log(t)^2\, t^{x-1} e^{-t}\,dt +\end{align*} +bestimmt werden. +Um nachzuweisen, dass $\log f(x)$ konvex ist, muss nur gezeigt werden, +dass die zweite logarithmische Ableitung von $f(x)$ positiv ist, was +gemäss~\eqref{buch:rekursion:eqn:zweiteablteitung} mit +\begin{equation} +f''(x)f(x)-f'(x)^2 += +\int_0^\infty \log(t)^2\, t^{x-1}e^{-t}\,dt +\int_0^\infty t^{x-1}e^{-t}\,dt +- +\biggl( +\int_0^\infty \log(t)\, t^{x-1}e^{-t}\,dt +\biggr)^2 +\ge 0 +\label{buch:rekursion:gamma-integral:ungleichung} +\end{equation} +gleichbedeutend ist. + +\subsubsection{Skalarprodukt} +Die Integral in~\eqref{buch:rekursion:gamma-integral:ungleichung} +können als Werte eines Skalarproduktes von Funktionen auf $\mathbb{R}^+$ +gelesen werden. +Dazu definieren wir +\begin{align} +\langle u,v\rangle +&= +\int_0^\infty u(t)v(t)\,t^{x-1}e^{-t}\,dt +\label{buch:rekursion:gamma-integral:eqn:skalarprodukt} +\\ +\|u\|^2 +&= +\int_0^\infty u(t)^2 \,t^{x-1}e^{-t}\,dt, +\notag +\end{align} +für alle Funktionen $u$ und $v$, für die die Integrale definiert sind. + +\subsubsection{Cauchy-Schwarz-Ungleichung} +Die Cauchy-Schwarz-Ungleichung für das +Skalarprodukt~\eqref{buch:rekursion:gamma-integral:eqn:skalarprodukt} +für die Funktion $u(t)=1$ und $v(t)=\log(t)$ +lautet +\[ +|\langle u,v\rangle|^2 += +\biggl| +\int_0^1 \log(t)\,t^{x-1}e^{-t}\,dt +\biggr|^2 +\le +\|u\|^2\cdot \|v\|^2 += +\int_0^\infty 1\cdot t^{x-1}e^{-t}\,dt +\int_0^\infty \log(t)^2\cdot t^{x-1}e^{-t}\,dt. +\] +Daraus folgt aber durch Umstellen unmittelbar die +Ungleichung~\eqref{buch:rekursion:gamma-integral:ungleichung}. +Damit ist gezeigt, dass $\log f(t)$ konvex ist und nach +dem Satz~\ref{buch:satz:bohr-mollerup} folgt nun, dass $f(x)=\Gamma(x)$. + |