diff options
author | tschwall <55748566+tschwall@users.noreply.github.com> | 2022-07-29 16:43:11 +0200 |
---|---|---|
committer | tschwall <55748566+tschwall@users.noreply.github.com> | 2022-07-29 16:43:11 +0200 |
commit | d7c8caaa2b334cabf215a2657bb7855927adb892 (patch) | |
tree | 3405c86ba741d1a17e88489979ae181b807c013e /buch | |
parent | Stuff added (diff) | |
parent | Merge branch 'master' of github.com:LordMcFungus/SeminarSpezielleFunktionen (diff) | |
download | SeminarSpezielleFunktionen-d7c8caaa2b334cabf215a2657bb7855927adb892.tar.gz SeminarSpezielleFunktionen-d7c8caaa2b334cabf215a2657bb7855927adb892.zip |
Added stuff
Diffstat (limited to 'buch')
-rw-r--r-- | buch/SeminarSpezielleFunktionen.pdf | bin | 22091943 -> 22225335 bytes | |||
-rw-r--r-- | buch/papers/parzyl/teil0.tex | 64 | ||||
-rw-r--r-- | buch/papers/parzyl/teil1.tex | 32 |
3 files changed, 60 insertions, 36 deletions
diff --git a/buch/SeminarSpezielleFunktionen.pdf b/buch/SeminarSpezielleFunktionen.pdf Binary files differindex 169dfd2..0502c88 100644 --- a/buch/SeminarSpezielleFunktionen.pdf +++ b/buch/SeminarSpezielleFunktionen.pdf diff --git a/buch/papers/parzyl/teil0.tex b/buch/papers/parzyl/teil0.tex index f4e8726..60861ed 100644 --- a/buch/papers/parzyl/teil0.tex +++ b/buch/papers/parzyl/teil0.tex @@ -43,8 +43,10 @@ Im parabloischen Zylinderkoordinatensystem bilden parabolische Zylinder die Koor Die Koordinate $(\sigma, \tau, z)$ sind in kartesischen Koordinaten ausgedrückt mit \begin{align} x & = \sigma \tau \\ + \label{parzyl:coordRelationsa} y & = \frac{1}{2}\left(\tau^2 - \sigma^2\right) \\ z & = z. + \label{parzyl:coordRelationse} \end{align} Wird $\tau$ oder $\sigma$ konstant gesetzt reultieren die Parabeln \begin{equation} @@ -60,14 +62,68 @@ und \includegraphics[scale=0.4]{papers/parzyl/img/koordinaten.png} \caption{Das parabolische Koordinatensystem. Die roten Parabeln haben ein konstantes $\sigma$ und die grünen ein konstantes $\tau$.} - \label{fig:cordinates} + \label{parzyl:fig:cordinates} \end{figure} -Abbildung \ref{fig:cordinates} zeigt das Parabolische Koordinatensystem. +Abbildung \ref{parzyl:fig:cordinates} zeigt das Parabolische Koordinatensystem. Das parabolische Zylinderkoordinatensystem entsteht wenn die Parabeln aus der Ebene gezogen werden. - -\subsection{Differnetialgleichung} +Um in diesem Koordinatensystem integrieren und differenzieren zu +können braucht es die Skalierungsfaktoren $h_{\tau}$, $h_{\sigma}$ und $h_{z}$. +Der Skalierungsfaktor braucht es, damit die Distanzen zwischen zwei +Punkten unabhängig vom Koordinatensystem sind. +Wird eine infinitessimal kleine Distanz $ds$ zwischen zwei Punkten betrachtet +kann dies im kartesischen Koordinatensystem mit +\begin{equation} + \left(ds\right)^2 = \left(dx\right)^2 + \left(dy\right)^2 + + \left(dz\right)^2 + \label{parzyl:eq:ds} +\end{equation} +ausgedrückt werden. +Das Skalierungsfaktoren werden so bestimmt, dass +\begin{equation} + \left(ds\right)^2 = \left(h_{\sigma}d\sigma\right)^2 + + \left(h_{\tau}d\tau\right)^2 + \left(h_z dz\right)^2 +\label{parzyl:eq:dspara} +\end{equation} +gilt. +Dafür werden $dx$, $dy$, und $dz$ in \eqref{parzyl:eq:ds} mit den Beziehungen +von \eqref{parzyl:coordRelationsa} - \eqref{parzyl:coordRelationse} als +\begin{align} + dx &= \frac{\delta x }{\delta \sigma} d\sigma + + \frac{\delta x }{\delta \tau} d\tau + + \frac{\delta x }{\delta \tilde{z}} d \tilde{z} + = \tau d\sigma + \sigma d \tau \\ + dy &= \frac{\delta y }{\delta \sigma} d\sigma + + \frac{\delta y }{\delta \tau} d\tau + + \frac{\delta y }{\delta \tilde{z}} d \tilde{z} + = \tau d\tau - \sigma d \sigma \\ + dz &= \frac{\delta \tilde{z} }{\delta \sigma} d\sigma + + \frac{\delta \tilde{z} }{\delta \tau} d\tau + + \frac{\delta \tilde{z} }{\delta \tilde{z}} d \tilde{z} + = d \tilde{z} \\ +\end{align} +substituiert. +Wird diese gleichung in der Form von \eqref{parzyl:eq:dspara} +geschrieben, resultiert +\begin{equation} + \left(d s\right)^2 = + \left(\sigma^2 + \tau^2\right)\left(d\sigma\right)^2 + + \left(\sigma^2 + \tau^2\right)\left(d\tau\right)^2 + + \left(d \tilde{z}\right)^2. +\end{equation} +Daraus resultieren die Skalierungsfaktoren +\begin{align} + h_{\sigma} &= \sqrt{\sigma^2 + \tau^2}\\ + h_{\sigma} &= \sqrt{\sigma^2 + \tau^2}\\ + h_{z} &= 1. +\end{align} +\subsection{Differentialgleichung} +Möchte man eine Differentialgleichung im parabolischen +Zylinderkoordinatensystem lösen müssen die Skalierungsfaktoren +mitgerechnet werden. +\dots +\subsection{Lösung der Helmholtz Gleichung im parabolischen Zylinderfunktion} Die Differentialgleichungen, welche zu den parabolischen Zylinderfunktionen führen tauchen, wie bereits erwähnt, dann auf, wenn die Helmholtz Gleichung \begin{equation} \Delta f(x,y,z) = \lambda f(x,y,z) diff --git a/buch/papers/parzyl/teil1.tex b/buch/papers/parzyl/teil1.tex index 7d5c1a4..b7e906c 100644 --- a/buch/papers/parzyl/teil1.tex +++ b/buch/papers/parzyl/teil1.tex @@ -6,36 +6,4 @@ \section{Lösung \label{parzyl:section:teil1}} \rhead{Problemstellung} -\begin{equation} -\int_a^b x^2\, dx -= -\left[ \frac13 x^3 \right]_a^b -= -\frac{b^3-a^3}3. -\label{parzyl:equation1} -\end{equation} -Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, -consectetur, adipisci velit, sed quia non numquam eius modi tempora -incidunt ut labore et dolore magnam aliquam quaerat voluptatem. - -Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis -suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? -Quis autem vel eum iure reprehenderit qui in ea voluptate velit -esse quam nihil molestiae consequatur, vel illum qui dolorem eum -fugiat quo voluptas nulla pariatur? - - -Et harum quidem rerum facilis est et expedita distinctio -\ref{parzyl:section:loesung}. -Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil -impedit quo minus id quod maxime placeat facere possimus, omnis -voluptas assumenda est, omnis dolor repellendus -\ref{parzyl:section:folgerung}. -Temporibus autem quibusdam et aut officiis debitis aut rerum -necessitatibus saepe eveniet ut et voluptates repudiandae sint et -molestiae non recusandae. -Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis -voluptatibus maiores alias consequatur aut perferendis doloribus -asperiores repellat. - |