aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/040-rekursion/beta.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/chapters/040-rekursion/beta.tex')
-rw-r--r--buch/chapters/040-rekursion/beta.tex21
1 files changed, 18 insertions, 3 deletions
diff --git a/buch/chapters/040-rekursion/beta.tex b/buch/chapters/040-rekursion/beta.tex
index ff59bad..20e3f0e 100644
--- a/buch/chapters/040-rekursion/beta.tex
+++ b/buch/chapters/040-rekursion/beta.tex
@@ -8,12 +8,14 @@
Die Eulersche Integralformel für die Gamma-Funktion in
Definition~\ref{buch:rekursion:def:gamma} wurde in
Abschnitt~\ref{buch:subsection:integral-eindeutig}
-mit dem Satz von Mollerup gerechtfertigt.
+mit dem Satz~\ref{buch:satz:bohr-mollerup}
+von Bohr-Mollerup gerechtfertigt.
Man kann Sie aber auch als Grenzfall der Beta-Funktion verstehen,
die in diesem Abschnitt dargestellt wird.
-\subsection{Beta-Integral}
+\subsection{Beta-Integral
+\label{buch:rekursion:gamma:subsection:integralbeweis}}
In diesem Abschnitt wird das Beta-Integral eingeführt, eine Funktion
von zwei Variablen, welches eine Integral-Definition mit einer
reichaltigen Menge von Rekursionsbeziehungen hat, die sich direkt auf
@@ -30,6 +32,7 @@ B(x,y)
\int_0^1 t^{x-1} (1-t)^{y-1}\,dt
\]
für $\operatorname{Re}x>0$, $\operatorname{Re}y>0$.
+\index{Beta-Integral}%
\end{definition}
Aus der Definition kann man sofort ablesen, dass $B(x,y)=B(y,x)$.
@@ -231,6 +234,7 @@ Durch Einsetzen der Integralformel im Ausdruck
Satz.
\begin{satz}
+\index{Satz!Beta-Funktion und Gamma-Funktion}%
Die Beta-Funktion kann aus der Gamma-Funktion nach
\begin{equation}
B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
@@ -320,6 +324,9 @@ $(-\frac12)!$ als Wert
\]
der Gamma-Funktion interpretiert.
+%
+% Alternative Parametrisierung
+%
\subsubsection{Alternative Parametrisierungen}
Die Substitution $t=\sin^2 s$ hat im vorangegangenen Abschnitt
ermöglicht, $\Gamma(\frac12)$ zu ermitteln.
@@ -382,8 +389,10 @@ wobei wir
\]
verwendet haben.
Diese Darstellung des Beta-Integrals wird später
-% XXX Ort ergänzen
+in Satz~\ref{buch:funktionentheorie:satz:spiegelungsformel}
dazu verwendet, die Spiegelungsformel für die Gamma-Funktion
+\index{Gamma-Funktion!Spiegelungsformel}%
+\index{Spiegelungsformel der Gamma-Funktion}%
herzuleiten.
Eine weitere mögliche Parametrisierung verwendet $t = (1+s)/2$
@@ -407,17 +416,23 @@ B(x,y)
\label{buch:rekursion:gamma:beta:symm}
\end{equation}
+%
+%
+%
\subsubsection{Die Verdoppelungsformel von Legendre}
Die trigonometrische Substitution kann dazu verwendet werden, die
Legendresche Verdoppelungsformel für die Gamma-Funktion herzuleiten.
\begin{satz}[Legendre]
+\index{Satz!Verdoppelungsformel@Verdoppelungsformel für $\Gamma(x)$}%
\[
\Gamma(x)\Gamma(x+{\textstyle\frac12})
=
2^{1-2x}\sqrt{\pi}
\Gamma(2x)
\]
+\index{Verdoppelungsformel}%
+\index{Gamma-Funktion!Verdoppelungsformel von Legendre}%
\end{satz}
\begin{proof}[Beweis]