aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/070-orthogonalitaet/rodrigues.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/chapters/070-orthogonalitaet/rodrigues.tex')
-rw-r--r--buch/chapters/070-orthogonalitaet/rodrigues.tex336
1 files changed, 333 insertions, 3 deletions
diff --git a/buch/chapters/070-orthogonalitaet/rodrigues.tex b/buch/chapters/070-orthogonalitaet/rodrigues.tex
index 590038a..9fded85 100644
--- a/buch/chapters/070-orthogonalitaet/rodrigues.tex
+++ b/buch/chapters/070-orthogonalitaet/rodrigues.tex
@@ -5,6 +5,7 @@
%
\section{Rodrigues-Formeln
\label{buch:orthogonalitaet:section:rodrigues}}
+\rhead{Rodrigues-Formeln}
Die Drei-Term-Rekursionsformel ermöglicht Werte orthogonaler Polynome
effizient zu berechnen.
Die Rekursionsformel erhöht den Grad eines Polynoms, indem mit $x$
@@ -173,7 +174,7 @@ Die Pearsonsche Differentialgleichung ist für $A(x)=0$ immer erfüllt.
Die Randbedingung bedeutet wegen $w(x)=1$, dass $B(x)$ an den
Endpunkten des Intervalls verschwinden muss.
Da $B(x)$ ein Polynom höchstens vom Grad $2$ ist, muss $B(x)$ ein
-Vielfaches von $(x-1)(x+1)=x^-1$ sein.
+Vielfaches von $(x-1)(x+1)=x^2-1$ sein.
Die Rodrigues-Formel für die Legendre-Polynome hat daher die Form
\[
P_n(x)
@@ -195,8 +196,337 @@ P_n(x)
\]
\subsubsection{Hermite-Polynome}
-TODO
+Die Hermite-Polynome sind auf ganz $\mathbb{R}$ definiert und verwenden
+die Gewichtsfunktion
+\[
+w(x) = e^{-x^2}.
+\]
+Für jedes beliebige Polynome $B(x)$, auch für höheren Grad als $2$, ist
+\[
+\lim_{x\to-\infty} B(x) w(x)
+=
+\lim_{x\to-\infty} B(x)^e{-x^2}
+=
+0
+\qquad\text{und}\qquad
+\lim_{x\to\infty} B(x) w(x)
+=
+\lim_{x\to\infty} B(x)^e{-x^2}
+=
+0,
+\]
+die Randbedingung der Pearsonschen Differentialgleichung ist also
+immer erfüllt.
+
+Die Ableitung der Gewichtsfunktion ist
+\[
+w'(x) = -2xe^{-x^2}.
+\]
+Eingsetzt in die Pearsonsche Differentialgleichung findet man
+\[
+\frac{w'(x)}{w(x)}
+=
+\frac{-2xe^{-x^2}}{e^{-x^2}}
+=
+\frac{-2x}{1}
+\]
+und daher
+\[
+A(x) = -2x
+\qquad\text{und}\qquad
+B(x) = 1.
+\]
+Die Gradbedingung ist also immer erfüllt und es folgt die Rodrigues-Formel
+für die Hermite-Polynome
+\begin{equation}
+H_n(x)
+=
+c_n
+e^{x^2}\frac{d^n}{dx^n} e^{-x^2}
+=
+(-1)^n
+e^{x^2}\frac{d^n}{dx^n} e^{-x^2}.
+\label{buch:orthogonal:eqn:hermite-rodrigues}
+\end{equation}
+
+Die Hermite-Polynome können mit der Rodrigues-Formel berechnen, aber die
+Form~\eqref{buch:orthogonal:eqn:hermite-rodrigues} ist dazu nicht gut
+geeignet.
+Dazu dient die Berechnung
+\[
+-\frac{d}{dx}
+e^{-x^2}f(x)
+=
+2xe^{-x^2}f(x)
+-
+e^{-x^2}f'(x)
+=
+e^{-x^2}
+\biggl(-\frac{d}{dx}+2x\biggr)
+f(x),
+\]
+nach der der Ableitungsoperator mit dem Faktor $e^{-x^2}$
+vertauscht werden kann, wenn er durch die grosse Klammer auf der
+rechten Seite ersetzt wird.
+Die Rodrigues-Formel bekommt daher die Form
+\[
+H_n(x) = \biggl(\frac{d}{dx}-2x\biggr)^n \cdot 1
+\]
+
+TODO: Relation zu hypergeometrischen Funktionen $\mathstrut_1F_1$
+
+%\url{https://en.wikipedia.org/wiki/Rodrigues%27_formula}
+
+%
+% Jacoib-Gewichtsfunktion
+%
+\subsubsection{Jacobi-Gewichtsfunktion}
+%(%i1) w: (1-x)^a*(1+x)^b;
+% a b
+%(%o1) (1 - x) (x + 1)
+%(%i2) diff(w,x)/w;
+% a b - 1 a - 1 b
+% b (1 - x) (x + 1) - a (1 - x) (x + 1)
+%(%o2) -------------------------------------------------
+% a b
+% (1 - x) (x + 1)
+%(%i3) q: diff(w,x)/w;
+% a b - 1 a - 1 b
+% b (1 - x) (x + 1) - a (1 - x) (x + 1)
+%(%o3) -------------------------------------------------
+% a b
+% (1 - x) (x + 1)
+%(%i4) ratsimp(q);
+% (b + a) x - b + a
+%(%o4) -----------------
+% 2
+% x - 1
+%
+Die Jacobi-Gewichtsfunktion
+\[
+w(x)
+=
+w^{(\alpha,\beta)}(x)
+=
+(1-x)^\alpha(1+x)^\beta
+\]
+hat die Ableitung
+\[
+w'(x)
+=
+\beta(1-x)^\alpha(1+x)^{\beta-1}-\alpha(1-x)^{\alpha-1}(1+x)^\beta
+\]
+und für die linke Seite der Pearsonschen Differentialgleichung findet man
+\[
+\frac{w'(x)}{w(x)}
+=
+\frac{
+\beta(1-x)^\alpha(1+x)^{\beta-1}-\alpha(1-x)^{\alpha-1}(1+x)^\beta
+}{
+(1-x)^\alpha(1+x)^\beta
+}
+=
+\frac{\beta-\alpha-(\alpha+\beta)x}{1-x^2}
+=
+\frac{A(x)}{B(x)}.
+\]
+Die Polynome
+\[
+A(x) = \beta-\alpha-(\alpha+\beta)x
+\qquad\text{und}\qquad
+B(x) = 1-x^2
+\]
+erfüllen die Gradvoraussetzungen für eine Lösung der Pearsonschen
+Differentialgleichung, die Anlass zu einer Rodrigues-Formel gibt.
+Die Randbedingungen sind noch zu prüfen: $B(x)$ hat eine Nullstelle
+erster Ordnung bei $\pm1$, also ist
+\[
+\lim_{x\to \pm1\mp} B(x)w(x) = 0
+\]
+genau dann, wenn $\alpha>-1$ und $\beta>-1$ gilt.
+Für $\alpha>-1$ und $\beta>-1$ gibt es daher auch für die Jacobi-Polynome
+eine Rodriguez-Formel der Art
+\[
+P^{(\alpha,\beta)}_n(x)
+=
+\frac{c_n}{w^{(\alpha,\beta)}(x)}
+\frac{d^n}{dx^n}
+\bigl((1-x^2)^{n} w^{(\alpha,\beta)}(x)\bigr).
+\]
+Die Konstanten $c_n$ werden durch die Normierung
+% XXX in welchem Abschnitt
+festgelegt.
+
+\subsubsection{Die Tschebyscheff-Gewichtsfunktion}
+Die Tschebyscheff-Gewichtsfunktion ist der Spezialfall $a=b=-\frac12$
+der Jacobi-Gewichtsfunktion.
+Die Rodrigues-Formel für die Tschebyscheff-Polynome lautet daher
+\[
+T_n(x)
+=
+c_n\sqrt{1-x^2} \frac{d^n}{dx^n}
+\frac{(1-x^2)^n}{\sqrt{1-x^2}}
+=
+\frac{1}{2^nn!} \sqrt{1-x^2}
+\frac{d^n}{dx^n}
+\frac{(1-x^2)^n}{\sqrt{1-x^2}},
+\]
+wobei wir den korrekten Wert von $c_n$ nicht nachgewiesen haben.
+
+\subsubsection{Die Laguerre-Gewichtsfunktion}
+Die Laguerre-Gewichtsfunktion
+\[
+w_{\text{Laguerre}}(x)
+=
+w(x)
+=
+e^{-x}
+\]
+hat die Ableitung
+\[
+w'(x) = -e^{-x},
+\]
+die Pearsonsche Differentialgleichung ist daher
+\[
+\frac{w'(x)}{w(x)}=\frac{-1}{1}.
+\]
+Dies suggeriert $A(x)=-1$ und $B(x)=1$ als Zähler und Nenner der rechten
+Seite, aber daraus produziert die Rodrigues-Formel immer nur die konstante
+Funktion.
+Ausserdem ist die Randbedingung an der Stelle $x=0$ nicht erfüllt.
+$B(x)$ muss so gewählt werden, dass
+\[
+0
+=
+\lim_{x\to 0+} w(x)B(x)
+=
+\lim_{x\to 0+} e^{-x}B(x)
+=
+\lim_{x\to 0+} B(x)
+=
+B(0).
+\]
+Die Annahme einer konstanten Funktion $B(x)$ widerspricht dem.
+Aus der Pearsonschen Differentialgleichung folgt $A(x)=-B(x)$.
+Da $A(x)$ höchstens vom Grad 1 sein kann und $B(x)$ mindestens
+vom Grad $1$ muss, folgt
+\[
+B(x) = x
+\qquad\text{und}\qquad
+A(x) = -x.
+\]
+Die Rodrigues-Formel liefert dann die Laguerre-Polynome als
+\[
+L_n(x) = c_n e^x \frac{d^n}{dx^n} x^ne^{-x}.
+\]
+Die Werte von $c_n$ hängen von der gewählten Normierung ab.
+
+Mit der Rodrigues-Formel können die Laguerre-Polynome bis auf
+die Normierung recht direkt berechnen.
+Dazu versuchen wir die Ableitungen von $f(x)e^{-x}$ dadurch zu
+berechnen, dass wir den Gewichtsfaktor $e^{-x}$ möglichst weit
+nach links verschieben wie in
+\begin{align*}
+\frac{d}{dx}
+e^{-x}
+f(x)
+&=
+e^{-x}
+\bigl( -f(x) + f'(x) \bigr)
+=
+e^{-x}
+\biggl( -1 + \frac{d}{dx}\biggr) f.
+\end{align*}
+Daraus kann man ablesen, dass die Ableitung nach $x$ mit dem Faktor
+$e^{-x}$ vertauscht werden kann, wenn man die Ableitung durch
+$-1+d/dx$ ersetzt.
+Damit kann jetzt auch die $n$-te Ableitung bestimmen:
+\begin{align*}
+\frac{d^n}{dx^n}e^{-x}f(x)
+&=
+e^{-x} \biggl(\frac{d}{dx}-1\biggr)^n f(x)
+=
+e^{-x} \sum_{k=0}^n (-1)^{k}\binom{n}{k}\frac{d^{n-k}}{dx^{n-k}} f(x)
+\end{align*}
+Dies muss jetzt auf $f(x)=x^n$ angewendet werden.
+Es ergibt sich
+\begin{align*}
+\frac{d^n}{dx^n}e^{-x}x^n
+&=
+e^{-x} \sum_{k=0}^n (-1)^{k}\binom{n}{k}\frac{d^{n-k}}{dx^{n-k}} x^n
+\\
+&=
+e^{-x} \sum_{k=0}^n (-1)^{k}\binom{n}{k}
+n(n-1)(n-2)\cdots (k+1)
+x^k
+\\
+&=
+e^{-x}
+\sum_{k=0}^n (-1)^k \frac{n(n-1)\cdots(n-k+1)}{k!}
+\frac{n!}{k!}
+x^k
+\\
+&=
+e^{-x} n!
+\sum_{k=0}^\infty
+\frac{(-n)(-n+1)(-n+2)\cdot\ldots\cdot (-n+k-1)}{1\cdot 2\cdot \ldots\cdot k}
+\frac{x^k}{k!}
+\\
+&=
+e^{-x} n!
+\cdot
+\mathstrut_1F_1\biggl(
+\begin{matrix}-n\\1\end{matrix}; x
+\biggr).
+\end{align*}
+Die übliche Normierung für die Laguerre-Polynome ist $L_n(0)=1$,
+die übereinstimmt mit dem Wert der hypergeometrischen Funktion
+an der Stelle $0$.
+Wir fassen die Resultate im folgenden Satz zusammen.
+
+\begin{satz}
+Die Laguerre-Polynome vom Grad $n$ haben die Form
+\begin{equation}
+L_n(x)
+=
+\sum_{k=0}^n \binom{n}{k}\frac{(-1)^k}{k!}x^k
+=
+\mathstrut_1F_1\biggl(\begin{matrix}-n\\1\end{matrix};x\biggr).
+\label{buch:orthogonal:eqn:laguerre-polynom-hypergeometrisch}
+\end{equation}
+\end{satz}
+Laguerre-Polynome sind als spezielle hypergeometrische Funktionen,
+für $n\le 7$ sind sie
+in Tabelle~\ref{buch:orthogonal:table:laguerre} zusammengestellt.
+In Abbildung~\ref{buch:orthogonal:fig:laguerre} sind die Laguerre-Polynome
+vom Grad $0$ bis $9$ dargestellt.
-\url{https://en.wikipedia.org/wiki/Rodrigues%27_formula}
+\begin{figure}
+\centering
+\includegraphics{chapters/070-orthogonalitaet/images/laguerre.pdf}
+\caption{Laguerre-Polynome vom Grad $0$ bis $9$
+\label{buch:orthogonal:fig:laguerre}}
+\end{figure}
+\begin{table}
+\renewcommand{\arraystretch}{1.4}
+\centering
+\begin{tabular}{|>{$}c<{$}|>{$}l<{$}|}
+\hline
+n& L_n(x)\\
+\hline
+0&1\\
+1&-x+1\\
+2&\frac1{2!}(x^2-4x+2)\\
+3&\frac{1}{3!}(-x^3+9x^2-18x+6)\\
+4&\frac{1}{4!}(x^4-16x^3+72x^2-96x+24)\\
+5&\frac{1}{5!}(-x^5+25x^4-200x^3+60x^2-600x+120)\\
+6&\frac{1}{6!}(x^6-36x^5+450x^4-2400x^3+5400x^2-4320x+720)\\
+7&\frac{1}{7!}(-x^7+49x^6-882x^5+7350x^4-29400x^3+52920x^2-35280x+5040)\\
+8&\frac{1}{8!}(x^8-64x^7+1568x^6-18816x^5+117600x^4-376320x^3+564480x^2-322560x+40320)\\
+\hline
+\end{tabular}
+\caption{Laguerre-Polynome $L_n(x)$ für $n=0,\dots,8$
+\label{buch:orthogonal:table:laguerre}}
+\end{table}