aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/ellfilter/elliptic.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/ellfilter/elliptic.tex')
-rw-r--r--buch/papers/ellfilter/elliptic.tex27
1 files changed, 12 insertions, 15 deletions
diff --git a/buch/papers/ellfilter/elliptic.tex b/buch/papers/ellfilter/elliptic.tex
index 81821c1..651d6bc 100644
--- a/buch/papers/ellfilter/elliptic.tex
+++ b/buch/papers/ellfilter/elliptic.tex
@@ -2,16 +2,16 @@
Kommen wir nun zum eigentlichen Teil dieses Papers, den rationalen elliptischen Funktionen \cite{ellfilter:bib:orfanidis}
\begin{align}
- R_N(\xi, w) &= \cd \left(N~f_1(\xi)~\cd^{-1}(w, 1/\xi), f_2(\xi)\right) \label{ellfilter:eq:elliptic}\\
+ R_N(w, \xi) &= \cd \left(N~f_1(\xi)~\cd^{-1}(w, 1/\xi), f_2(\xi)\right) \label{ellfilter:eq:elliptic}\\
&= \cd \left(N~\frac{K_1}{K}~\cd^{-1}(w, k), k_1\right) , \quad k= 1/\xi, k_1 = 1/f(\xi) \\
&= \cd \left(N~K_1~z , k_1 \right), \quad w= \cd(z K, k)
\end{align}
Beim Betrachten dieser Definition, fällt die Ähnlichkeit zur trigonometrische Darstellung der Tsche\-byschef-Polynome \eqref{ellfilter:eq:chebychef_polynomials} auf.
Wie bei den Tschebyscheff-Polynomen ist die Formel mit speziellen Funktionen geschrieben.
Es kann jedoch gezeigt werden, dass es sich tatsächlich um rationale Funktionen handelt, wie es für ein lineares Filter vorausgesetzt wird.
-Die elliptischen Funktionen werden also genau so eingesetzt, dass die resultierenden Nullstellen und Pole eine rationale Funktion ergeben.
+Die elliptischen Funktionen werden also genau so eingesetzt, dass die resultierenden Nullstellen und Pole eine rationale Funktion ergeben.
Anstelle des Kosinus bei den Tschebyscheff-Polynomen kommt hier die $\cd$-Funktion zum Einsatz.
-Die Ordnungszahl $N$ kommt auch als Faktor for.
+Die Ordnungszahl $N$ kommt auch als Faktor vor.
Zusätzlich werden noch zwei verschiedene elliptische Moduli $k$ und $k_1$ gebraucht.
Bei $k = k_1 = 0$ wird der $\cd$ zum Kosinus und wir erhalten in diesem Spezialfall die Tschebyschef-Polynome.
@@ -52,18 +52,21 @@ Abbildung \ref{ellfilter:fig:elliptic_freq} zeigt eine rationale elliptische Fun
\end{figure}
Da sich die Funktion im Übergangsbereich nur zur nächsten Reihe von Polstellen bewegt, ist der Übergangsbereich monoton steigend.
-Theoretisch könnte eine gleiches Durchlass- und Sperrbereichsverhalten erreicht werden, wenn die Funktion auf eine andere Reihe ansteigen würde.
+Theoretisch könnte eine gleiches Durchlass- und Sperrbereichsverhalten erreicht werden, wenn die Funktion auf eine andere Reihe ansteigen würde, z.B. $\mathrm{Im(z) = 3K^\prime}$.
Dies würde jedoch zu Oszillationen zwischen $1$ und $1/k$ im Übergangsbereich führen.
\subsection{Gradgleichung}
Damit die Pol- und Nullstellen genau in dieser Konstellation durchfahren werden, müssen die elliptischen Moduli des inneren und äusseren $\cd$ aufeinander abgestimmt werden.
-In der reellen Richtung müssen sich die Periodizitäten $K$ und $K_1$ um den Faktor $N$ unterscheiden, während die imagiäre Periodizitäten $K^\prime$ und $K^\prime_1$ gleich bleiben müssen.
+In der reellen Richtung müssen sich die Periodizitäten $K$ und $K_1$ um den Faktor $N$ unterscheiden, während die imaginäre Periodizitäten $K^\prime$ und $K^\prime_1$ gleich bleiben müssen.
Zur Erinnerung, $K$ und $K^\prime$ sind durch elliptische Integrale definiert und vom Modul $k$ abhängig wie ersichtlich in Abbildung \ref{ellfilter:fig:kprime}.
\begin{figure}
\centering
\input{papers/ellfilter/python/k.pgf}
- \caption{Die Periodizitäten in realer und imaginärer Richtung in Abhängigkeit vom elliptischen Modul $k$.}
+ \caption{
+ Die Periodizitäten in realer und imaginärer Richtung in Abhängigkeit vom elliptischen Modul $k$.
+ In der rechten Grafik sind $K$ und $K^\prime$ gegenübergestellt, wobei alle möglichen Kombinationen auf der eingezeichneten Ortskurve liegen.
+ }
\label{ellfilter:fig:kprime}
\end{figure}
$K$ und $K^\prime$ sind durch die Ortskurve $K + jK^\prime$ aneinander gebunden und benötigen den Zusatzfaktor $K_1/K$ in \eqref{ellfilter:eq:elliptic}, um die genanten Forderungen einzuhalten.
@@ -84,7 +87,7 @@ k_1 = k^N \prod_{i=1}^L \sn^4 \Bigg( \frac{2i - 1}{N} K, k \Bigg),
\quad \text{wobei} \quad
N = 2L+r.
\end{equation}
-Die Herleitung ist sehr umfassend und wird in \cite{ellfilter:bib:orfanidis} im Detail angeschaut.
+Die Herleitung ist sehr umfangreich und wird in \cite{ellfilter:bib:orfanidis} im Detail angeschaut.
\subsection{Berechnung der rationalen Funktion}
@@ -102,7 +105,7 @@ Wenn $k$ und $N$ bekannt sind, können die Position der Pol- und Nullstellen $p_
}
\label{ellfilter:fig:pn}
\end{figure}
-Dabei muss aufgepasst werden, dass insgesamt nur $N$ Nullstellen und $N$ Pole gesetzt werden, da bei der transformation mit dem $\cd$ mehrere Werte auf einen abgebildet werden und mehrfache Pole und Nullstellen nicht erwünscht sind.
+Dabei muss aufgepasst werden, dass insgesamt nur $N$ Nullstellen und $N$ Pole gesetzt werden, da bei der Transformation mit dem $\cd$ mehrere Werte auf einen abgebildet werden und mehrfache Pole und Nullstellen nicht erwünscht sind.
Wegen der Periodizität sind diese in der komplexen $z$-Ebene linear angeordnet:
\begin{align}
n_i(k) &= K\frac{2i+1}{N} \\
@@ -116,7 +119,7 @@ wobei $r_0$ so gewählt werden muss, dass $R_N(w, k) = 1$.
\section{Elliptisches Filter}
-Um ein elliptisches Filter auszulegen werden aber nicht die Pol- und Nullstellen der rationalen Funktion gebraucht, sondern diejenigen der Übertragungsfunktion $H(s)$ der komplexen Frequenz $s = j\Omega + \sigma$.
+Um ein elliptisches Filter auszulegen, werden aber nicht die Pol- und Nullstellen der rationalen Funktion gebraucht, sondern diejenigen der Übertragungsfunktion $H(s)$ der komplexen Frequenz $s = j\Omega + \sigma$.
Der Bezug zum quadratischen Amplitudengang \eqref{ellfilter:eq:quadratic_transfer} ist dabei
\begin{equation}
|H(\Omega)|^2 = H(s) H(s^*),
@@ -124,9 +127,3 @@ Der Bezug zum quadratischen Amplitudengang \eqref{ellfilter:eq:quadratic_transfe
wobei $*$ die komplexe Konjugation kennzeichnet.
Die genaue Berechnung geht einiges tiefer in die Filtertheorie, und verlässt das Gebiet der speziellen Funktionen.
Der interessierte Leser wird auf \cite[Kapitel~5]{ellfilter:bib:orfanidis} verwiesen.
-
-% \subsection{Schlussfolgerung}
-
-% Die elliptischen Filter können als direkte Erweiterung der Tschebyscheff-Filter verstanden werden.
-% Bei den Tschebyscheff-Polynomen haben wir gesehen, dass die Trigonometrische Formel zu einfachen Polynomen umgewandelt werden kann.
-% Im elliptischen Fall entstehen so rationale Funktionen mit Nullstellen und auch Pole.