aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/laguerre/quadratur.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/laguerre/quadratur.tex')
-rw-r--r--buch/papers/laguerre/quadratur.tex109
1 files changed, 69 insertions, 40 deletions
diff --git a/buch/papers/laguerre/quadratur.tex b/buch/papers/laguerre/quadratur.tex
index a494362..0e32012 100644
--- a/buch/papers/laguerre/quadratur.tex
+++ b/buch/papers/laguerre/quadratur.tex
@@ -3,20 +3,21 @@
%
% (c) 2022 Patrik Müller, Ostschweizer Fachhochschule
%
-\section{Gauss-Quadratur
+\section{Gauss-Quadratur%
\label{laguerre:section:quadratur}}
+\rhead{Gauss-Quadratur}%
Die Gauss-Quadratur ist ein numerisches Integrationsverfahren,
welches die Eigenschaften von orthogonalen Polynomen verwendet.
-Herleitungen und Analysen der Gauss-Quadratur können im
+Herleitungen und Analysen der Gauss-Quadratur können im
Abschnitt~\ref{buch:orthogonal:section:gauss-quadratur} gefunden werden.
Als grundlegende Idee wird die Beobachtung,
dass viele Funktionen sich gut mit Polynomen approximieren lassen,
verwendet.
Stellt man also sicher,
-dass ein Verfahren gut für Polynome funktioniert,
+dass ein Verfahren gut für Polynome funktioniert,
sollte es auch für andere Funktionen angemessene Resultate liefern.
-Es wird ein Polynom verwendet,
-welches an den Punkten $x_0 < x_1 < \ldots < x_n$
+Es wird ein Interpolationspolynom verwendet,
+welches an den Punkten $x_0 < x_1 < \ldots < x_n$
die Funktionwerte~$f(x_i)$ annimmt.
Als Resultat kann das Integral via einer gewichteten Summe der Form
\begin{align}
@@ -29,25 +30,35 @@ berechnet werden.
Die Gauss-Quadratur ist exakt für Polynome mit Grad $2n -1$,
wenn ein Interpolationspolynom von Grad $n$ gewählt wurde.
-\subsection{Gauss-Laguerre-Quadratur
+\subsection{Gauss-Laguerre-Quadratur%
\label{laguerre:subsection:gausslag-quadratur}}
Wir möchten nun die Gauss-Quadratur auf die Berechnung
von uneigentlichen Integralen erweitern,
-spezifisch auf das Interval $(0, \infty)$.
+spezifisch auf das Intervall~$(0, \infty)$.
Mit dem vorher beschriebenen Verfahren ist dies nicht direkt möglich.
-Mit einer Transformation die das unendliche Intervall $(a, \infty)$ mit
-\begin{align*}
-x
-=
-a + \frac{1 - t}{t}
-\end{align*}
-auf das Intervall $[0, 1]$ transformiert,
-kann dies behoben werden.
-Für unseren Fall gilt $a = 0$.
+% Mit einer Transformation
+% \begin{align*}
+% x
+% =
+% % a +
+% \frac{1 - t}{t}
+% \end{align*}
+% die das unendliche Intervall~$(0, \infty)$
+% auf das Intervall~$[0, 1]$ transformiert,
+% kann dies behoben werden.
+% % Für unseren Fall gilt $a = 0$.
Das Integral eines Polynomes in diesem Intervall ist immer divergent.
-Darum müssen wir das Polynom mit einer Funktion multiplizieren,
-die schneller als jedes Polynom gegen $0$ geht,
-damit das Integral immer noch konvergiert.
+Es ist also nötig,
+den Integranden durch Funktionen zu approximieren,
+die genügend schnell gegen $0$ gehen.
+Man kann Polynome beliebigen Grades verwenden,
+wenn sie mit einer Funktion multipliziert werden,
+die schneller gegen $0$ geht als jedes Polynom.
+Damit stellen wir sicher,
+dass das Integral immer noch konvergiert.
+% Darum müssen wir das Polynom mit einer Funktion multiplizieren,
+% die schneller als jedes Polynom gegen $0$ geht,
+% damit das Integral immer noch konvergiert.
Die Laguerre-Polynome $L_n$ schaffen hier Abhilfe,
da ihre Gewichtsfunktion $w(x) = e^{-x}$ schneller
gegen $0$ konvergiert als jedes Polynom.
@@ -55,20 +66,33 @@ gegen $0$ konvergiert als jedes Polynom.
% $L_n$ ausweiten.
% Diese sind orthogonal im Intervall $(0, \infty)$ bezüglich
% der Gewichtsfunktion $e^{-x}$.
-Die Gleichung~\eqref{laguerre:gaussquadratur} lässt sich wie folgt
-umformulieren:
+Um also das Integral einer Funktion $g(x)$ im Intervall~$(0,\infty)$ zu
+berechen,
+formt man das Integral wie folgt um:
+\begin{align*}
+\int_0^\infty g(x) \, dx
+=
+\int_0^\infty f(x) e^{-x} \, dx
+\end{align*}
+Wir approximieren dann $f(x)$ durch ein Interpolationspolynom
+wie bei der Gauss-Quadratur.
+% Die Gleichung~\eqref{laguerre:gaussquadratur} lässt sich daher wie folgt
+% umformulieren:
+Die Gleichung~\eqref{laguerre:gaussquadratur} wird also
+für die Gauss-Laguerre-Quadratur zu
\begin{align}
\int_{0}^{\infty} f(x) e^{-x} dx
\approx
\sum_{i=1}^{n} f(x_i) A_i
\label{laguerre:laguerrequadratur}
+.
\end{align}
\subsubsection{Stützstellen und Gewichte}
Nach der Definition der Gauss-Quadratur müssen als Stützstellen die Nullstellen
-des verwendeten Polynoms genommen werden.
-Für das Laguerre-Polynom $L_n$ müssen demnach dessen Nullstellen $x_i$ und
-als Gewichte $A_i$ die Integrale $l_i(x)e^{-x}$ verwendet werden.
+des Approximationspolynoms genommen werden.
+Für das Laguerre-Polynom $L_n(x)$ müssen demnach dessen Nullstellen $x_i$ und
+als Gewichte $A_i$ die Integrale von $l_i(x) e^{-x}$ verwendet werden.
Dabei sind
\begin{align*}
l_i(x_j)
@@ -76,12 +100,12 @@ l_i(x_j)
\delta_{ij}
=
\begin{cases}
-1 & i=j \\
+1 & i=j \\
0 & \text{sonst}
\end{cases}
% .
\end{align*}
-die Lagrangschen Interpolationspolynome.
+die Lagrangeschen Interpolationspolynome.
Laut \cite{laguerre:hildebrand2013introduction} können die Gewichte mit
\begin{align*}
A_i
@@ -97,8 +121,11 @@ des orthogonalen Polynoms $\phi_n(x)$, $\forall i =0,\ldots,n$ und
\int_0^\infty w(x) \phi_n^2(x)\,dx
\end{align*}
dem Normalisierungsfaktor.
+
Wir setzen nun $\phi_n(x) = L_n(x)$ und
-nutzen den Vorzeichenwechsel der Laguerre-Koeffizienten aus,
+nutzen den Vorzeichenwechsel der Laguerre-Koeffizienten
+(ersichtlich am Term $(-1)^k$ in \eqref{laguerre:polynom})
+aus,
damit erhalten wir
\begin{align*}
A_i
@@ -122,39 +149,41 @@ Für Laguerre-Polynome gilt
Daraus folgt
\begin{align}
A_i
-&=
+ & =
- \frac{1}{n L_{n-1}(x_i) L'_n(x_i)}
-.
\label{laguerre:gewichte_lag_temp}
+.
\end{align}
Nun kann die Rekursionseigenschaft der Laguerre-Polynome
+\cite{laguerre:hildebrand2013introduction}
+% (siehe \cite{laguerre:hildebrand2013introduction})
\begin{align*}
-x L'_n(x)
-&=
+x L'_n(x)
+ & =
n L_n(x) - n L_{n-1}(x)
\\
-&= (x - n - 1) L_n(x) + (n + 1) L_{n+1}(x)
+ & = (x - n - 1) L_n(x) + (n + 1) L_{n+1}(x)
\end{align*}
umgeformt werden und da $x_i$ die Nullstellen von $L_n(x)$ sind,
-vereinfacht sich der Term zu
+vereinfacht sich die Gleichung zu
\begin{align*}
x_i L'_n(x_i)
-&=
-- n L_{n-1}(x_i)
+ & =
+- n L_{n-1}(x_i)
\\
-&=
- (n + 1) L_{n+1}(x_i)
+ & =
+(n + 1) L_{n+1}(x_i)
.
\end{align*}
-Setzen wir das nun in \eqref{laguerre:gewichte_lag_temp} ein,
+Setzen wir diese Beziehung nun in \eqref{laguerre:gewichte_lag_temp} ein,
ergibt sich
\begin{align}
\nonumber
A_i
-&=
+ & =
\frac{1}{x_i \left[ L'_n(x_i) \right]^2}
\\
-&=
+ & =
\frac{x_i}{(n+1)^2 \left[ L_{n+1}(x_i) \right]^2}
.
\label{laguerre:quadratur_gewichte}