aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/parzyl/teil1.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/parzyl/teil1.tex')
-rw-r--r--buch/papers/parzyl/teil1.tex184
1 files changed, 170 insertions, 14 deletions
diff --git a/buch/papers/parzyl/teil1.tex b/buch/papers/parzyl/teil1.tex
index f297189..13d8109 100644
--- a/buch/papers/parzyl/teil1.tex
+++ b/buch/papers/parzyl/teil1.tex
@@ -5,24 +5,180 @@
%
\section{Lösung
\label{parzyl:section:teil1}}
-\rhead{Problemstellung}
-Die Differentialgleichungen \eqref{parzyl:sep_dgl_1} und \eqref{parzyl:sep_dgl_2} können mit einer Substitution
-in die Whittaker Gleichung gelöst werden.
+\rhead{Lösung}
+
+\eqref{parzyl:sep_dgl_3} beschriebt einen ungedämpften harmonischen Oszillator.
+Die Lösung ist somit
+\begin{equation}
+ i(z)
+ =
+ A\cos{
+ \left (
+ \sqrt{\lambda + \mu}z
+ \right )}
+ +
+ B\sin{
+ \left (
+ \sqrt{\lambda + \mu}z
+ \right )}.
+\end{equation}
+Die Differentialgleichungen \eqref{parzyl:sep_dgl_1} und \eqref{parzyl:sep_dgl_2} werden in \cite{parzyl:whittaker}
+mit Hilfe der Whittaker Gleichung gelöst.
\begin{definition}
- Die Funktion
+ Die Funktionen
+ \begin{equation*}
+ M_{k,m}(x) =
+ e^{-x/2} x^{m+1/2} \,
+ {}_{1} F_{1}
+ (
+ {\textstyle \frac{1}{2}}
+ + m - k, 1 + 2m; x) \qquad x \in \mathbb{C}
+ \end{equation*}
+ und
\begin{equation*}
- W_{k,m}(z) =
- e^{-z/2} z^{m+1/2} \,
- {}_{1} F_{1}(\frac{1}{2} + m - k, 1 + 2m; z)
+ W_{k,m}(x) = \frac{
+ \Gamma \left( -2m\right)
+ }{
+ \Gamma \left( {\textstyle \frac{1}{2}} - m - k\right)
+ }
+ M_{-k, m} \left(x\right)
+ +
+ \frac{
+ \Gamma \left( 2m\right)
+ }{
+ \Gamma \left( {\textstyle \frac{1}{2}} + m - k\right)
+ }
+ M_{k, -m} \left(x\right)
\end{equation*}
- heisst Whittaker Funktion und ist eine Lösung
- von
+ gehören zu den Whittaker Funktionen und sind Lösungen
+ von der Whittaker Differentialgleichung
\begin{equation}
- \frac{d^2W}{d z^2} +
- \left(-\frac{1}{4} + \frac{k}{z} + \frac{\frac{1}{4} - m^2}{z^2} \right) W = 0.
+ \frac{d^2W}{d x^2} +
+ \biggl( -\frac{1}{4} + \frac{k}{x} + \frac{\frac{1}{4} - m^2}{x^2} \biggr) W = 0.
+ \label{parzyl:eq:whitDiffEq}
\end{equation}
-\end{definition}
-
-Lösung Folgt\dots
+\end{definition}
+Es wird nun die Differentialgleichung bestimmt, welche
+\begin{equation}
+ w = x^{-1/2} W_{k,-1/4} \left({\textstyle \frac{1}{2}} x^2\right)
+\end{equation}
+als Lösung hat.
+Dafür wird $w$ in \eqref{parzyl:eq:whitDiffEq} eingesetzt, woraus
+\begin{equation}
+ \frac{d^2 w}{dx^2} - \left(\frac{1}{4} x^2 - 2k\right) w = 0
+\label{parzyl:eq:weberDiffEq}
+\end{equation}
+resultiert. Diese Differentialgleichung ist dieselbe wie
+\eqref{parzyl:sep_dgl_1} und \eqref{parzyl:sep_dgl_2}, welche somit
+$w$ als Lösung haben.
+%Da es sich um eine Differentialgleichung zweiter Ordnung handelt, hat sie nicht nur
+%eine sondern zwei Lösungen.
+%Die zweite Lösung der Whittaker-Gleichung ist $W_{k,-m} (z)$.
+%Somit hat \eqref{parzyl:eq:weberDiffEq}
+%\begin{align}
+% w_1(k, z) & = z^{-1/2} W_{k,-1/4} \left({\textstyle \frac{1}{2}} z^2\right)\\
+% w_2(k, z) & = z^{-1/2} W_{k,1/4} \left({\textstyle \frac{1}{2}} z^2\right)
+%\end{align}
+%als Lösungen.
+%Mit der Hypergeometrischen Funktion ausgeschrieben ergeben sich die Lösungen
+%\begin{align}
+% \label{parzyl:eq:solution_dgl}
+% w_1(k,z) &= e^{-z^2/4} \,
+% {}_{1} F_{1}
+% (
+% {\textstyle \frac{1}{4}}
+% - k, {\textstyle \frac{1}{2}} ; {\textstyle \frac{1}{2}}z^2) \\
+% w_2(k,z) & = z e^{-z^2/4} \,
+% {}_{1} F_{1}
+% ({\textstyle \frac{3}{4}}
+% - k, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}z^2).
+%\end{align}
+In der Literatur gibt es verschiedene Standartlösungen für
+\eqref{parzyl:eq:weberDiffEq}, wobei die Differentialgleichung jeweils
+unterschiedlich geschrieben wird.
+Whittaker und Watson zeigen in \cite{parzyl:whittaker} die Lösung
+\begin{equation}
+ D_n(x) = 2^{\frac{1}{2}n + \frac{1}{2}} x^{-\frac{1}{2}} W_{n/2 + 1/4, -1/4}\left(\frac{1}{2}x^2\right),
+\end{equation}
+welche die Differentialgleichung
+\begin{equation}
+ \frac{d^2D_n(x)}{dx^2} + \left(n + \frac{1}{2} - \frac{1}{4} x^2\right)D_n(x) = 0
+\end{equation}
+löst.
+Mit $M_{k,m}(x)$ geschrieben resultiert
+\begin{equation}
+ D_n(x) = \frac{
+ \Gamma \left( {\textstyle \frac{1}{2}}\right) 2^{\frac{1}{2}n + \frac{1}{4}} x^{-\frac{1}{2}}
+ }{
+ \Gamma \left( {\textstyle \frac{1}{2}} - {\textstyle \frac{1}{2}} n \right)
+ }
+ M_{\frac{1}{2} n + \frac{1}{4}, - \frac{1}{4}} \left(\frac{1}{2}x^2\right)
+ +
+ \frac{
+ \Gamma\left(-{\textstyle \frac{1}{2}}\right) 2^{\frac{1}{2}n + \frac{1}{4}} x^{-\frac{1}{2}}
+ }{
+ \Gamma\left(- {\textstyle \frac{1}{2}} n\right)
+ }
+ M_{\frac{1}{2} n + \frac{1}{4}, \frac{1}{4}} \left(\frac{1}{2}x^2\right).
+\end{equation}
+In \cite{parzyl:abramowitz-stegun} sind zwei Lösungen $U(a, x)$ und $V(a,x)$
+\begin{align}
+ U(a,x) &=
+ \cos\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_1
+ - \sin\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_2
+ \label{parzyl:eq:Uaz}
+ \\
+ V(a,x) &= \frac{1}{\Gamma \left({\textstyle \frac{1}{2} - a}\right)} \left\{
+ \sin\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_1
+ + \cos\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_2
+ \right\}
+ \label{parzyl:eq:Vaz}
+\end{align}
+mit
+\begin{align}
+ Y_1 &= \frac{1}{\sqrt{\pi}}
+ \frac{\Gamma\left({\textstyle \frac{1}{4} -
+ {\textstyle \frac{1}{2}}a}\right)}
+ {2^{\frac{1}{2} a + \frac{1}{4}}}
+ e^{-x^2/4}
+ {}_{1} F_{1}
+ \left({\textstyle \frac{1}{2}}a + {\textstyle \frac{1}{4}},
+ {\textstyle \frac{1}{2}} ;
+ {\textstyle \frac{1}{2}}x^2\right)\\
+ Y_2 &= \frac{1}{\sqrt{\pi}}
+ \frac{\Gamma\left({\textstyle \frac{3}{4} -
+ {\textstyle \frac{1}{2}}a}\right)}
+ {2^{\frac{1}{2} a - \frac{1}{4}}}
+ x e^{-x^2/4}
+ {}_{1} F_{1}
+ \left({\textstyle \frac{1}{2}}a + {\textstyle \frac{3}{4}},
+ {\textstyle \frac{3}{2}} ;
+ {\textstyle \frac{1}{2}}x^2\right)
+\end{align}
+der Differentialgleichung
+\begin{equation}
+ \frac{d^2 y}{d x^2} - \left(\frac{1}{4} x^2 + a\right) y = 0
+\end{equation}
+beschrieben. Die Lösungen $U(a,z)$ und $V(a, z)$ können auch mit $D_n(z)$
+ausgedrückt werden
+\begin{align}
+ U(a,x) &= D_{-a-1/2}(x) \\
+ V(a,x) &= \frac{\Gamma \left({\textstyle \frac{1}{2}} + a\right)}{\pi}
+ \left[\sin\left(\pi a\right) D_{-a-1/2}(x) + D_{-a-1/2}(-x)\right].
+\end{align}
+In den Abbildungen \ref{parzyl:fig:dnz} und \ref{parzyl:fig:Vnz} sind
+die Funktionen $D_n(x)$ und $V(a,x)$ mit verschiedenen Werten für $a$ abgebildet.
+\begin{figure}
+ \centering
+ \includegraphics[scale=0.35]{papers/parzyl/img/D_plot.png}
+ \caption{$D_n(x)$ mit unterschiedlichen Werten für $n$.}
+ \label{parzyl:fig:dnz}
+\end{figure}
+\begin{figure}
+ \centering
+ \includegraphics[scale=0.35]{papers/parzyl/img/v_plot.png}
+ \caption{$V(a,x)$ mit unterschiedlichen Werten für $a$.}
+ \label{parzyl:fig:Vnz}
+\end{figure} \ No newline at end of file