aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/parzyl/teil3.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/parzyl/teil3.tex')
-rw-r--r--buch/papers/parzyl/teil3.tex85
1 files changed, 53 insertions, 32 deletions
diff --git a/buch/papers/parzyl/teil3.tex b/buch/papers/parzyl/teil3.tex
index 972fd33..166eebf 100644
--- a/buch/papers/parzyl/teil3.tex
+++ b/buch/papers/parzyl/teil3.tex
@@ -9,75 +9,96 @@
\subsection{Potenzreihenentwicklung
\label{parzyl:potenz}}
-Die parabolischen Zylinderfunktionen, welche in Gleichung \ref{parzyl:eq:solution_dgl} gegeben sind, können auch als Potenzreihen geschrieben werden
+%Die parabolischen Zylinderfunktionen, welche in Gleichung \ref{parzyl:eq:solution_dgl} gegeben sind,
+%können auch als Potenzreihen geschrieben werden
+Die parabolischen Zylinderfunktionen können auch als Potenzreihen geschrieben werden.
+Im folgenden Abschnitt werden die Terme welche nur von $n$ oder $a$ abhängig sind vernachlässigt.
+Die parabolischen Zylinderfunktionen sind Linearkombinationen aus einem geraden Teil $w_1(\alpha, x)$
+und einem ungeraden Teil $w_2(\alpha, x)$, welche als Potenzreihe
\begin{align}
- w_1(k,z)
+ w_1(\alpha,x)
&=
- e^{-z^2/4} \,
+ e^{-x^2/4} \,
{}_{1} F_{1}
(
- {\textstyle \frac{1}{4}}
- - k, {\textstyle \frac{1}{2}} ; {\textstyle \frac{1}{2}}z^2)
+ \alpha, {\textstyle \frac{1}{2}} ; {\textstyle \frac{1}{2}}x^2)
=
- e^{-\frac{z^2}{4}}
+ e^{-\frac{x^2}{4}}
\sum^{\infty}_{n=0}
- \frac{\left ( \frac{1}{4} - k \right )_{n}}{\left ( \frac{1}{2}\right )_{n}}
- \frac{\left ( \frac{1}{2} z^2\right )^n}{n!} \\
+ \frac{\left ( \alpha \right )_{n}}{\left ( \frac{1}{2}\right )_{n}}
+ \frac{\left ( \frac{1}{2} x^2\right )^n}{n!} \\
&=
- e^{-\frac{z^2}{4}}
+ e^{-\frac{x^2}{4}}
\left (
1
+
- \left ( \frac{1}{2} - 2k \right )\frac{z^2}{2!}
+ \left ( 2\alpha \right )\frac{x^2}{2!}
+
- \left ( \frac{1}{2} - 2k \right )\left ( \frac{5}{2} - 2k \right )\frac{z^4}{4!}
+ \left ( 2\alpha \right )\left ( 2 + 2\alpha \right )\frac{x^4}{4!}
+
\dots
\right )
\end{align}
und
\begin{align}
- w_2(k,z)
+ w_2(\alpha,x)
&=
- ze^{-z^2/4} \,
+ xe^{-x^2/4} \,
{}_{1} F_{1}
(
- {\textstyle \frac{3}{4}}
- - k, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}z^2)
+ {\textstyle \frac{1}{2}}
+ + \alpha, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}x^2)
=
- ze^{-\frac{z^2}{4}}
+ xe^{-\frac{x^2}{4}}
\sum^{\infty}_{n=0}
\frac{\left ( \frac{3}{4} - k \right )_{n}}{\left ( \frac{3}{2}\right )_{n}}
- \frac{\left ( \frac{1}{2} z^2\right )^n}{n!} \\
+ \frac{\left ( \frac{1}{2} x^2\right )^n}{n!} \\
&=
- e^{-\frac{z^2}{4}}
+ e^{-\frac{x^2}{4}}
\left (
- z
+ x
+
- \left ( \frac{3}{2} - 2k \right )\frac{z^3}{3!}
+ \left ( 1 + 2\alpha \right )\frac{x^3}{3!}
+
- \left ( \frac{3}{2} - 2k \right )\left ( \frac{7}{2} - 2k \right )\frac{z^5}{5!}
+ \left ( 1 + 2\alpha \right )\left ( 3 + 2\alpha \right )\frac{x^5}{5!}
+
\dots
- \right ).
+ \right )
\end{align}
-Bei den Potenzreihen sieht man gut, dass die Ordnung des Polynoms im generellen ins unendliche geht. Es gibt allerdings die Möglichkeit für bestimmte k das die Terme in der Klammer gleich null werden und das Polynom somit eine endliche Ordnung $n$ hat. Dies geschieht bei $w_1(k,z)$ falls
+sind.
+Die Potenzreihen sind in der regel unendliche Reihen.
+Es gibt allerdings die Möglichkeit für bestimmte $\alpha$ das die Terme in der Klammer gleich null werden
+und die Reihe somit eine endliche Anzahl $n$ Summanden hat.
+Dies geschieht bei $w_1(\alpha,x)$ falls
\begin{equation}
- k = \frac{1}{4} + n \qquad n \in \mathbb{N}_0
+ \alpha = -n \qquad n \in \mathbb{N}_0
\end{equation}
-und bei $w_2(k,z)$ falls
+und bei $w_2(\alpha,x)$ falls
\begin{equation}
- k = \frac{3}{4} + n \qquad n \in \mathbb{N}_0.
+ \alpha = -\frac{1}{2} - n \qquad n \in \mathbb{N}_0.
\end{equation}
-
+Der Wert des von $\alpha$ ist abhängig, ob man $D_n(x)$ oder $U(a,x)$ / $V(a,x)$ verwendet.
+Bei $D_n(x)$ gilt $\alpha = -{\textstyle \frac{1}{2}} n$ und bei $U(a,z)$ oder $V(a,x)$ gilt
+$\alpha = {\textstyle \frac{1}{2}} a + {\textstyle \frac{1}{4}}$.
\subsection{Ableitung}
-Es kann gezeigt werden, dass die Ableitungen $\frac{\partial w_1(z,k)}{\partial z}$ und $\frac{\partial w_2(z,k)}{\partial z}$ einen Zusammenhang zwischen $w_1(z,k)$ und $w_2(z,k)$ zeigen. Die Ableitung von $w_1(z,k)$ nach $z$ kann über die Produktregel berechnet werden und ist gegeben als
+Die Ableitungen $\frac{\partial w_1(\alpha, x)}{\partial x}$ und $\frac{\partial w_2(\alpha, x)}{\partial x}$
+können mit den Eigenschaften der hypergeometrischen Funktionen in Abschnitt
+\ref{buch:rekursion:hypergeometrisch:stammableitung} berechnet werden.
+Zusammen mit der Produktregel ergeben sich die Ableitungen
\begin{equation}
- \frac{\partial w_1(z,k)}{\partial z} = \left (\frac{1}{2} - 2k \right ) w_2(z, k -\frac{1}{2}) - \frac{1}{2} z w_1(z,k),
+ \frac{\partial w_1(\alpha,x)}{\partial x} = 2\alpha w_2(\alpha + \frac{1}{2}, x) - \frac{1}{2} x w_1(\alpha, x),
\end{equation}
-und die Ableitung von $w_2(z,k)$ als
+und
+%\begin{equation}
+% \frac{\partial w_2(z,k)}{\partial z} = w_1(z, k -\frac{1}{2}) - \frac{1}{2} z w_2(z,k).
+%\end{equation}
\begin{equation}
- \frac{\partial w_2(z,k)}{\partial z} = w_1(z, k -\frac{1}{2}) - \frac{1}{2} z w_2(z,k).
+ \frac{\partial w_2(\alpha,x)}{\partial x} = e^{-x^2/4} \left(
+ x^{-1} w_2(\alpha, x) - \frac{x}{2} w_2(\alpha, x) + 2 x^2 \left(\frac{\alpha + 1}{3}\right)
+ {}_{1} F_{1} (
+ {\textstyle \frac{3}{2}}
+ + \alpha, {\textstyle \frac{5}{2}} ; {\textstyle \frac{1}{2}}x^2)
+ \right)
\end{equation}
-Über diese Eigenschaft können einfach weitere Ableitungen berechnet werden.
+Nach dem selben Vorgehen können weitere Ableitungen berechnet werden.