aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/zeta/euler_product.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/zeta/euler_product.tex')
-rw-r--r--buch/papers/zeta/euler_product.tex85
1 files changed, 85 insertions, 0 deletions
diff --git a/buch/papers/zeta/euler_product.tex b/buch/papers/zeta/euler_product.tex
new file mode 100644
index 0000000..a6ed512
--- /dev/null
+++ b/buch/papers/zeta/euler_product.tex
@@ -0,0 +1,85 @@
+\section{Eulerprodukt} \label{zeta:section:eulerprodukt}
+\rhead{Eulerprodukt}
+
+Das Eulerprodukt stellt die Verbindung der Zetafunktion und der Primzahlen her.
+Diese Verbindung ist sehr wichtig, da durch sie eine Aussage zur Primzahlverteilung gemacht werden kann.
+Die Verteilung der Primzahlen ist Gegenstand der Riemannschen Vermutung, welche eines der grössten ungelösten Probleme der Mathematik ist.
+
+\begin{satz}
+ Für alle Zahlen $s$ mit $\Re(s) > 1$ ist die Zetafunktion identisch mit dem unendlichen Eulerprodukt
+ \begin{equation}\label{zeta:eq:eulerprodukt}
+ \zeta(s)
+ =
+ \sum_{n=1}^\infty
+ \frac{1}{n^s}
+ =
+ \prod_{p \in P}
+ \frac{1}{1-p^{-s}}
+ \end{equation}
+ wobei $P$ die Menge aller Primzahlen darstellt.
+\end{satz}
+
+\begin{proof}[Beweis]
+ Der Beweis startet mit dem Eulerprodukt und stellt dieses so um, dass die Zetafunktion erscheint.
+ Als erstes ersetzen wir die Faktoren durch geometrische Reihen
+ \begin{equation}
+ \prod_{i=1}^{\infty}
+ \frac{1}{1-p^{-s}}
+ =
+ \prod_{p \in P}
+ \sum_{k_i=0}^{\infty}
+ \left(
+ \frac{1}{p_i^s}
+ \right)^{k_i}
+ =
+ \prod_{p \in P}
+ \sum_{k_i=0}^{\infty}
+ \frac{1}{p_i^{s k_i}},
+ \end{equation}
+ dabei iteriert der Index $i$ über alle Primzahlen $p_i$.
+ Durch Ausschreiben der Multiplikation und Ausklammern der Summen erhalten wir
+ \begin{align}
+ \prod_{p \in P}
+ \sum_{k_i=0}^{\infty}
+ \frac{1}{p_i^{s k_i}}
+ &=
+ \sum_{k_1=0}^{\infty}
+ \frac{1}{p_1^{s k_1}}
+ \sum_{k_2=0}^{\infty}
+ \frac{1}{p_2^{s k_2}}
+ \ldots
+ \nonumber \\
+ &=
+ \sum_{k_1=0}^{\infty}
+ \sum_{k_2=0}^{\infty}
+ \ldots
+ \left(
+ \frac{1}{p_1^{k_1}}
+ \frac{1}{p_2^{k_2}}
+ \ldots
+ \right)^s.
+ \label{zeta:equation:eulerprodukt2}
+ \end{align}
+ Der Fundamentalsatz der Arithmetik (Primfaktorzerlegung) besagt, dass jede beliebige Zahl $n \in \mathbb{N}$ durch eine eindeutige Primfaktorzerlegung beschrieben werden kann
+ \begin{equation}
+ n = \prod_i p_i^{k_i} \quad \forall \quad n \in \mathbb{N}.
+ \end{equation}
+ Jeder Summand der Summen in \eqref{zeta:equation:eulerprodukt2} ist somit eine Zahl $n$.
+ Da die Summen alle möglichen Kombinationen von Exponenten und Primzahlen in \eqref{zeta:equation:eulerprodukt2} enthält haben wir
+ \begin{equation}
+ \sum_{k_1=0}^{\infty}
+ \sum_{k_2=0}^{\infty}
+ \ldots
+ \left(
+ \frac{1}{p_1^{k_1}}
+ \frac{1}{p_2^{k_2}}
+ \ldots
+ \right)^s
+ =
+ \sum_{n=1}^\infty
+ \frac{1}{n^s}
+ =
+ \zeta(s)
+ \end{equation}
+\end{proof}
+