aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/110-elliptisch/ellintegral.tex
blob: 1e356168200d4686b945a06e4ccc6cfb82105d9a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
%
% ellintegral.tex
%
% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
%
\section{Elliptische Integrale
\label{buch:elliptisch:section:integral}}
\rhead{Elliptisches Integral}
Bei der Berechnung des Ellipsenbogens in 
Abschnitt~\ref{buch:geometrie:subsection:hyperbeln-und-ellipsen}
sind wir auf ein Integral gestossen, welches sich nicht in geschlossener
Form ausdrücken liess.
Um solche Integrale in den Griff zu bekommen, ist es nötig, sie als
neue spezielle Funktionen zu definieren.

\subsection{Definition
\label{buch:elliptisch:subsection:definition}}
Ein elliptisches Integral ist ein Integral der Form
\begin{equation}
\int R\left( x, \sqrt{p(x)}\right)\,dx
\label{buch:elliptisch:def:allgemein}
\end{equation}
wobei $R(x,y)$ eine rationale Funktion von zwei Variablen ist und
$p(x)$ ein Polynom dritten oder vierten Grades.
Hätte $p(x)$ ein mehrfache Nullstelle $x_0$, müsste es durch $(x-x_0)^2$
teilbar sein, man könnte also einen Faktor $(x-x_0)$ aus der
Wurzel im Integraneden von \eqref{buch:elliptisch:def:allgemein}
ausklammern und damit das Integral in eine Form bringen, wo $p(x)$
höchstens zweiten Grades ist.
Solche Integrale lassen sich meistens mit trigonometrischen Substitutionen
berechnen.
Wir verlangen daher, dass $p(x)$ keine mehrfachen Nullstellen hat.

Man kann zeigen, dass sich elliptische Integrale in Summen von
elementaren Funktionen und speziellen elliptischen Integralen 
der folgenden Form überführen lassen.

\begin{definition}
\label{buch:elliptisch:def:integrale123}
Die elliptischen Integrale erster, zweiter und dritter Art sind die
Integrale
\[
\begin{aligned}
\text{1.~Art:}&&&
\int \frac{dx}{\sqrt{(1-x^2)(1-k^2x^2)}}
\\
\text{2.~Art:}&&&
\int \sqrt{\frac{1-k^2x^2}{1-x^2}}\,dx
\\
\text{3.~Art:}&&&
\int \frac{dx}{(1-nx^2)\sqrt{(1-x^2)(1-k^2x^2)}}
\end{aligned}
\]
mit $0<k<1$.
Es ist auch üblich, den Parameter $m=k^2$ zu verwenden.
\end{definition}

Wie gesagt lassen sich für diese unbestimmten Integrale keine 
geschlossenen Formen finden.
Es bleibt uns daher nichts anderes übrig, als die Integralgrenzen
festzulegen und damit eine Stammfunktion auszuwählen.

%
% Elliptisches Integral
%
\subsection{Vollständige elliptische Integrale
\label{buch:elliptisch:subsection:vollstaendig}}
In diesem Abschnitt legen wir beide Integrationsgrenzen fest und
untersuchen die entstehenenden Funktionen von den Parametern
$k$ und $n$.

\subsubsection{Definition der vollständigen elliptischen Integrale}
Da der Nenner in allen drei elliptischen Integralen eine Nullstelle
bei $\pm1$ hat, kann das Integral nur von $0$ bis $1$ erstreckt werden.

\begin{definition}
\label{buch:elliptisch:def:vollstintegrale123}
Die vollständigen elliptischen Integrale erster, zweiter und dritter
Art sind
\[
\begin{aligned}
\text{1.~Art:}&&
K(k)&=\int_0^1 \frac{dt}{\sqrt{(1-t^2)(1-k^2t^2)}} \\
\text{2.~Art:}&&
E(k)&=\int_0^1 \sqrt{\frac{1-k^2t^2}{1-t^2}}\,dt \\
\text{3.~Art:}&&
\Pi(n, k)&=\int_0^1\frac{dt}{(1-nt^2)\sqrt{(1-t^2)(1-k^2t^2)}} 
\end{aligned}
\]
mit $0<k<1$.
\end{definition}

Die Funktionen hängen stetig von $k$ ab.
Die Nullstellen des Faktors $1-k^2x^2$ liegen ausserhalb des
Integrationsintervalls und spielen daher keine Rolle.
Die Werte von $K(k)$ und $E(k)$ für $k=0$ können direkt berechnet
werden:
\begin{align*}
K(0)
=
E(0)
&=
\int_0^1 \frac{dt}{\sqrt{1-t^2}}=\frac{\pi}2.
\end{align*}
Das Integral $\Pi(n,0)$ ist etwas komplizierter.

Für $k\to 1$ ist $E(k)=1$, die Integrale $K(1)$ und $\Pi(n,1)$
sind dagegen divergent.

\subsubsection{Jacobi- und Legendre-Normalform}
Die Integrationsvariable $t$ der vollständigen elliptischen Integrale
kann durch die Substitution $t=\sin\varphi$ durch die Variable
$\varphi$ und das Integral über das Intervall $[0,1]$ durch ein
Integral über das Intervall $[0,\frac{\pi}2]$ ersetzt werden.
Mit
\[
\frac{dt}{d\varphi} = \cos\varphi = \sqrt{1-\sin^2\varphi}
\]
können die Funktionen $K(k)$, $E(k)$ und $\Pi(n,k)$ auch als
\begin{align*}
K(k)
&=
\int_0^{\frac{\pi}2}
\frac{
\sqrt{1-\sin^2\varphi}\,d\varphi
}{
\sqrt{(1-\sin^2\varphi)(1-k^2\sin^2\varphi)}
}
=
\int_0^{\frac{\pi}2}
\frac{d\varphi}{\sqrt{1-k^2\sin^2\varphi}}
\\
E(k)
&=
\int_0^{\frac{\pi}2}
\sqrt{\frac{1-k^2\sin^2\varphi}{1-\sin^2\varphi}}(1-\sin^2\varphi)\,d\varphi
=
\int_0^{\frac{\pi}2}
\sqrt{1-k^2\sin^2\varphi}\,d\varphi
\\
\Pi(n,k)
&=
\int_0^{\frac{\pi}2}
\frac{
\sqrt{1-\sin^2\varphi}\,d\varphi
}{
(1-n\sin^2\varphi)\sqrt{(1-\sin^2\varphi)(1-k^2\sin^2\varphi)}
}
=
\int_0^{\frac{\pi}2}
\frac{
d\varphi
}{
(1-n\sin^2\varphi)\sqrt{1-k^2\sin^2\varphi}
}
\end{align*}
Diese Form wird auch die {\em Legendre-Normalform} der vollständigen 
\index{Legendre-Normalform}%
elliptischen Integrale genannt, während die Form von
Definition~\ref{buch:elliptisch:def:vollstintegrale123}
die {\em Jacobi-Normalform} heisst.
\index{Jacobi-Normalform}%


\subsubsection{Komplementäre Integrale}
XXX Komplementäre Integrale \\

\subsubsection{Ableitung}
XXX Ableitung \\
XXX Stammfunktion \\

\subsection{Unvollständige elliptische Integrale}
XXX Vollständige und Unvollständige Integrale \\
XXX Additionstheoreme \\
XXX Parameterkonventionen \\

\subsection{Potenzreihe}
XXX Potenzreihen \\
XXX Als hypergeometrische Funktionen \\