aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/110-elliptisch/ellintegral.tex
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@ost.ch>2021-10-12 07:44:15 +0200
committerAndreas Müller <andreas.mueller@ost.ch>2021-10-12 07:44:15 +0200
commit09e2c20b0a41a36161547b2628366db1e048eaf8 (patch)
tree19ce49dcdcf7ebe7835432ecc81b66ac1a97f7ec /buch/chapters/110-elliptisch/ellintegral.tex
parentmore chapter skeletons (diff)
downloadSeminarSpezielleFunktionen-09e2c20b0a41a36161547b2628366db1e048eaf8.tar.gz
SeminarSpezielleFunktionen-09e2c20b0a41a36161547b2628366db1e048eaf8.zip
add some info on elliptic functions
Diffstat (limited to 'buch/chapters/110-elliptisch/ellintegral.tex')
-rw-r--r--buch/chapters/110-elliptisch/ellintegral.tex181
1 files changed, 181 insertions, 0 deletions
diff --git a/buch/chapters/110-elliptisch/ellintegral.tex b/buch/chapters/110-elliptisch/ellintegral.tex
new file mode 100644
index 0000000..1e35616
--- /dev/null
+++ b/buch/chapters/110-elliptisch/ellintegral.tex
@@ -0,0 +1,181 @@
+%
+% ellintegral.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\section{Elliptische Integrale
+\label{buch:elliptisch:section:integral}}
+\rhead{Elliptisches Integral}
+Bei der Berechnung des Ellipsenbogens in
+Abschnitt~\ref{buch:geometrie:subsection:hyperbeln-und-ellipsen}
+sind wir auf ein Integral gestossen, welches sich nicht in geschlossener
+Form ausdrücken liess.
+Um solche Integrale in den Griff zu bekommen, ist es nötig, sie als
+neue spezielle Funktionen zu definieren.
+
+\subsection{Definition
+\label{buch:elliptisch:subsection:definition}}
+Ein elliptisches Integral ist ein Integral der Form
+\begin{equation}
+\int R\left( x, \sqrt{p(x)}\right)\,dx
+\label{buch:elliptisch:def:allgemein}
+\end{equation}
+wobei $R(x,y)$ eine rationale Funktion von zwei Variablen ist und
+$p(x)$ ein Polynom dritten oder vierten Grades.
+Hätte $p(x)$ ein mehrfache Nullstelle $x_0$, müsste es durch $(x-x_0)^2$
+teilbar sein, man könnte also einen Faktor $(x-x_0)$ aus der
+Wurzel im Integraneden von \eqref{buch:elliptisch:def:allgemein}
+ausklammern und damit das Integral in eine Form bringen, wo $p(x)$
+höchstens zweiten Grades ist.
+Solche Integrale lassen sich meistens mit trigonometrischen Substitutionen
+berechnen.
+Wir verlangen daher, dass $p(x)$ keine mehrfachen Nullstellen hat.
+
+Man kann zeigen, dass sich elliptische Integrale in Summen von
+elementaren Funktionen und speziellen elliptischen Integralen
+der folgenden Form überführen lassen.
+
+\begin{definition}
+\label{buch:elliptisch:def:integrale123}
+Die elliptischen Integrale erster, zweiter und dritter Art sind die
+Integrale
+\[
+\begin{aligned}
+\text{1.~Art:}&&&
+\int \frac{dx}{\sqrt{(1-x^2)(1-k^2x^2)}}
+\\
+\text{2.~Art:}&&&
+\int \sqrt{\frac{1-k^2x^2}{1-x^2}}\,dx
+\\
+\text{3.~Art:}&&&
+\int \frac{dx}{(1-nx^2)\sqrt{(1-x^2)(1-k^2x^2)}}
+\end{aligned}
+\]
+mit $0<k<1$.
+Es ist auch üblich, den Parameter $m=k^2$ zu verwenden.
+\end{definition}
+
+Wie gesagt lassen sich für diese unbestimmten Integrale keine
+geschlossenen Formen finden.
+Es bleibt uns daher nichts anderes übrig, als die Integralgrenzen
+festzulegen und damit eine Stammfunktion auszuwählen.
+
+%
+% Elliptisches Integral
+%
+\subsection{Vollständige elliptische Integrale
+\label{buch:elliptisch:subsection:vollstaendig}}
+In diesem Abschnitt legen wir beide Integrationsgrenzen fest und
+untersuchen die entstehenenden Funktionen von den Parametern
+$k$ und $n$.
+
+\subsubsection{Definition der vollständigen elliptischen Integrale}
+Da der Nenner in allen drei elliptischen Integralen eine Nullstelle
+bei $\pm1$ hat, kann das Integral nur von $0$ bis $1$ erstreckt werden.
+
+\begin{definition}
+\label{buch:elliptisch:def:vollstintegrale123}
+Die vollständigen elliptischen Integrale erster, zweiter und dritter
+Art sind
+\[
+\begin{aligned}
+\text{1.~Art:}&&
+K(k)&=\int_0^1 \frac{dt}{\sqrt{(1-t^2)(1-k^2t^2)}} \\
+\text{2.~Art:}&&
+E(k)&=\int_0^1 \sqrt{\frac{1-k^2t^2}{1-t^2}}\,dt \\
+\text{3.~Art:}&&
+\Pi(n, k)&=\int_0^1\frac{dt}{(1-nt^2)\sqrt{(1-t^2)(1-k^2t^2)}}
+\end{aligned}
+\]
+mit $0<k<1$.
+\end{definition}
+
+Die Funktionen hängen stetig von $k$ ab.
+Die Nullstellen des Faktors $1-k^2x^2$ liegen ausserhalb des
+Integrationsintervalls und spielen daher keine Rolle.
+Die Werte von $K(k)$ und $E(k)$ für $k=0$ können direkt berechnet
+werden:
+\begin{align*}
+K(0)
+=
+E(0)
+&=
+\int_0^1 \frac{dt}{\sqrt{1-t^2}}=\frac{\pi}2.
+\end{align*}
+Das Integral $\Pi(n,0)$ ist etwas komplizierter.
+
+Für $k\to 1$ ist $E(k)=1$, die Integrale $K(1)$ und $\Pi(n,1)$
+sind dagegen divergent.
+
+\subsubsection{Jacobi- und Legendre-Normalform}
+Die Integrationsvariable $t$ der vollständigen elliptischen Integrale
+kann durch die Substitution $t=\sin\varphi$ durch die Variable
+$\varphi$ und das Integral über das Intervall $[0,1]$ durch ein
+Integral über das Intervall $[0,\frac{\pi}2]$ ersetzt werden.
+Mit
+\[
+\frac{dt}{d\varphi} = \cos\varphi = \sqrt{1-\sin^2\varphi}
+\]
+können die Funktionen $K(k)$, $E(k)$ und $\Pi(n,k)$ auch als
+\begin{align*}
+K(k)
+&=
+\int_0^{\frac{\pi}2}
+\frac{
+\sqrt{1-\sin^2\varphi}\,d\varphi
+}{
+\sqrt{(1-\sin^2\varphi)(1-k^2\sin^2\varphi)}
+}
+=
+\int_0^{\frac{\pi}2}
+\frac{d\varphi}{\sqrt{1-k^2\sin^2\varphi}}
+\\
+E(k)
+&=
+\int_0^{\frac{\pi}2}
+\sqrt{\frac{1-k^2\sin^2\varphi}{1-\sin^2\varphi}}(1-\sin^2\varphi)\,d\varphi
+=
+\int_0^{\frac{\pi}2}
+\sqrt{1-k^2\sin^2\varphi}\,d\varphi
+\\
+\Pi(n,k)
+&=
+\int_0^{\frac{\pi}2}
+\frac{
+\sqrt{1-\sin^2\varphi}\,d\varphi
+}{
+(1-n\sin^2\varphi)\sqrt{(1-\sin^2\varphi)(1-k^2\sin^2\varphi)}
+}
+=
+\int_0^{\frac{\pi}2}
+\frac{
+d\varphi
+}{
+(1-n\sin^2\varphi)\sqrt{1-k^2\sin^2\varphi}
+}
+\end{align*}
+Diese Form wird auch die {\em Legendre-Normalform} der vollständigen
+\index{Legendre-Normalform}%
+elliptischen Integrale genannt, während die Form von
+Definition~\ref{buch:elliptisch:def:vollstintegrale123}
+die {\em Jacobi-Normalform} heisst.
+\index{Jacobi-Normalform}%
+
+
+\subsubsection{Komplementäre Integrale}
+XXX Komplementäre Integrale \\
+
+\subsubsection{Ableitung}
+XXX Ableitung \\
+XXX Stammfunktion \\
+
+\subsection{Unvollständige elliptische Integrale}
+XXX Vollständige und Unvollständige Integrale \\
+XXX Additionstheoreme \\
+XXX Parameterkonventionen \\
+
+\subsection{Potenzreihe}
+XXX Potenzreihen \\
+XXX Als hypergeometrische Funktionen \\
+
+