aboutsummaryrefslogtreecommitdiffstats
path: root/an2e_zf.tex
diff options
context:
space:
mode:
authorNao Pross <naopross@thearcway.org>2020-04-08 09:55:13 +0200
committerNao Pross <naopross@thearcway.org>2020-04-08 09:55:13 +0200
commit44f36c3f9c248b1a16229537dcd36d1c7ccc46ba (patch)
treed518a4adaeb03d30221e7049989f165213db75c2 /an2e_zf.tex
downloadAn2E-44f36c3f9c248b1a16229537dcd36d1c7ccc46ba.tar.gz
An2E-44f36c3f9c248b1a16229537dcd36d1c7ccc46ba.zip
Add current work to version control
Diffstat (limited to 'an2e_zf.tex')
-rw-r--r--an2e_zf.tex202
1 files changed, 202 insertions, 0 deletions
diff --git a/an2e_zf.tex b/an2e_zf.tex
new file mode 100644
index 0000000..16812c5
--- /dev/null
+++ b/an2e_zf.tex
@@ -0,0 +1,202 @@
+\documentclass[a4paper]{article}
+
+\usepackage{amssymb}
+\usepackage{amsmath}
+\usepackage{bm}
+
+\numberwithin{equation}{subsection}
+
+\usepackage{float}
+\usepackage{array}
+\usepackage{booktabs}
+\usepackage{rotating}
+
+\usepackage[margin=2cm, bottom=2cm, top=2cm, marginpar=0pt]{geometry}
+\usepackage{graphicx}
+\usepackage{xcolor}
+
+%\usepackage{showframe}
+
+%\usepackage{tikz}
+%\usepackage{tikz-3dplot}
+%\usepackage{pgfplots}
+%\pgfplotsset{compat=1.15}
+
+\usepackage{multicol}
+
+\usepackage[colorlinks = true,
+ linkcolor = red!50!black,
+ urlcolor = blue,
+ citecolor = black,
+ anchorcolor = blue]{hyperref}
+
+
+\usepackage{polyglossia}
+\setdefaultlanguage[variant=swiss]{german}
+
+
+\title{Analysis 2 Zusammenfassung}
+\author{Naoki Pross}
+\date{Fr\"uhlingsstemester 2020}
+
+
+\newcommand{\dd}[1]{\ensuremath{~\mathrm{d}#1}}
+\newcommand{\deriv}[2]{\ensuremath{\frac{\dd{#1}}{\dd{#2}}}}
+\newcommand{\pderiv}[2]{\ensuremath{\frac{\partial#1}{\partial#2}}}
+\renewcommand{\vec}[1]{\ensuremath{\bm{#1}}}
+
+\newcommand{\brpage}[1]{\textcolor{red!70!black}{\small\texttt{S#1}}}
+
+\begin{document}
+
+\begin{multicols}{2}
+\section{Integration \brpage{493,507}}
+\subsection{Tricks \brpage{495}}
+Linearit\"at \brpage{495}
+\[
+ \int k(u + v) = k\left(\int u + \int v\right)
+\]
+Partialbruchzerlegung \brpage{15,498}
+\[
+ \int \frac{f(x)}{P_n(x)} \dd{x} = \sum_{k=1}^n \int \frac{A_k}{x-r_k}\dd{x}
+\]
+Elementartransformation \brpage{496}
+\[
+ \int f(\lambda x + \ell) \dd{x} = \frac{1}{\lambda} F(\lambda x + \ell) + C
+\]
+Partielle Integration \brpage{497}
+\[
+ \int u \dd{v} = uv - \int v \dd{u}
+\]
+Potenzenregel \brpage{496}
+\[
+ \int u^n \cdot u' = \frac{u^{n+1}}{n+1} + C \qquad n \neq -1
+\]
+Logaritmusregel \brpage{496}
+\[
+ \int \frac{u'}{u} = \ln|u| + C
+\]
+Allgemeine Substutution \brpage{497}\\
+ \(x = g(u)\), und \(\dd{x} = g'(u)\dd{u}\)
+\[
+ \int f(x) \dd{x} = \int (f\circ g) ~ g' \dd{u} = \int \frac{f \circ g}{(g^{-1})'\circ g} \dd{u}
+\]
+Universalsubstitution \brpage{504}
+\begin{align*}
+ t &= \tan(x/2) & \sin(x) &= \frac{2t}{1+t^2} \\
+ \dd{x} &= \frac{2\dd{t}}{1+t^2} & \cos(t) &= \frac{1-t^2}{1+t^2}
+\end{align*}
+Womit
+\[
+ \int f(\sin(x), \cos(x), \tan(x)) \dd{x} = \int g(t) \dd{t}
+\]
+
+\subsection{Uneigentliches Integral \brpage{520}}
+\begin{align*}
+ \int\limits_a^\infty f \dd{x} &= \lim_{B \to \infty} \int\limits_a^B f \dd{x} \\
+ \int\limits_{-\infty}^b f \dd{x} &= \lim_{A \to -\infty} \int\limits_A^b f \dd{x} \\
+ \int\limits_{-\infty}^\infty f \dd{x} &= \lim_{\substack{A \to +\infty \\ B \to -\infty}} \int\limits_A^B f \dd{x}
+\end{align*}
+Wenn \(f\) im Punkt \(u \in (a,b)\) nicht definiert ist.
+\begin{equation} \label{eqn:int-with-pole}
+ \int\limits_a^b f \dd{x} =
+ \lim_{\epsilon\to +0} \int\limits_a^{u-\epsilon} f \dd{x}
+ + \lim_{\delta\to +0} \int\limits_{u+\delta}^b f \dd{x}
+\end{equation}
+
+\subsection{Cauchy Hauptwert \brpage{523}}
+Der C.H. (oder PV f\"ur \emph{Principal Value} auf Englisch) eines uneigentlichen Integrals ist der Wert, wenn in einem Integral wie \eqref{eqn:int-with-pole} beide Grenzwerte mit der gleiche Geschwindigkeit gegen 0 sterben.
+\[
+ \text{C.H.} \int\limits_a^b f \dd{x} =
+ \lim_{\epsilon\to +0} \left( \int\limits_a^{u-\epsilon} f \dd{x}
+ + \int\limits_{u+\epsilon}^b f \dd{x} \right)
+\]
+Zum Beispiel \(x^{-1}\) ist nicht \"uber \(\mathbb{R}\) integrierbar, wegen des Poles bei 0. Aber intuitiv wie die Symmetrie vorschlagt
+\[
+ \text{C.H.} \int\limits^\infty_{-\infty} \frac{1}{x} \dd{x} = 0
+\]
+
+\subsection{Majorant-, Minorantenprinzip und Konvergenzkriterien \brpage{521,473,479,481}}
+
+Gilt f\"ur die Funktionen \(0 < f(x) \leq g(x)\) mit \(x \in [a,\infty)\)
+\[
+ \text{konvergiert } \int\limits_a^\infty g \dd{x}
+ \implies \text{ konvergiert } \int\limits_a^\infty f \dd{x}
+\]
+Die selbe gilt umgekehrt f\"ur Divergenz. Wenn \(0 < h(x) \leq f(x)\)
+\[
+ \text{divergiert } \int\limits_a^\infty h \dd{x}
+ \implies \text{ divergiert } \int\limits_a^\infty f \dd{x}
+\]
+\(g\) und \(h\) hei{\ss}en Majorant und Minorant bzw.
+
+\section{Implizite Ableitung \brpage{448}}
+Alle normale differenziazionsregeln gelten.
+\[
+ \dd{y} = y'\dd{x}
+\]
+%Allgemeiner f\"ur die implizite Funktion \(F(x,y) = 0\)
+%\[
+% \pderiv{F}{x} + \pderiv{F}{y} y' = 0
+%\]
+
+\end{multicols}
+
+\section{Ebene \brpage{250} und Raumkurven \brpage{263}}
+\begin{sideways}
+\centering
+\renewcommand{\arraystretch}{3.5}
+\begin{tabular}{l *{3}{>{\(\displaystyle}l<{\)}} }
+\toprule
+\textbf{Ebene Kurven} & \textbf{Explizit} & \textbf{Polar} & \textbf{Parameter} \\
+\midrule
+Bogenl\"ange \brpage{251}
+ & \int\limits_a^b \sqrt{1 + (y')^2} \dd{x}
+ & \int\limits_\alpha^\beta \sqrt{(r')^2 + r^2} \dd{\varphi}
+ & \int\limits_{t_0}^{t_1} \sqrt{\dot{x}^2 + \dot{y}^2} \dd{t} = \int\limits_{t_0}^{t_1} |\vec{c}| \dd{t}
+\\
+Fl\"ache
+ & \int\limits_a^b |f(x)| \dd{x}
+ & \frac{1}{2}\int\limits_\alpha^\beta r(\varphi)^2 \dd{\varphi}
+ & \frac{1}{2}\int\limits_{t_0}^{t_1} x\dot{y} - \dot{x}y \dd{t} = \frac{1}{2}\int\limits_{t_0}^{t_1}\det(\vec{c},\dot{\vec{c}}) \dd{t}
+\\
+Rotationsvolumen um \(x\)
+ & \pi \left|\int\limits_a^b y^2 \dd{x} \right|
+ & \pi \left|\int\limits_{t_0}^{t_1} y \dot{x} \dd{t} \right|
+ & \pi \left|\int\limits_\alpha^\beta r^2 \sin^2 \varphi (r'\cos\varphi - r\sin\varphi) \dd{\varphi} \right|
+\\
+Rotationsoberfl\"ache um \(x\)
+ & 2\pi \int\limits_a^b |y| \sqrt{1 + (y')^2} \dd{x}
+ & 2\pi \int\limits_\alpha^\beta |r\sin(\varphi)| \sqrt{(r')^2 + r^2} \dd{\varphi}
+ & 2\pi \int\limits_{t_0}^{t_1} |y| \sqrt{\dot{x}^2 + \dot{y}^2} \dd{t}
+\\
+% Rotationsvolumen um \(y\) \\
+% Rotationsoberfl\"ache um \(y\) \\
+\bottomrule
+\end{tabular}
+\end{sideways}
+
+\subsection{Kr\"ummung}
+\[
+ \kappa = \deriv{\alpha}{s} = \frac{\ddot{y}}{(1+\dot{y}^2)^{3/2}}
+\]
+
+\[
+ \det(\vec{\dot{c}}, \vec{\ddot{c}})\,|\vec{c}|^{-3}
+ \quad \stackrel{\text{3D}}{=} \quad
+ |\vec{\dot{c}}\times\vec{\ddot{c}}|\,|\vec{c}|^{-3}
+\]
+
+\section*{License}
+{ \tt
+An2E-ZF (c) by Naoki Pross
+\\\\
+An2E-ZF is licensed under a Creative Commons Attribution-ShareAlike 4.0 Unported License.
+\\\\
+You should have received a copy of the license along with this work. If not, see
+\\\\
+\url{http://creativecommons.org/licenses/by-sa/4.0/}
+}
+
+
+\end{document} \ No newline at end of file