summaryrefslogtreecommitdiffstats
path: root/uav.m
blob: 071ea76fc0ad68e60f01c554b46d383eb370326c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
% Controller design for a ducted fan VTOL micro-UAV.
%
% Copyright (c) 2024, Naoki Sean Pross, ETH Zürich
% This work is distributed under a permissive license, see LICENSE.txt

%  ------------------------------------------------------------------------
% Clear environment and generate parameters

clear; clc; close all; s = tf('s');

do_plots = true; % runs faster without
do_hinf = false; % midterm
do_musyn = true; % endterm

if do_hinf & do_musyn
  error('Cannot do both H-infinity and mu synthesis.')
end

fprintf('Controller synthesis for ducted fan VTOL micro-UAV\n')
fprintf('Will do:\n')
if do_plots
  fprintf(' - Produce plots\n')
end
if do_hinf
  fprintf(' - H-infinity synthesis\n')
end
if do_musyn
  fprintf(' - Mu synthesis\n')
end

% Synthesized controllers will be stored here
ctrl = struct();

% ------------------------------------------------------------------------
%% Define system parameters

fprintf('Generating system parameters...\n')
params = uav_params();

% ------------------------------------------------------------------------
%% Define performance requirements

if do_hinf
  fprintf('Generating performance requirements...\n')
  perf = uav_performance_hinf(params, do_plots);
end
if do_musyn
  fprintf('Generating performance requirements...\n')
  perf = uav_performance_musyn(params, do_plots);
end

%  ------------------------------------------------------------------------
%% Define stability requirements

% Note: for hinf it is needed to call uav_mode, but hinf will not actually 
% make use of this struct
if do_hinf | do_musyn
  fprintf('Generating stability requirements...\n')
  uncert = uav_uncertainty(params, do_plots);
end

% ------------------------------------------------------------------------
%% Create UAV model

fprintf('Generating system model...\n');
model = uav_model(params, perf, uncert);

% ------------------------------------------------------------------------
%% Perform H-infinity design

if do_hinf
  fprintf('Performing H-infinty controller design...\n')

  idx = model.uncertain.index;
  P = model.uncertain.StateSpace;

  % Get nominal system without uncertainty (for lower LFT)
  P_nom = minreal(P([idx.OutputError; idx.OutputNominal], ...
                    [idx.InputExogenous; idx.InputNominal]), [], false);

  nmeas = model.uncertain.Ny;
  nctrl = model.uncertain.Nu;

  hinfopt = hinfsynOptions('Display', 'on', 'Method', 'RIC', ...
    'AutoScale', 'off', 'RelTol', 1e-3);
  [K_inf, ~, gamma, info] = hinfsyn(P_nom, nmeas, nctrl, hinfopt);
  ctrl.hinf = struct('Name', '$\mathcal{H}_{\infty}$', 'K', K_inf);

  if gamma >= 1
    fprintf('Failed to syntesize controller (closed loop is unstable).\n')
  end

%  ------------------------------------------------------------------------
%% Measure Performance of H-infinity design

  fprintf('Simulating closed loop...\n');

  nsamples = 500;
  do_noise = true;
  simout = uav_sim_step_hinf(params, model, ctrl.hinf, nsamples, do_plots, do_noise);

  fprintf('Writing simulation results...\n');
  cols = [
      simout.StepX(:, simout.index.Position), ...
      simout.StepX(:, simout.index.Velocity), ...
      simout.StepX(:, simout.index.FlapAngles) * 180 / pi, ...
      simout.StepX(:, simout.index.Angles) * 180 / pi];

  writematrix([simout.TimeXY', cols], 'fig/stepsim.dat', 'Delimiter', 'tab')
end

%  ------------------------------------------------------------------------
%% Perform mu-Analysis & DK iteration

if do_musyn
  fprintf('Performing mu-synthesis controller design...\n')

  idx = model.uncertain.index;
  P = minreal(model.uncertain.StateSpace(...
        [idx.OutputUncertain; idx.OutputError; idx.OutputNominal], ...
        [idx.InputUncertain; idx.InputExogenous; idx.InputNominal]), ...
        [], false);

  % Options for H-infinity
  nmeas = model.uncertain.Ny;
  nctrl = model.uncertain.Nu;
  hinfopt = hinfsynOptions('Display', 'off', 'Method', 'RIC', ...
    'AutoScale', 'on', 'RelTol', 1e-2);

  % Frequency raster resolution to fit D scales
  nsamples = 501;
  omega = logspace(-3, 3, nsamples);

  % Initial values for D-K iteration
  D_left = tf(eye(model.uncertain.Nz + model.uncertain.Ne + model.uncertain.Ny));
  D_right = tf(eye(model.uncertain.Nv + model.uncertain.Nw + model.uncertain.Nu));

  % degrees for approximations of D-scales, tuned by hand
  fit_degrees = [
    2, 1, 1, 1; % 1, 1; % alpha
    2, 4, 1, 1; % 1, 1; % omega
    1, 2, 1, 1; % 1, 1; % state
    3, 4, 1, 1; % 1, 1; % perf
  ];

  % Number of D-K iterations
  niters = size(fit_degrees, 2);
  % niters = 5;

  % for plotting later
  mu_plot_legend = {};

  % Start DK-iteration
  dkstart = tic;
  for it = 1:niters
    fprintf(' - Running D-K iteration %d...\n', it);
    itstart = tic();

    % Find controller using H-infinity
    [K, ~, gamma, ~] = hinfsyn(D_left * P * D_right, nmeas, nctrl, hinfopt);
    fprintf('   H-infinity synthesis gamma: %g\n', gamma);
    if gamma == inf
      fprintf('   Failed to synethesize H-infinity controller\n');
      break;
    end

    % Calculate frequency response of closed loop
    N = minreal(lft(P, K), [], false); % slient
    N_frd = frd(N, omega);

    % Calculate upper bound D scaling
    [mu_bounds, mu_info] = mussv(N_frd, model.uncertain.BlockStructurePerf, 'sU');
    mu_rp = norm(mu_bounds(1,1), inf, 1e-6);
    fprintf('   Mu value for RP: %g\n', mu_rp)

    if do_plots
      fprintf('   Plotting mu\n');
      figure(100); hold on;
      bodemag(mu_bounds(1,1));
      mu_plot_legend = {mu_plot_legend{:}, sprintf('$\\mu_{%d}$', it)};
      title('\bfseries $\mu_\Delta(\omega)$ for both Stability and Performance', 'interpreter', 'latex');
      legend(mu_plot_legend, 'interpreter', 'latex');
      grid on;
      drawnow;
    end

    % Are we done yet?
    if mu_rp < 1
      fprintf(' - Found robust controller that meets performance.\n');
      break
    end

    % Fit D-scales
    % There are three complex, square, full block uncertainties and
    % a non-square full complex block for performance
    [D_left_samples, D_right_samples] = mussvunwrap(mu_info);

    % D scale for alpha uncertainty (first block)
    i = 1;
    D_left_samples_alpha = D_left_samples(i, i);
    % D_alpha = fitmagfrd(D_left_samples_alpha, fit_degrees(1, it));
    D_alpha = fitfrd(genphase(D_left_samples_alpha), fit_degrees(1, it));

    % D scale for omega uncertainty (second block)
    i = model.uncertain.BlockStructure(1, 1) + 1; % after first block
    D_left_samples_omega = frd(D_left_samples(i, i));
    % D_omega = fitmagfrd(D_left_samples_omega, fit_degrees(2, it));
    D_omega = fitfrd(genphase(D_left_samples_omega), fit_degrees(2, it));

    % D scale for state uncertainty (third block)
    i = model.uncertain.BlockStructure(2, 1) + 1; % after second block
    D_left_samples_state = D_left_samples(i, i);
    % D_state = fitmagfrd(D_left_samples_state, fit_degrees(3, it));
    D_state = fitfrd(genphase(D_left_samples_state), fit_degrees(3, it));

    % D scale for performance (non-square)
    i = model.uncertain.BlockStructurePerf(3, 1); % after third block
    D_left_samples_perf = D_left_samples(i, i);
    % D_perf = fitmagfrd(D_left_samples_perf, fit_degrees(4, it));
    D_perf = fitfrd(genphase(D_left_samples_perf), fit_degrees(4, it));

    % Construct full matrices
    D_right = blkdiag(D_alpha * eye(4), ...
                      D_omega * eye(1), ...
                      D_state * eye(12), ...
                      D_perf * eye(10), ...
                      eye(5));

    D_left = blkdiag(D_alpha * eye(4), ...
                     D_omega * eye(1), ...
                     D_state * eye(12), ...
                     D_perf * eye(14), ...
                     eye(12));

    % Plot fitted D-scales
    if do_plots
      fprintf('   Plotting D-scales');
      f = figure(101); clf(f); hold on;

      bodemag(D_left_samples_alpha, omega, 'r-');
      bodemag(D_alpha, omega, 'b');
      fprintf('.');

      bodemag(D_left_samples_omega, omega, 'r--');
      bodemag(D_omega, omega, 'b--');
      fprintf('.');

      bodemag(D_left_samples_state, omega, 'c-');
      bodemag(D_state, omega, 'm-');
      fprintf('.');

      bodemag(D_left_samples_perf, omega, 'c--');
      bodemag(D_perf, omega, 'm--');
      fprintf('.');

      fprintf('\n');
      title(sprintf('\\bfseries $D(\\omega)$ Scales Approximations at Iteration %d', it), ...
            'interpreter', 'latex')
      legend(...
        '$D_{\alpha}$', '$\hat{D}_{\alpha}$', ...
        '$D_{\omega}$', '$\hat{D}_{\omega}$', ...
        '$D_{\mathbf{x}}$', '$\hat{D}_{\mathbf{x}}$', ...
        '$D_{\Delta}$', '$\hat{D}_{\Delta}$', ...
        'interpreter', 'latex' ...
      );
      grid on;
      drawnow;
    end

    itend = toc(itstart);
    fprintf('   Iteration took %.1f seconds\n', itend);
  end
  dkend = toc(dkstart);
  fprintf(' - D-K iteration took %.1f seconds\n', dkend);

  if mu_rp > 1
    fprintf(' - Failed to synthesize robust controller that meets the desired performance.\n');
  else
    ctrl.musyn = struct('K', K, 'mu', mu_rp);
  end
end

%  ------------------------------------------------------------------------
%% Verify performance satisfaction via mu-analysis