summaryrefslogtreecommitdiffstats
path: root/uav.m
blob: 059c944f1730e5a6789fb82fe90c2834391b0cf3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
% Controller design for a ducted fan VTOL micro-UAV.
%
% Copyright (c) 2024, Naoki Sean Pross, ETH Zürich
% This work is distributed under a permissive license, see LICENSE.txt

%  ------------------------------------------------------------------------
% Clear environment and generate parameters

clear; clc; close all; s = tf('s');

do_plots = true; % runs faster without
do_hinf = true; % midterm
do_musyn = true; % endterm

fprintf('Controller synthesis for ducted fan VTOL micro-UAV\n')
fprintf('Will do:\n')
if do_plots
  fprintf(' - Produce plots\n')
end
if do_hinf
  fprintf(' - H-infinity synthesis\n')
end
if do_musyn
  fprintf(' - Mu synthesis\n')
end

% Synthesized controllers will be stored here
ctrl = struct();

%% ------------------------------------------------------------------------
% Define system parameters

fprintf('Generating system parameters...\n')
params = uav_params();

%% ------------------------------------------------------------------------
% Define performance requirements

fprintf('Generating performance requirements...\n')
perf = uav_performance_musyn(params, do_plots);

%%  ------------------------------------------------------------------------
% Define stability requirements

fprintf('Generating stability requirements...\n')
uncert = uav_uncertainty(params, do_plots);

%% ------------------------------------------------------------------------
% Create UAV model

fprintf('Generating system model...\n');
model = uav_model(params, perf, uncert);

%% ------------------------------------------------------------------------
% Perform H-infinity design

if do_hinf
  fprintf('Performing H-infinty controller design...\n')

  idx = model.uncertain.index;
  P = model.uncertain.StateSpace;

  % Get nominal system without uncertainty (for lower LFT)
  P_nom = minreal(P([idx.OutputError; idx.OutputNominal], ...
                    [idx.InputExogenous; idx.InputNominal]), [], false);

  nmeas = model.uncertain.Ny;
  nctrl = model.uncertain.Nu;

  hinfopt = hinfsynOptions('Display', 'off', 'Method', 'RIC', ...
    'AutoScale', 'off', 'RelTol', 1e-3);
  [K_inf, ~, gamma, info] = hinfsyn(P_nom, nmeas, nctrl, hinfopt);
  fprintf(' - H-infinity synthesis gamma: %g\n', gamma);
  ctrl.hinf = struct('Name', '$\mathcal{H}_{\infty}$', 'K', K_inf);

  if gamma >= 1
    error('Failed to syntesize controller (closed loop is unstable).')
  end

%%  ------------------------------------------------------------------------
% Measure Performance of H-infinity design

  fprintf(' - Simulating closed loop...\n');

  T = 60;
  nsamples = 500;
  do_noise = true;
  simout = uav_sim_step(params, model, ctrl.hinf, nsamples, T, do_plots, do_noise);

  fprintf(' - Writing simulation results...\n');
  cols = [
      simout.StepX(:, simout.index.Position), ...
      simout.StepX(:, simout.index.Velocity), ...
      simout.StepX(:, simout.index.FlapAngles) * 180 / pi, ...
      simout.StepX(:, simout.index.Angles) * 180 / pi];

  writematrix([simout.Time', cols], 'fig/stepsim.dat', 'Delimiter', 'tab')
end

%%  ------------------------------------------------------------------------
% Perform mu-Analysis & DK iteration

if do_musyn
  drawnow;

  fprintf('Performing mu-synthesis controller design...\n')

  % Get complete system (without debugging outputs for plots)
  idx = model.uncertain.index;
  P = minreal(model.uncertain.StateSpace(...
        [idx.OutputUncertain; idx.OutputError; idx.OutputNominal], ...
        [idx.InputUncertain; idx.InputExogenous; idx.InputNominal]), ...
        [], false);

  % Options for H-infinity
  nmeas = model.uncertain.Ny;
  nctrl = model.uncertain.Nu;
  hinfopt = hinfsynOptions('Display', 'off', 'Method', 'RIC', ...
    'AutoScale', 'on', 'RelTol', 1e-3);

  % Frequency raster resolution to fit D scales
  nsamples = 600;
  omega_max = 3;
  omega_min = -3;

  omega = logspace(omega_min, omega_max, nsamples);
  omega_range = {10^omega_min, 10^omega_max};

  % Initial values for D-K iteration are identity matrices
  D_left = tf(eye(model.uncertain.Nz + model.uncertain.Ne + model.uncertain.Ny));
  D_right = tf(eye(model.uncertain.Nv + model.uncertain.Nw + model.uncertain.Nu));

  % Maximum number of D-K iterations
  niters = 5;
  fprintf(' - Will do at most %d iterations.\n', niters);

  % Maximum degree of D-scales and error
  d_scales_max_degree = 3;
  d_scales_max_err_p = .4; % in percentage
  d_scales_improvement_p = .15; % in percentage

  % for plotting later
  mu_plot_legend = {};

  % Start DK-iteration
  dkstart = tic;
  for it = 1:niters
    fprintf(' * Running D-K iteration %d / %d...\n', it, niters);
    itstart = tic();

    % Find controller using H-infinity
    P_scaled = minreal(D_left * P * inv(D_right), [], false);
    [P_scaled, ~] = prescale(P_scaled, omega_range);
    [K, ~, gamma, ~] = hinfsyn(P_scaled, nmeas, nctrl, hinfopt);

    fprintf('   H-infinity synthesis gamma: %g\n', gamma);
    if gamma == inf
      error('Failed to synethesize H-infinity controller');
    end

    % Calculate frequency response of closed loop
    N = minreal(lft(P, K), [], false);
    M = minreal(N(idx.OutputUncertain, idx.InputUncertain), [], false);

    [N, ~] = prescale(N, omega_range);
    [M, ~] = prescale(M, omega_range);

    N_frd = frd(N, omega);
    M_frd = frd(M, omega);

    % Calculate upper bound D scaling
    fprintf('   Computing Performance SSV... ')
    [mu_bounds_rp, mu_info_rp] = mussv(N_frd, model.uncertain.BlockStructurePerf, 'U');
    fprintf('   Computing Stability SSV... ')
    [mu_bounds_rs, mu_info_rs] = mussv(M_frd, model.uncertain.BlockStructure, 'U');

    mu_rp = norm(mu_bounds_rp(1,1), inf, 1e-6);
    mu_rs = norm(mu_bounds_rs(1,1), inf, 1e-6);

    fprintf('   SSV for Performance: %g, for Stability: %g\n', mu_rp, mu_rs);

    if do_plots
      fprintf('   Plotting SSV mu\n');
      figure(100); hold on;

      bodemag(mu_bounds_rp(1,1));
      mu_plot_legend = {mu_plot_legend{:}, sprintf('$\\mu_{P,%d}$', it)};

      bodemag(mu_bounds_rs(1,1), 'k:');
      mu_plot_legend = {mu_plot_legend{:}, sprintf('$\\mu_{S,%d}$', it)};

      title('\bfseries $\mu_\Delta(\omega)$ for both Stability and Performance', ...
            'interpreter', 'latex');
      legend(mu_plot_legend, 'interpreter', 'latex');
      grid on;
      drawnow;
    end

    % Are we done yet?
    if mu_rp < 1
      fprintf(' - Found robust controller that meets performance.\n');
      break;
    end

    if mu_rs < 1
      fprintf('   Found robust controller that is stable.\n')
      ctrl.musyn = struct('Name', '$\mu$-Synthesis', 'K', K, ...
                          'mu_rp', mu_rp, 'mu_rs', mu_rs);
    end

    % Fit D-scales
    [D_left_frd, D_right_frd] = mussvunwrap(mu_info_rp);

    fprintf('   Fitting D-scales\n');

    % There are three complex, square, full block uncertainties and
    % a non-square full complex block for performance
    i_alpha = [1, 1];
    i_omega = model.uncertain.BlockStructure(1, :) + 1; % after first block
    i_state = sum(model.uncertain.BlockStructure(1:2, :)) + 1; % after second block
    i_perf  = sum(model.uncertain.BlockStructurePerf(1:3, :)) + 1; % after third block

    D_frd = {
      D_left_frd(i_alpha(1), i_alpha(1));
      D_left_frd(i_omega(1), i_omega(1));
      D_left_frd(i_state(1), i_state(1));
      D_left_frd(i_perf(1), i_perf(1));
    };

    D_max_sv = {
      max(max(sigma(D_frd{1, 1})));
      max(max(sigma(D_frd{2, 1})));
      max(max(sigma(D_frd{3, 1})));
      max(max(sigma(D_frd{4, 1})));
    };

    D_names = {'alpha', 'omega', 'state', 'perf'};
    D_fitted = {};

    % for each block
    for j = 1:4
      % for each in left and right
      fprintf('      %s', D_names{j});
      best_fit_deg = inf;
      best_fit_err = inf;
      for deg = 0:d_scales_max_degree
        % Fit D-scale
        D_fit = fitmagfrd(D_frd{j}, deg);
        % D_fit = fitfrd(genphase(D_frd{j}), deg);

        % Check if it is a good fit
        max_sv = max(max(sigma(D_fit, omega)));
        fit_err = abs(D_max_sv{j} - max_sv);

        if fit_err < best_fit_err
          % Choose higher degree only if we improve by at least a specified
          % percentage over the previous best fit (or we are at the first
          % iteration). This is a heuristic to avoid adding too many states
          % to the controller as it depends on the order of the D-scales.
          if abs(best_fit_err - fit_err) / best_fit_err > d_scales_improvement_p || best_fit_err == inf
              best_fit_deg = deg;
              best_fit_err = fit_err;
              D_fitted{j} = D_fit;
          end
        end

        if (fit_err / D_max_sv{j} < d_scales_max_err_p)
          break;
        end
        fprintf('.');
      end
      fprintf(' degree %d, error %g (%g %%)\n', ...
          best_fit_deg, best_fit_err, 100 * best_fit_err / D_max_sv{j});
    end

    % Construct full matrices
    D_left = blkdiag(D_fitted{1} * eye(4), ...
                     D_fitted{2} * eye(1), ...
                     D_fitted{3} * eye(12), ...
                     D_fitted{4} * eye(14), ...
                     eye(12));

    D_right = blkdiag(D_fitted{1} * eye(4), ...
                      D_fitted{2} * eye(1), ...
                      D_fitted{3} * eye(12), ...
                      D_fitted{4} * eye(10), ...
                      eye(5));

    % Compute peak of singular values for to estimate how good is the
    % approximation of the D-scales
    sv_left_frd = sigma(D_left_frd);
    max_sv_left_frd = max(max(sv_left_frd));

    sv_left = sigma(D_left, omega);
    max_sv_left = max(max(sv_left));

    fprintf('   Max SVD of D: %g, Dhat: %g\n', max_sv_left_frd, max_sv_left);
    fprintf('   D scales fit rel. error: %g %%\n', ...
      100 * abs(max_sv_left_frd - max_sv_left) / max_sv_left_frd);

    % Plot fitted D-scales
    if do_plots
      fprintf('   Plotting D-scales');
      f = figure(101); clf(f); hold on;

      bodemag(D_frd{1}, omega, 'r-');
      bodemag(D_fitted{1}, omega, 'b');
      fprintf('.');

      bodemag(D_frd{2}, omega, 'r--');
      bodemag(D_fitted{2}, omega, 'b--');
      fprintf('.');

      bodemag(D_frd{3}, omega, 'c-');
      bodemag(D_fitted{3}, omega, 'm-');
      fprintf('.');

      bodemag(D_frd{4}, omega, 'c--');
      bodemag(D_fitted{4}, omega, 'm--');
      fprintf('.');

      fprintf('\n');
      title(sprintf('\\bfseries $D(\\omega)$ Scales Approximations at Iteration %d', it), ...
            'interpreter', 'latex')
      legend(...
        '$D_{\alpha}$', '$\hat{D}_{\alpha}$', ...
        '$D_{\omega}$', '$\hat{D}_{\omega}$', ...
        '$D_{\mathbf{x}}$', '$\hat{D}_{\mathbf{x}}$', ...
        '$D_{\Delta}$', '$\hat{D}_{\Delta}$', ...
        'interpreter', 'latex' ...
      );
      grid on;
      drawnow;
    end

    itend = toc(itstart);
    fprintf('   Iteration took %.1f seconds\n', itend);
  end
  dkend = toc(dkstart);
  fprintf(' - D-K iteration took %.1f seconds\n', dkend);

  if mu_rp > 1 && mu_rs > 1
    error(' - Failed to synthesize robust controller that meets the desired performance.\n');
  end

  %% Fit worst-case perturbation
  fprintf(' - Computing worst case perturbation.\n')

  % Find peak of mu
  [mu_upper_bound_rp, ~] = frdata(mu_bounds_rp(1,1));
  max_mu_rp_idx = find(mu_rp == mu_upper_bound_rp, 1);
  Delta = mussvunwrap(mu_info_rp);
  % TODO: finish here

  % Save controller
  ctrl.musyn = struct('Name', '$\mu$-Synthesis', ...
                      'K', K, 'Delta', Delta, ...
                      'mu_rp', mu_rp, 'mu_rs', mu_rs);

  if mu_rp >= 1
    fprintf(' - Synthetized robust stable controller does not meet the desired performance.\n');
  end

%%  ------------------------------------------------------------------------
% Measure Performance of mu synthesis design

  fprintf('Simulating nominal closed loop...\n');

  T = 60;
  nsamples = 5000;
  do_noise = true;

  simout = uav_sim_step(params, model, ctrl.musyn, nsamples, T, do_plots, do_noise);

  fprintf('Simulating worst-case closed loop...\n');

end