1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
|
% Controller design for a ducted fan VTOL micro-UAV.
%
% Copyright (c) 2024, Naoki Sean Pross, ETH Zürich
% This work is distributed under a permissive license, see LICENSE.txt
% ------------------------------------------------------------------------
% Clear environment and generate parameters
clear; clc; close all; s = tf('s');
do_plots = true; % runs faster without
do_hinf = true;
do_musyn = true;
fprintf('Controller synthesis for ducted fan VTOL micro-UAV\n')
fprintf('Will do:\n')
if do_plots
fprintf(' - Produce plots\n')
end
if do_hinf
fprintf(' - H-infinity synthesis\n')
end
if do_musyn
fprintf(' - Mu synthesis\n')
end
% Synthesized controllers will be stored here
ctrl = struct();
%% ------------------------------------------------------------------------
% Define system parameters
fprintf('Generating system parameters...\n')
params = uav_params();
%% ------------------------------------------------------------------------
% Define performance requirements
fprintf('Generating performance requirements...\n')
perf_hinf = uav_performance_hinf(params, do_plots);
perf_musyn = uav_performance_musyn(params, do_plots);
%% ------------------------------------------------------------------------
% Define stability requirements
fprintf('Generating stability requirements...\n')
uncert = uav_uncertainty(params, do_plots);
%% ------------------------------------------------------------------------
% Perform H-infinity design
if do_hinf
fprintf('Generating system model for H-infinity design...\n');
model = uav_model(params, perf_hinf, uncert);
fprintf('Performing H-infinty controller design...\n')
idx = model.uncertain.index;
P = model.uncertain.StateSpace;
% Get nominal system without uncertainty (for lower LFT)
P_nom = minreal(P([idx.OutputError; idx.OutputNominal], ...
[idx.InputExogenous; idx.InputNominal]), [], false);
nmeas = model.uncertain.Ny;
nctrl = model.uncertain.Nu;
hinfopt = hinfsynOptions('Display', 'off', 'Method', 'RIC', ...
'AutoScale', 'off', 'RelTol', 1e-3);
[K_inf, ~, gamma_hinf, info] = hinfsyn(P_nom, nmeas, nctrl, hinfopt);
fprintf(' - H-infinity synthesis gamma: %g\n', gamma_hinf);
index = struct( ...
'Ix', 1, 'Iy', 2, 'Iz', 3, ...
'IPdot', (4:6)', ...
'Iroll', 7, 'Ipitch', 8, 'Iyaw', 9, ...
'ITheta', (10:12)', ...
'Ialpha', (1:4)', ...
'Iomega', 5 ...
);
ctrl.hinf = struct( ...
'Name', 'Nominal $\mathcal{H}_{\infty}$', ...
'K', K_inf, ...
'index', index ...
);
if gamma_hinf >= 1
error('Failed to syntesize controller (closed loop is unstable).')
end
%% ------------------------------------------------------------------------
% Measure Performance of H-infinity design
if do_plots
fprintf(' - Plotting resulting controller...\n');
% Plot transfer functions
figure; hold on;
bode(ctrl.hinf.K(index.Ialpha(1), index.Ix));
bode(ctrl.hinf.K(index.Ialpha(2), index.Ix));
bode(ctrl.hinf.K(index.Ialpha(1), index.Iy));
bode(ctrl.hinf.K(index.Ialpha(2), index.Iy));
bode(ctrl.hinf.K(index.Iomega, index.Ix));
bode(ctrl.hinf.K(index.Iomega, index.Iy));
bode(ctrl.hinf.K(index.Iomega, index.Iz));
title(sprintf('\\bfseries %s Controller', ctrl.hinf.Name), ...
'interpreter', 'latex');
legend('$x \rightarrow \alpha_1$', ...
'$x \rightarrow \alpha_2$', ...
'$y \rightarrow \alpha_1$', ...
'$y \rightarrow \alpha_2$', ...
'$x \rightarrow \omega$', ...
'$y \rightarrow \omega$', ...
'$z \rightarrow \omega$', ...
'interpreter', 'latex');
grid on;
end
fprintf('Simulating closed loop...\n');
T = 60;
nsamples = 5000;
do_noise = false;
simout = uav_sim_step(params, model, ctrl.hinf, uncert, nsamples, T, do_plots, do_noise);
fprintf(' - Writing simulation results...\n');
cols = [
simout.StepX(:, simout.index.Position), ...
simout.StepX(:, simout.index.Velocity), ...
simout.StepX(:, simout.index.PlotAlpha) * 180 / pi, ...
simout.StepX(:, simout.index.EulerAngles) * 180 / pi];
writematrix([simout.Time', cols], 'fig/stepsim_hinf.dat', 'Delimiter', 'tab')
end
%% ------------------------------------------------------------------------
% Perform mu-Analysis & DK iteration
drawnow;
if do_musyn
fprintf('Generating system model for mu-synthesis design...\n');
model = uav_model(params, perf_hinf, uncert);
fprintf('Performing mu-synthesis controller design...\n')
% Get complete system (without debugging outputs for plots)
idx = model.uncertain.index;
P = minreal(model.uncertain.StateSpace(...
[idx.OutputUncertain; idx.OutputError; idx.OutputNominal], ...
[idx.InputUncertain; idx.InputExogenous; idx.InputNominal]), ...
[], false);
% Options for H-infinity
nmeas = model.uncertain.Ny;
nctrl = model.uncertain.Nu;
hinfopt = hinfsynOptions('Display', 'off', 'Method', 'RIC', ...
'AutoScale', 'on', 'RelTol', 1e-3);
% Frequency raster resolution to fit D scales
omega_max = 2;
omega_min = -3;
nsamples = (omega_max - omega_min) * 100;
omega = logspace(omega_min, omega_max, nsamples);
omega_range = {10^omega_min, 10^omega_max};
% Initial values for D-K iteration are identity matrices
D_left = tf(eye(model.uncertain.Nz + model.uncertain.Ne + model.uncertain.Ny));
D_right = tf(eye(model.uncertain.Nv + model.uncertain.Nw + model.uncertain.Nu));
% Maximum degree of D-scales and error
d_scales_max_degree = 5;
d_scales_max_err = 15;
d_scales_max_err_p = .05; % in percentage
d_scales_improvement_p = .1; % in percentage, avoid diminishing returns
% Limit order of scaled plant
scaled_plant_reduce_ord = 100;
scaled_plant_reduce_maxerr = 1e-8;
% for plotting later
mu_plot_legend = {};
% For warm start
K_prev = {}; gamma_prev = {};
K_prev{1} = 0; gamma_prev{1} = inf;
mu_bounds_rp_prev = {}; mu_bounds_rs_prev = {};
D_left_prev = {}; D_right_prev = {};
% Start DK-iteration
warmit = 0;
% Do we have a lower bound for gamma?
gamma_max = 20;
gamma_min = .8;
% Maximum number of D-K iterations
niters = 6;
fprintf(' - Will do (max) %d iterations.\n', niters);
%% Run D-K iteration
% hand tuned degrees, inf means will pick automatically best fit
% according to parameters given above
d_scales_degrees = {
0, 0, 0, 0, 0, inf, inf; % alpha
3, inf, inf, inf, inf, inf, inf; % omega
0, 0, 0, 0, 0, inf, inf; % state
0, 0, 0, 0, 0, inf, inf; % perf
};
if size(d_scales_degrees, 2) < niters
error('Number of columns of d_scales_degrees must match niter');
end
% if iterations fails set warmit and re-run this code section
if warmit > 0
fprintf("\n");
fprintf(" - Warm start, resuming from iteration %d.\n", warmit);
K = K_prev{warmit};
gamma_max = gamma_prev{warmit};
mu_bounds_rp = mu_bounds_rp_prev{warmit};
mu_bounds_rs = mu_bounds_rs_prev{warmit};
D_left = D_left_prev{warmit};
D_right = D_right_prev{warmit};
s = warmit;
else
s = 1;
end
dkstart = tic;
for it = s:niters
fprintf('\n');
fprintf(' * Running D-K iteration %d / %d...\n', it, niters);
itstart = tic();
% Scale plant and reduce order, fitting the D-scales adds a lot of near
% zero modes that cause the plant to become very numerically ill
% conditioned. Since the D-scales are an approximation anyways (i.e.
% there is not mathematical proof for the fitting step), we limit the
% order of the scaled system to prevent poor scaling issues.
P_scaled = minreal(D_left * P * inv(D_right), [], false);
[P_scaled, ~] = prescale(P_scaled, omega_range);
n = size(P_scaled.A, 1);
% disabled, seems to work without
if false && n > scaled_plant_reduce_ord
R = reducespec(P_scaled, 'balanced'); % or ncf
R.Options.FreqIntervals = [omega_range{1}, omega_range{2}];
R.Options.Goal = 'absolute'; % better hinf norm
if do_plots
figure(102);
view(R);
drawnow;
end
P_scaled = getrom(R, MaxError=scaled_plant_reduce_maxerr, Method='truncate');
fprintf(' Scaled plant was reduced from order %d to %d\n', ...
n, size(P_scaled.A, 1))
% update n
n = size(P_scaled.A, 1);
end
% For higher number of states we run into numerical problems
if n < 70
% Scaled plant (whole)
[nx, nsta, nctrb, nustab, nobsv, nudetb] = pbhtest(P_scaled);
fprintf(' Scaled plant has %d modes:\n', nx);
fprintf(' %d stable, %d unstable\n', nsta, nx - nsta);
fprintf(' %d controllable, %d unstabilizable\n', nctrb, nustab);
fprintf(' %d observable, %d undetectable\n', nobsv, nudetb);
% Check scaled plant parts meet H-infinity assumptions
A = P_scaled(idx.OutputUncertain, idx.InputUncertain);
Bu = P_scaled(idx.OutputUncertain, idx.InputNominal);
Cy = P_scaled(idx.OutputNominal, idx.InputUncertain);
[~, ~, ~, A_nustab, ~, A_nudetb] = pbhtest(A);
[~, ~, ~, Bu_nustab, ~, Bu_nudetb] = pbhtest(Bu);
[~, ~, ~, Cy_nustab, ~, Cy_nudetb] = pbhtest(Cy);
Deu = P_scaled(idx.OutputError, idx.InputNominal);
Dyw = P_scaled(idx.OutputNominal, idx.InputExogenous);
Deu_fullrank = rank(ctrb(Deu)) < length(Deu.A) || rank(obsv(Deu)) < lenth(Deu.A);
Dyw_fullrank = rank(ctrb(Dyw)) < length(Dyw.A) || rank(obsv(Dyw)) < lenth(Dyw.A);
if A_nustab > 0 || A_nudetb > 0
fprintf(' A has %d unstabilizable modes and %d undetectable modes!\n', ...
A_nustab, A_nudetb);
end
if Bu_nustab > 0 || Bu_nudetb > 0
fprintf(' Bu has %d unstabilizable modes and %d undetectable modes!\n', ...
Bu_nustab, Bu_nudetb);
end
if Cy_nustab > 0 || Cy_nudetb > 0
fprintf(' Cy has %d unstabilizable modes and %d undetectable modes!\n', ...
Cy_nustab, Cy_nudetb);
end
if ~ Deu_fullrank
fprintf(' Deu is not full rank!\n');
end
if ~ Dyw_fullrank
fprintf(' Dyw is not full rank!\n');
end
else
eigvals = eig(P_scaled.A);
stable_modes = 0;
for i = 1:n
if real(eigvals(i)) < 0
stable_modes = stable_modes +1;
end
end
fprintf(' Scaled plant has %d modes: %d stable %d unstable.\n', ...
n, stable_modes, n - stable_modes);
end
% Find controller using H-infinity
if it > 1 && it ~= warmit
K_prev{it} = K;
gamma_prev{it} = gamma;
end
[K, ~, gamma, ~] = hinfsyn(P_scaled, nmeas, nctrl, hinfopt);
% fprintf(' Running H-infinity with gamma in [%g, %g]\n', gamma_min, gamma_max);
% [K, ~, gamma, ~] = hinfsyn(P_scaled, nmeas, nctrl, [gamma_min, gamma_max], hinfopt);
% gamma_max = 1.2 * gamma;
fprintf(' H-infinity synthesis gamma: %g\n', gamma);
if gamma == inf
error('Failed to synethesize H-infinity controller');
end
% Calculate frequency response of closed loop
N = minreal(lft(P, K), [], false);
M = minreal(N(idx.OutputUncertain, idx.InputUncertain), [], false);
[N, ~] = prescale(N, omega_range);
[M, ~] = prescale(M, omega_range);
N_frd = frd(N, omega);
M_frd = frd(M, omega);
% if warm start we do not need to recompute this
% as we are fiddling with D-scales
if it == warmit
fprintf(" Warm start, using SSVs from iteration %d\n", warmit);
else
% Calculate upper bound D scaling
fprintf(' Computing Performance SSV... ')
[mu_bounds_rp, mu_info_rp] = mussv(N_frd, model.uncertain.BlockStructurePerf, 'U');
fprintf(' Computing Stability SSV... ')
[mu_bounds_rs, mu_info_rs] = mussv(M_frd, model.uncertain.BlockStructure, 'fU');
mu_bounds_rp_prev{it} = mu_bounds_rp;
mu_bounds_rs_prev{it} = mu_bounds_rs;
% Save for worst case perturbation analysis
if it == 1
mu_bounds_rp_first = mu_bounds_rp;
mu_info_rp_first = mu_info_rp;
end
% Plot SSVs
if do_plots
fprintf(' Plotting SSV mu\n');
figure(100); hold on;
bodemag(mu_bounds_rp(1,1));
mu_plot_legend = {mu_plot_legend{:}, sprintf('$\\mu_{P,%d}$', it)};
bodemag(mu_bounds_rs(1,1), 'k:');
mu_plot_legend = {mu_plot_legend{:}, sprintf('$\\mu_{S,%d}$', it)};
title('\bfseries $\mu_\Delta(\omega)$ for both Stability and Performance', ...
'interpreter', 'latex');
legend(mu_plot_legend, 'interpreter', 'latex');
grid on;
drawnow;
end
end
mu_rp = norm(mu_bounds_rp(1,1), inf, 1e-6);
mu_rs = norm(mu_bounds_rs(1,1), inf, 1e-6);
fprintf(' SSV for Performance: %g, for Stability: %g\n', mu_rp, mu_rs);
% Are we done yet?
if mu_rp < 1
fprintf(' - Found robust controller that meets performance.\n');
break;
end
if mu_rs < 1
fprintf(' Found robust controller that is stable.\n')
ctrl.musyn = struct('Name', '$\mu$-Synthesis', 'K', K, ...
'mu_rp', mu_rp, 'mu_rs', mu_rs);
end
% No need to find scales for last iteration
if it == niters
break;
end
% Fit D-scales
[D_left_frd, D_right_frd] = mussvunwrap(mu_info_rp);
fprintf(' Fitting D-scales\n');
% There are three complex, square, full block uncertainties and
% a non-square full complex block for performance
i_alpha = [1, 1];
i_omega = model.uncertain.BlockStructure(1, :) + 1; % after first block
i_state = sum(model.uncertain.BlockStructure(1:2, :)) + 1; % after second block
i_perf = sum(model.uncertain.BlockStructurePerf(1:3, :)) + 1; % after third block
D_frd = {
D_left_frd(i_alpha(1), i_alpha(1));
D_left_frd(i_omega(1), i_omega(1));
D_left_frd(i_state(1), i_state(1));
D_left_frd(i_perf(1), i_perf(1));
};
D_max_sv = {
max(max(sigma(D_frd{1, 1})));
max(max(sigma(D_frd{2, 1})));
max(max(sigma(D_frd{3, 1})));
max(max(sigma(D_frd{4, 1})));
};
D_names = {'alpha', 'omega', 'state', 'perf'};
D_fitted = {};
% for each block
for j = 1:4
fprintf(' %s', D_names{j});
% tuned by hand?
if d_scales_degrees{j, it} < inf
% D_fit = fitmagfrd(D_frd{j}, d_scales_degrees{j, it});
D_fit = fitfrd(genphase(D_frd{j}), d_scales_degrees{j, it});
max_sv = max(max(sigma(D_fit, omega)));
fit_err = abs(D_max_sv{j} - max_sv);
D_fitted{j} = D_fit;
fprintf(' tuned degree %d, error %g (%g %%)\n', ...
d_scales_degrees{j, it}, fit_err, ...
100 * fit_err / D_max_sv{j});
else
% find best degree
best_fit_deg = inf;
best_fit_err = inf;
for deg = 0:d_scales_max_degree
% Fit D-scale
% D_fit = fitmagfrd(D_frd{j}, deg);
D_fit = fitfrd(genphase(D_frd{j}), deg);
% Check if it is a good fit
max_sv = max(max(sigma(D_fit, omega)));
fit_err = abs(D_max_sv{j} - max_sv);
if fit_err < best_fit_err
% Choose higher degree only if we improve by at least a
% specified percentage over the previous best fit (or we are
% at the first iteration). This is a heuristic to prevent
% adding too many states to the controller as it depends on
% the order of the D-scales.
improvement = abs(best_fit_err - fit_err);
improvement_p = improvement / best_fit_err;
if improvement_p > d_scales_improvement_p ...
|| best_fit_err == inf
best_fit_deg = deg;
best_fit_err = fit_err;
D_fitted{j} = D_fit;
end
end
if fit_err / D_max_sv{j} < d_scales_max_err_p ...
|| fit_err < d_scales_max_err
break;
end
fprintf('.');
end
fprintf(' degree %d, error %g (%g %%)\n', ...
best_fit_deg, best_fit_err, 100 * best_fit_err / D_max_sv{j});
end
end
% Construct full matrices
D_left_prev{it} = D_left;
D_right_prev{it} = D_right;
D_left = blkdiag(D_fitted{1} * eye(4), ... % alpha uncert
D_fitted{2} * eye(1), ... % omega uncert
D_fitted{3} * eye(9), ... % state uncert
D_fitted{4} * eye(14), ...
eye(12));
D_right = blkdiag(D_fitted{1} * eye(4), ... % alpha uncert
D_fitted{2} * eye(1), ... % omega uncert
D_fitted{3} * eye(9), ... % state uncert
D_fitted{4} * eye(10), ...
eye(5));
% Compute peak of singular values for to estimate how good is the
% approximation of the D-scales
sv_left_frd = sigma(D_left_frd);
max_sv_left_frd = max(max(sv_left_frd));
sv_left = sigma(D_left, omega);
max_sv_left = max(max(sv_left));
d_fit_err = abs(max_sv_left_frd - max_sv_left);
fprintf(' Max SVD of D: %g, Dhat: %g\n', max_sv_left_frd, max_sv_left);
fprintf(' D scales fit abs. error: %g\n', d_fit_err)
fprintf(' D scales fit rel. error: %g %%\n', ...
100 * d_fit_err / max_sv_left_frd);
% Plot fitted D-scales
if do_plots
fprintf(' Plotting D-scales');
f = figure(101); clf(f); hold on;
bodemag(D_frd{1}, omega, 'r-');
bodemag(D_fitted{1}, omega, 'b');
fprintf('.');
bodemag(D_frd{2}, omega, 'r--');
bodemag(D_fitted{2}, omega, 'b--');
fprintf('.');
bodemag(D_frd{3}, omega, 'c-');
bodemag(D_fitted{3}, omega, 'm-');
fprintf('.');
bodemag(D_frd{4}, omega, 'c--');
bodemag(D_fitted{4}, omega, 'm--');
fprintf('.');
fprintf('\n');
title(sprintf('\\bfseries $D(\\omega)$ Scales Approximations at Iteration %d', it), ...
'interpreter', 'latex')
legend(...
'$D_{\alpha}$', '$\hat{D}_{\alpha}$', ...
'$D_{\omega}$', '$\hat{D}_{\omega}$', ...
'$D_{\mathbf{x}}$', '$\hat{D}_{\mathbf{x}}$', ...
'$D_{\Delta}$', '$\hat{D}_{\Delta}$', ...
'interpreter', 'latex' ...
);
grid on;
drawnow;
end
itend = toc(itstart);
fprintf(' Iteration took %.1f seconds\n', itend);
end
dkend = toc(dkstart);
fprintf(' - D-K iteration took %.1f seconds\n', dkend);
if mu_rp > 1 && mu_rs > 1
error(' - Failed to synthesize robust controller that meets the desired performance.');
end
%% Fit worst-case perturbation
fprintf(' - Computing worst case perturbation.\n')
% Find worst case perturbation on first controller
max_mus = max(frdata(mu_bounds_rp_first));
max_idx = find(max_mus == max(max_mus));
max_idx = max_idx(1);
Delta_frd = mussvunwrap(mu_info_rp_first);
Delta_frd = frdata(Delta_frd);
Delta_frd = Delta_frd(:, :, max_idx);
% Fit a plant
Delta = ss(zeros(model.uncertain.Nv, model.uncertain.Nz));
s = tf('s');
for r = 1:model.uncertain.Nv
for c = 1:model.uncertain.Nz
d = Delta_frd(r, c);
g = abs(d);
if g < 1e-6
continue
end
if imag(d) > 0
d = -1 * d;
g = -1 * g;
end
x = real(d) / abs(g);
tau = 2 * omega(max_idx) * (sqrt((1 + x) / (1 - x)));
Delta(r,c) = g * (-s + tau / 2) / (s + tau / 2);
end
end
Delta = Delta / norm(Delta, inf);
% Save controllers
ctrl.musyn = struct('Name', '$\mu$-Synthesis', ...
'K', K, 'Delta', Delta, ...
'mu_rp', mu_rp, 'mu_rs', mu_rs);
if mu_rp >= 1
fprintf(' - Synthetized robust stable controller does not meet the desired performance.\n');
end
%% ------------------------------------------------------------------------
% Measure Performance of mu synthesis design
index = struct( ...
'Ix', 1, 'Iy', 2, 'Iz', 3, ...
'IPdot', (4:6)', ...
'Iroll', 7, 'Ipitch', 8, 'Iyaw', 9, ...
'ITheta', (10:12)', ...
'Ialpha', (1:4)', ...
'Iomega', 5 ...
);
if do_plots
fprintf(' - Plotting resulting controller...\n');
% Plot transfer functions
figure; hold on;
bode(ctrl.musyn.K(index.Ialpha(1), index.Ix));
bode(ctrl.musyn.K(index.Ialpha(2), index.Ix));
bode(ctrl.musyn.K(index.Ialpha(1), index.Iy));
bode(ctrl.musyn.K(index.Ialpha(2), index.Iy));
bode(ctrl.musyn.K(index.Iomega, index.Ix));
bode(ctrl.musyn.K(index.Iomega, index.Iy));
bode(ctrl.musyn.K(index.Iomega, index.Iz));
title(sprintf('\\bfseries %s Controller', ctrl.musyn.Name), ...
'interpreter', 'latex');
legend('$x \rightarrow \alpha_1$', ...
'$x \rightarrow \alpha_2$', ...
'$y \rightarrow \alpha_1$', ...
'$y \rightarrow \alpha_2$', ...
'$x \rightarrow \omega$', ...
'$y \rightarrow \omega$', ...
'$z \rightarrow \omega$', ...
'interpreter', 'latex');
grid on;
end
fprintf('Simulating nominal closed loop...\n');
T = 60;
nsamples = 5000;
do_noise = false;
simout = uav_sim_step(params, model, ctrl.musyn, uncert, nsamples, T, do_plots, do_noise);
simout = uav_sim_step(params, model, ctrl.hinf, uncert, nsamples, T, do_plots, do_noise);
% fprintf(' - Writing simulation results...\n');
% cols = [
% simout.StepX(:, simout.index.Position), ...
% simout.StepX(:, simout.index.Velocity), ...
% simout.StepX(:, simout.index.PlotAlpha) * 180 / pi, ...
% simout.StepX(:, simout.index.EulerAngles) * 180 / pi];
%
% writematrix([simout.Time', cols], 'fig/stepsim_musyn.dat', 'Delimiter', 'tab')
%% Worst case analysis
fprintf('Simulating worst-case closed loop...\n');
uncert.Delta = ctrl.musyn.Delta;
simout = uav_sim_step(params, model, ctrl.musyn, uncert, nsamples, T, do_plots, do_noise);
simout = uav_sim_step(params, model, ctrl.hinf, uncert, nsamples, T, do_plots, do_noise);
uncert = rmfield(uncert, 'Delta');
end
|