1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
|
% Copyright (C) 2024, Naoki Sean Pross, ETH Zürich
%
% Compute model for UAV for given set of parameters.
function [model] = uav_model(params)
% ------------------------------------------------------------------------
% Symbolic variables
% Constant scalar physical quantities and dimensions
syms m g rho a b d S k_T c_d c_0 c_l J_r real;
syms J_1 J_2 J_3 real;
J = diag([J_1, J_2, J_3]);
% Scalar position, rotation and velocities
syms x y z xdot ydot zdot real;
syms phi theta p q r real;
psi = sym('psi', 'real'); % shadow MATLAB's psi() function
% Vector position, rotation and velocities
P = [x; y; z]; % position vector (inertial frame)
Pdot = [xdot; ydot; zdot]; % velocity vector (intertial frame)
Theta = [phi; theta; psi]; % attitude vector: [roll pitch yaw] (body frame)
Omega = [p; q; r]; % angular rates (body frame)
% Inputs: flap angles and ducted fan speed
syms alpha_1 alpha_2 alpha_3 alpha_4 omega real;
alpha = [alpha_1; alpha_2; alpha_3; alpha_4];
% Flap angles are measured relative to the body-frame z-axis and considered
% positive / negative with respect to the roll / pitch axis to which they
% are attached to. Reference table:
%
% angle attached axis lift force direction
% when angle is positive
% ------- ------------- ----------------------
% alpha_1 pos. x axis y direction
% alpha_2 pos. y axis -x direction
% alpha_3 neg. x axis y direction
% alpha_4 neg. y axis -x direction
% Rotation matrix to change between frames of reference:
% multiplying by R moves from the inertial frame to the body frame
% to go from body frame to inertial frame use R transpose (R is SO(3))
R = [
cos(theta) * cos(psi), cos(theta) * sin(psi), -sin(theta);
(sin(phi) * sin(theta) * cos(psi) - cos(phi) * sin(psi)), ...
(sin(phi) * sin(theta) * sin(psi) + cos(phi) * cos(psi)), ...
sin(phi) * cos(theta);
(cos(phi) * sin(theta) * cos(psi) + sin(phi) * sin(psi)), ...
(cos(phi) * sin(theta) * sin(psi) - sin(phi) * cos(psi)), ...
cos(phi) * cos(theta);
];
% Matrix to relate Euler angles to angular velocity in the body frame
% i.e. dTheta/dt = U * Omega. To get the angular velocity in intertial
% coordinates use (R * U).
U = [
1, sin(phi) * tan(theta), cos(phi) * tan(theta);
0, cos(phi), -sin(phi);
0, sin(phi) / cos(theta), cos(phi) / cos(theta);
];
% name of unit vectors in inertial frame
uvec_i = [1; 0; 0];
uvec_j = [0; 1; 0];
uvec_k = [0; 0; 1];
% name of unit vectors in body frame
uvec_x = [1; 0; 0];
uvec_y = [0; 1; 0];
uvec_z = [0; 0; 1];
% ------------------------------------------------------------------------
% Nonlinear system dynamics
% Approximate air velocity field magnitude collinear to uvec_z
nu = omega / pi * sqrt(k_T / (2 * a * rho));
% Aerodynamic force caused by flaps in body frame
F_flap = @(alpha, uvec_n) rho * S * nu^2 / 2 * (...
(c_d * alpha^2 + c_0) * uvec_z + c_l * alpha * uvec_n);
F_1 = F_flap(alpha_1, uvec_y);
F_2 = F_flap(alpha_2, uvec_x);
F_3 = F_flap(alpha_3, uvec_y);
F_4 = F_flap(alpha_4, uvec_x);
% Torque caused by aerodynamics forces in body frame
tau_1 = cross((d * uvec_z + a/3 * uvec_x), F_1);
tau_2 = cross((d * uvec_z + a/3 * uvec_y), F_2);
tau_3 = cross((d * uvec_z - a/3 * uvec_x), F_3);
tau_4 = cross((d * uvec_z - a/3 * uvec_y), F_4);
% Total force acting on the UAV in the body frame
F = R * (m * g * uvec_k) ... % gravity
- k_T * omega^2 * uvec_z ... % thrust
+ F_1 + F_2 + F_3 + F_4; % flaps
% Total torque acting on the UAV in the body frame
tau = J_r * omega * R * cross(uvec_k, Omega) + ... % gyroscopic procession
tau_1 + tau_2 + tau_3 + tau_4; % flaps
% State space form with state variable xi and input u
%
% The 12-dimensional state is given by
%
% - absolute position (inertial frame) in R^3
% - absolute velocity (intertial frame) in R^3
% - Euler angles (body frame) in SO(3)
% - Angular rates (body frame) in R^3
%
xi = [P; Pdot; Theta; Omega];
u = [alpha; omega];
% Right hand side of dynamics dxi = f(xi, u)
f = [
Pdot;
R' * F / m; % translational dynamics
U * Omega;
inv(J) * (tau - cross(Omega, J * Omega)); % rotational dynamics
];
% ------------------------------------------------------------------------
% Linearization at equilibrium
% Equilibrium point
xi_eq = [
params.linearization.Position;
params.linearization.Velocity;
params.linearization.Angles;
params.linearization.AngularVelocities;
];
u_eq = params.linearization.Inputs;
% Construct linearized state dynamics
A = subs(jacobian(f, xi), [xi; u], [xi_eq; u_eq]);
B = subs(jacobian(f, u), [xi; u], [xi_eq; u_eq]);
% Insert values of parameters
phy = struct(...
'g', params.physics.Gravity, ...
'rho', params.physics.AirDensity ...
);
A = subs(A, phy);
B = subs(B, phy);
mech = struct(...
'm', params.mechanical.Mass, ...
'a', params.mechanical.DuctRadius, ...
'b', params.mechanical.DuctHeight, ...
'd', params.mechanical.FlapZDistance, ...
'J_1', params.mechanical.InertiaTensor(1, 1), ...
'J_2', params.mechanical.InertiaTensor(2, 2), ...
'J_3', params.mechanical.InertiaTensor(3, 3), ...
'J_r', params.mechanical.GyroscopicInertiaZ ...
);
A = subs(A, mech);
B = subs(B, mech);
aero = struct(...
'k_T', params.aerodynamics.ThrustOmegaProp, ...
'S', params.aerodynamics.FlapArea, ...
'c_d', params.aerodynamics.DragCoefficients(1), ...
'c_0', params.aerodynamics.DragCoefficients(2), ...
'c_l', params.aerodynamics.LiftCoefficient ...
);
A = subs(A, aero);
B = subs(B, aero);
% Evaluate constants like pi, etc and convert to double
A = double(vpa(A));
B = double(vpa(B));
% The state is fully observed via hardware and refined with sensor fusion
% algorithms
C = eye(size(A));
D = zeros(12, 5);
% Number of states, inputs and outputs
[nx, nu] = size(B);
[ny, ~] = size(C);
% Create state space object
sys = ss(A, B, C, D);
% T = params.actuators.MeasurementDelay;
% sys = ss(A, B, C, D, 'OutputDelay', T);
% ------------------------------------------------------------------------
% Check properties of linearized model
eigvals = eig(A);
% Check system controllability / stabilizability
Wc = ctrb(sys);
if rank(Wc) < nx
fprintf('Linearized system has %d uncontrollable states!\n', ...
(nx - rank(Wc)));
% Is the system at least stabilizable?
unstabilizable = 0;
for i = 1:nx
if real(eigvals(i)) >= 0
% PBH test
W = [(A - eigvals(i) * eye(size(A))), B];
if rank(W) < nx
% fprintf(' State %d is not stabilizable\n', i);
unstabilizable = unstabilizable + 1;
end
end
end
if unstabilizable > 0
fprintf('Linearized system has %d unstabilizable modes!\n', ...
unstabilizable);
else
fprintf('However, it is stabilizable.\n');
end
end
% Check system observability / detectability
Wo = obsv(sys);
if rank(Wo) < nx
fprintf('Linearized system has %d unobservable states!\n', ...
(nx - rank(Wo)));
% is the system at least detectable?
undetectable = 0;
for i = 1:nx
if real(eigvals(i)) >= 0
% PBH test
W = [C; (A - eigvals(i) * eye(size(A)))];
if rank(W) < nx
undetectable = undetectable + 1;
end
end
end
if undetectable > 0
fprintf('Linearized system has %d undetectable modes!\n', ...
undetectable);
else
fprintf('However, it is detectable.')
end
end
% ------------------------------------------------------------------------
% Save model
model = struct();
% Function to compute the rotation matrix
model.FrameRot = @(pitch, roll, yaw) ...
subs(R, [phi, theta, psi], [pitch, roll, yaw]);
% Equations of non-linear model (algebraic)
model.nonlinear = struct(...
'State', xi, ...
'Inputs', u, ...
'Dynamics', f ...
);
% Linearized dynamics (numerical)
model.linear = struct(...
'Nx', nx, 'Nu', nu, 'Ny', ny, ... % number of states, inputs, and outputs
'State', xi, 'Inputs', u, ... % state and input variables
'StateEq', xi_eq, 'InputEq', u_eq, ... % where the system was linearized
'StateSpace', sys ... % state space object
);
end
% vim: ts=2 sw=2 et:
|