aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/95-homologie/fixpunkte.tex
diff options
context:
space:
mode:
authorAyexor <9105454+Ayexor@users.noreply.github.com>2021-08-27 18:09:54 +0200
committerGitHub <noreply@github.com>2021-08-27 18:09:54 +0200
commit2b2c5daa139aec08d091b658ad6191d6e57024ef (patch)
tree2c8f3fc7017394746d8e4f92a358e2a11015e072 /buch/chapters/95-homologie/fixpunkte.tex
parentAnpassungen nach Mail (diff)
parentnew image: tetraeder (diff)
downloadSeminarMatrizen-2b2c5daa139aec08d091b658ad6191d6e57024ef.tar.gz
SeminarMatrizen-2b2c5daa139aec08d091b658ad6191d6e57024ef.zip
Merge branch 'master' into master
Diffstat (limited to 'buch/chapters/95-homologie/fixpunkte.tex')
-rw-r--r--buch/chapters/95-homologie/fixpunkte.tex136
1 files changed, 124 insertions, 12 deletions
diff --git a/buch/chapters/95-homologie/fixpunkte.tex b/buch/chapters/95-homologie/fixpunkte.tex
index 1ed51ef..b3b184e 100644
--- a/buch/chapters/95-homologie/fixpunkte.tex
+++ b/buch/chapters/95-homologie/fixpunkte.tex
@@ -11,15 +11,127 @@ selbst gehört die zugehörige lineare Abbildung $f_*\colon H_*(X)\to H_*(X)$
der Homologiegruppen.
Diese linearen Abbildungen sind im Allgemeinen viel einfacher zu
analysieren.
-Zum Beispiel soll in Abschnitt~\ref{buch:subsection:lefshetz}
-die Lefshetz-Spurformel abgeleitet werden, die eine Aussagen darüber
-ermöglicht, ob eine Abbildung einen Fixpunkt haben kann.
-In Abschnitt~\ref{buch:subsection:brower} wird gezeigt wie man damit
-den Browerschen Fixpunktsatz beweisen kann, der besagt, dass jede
-Abbildung eines Einheitsballs in sich selbst immer einen Fixpunkt hat.
-
-\subsection{Lefshetz-Spurformel
-\label{buch:subsection:lefshetz}}
-
-\subsection{Brower-Fixpunktsatz
-\label{buch:subsection:brower}}
+%Zum Beispiel soll in Abschnitt~\ref{buch:subsection:lefshetz}
+%die Lefshetz-Spurformel abgeleitet werden, die eine Aussagen darüber
+%ermöglicht, ob eine Abbildung einen Fixpunkt haben kann.
+%In Abschnitt~\ref{buch:subsection:brower} wird gezeigt wie man damit
+%den Browerschen Fixpunktsatz beweisen kann, der besagt, dass jede
+%Abbildung eines Einheitsballs in sich selbst immer einen Fixpunkt hat.
+
+%\subsection{Brower-Fixpunktsatz
+%\label{buch:subsection:brower}}
+%
+%\begin{satz}[Brower]
+%\end{satz}
+
+%\subsection{Lefshetz-Fixpunktsatz
+%\label{buch:subsection:lefshetz}}
+Eine Selbstabbildung $f_*\colon C_*\to C_*$ von Kettenkomplexen führt auf
+eine Selbstabbiludng der Homologiegruppen $H(f)\colon H(C)\to H(C)$.
+Da sowohl $H_k$ wie auch $C_k$ endlichdimensionale Vektorräume sind,
+ist die Spur von $H_k(f)$ wohldefiniert.
+
+\begin{definition}
+Die {\em Lefshetz-Zahl} einer Abbildung $f$ von Kettenkomplexen ist
+\begin{equation}
+\lambda(f)
+=
+\sum_{k=0}^\infty
+(-1)^k \operatorname{Spur}f_k
+=
+\sum_{k=0}^\infty
+(-1)^k \operatorname{Spur}(H_k(f)).
+\label{buch:homologie:lefschetz-zahl}
+\end{equation}
+\end{definition}
+
+Die zweite Darstellung der Lefshetz-Zahl auf der rechten Seite ist
+meistens viel leichter zu berechnen als die erste.
+Die einzelnen Vektorräume eines Kettenkomplexes können haben typischerweise
+eine hohe Dimension, so hoch wie die Anzahl der Simplizes der Triangulation.
+Die Homologiegruppen dagegen haben typischerweise sehr viel kleinere
+Dimension, die Matrizen $H_k(f)$ sind also relativ klein.
+Es ist aber nicht klar, dass beide Berechnungsmethoden für die
+Lefshetz-Zahl auf das gleiche Resultat führen müssen.
+
+\begin{figure}
+\centering
+\includegraphics[width=\textwidth]{chapters/95-homologie/images/approximation.pdf}
+\caption{Stückweise lineare Approximation einer Abbildung derart,
+dass die Bildpunkt von Knoten auf Gitterpunkte fallen.
+Die Abbildung wird damit zu einer Abbildung von Polyedern und
+die induzierte Abbildung der Kettenkomplexe lässt sich direkt berechnen.
+Wenn die Auflösung des Gitters klein genug ist, hat die Approximation
+einer Abbildung ohne Fixpunkte immer noch keine Fixpunkte.
+\label{buch:homologie:fig:simplapprox}}
+\end{figure}%
+
+\begin{proof}[Beweis]
+Im Abschnitt~\ref{buch:subsection:induzierte-abbildung} wurde gezeigt,
+dass die Basis des Komplexes immer so gewählt werden kann, dass für
+die Spuren der Teilmatrizen von $f_k$ die
+Formel~\eqref{buch:homologie:eqn:spur} gilt.
+Damit kann jetzt die alternierenierden Summe der Spuren von $f_k$ ermittelt
+werden:
+\begin{align*}
+\sum_{k=0}^\infty (-1)^k\operatorname{Spur}(f_k)
+&=
+\sum_{k=0}^\infty (-1)^k\operatorname{Spur}(f_{k,B})
++
+\sum_{k=0}^\infty (-1)^k\operatorname{Spur}(f_{k,Z})
++
+\sum_{k=0}^\infty (-1)^k\operatorname{Spur}(f_{k-1,B})
+\\
+&=
+\sum_{k=0}^\infty (-1)^k\operatorname{Spur}(f_{k,B})
++
+\sum_{k=0}^\infty (-1)^k\operatorname{Spur}(f_{k,Z})
+-
+\sum_{k=0}^\infty (-1)^k\operatorname{Spur}(f_{k,B})
+\\
+&=
+\sum_{k=0}^\infty (-1)^k\operatorname{Spur}(f_{k,Z}).
+\intertext{Die Abbildung $H_k(f)$ hat $f_{k,Z}$ als Matrix, also ist
+die letzte Form gleichbedeutend mit}
+&=
+\sum_{k=0} (-1)^k\operatorname{Spur} H_k(f).
+\end{align*}
+Damit ist die Formel
+\eqref{buch:homologie:lefschetz-zahl}
+bewiesen.
+\end{proof}
+
+Die Lefshetz-Zahl ist eine Invariante einer topologischen Abbildung,
+die Aussagen über Fixpunkte zu machen erlaubt.
+
+\begin{satz}
+Ist $f\colon X\to X$ eine Selbstabbildung eines kompakten Polyeders und
+ist $\lambda(f) \ne 0$, dann hat $f$ einen Fixpunkt.
+\end{satz}
+
+Im Folgenden soll nur ein heuristisches Argument gegeben werden, warum
+ein solcher Satz wahr sein könnte.
+
+
+Wenn eine Abbildung keinen Fixpunkt hat, dann ist $f(x) \ne x$ für alle
+Punkte von $X$.
+Da $X$ kompakt ist, gibt es einen minimalen Abstand $d$ zwischen $f(x)$ und $x$.
+Wenn man also für $X$ eine Triangulation wählt, die wesentlich feiner ist
+als dieser minimale Abstand, dann wird kein Simplex der Triangulation auf
+Punkte im selben Simplex oder in einem Nachbarsimplex abgebildet wird.
+Indem man nötigenfalls die Triangulation nochmals verfeinert, kann man auch
+genügend Platz schaffen, dass man die Abbildung $f$ etwas modifizieren kann,
+so dass auch die deformierte Abbildung immer noch diese Eigenschaft hat.
+Die Abbildung~\ref{buch:homologie:fig:simplapprox} illustriert, wie eine
+Abbildung durch eine andere approximiert werden kann, die die Triangulation
+im Bildraum respektiert.
+
+Die zugehörige Abbildung des Kettenkomplexes der Triangulation hat damit
+die Eigenschaft, dass kein Basisvektor auf sich selbst abgebildet wird.
+Die Matrix der Abbildung hat daher keine Nullen auf der Diagonalen, und
+damit ist auch die Spur dieser Abbildung Null: $\operatorname{Spur}(H_k(f))=0$
+für alle $k$.
+Erst recht ist die Lefshetz-Zahl $\lambda(f)=0$.
+Wenn also die Lefshetz-Zahl verschieden ist von Null, dann muss $f$
+notwendigerweise einen Fixpunkt haben.
+