aboutsummaryrefslogtreecommitdiffstats
path: root/vorlesungen
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@ost.ch>2021-03-13 10:48:55 +0100
committerAndreas Müller <andreas.mueller@ost.ch>2021-03-13 10:48:55 +0100
commitac7015feefad911eb609c5ab032d234cb654ef4d (patch)
treeb33145e121807355465201420c92424e75aff116 /vorlesungen
parentnew slides (diff)
downloadSeminarMatrizen-ac7015feefad911eb609c5ab032d234cb654ef4d.tar.gz
SeminarMatrizen-ac7015feefad911eb609c5ab032d234cb654ef4d.zip
add new slides
Diffstat (limited to 'vorlesungen')
-rw-r--r--vorlesungen/slides/8/Makefile.inc11
-rw-r--r--vorlesungen/slides/8/chapter.tex18
-rw-r--r--vorlesungen/slides/8/diffusion.tex89
-rw-r--r--vorlesungen/slides/8/floyd-warshall/burgerking.pngbin0 -> 121512 bytes
-rw-r--r--vorlesungen/slides/8/floyd-warshall/fw.tex680
-rw-r--r--vorlesungen/slides/8/floyd-warshall/iteration.tex14
-rw-r--r--vorlesungen/slides/8/floyd-warshall/macdonalds.pngbin0 -> 129601 bytes
-rw-r--r--vorlesungen/slides/8/floyd-warshall/problem.tex146
-rw-r--r--vorlesungen/slides/8/floyd-warshall/rekursion.tex108
-rw-r--r--vorlesungen/slides/8/floyd-warshall/starbucks.pngbin0 -> 160194 bytes
-rw-r--r--vorlesungen/slides/8/floyd-warshall/wege.tex26
-rw-r--r--vorlesungen/slides/8/floyd-warshall/wegiteration.tex13
-rw-r--r--vorlesungen/slides/8/floyd-warshall/wegweiser.jpgbin0 -> 431961 bytes
-rw-r--r--vorlesungen/slides/8/inzidenzd.tex24
-rw-r--r--vorlesungen/slides/8/laplace.tex213
-rw-r--r--vorlesungen/slides/8/pfade/adjazenz.tex97
-rw-r--r--vorlesungen/slides/8/pfade/beispiel.tex404
-rw-r--r--vorlesungen/slides/8/pfade/gf.tex54
-rw-r--r--vorlesungen/slides/8/pfade/langepfade.tex59
-rw-r--r--vorlesungen/slides/test.tex20
20 files changed, 1964 insertions, 12 deletions
diff --git a/vorlesungen/slides/8/Makefile.inc b/vorlesungen/slides/8/Makefile.inc
index 68e2e27..0a20f88 100644
--- a/vorlesungen/slides/8/Makefile.inc
+++ b/vorlesungen/slides/8/Makefile.inc
@@ -10,5 +10,16 @@ chapter8 = \
../slides/8/grad.tex \
../slides/8/inzidenz.tex \
../slides/8/inzidenzd.tex \
+ ../slides/8/diffusion.tex \
+ ../slides/8/laplace.tex \
+ ../slides/8/pfade/adjazenz.tex \
+ ../slides/8/pfade/langepfade.tex \
+ ../slides/8/pfade/beispiel.tex \
+ ../slides/8/pfade/gf.tex \
+ ../slides/8/floyd-warshall/problem.tex \
+ ../slides/8/floyd-warshall/rekursion.tex \
+ ../slides/8/floyd-warshall/iteration.tex \
+ ../slides/8/floyd-warshall/wegiteration.tex \
+ ../slides/8/floyd-warshall/wege.tex \
../slides/8/chapter.tex
diff --git a/vorlesungen/slides/8/chapter.tex b/vorlesungen/slides/8/chapter.tex
index 6ac3e98..bd1c18f 100644
--- a/vorlesungen/slides/8/chapter.tex
+++ b/vorlesungen/slides/8/chapter.tex
@@ -8,3 +8,21 @@
\folie{8/grad.tex}
\folie{8/inzidenz.tex}
\folie{8/inzidenzd.tex}
+\folie{8/diffusion.tex}
+\folie{8/laplace.tex}
+
+\folie{8/pfade/adjazenz.tex}
+\folie{8/pfade/langepfade.tex}
+\folie{8/pfade/beispiel.tex}
+\folie{8/pfade/gf.tex}
+
+\folie{8/floyd-warshall/problem.tex}
+\folie{8/floyd-warshall/rekursion.tex}
+\folie{8/floyd-warshall/iteration.tex}
+\folie{8/floyd-warshall/wegiteration.tex}
+\folie{8/floyd-warshall/wege.tex}
+
+
+
+
+
diff --git a/vorlesungen/slides/8/diffusion.tex b/vorlesungen/slides/8/diffusion.tex
new file mode 100644
index 0000000..0d07a27
--- /dev/null
+++ b/vorlesungen/slides/8/diffusion.tex
@@ -0,0 +1,89 @@
+%
+% diffusion.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\begin{frame}[t]
+\frametitle{Diffusion}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+
+\def\r{2.2}
+
+\coordinate (A) at ({\r*cos(0*72)},{\r*sin(0*72)});
+\coordinate (B) at ({\r*cos(1*72)},{\r*sin(1*72)});
+\coordinate (C) at ({\r*cos(2*72)},{\r*sin(2*72)});
+\coordinate (D) at ({\r*cos(3*72)},{\r*sin(3*72)});
+\coordinate (E) at ({\r*cos(4*72)},{\r*sin(4*72)});
+
+\draw[shorten >= 0.3cm,shorten <= 0.3cm] (A) -- (C);
+\draw[color=white,line width=5pt] (B) -- (D);
+\draw[shorten >= 0.3cm,shorten <= 0.3cm] (B) -- (D);
+
+\draw[shorten >= 0.3cm,shorten <= 0.3cm] (A) -- (B);
+\draw[shorten >= 0.3cm,shorten <= 0.3cm] (B) -- (C);
+\draw[shorten >= 0.3cm,shorten <= 0.3cm] (C) -- (D);
+\draw[shorten >= 0.3cm,shorten <= 0.3cm] (D) -- (E);
+\draw[shorten >= 0.3cm,shorten <= 0.3cm] (E) -- (A);
+
+\draw[->,color=darkgreen,line width=8pt,shorten <= 0.25cm,shorten >= 0cm]
+ (A) -- (E);
+\draw[->,color=darkgreen,line width=2pt,shorten <= 0.25cm,shorten >= 0.25cm]
+ (A) -- (B);
+\draw[->,color=darkgreen,line width=4pt,shorten <= 0.25cm,shorten >= 0.15cm]
+ (A) -- (C);
+\draw[->,color=darkgreen,line width=2pt,shorten <= 0.25cm,shorten >= 0.25cm]
+ (B) -- (C);
+\draw[->,color=darkgreen,line width=2pt,shorten <= 0.25cm,shorten >= 0.25cm]
+ (C) -- (D);
+\draw[->,color=darkgreen,line width=2pt,shorten <= 0.25cm,shorten >= 0.25cm]
+ (D) -- (E);
+\draw[->,color=darkgreen,line width=4pt,shorten <= 0.25cm,shorten >= 0.15cm]
+ (B) -- (D);
+
+\fill[color=red] (A) circle[radius=0.3];
+\fill[color=red!50] (B) circle[radius=0.3];
+\fill[color=white] (C) circle[radius=0.3];
+\fill[color=blue!50] (D) circle[radius=0.3];
+\fill[color=blue] (E) circle[radius=0.3];
+
+\draw (A) circle[radius=0.3];
+\draw (B) circle[radius=0.3];
+\draw (C) circle[radius=0.3];
+\draw (D) circle[radius=0.3];
+\draw (E) circle[radius=0.3];
+
+\node at (A) {$1$};
+\node at (B) {$2$};
+\node at (C) {$3$};
+\node at (D) {$4$};
+\node at (E) {$5$};
+\node at (0,0) {$G$};
+
+\end{tikzpicture}
+\end{center}
+\vspace{-10pt}
+\begin{block}{Knotenfunktion}
+$f\colon V\to \mathbb{R}$
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\begin{block}{Fluss}
+Je grösser die Differenz zu den Nachbarn, desto grösser der Fluss in
+den Knoten:
+\begin{align*}
+\frac{df(v)}{dt}
+&=
+\kappa \sum_{\text{$v'$ Nachbar von $v$}} (f(v')-f(v))
+\end{align*}
+``Wärmeleitungsgleichung''
+\end{block}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/floyd-warshall/burgerking.png b/vorlesungen/slides/8/floyd-warshall/burgerking.png
new file mode 100644
index 0000000..cf4211d
--- /dev/null
+++ b/vorlesungen/slides/8/floyd-warshall/burgerking.png
Binary files differ
diff --git a/vorlesungen/slides/8/floyd-warshall/fw.tex b/vorlesungen/slides/8/floyd-warshall/fw.tex
new file mode 100644
index 0000000..99929fb
--- /dev/null
+++ b/vorlesungen/slides/8/floyd-warshall/fw.tex
@@ -0,0 +1,680 @@
+%
+% fw.tex -- Durchführung des Floyd-Warshall Algorithmus
+%
+% (c) 2019 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\bgroup
+
+\definecolor{wegelb}{rgb}{1,0.6,0}
+\definecolor{weghell}{rgb}{1,0.9,0.6}
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+
+\begin{columns}[t]
+\begin{column}{0.44\hsize}
+\begin{center}
+\begin{tikzpicture}[>=latex]
+
+
+\def\r{2.2}
+\coordinate (A) at ({\r*cos(-54+0*72)},{\r*sin(-54+0*72)});
+\coordinate (C) at ({\r*cos(-54+1*72)},{\r*sin(-54+1*72)});
+\coordinate (D) at ({\r*cos(-54+2*72)},{\r*sin(-54+2*72)});
+\coordinate (B) at ({\r*cos(-54+3*72)},{\r*sin(-54+3*72)});
+\coordinate (E) at ({\r*cos(-54+4*72)},{\r*sin(-54+4*72)});
+
+\def\knoten#1#2#3{
+ \fill[color=#3] #1 circle[radius=0.3];
+ \draw[line width=1pt] #1 circle[radius=0.3];
+ \node at #1 {$#2$};
+}
+
+\def\kante#1#2#3{
+ \draw[->,line width=1pt,shorten >= 0.3cm,shorten <= 0.3cm] #1 -- #2;
+ \fill[color=white,opacity=0.7] ($0.5*#1+0.5*#2$) circle[radius=0.22];
+ \node at ($0.5*#1+0.5*#2$) {$#3$};
+}
+
+% Wege über 1
+% 3--1--5
+\only<4>{
+ \draw[->,line width=7pt,color=red!50]
+ (C)--(A)--(E);
+}
+
+% Wege über 2
+% 5--2--3
+\only<6>{
+ \draw[->,line width=7pt,color=red!50]
+ (E)--(B)--(C);
+}
+% 5--2--4
+\only<7>{
+ \draw[->,line width=7pt,color=red!50]
+ (E)--(B)--(D);
+ \draw[->,line width=7pt,color=blue!50,dashed]
+ (E)--(D);
+}
+
+% Wege über 3
+% 2--3--1
+\only<9>{
+ \draw[->,line width=7pt,color=red!50]
+ (B)--(C)--(A);
+}
+% 2--3--5
+\only<10>{
+ \draw[->,line width=7pt,color=red!50]
+ (B)--(C)--(A)--(E);
+}
+% 4--3--1
+\only<11>{
+ \draw[->,line width=7pt,color=red!50]
+ (D)--(C)--(A);
+}
+% 4--3--5
+\only<12>{
+ \draw[->,line width=7pt,color=red!50]
+ (D)--(C)--(A)--(E);
+}
+% 5--3--1
+\only<13>{
+ \draw[->,line width=7pt,color=red!50]
+ (E)--(B)--(C)--(A);
+}
+% 5--3--5
+\only<14>{
+ \draw[->,line width=7pt,color=red!50]
+ (E)--(B)--(C)--(A)--(E);
+}
+
+% Wege über 4
+% 2--4--1
+\only<16>{
+ \draw[->,line width=7pt,color=red!50]
+ (B)--(D)--(C)--(A);
+ \draw[->,line width=7pt,color=blue!50,dashed]
+ (B)--(C)--(A);
+}
+% 2--4--3
+\only<17>{
+ \draw[->,line width=7pt,color=red!50]
+ (B)--(D)--(C);
+ \draw[->,line width=7pt,color=blue!50,dashed]
+ (B)--(C);
+}
+% 2--4--5
+\only<18>{
+ \draw[->,line width=7pt,color=red!50]
+ (B)--(D)--(C)--(A)--(E);
+ \draw[->,line width=7pt,color=blue!50,dashed]
+ (B)--(C)--(A)--(E);
+}
+% 5--4--1
+\only<19>{
+ \draw[->,line width=7pt,color=red!50]
+ (E)--(D)--(C)--(A);
+ \draw[->,line width=7pt,color=blue!50,dashed]
+ (E)--(B)--(C)--(A);
+}
+% 5--4--3
+\only<20>{
+ \draw[->,line width=7pt,color=red!50]
+ (E)--(D)--(C);
+ \draw[->,line width=7pt,color=blue!50,dashed]
+ (E)--(B)--(C);
+}
+% 5--4--5
+\only<21>{
+ \draw[->,line width=7pt,color=red!50]
+ (E)--(D)--(C)--(A)--(E);
+ \draw[->,line width=7pt,color=blue!50,dashed]
+ (E)--(B)--(C)--(A)--(E);
+}
+% 1--5--1
+\only<23>{
+ \draw[->,line width=7pt,color=red!50]
+ (A)--(E)--(B)--(C)--(A);
+}
+% 1--5--2
+\only<24>{
+ \draw[->,line width=7pt,color=red!50]
+ (A)--(E)--(B);
+}
+% 1--5--3
+\only<25>{
+ \draw[->,line width=7pt,color=red!50]
+ (A)--(E)--(B)--(C);
+}
+% 1--5--4
+\only<26>{
+ \draw[->,line width=7pt,color=red!50]
+ (A)--(E)--(D);
+}
+% 2--5--1
+\only<27>{
+ \draw[->,line width=7pt,color=red!50]
+ (B)--(C)--(A)--(E)--(D)--(C)--(A);
+ \draw[->,line width=7pt,color=blue!50,dashed]
+ (B)--(C)--(A);
+}
+% 2--5--2
+\only<28>{
+ \draw[->,line width=7pt,color=red!50]
+ (B)--(C)--(A)--(E)--(B);
+}
+% 2--5--3
+\only<29>{
+ \draw[->,line width=7pt,color=red!50]
+ (B)--(C)--(A)--(E)--(D)--(C);
+ \draw[->,line width=7pt,color=blue!50,dashed]
+ (B)--(C);
+}
+% 2--5--4
+\only<30>{
+ \draw[->,line width=7pt,color=red!50]
+ (B)--(C)--(A)--(E)--(D);
+ \draw[->,line width=7pt,color=blue!50,dashed]
+ (B)--(D);
+}
+% 3--5--1
+\only<31>{
+ \draw[->,line width=7pt,color=red!50]
+ (C)--(A)--(E)--(D)--(C)--(A);
+ \draw[->,line width=7pt,color=blue!50,dashed]
+ (C)--(A);
+}
+% 3--5--2
+\only<32>{
+ \draw[->,line width=7pt,color=red!50]
+ (C)--(A)--(E)--(B);
+}
+% 3--5--3
+\only<33>{
+ \draw[->,line width=7pt,color=red!50]
+ (C)--(A)--(E)--(B)--(C);
+}
+% 3--5--4
+\only<34>{
+ \draw[->,line width=7pt,color=red!50]
+ (C)--(A)--(E)--(D);
+}
+% 4--5--1
+\only<35>{
+ \draw[->,line width=7pt,color=red!50]
+ (D)--(C)--(A)--(E)--(D)--(C)--(A);
+ \draw[->,line width=7pt,color=blue!50,dashed]
+ (D)--(C)--(A);
+}
+% 4--5--2
+\only<36>{
+ \draw[->,line width=7pt,color=red!50]
+ (D)--(C)--(A)--(E)--(B);
+}
+% 4--5--3
+\only<37>{
+ \draw[->,line width=7pt,color=red!50]
+ (D)--(C)--(A)--(E)--(D)--(C);
+ \draw[->,line width=7pt,color=blue!50,dashed]
+ (D)--(C);
+}
+% 4--5--4
+\only<38>{
+ \draw[->,line width=7pt,color=red!50]
+ (D)--(C)--(A)--(E)--(D);
+}
+
+
+\uncover<40>{
+ \draw[->,color=red!50,line width=7pt]
+ (B)--(C)--(A)--(E)--(D);
+}
+
+\kante{(A)}{(E)}{1}
+\kante{(B)}{(C)}{2}
+\kante{(B)}{(D)}{13}
+\kante{(C)}{(A)}{3}
+\kante{(D)}{(C)}{6}
+\kante{(E)}{(B)}{5}
+\kante{(E)}{(D)}{6}
+
+\only<1>{
+ \knoten{(A)}{}{white}
+ \knoten{(B)}{}{white}
+ \knoten{(C)}{}{white}
+ \knoten{(D)}{}{white}
+ \knoten{(E)}{}{white}
+}
+
+\only<2->{
+ \knoten{(A)}{1}{white}
+ \knoten{(B)}{2}{white}
+ \knoten{(C)}{3}{white}
+ \knoten{(D)}{4}{white}
+ \knoten{(E)}{5}{white}
+}
+
+\only<4>{
+ \knoten{(A)}{1}{darkgreen!50}
+}
+\only<6-7>{
+ \knoten{(B)}{2}{darkgreen!50}
+}
+\only<9-14>{
+ \knoten{(C)}{3}{darkgreen!50}
+}
+\only<16-21>{
+ \knoten{(D)}{4}{darkgreen!50}
+}
+\only<23-38>{
+ \knoten{(E)}{5}{darkgreen!50}
+}
+
+\end{tikzpicture}
+\end{center}
+\begin{block}{Aufgabe}
+Finde den kürzesten Weg von 2 nach 4
+\end{block}
+\end{column}
+\begin{column}{0.5\hsize}
+\begin{center}
+\begin{tikzpicture}[>=latex,scale=0.8]
+
+\def\punkt#1#2{
+ ({#2-0.5},{0.5-(#1)})
+}
+\def\punktoff#1#2{
+ ({#2-0.7},{0.7-(#1)})
+}
+\def\feld#1#2#3{
+ \ifthenelse{\boolean{wegweiser}}{
+ \fill[color=white]
+ ({#2-1},{1-#1}) rectangle ({#2-0.45},{0.45-#1});
+ \node at \punktoff{#1}{#2} {$#3$};
+ }{
+ \fill[color=white]
+ ({#2-1},{1-#1}) rectangle ({#2},{-#1});
+ \node at \punkt{#1}{#2} {$#3$};
+ }
+}
+\def\verbindung#1#2#3{
+ \draw[->,line width=5pt,color=red!20,shorten >= 0.2cm,shorten <= 0.2cm]
+ \punkt{#1}{#2}--\punkt{#2}{#3};
+ \node at (5,-5.5) [left] {$#1\rightsquigarrow #2\rightsquigarrow #3$\strut};
+}
+\def\Infty{{}}
+\def\wegweiser#1#2#3{
+ \ifthenelse{\boolean{wegweiser}}{
+ \ifnum #2 = #3
+ \fill[color=weghell]
+ ({#2-0.45},{0.45-#1}) rectangle ({#2-0.05},{0.05-#1});
+ \else
+ \fill[color=wegelb]
+ ({#2-0.45},{0.45-#1}) rectangle ({#2-0.05},{0.05-#1});
+ \fi
+ \node at ({#2-0.25},{0.25-#1}) {\tiny #3};
+ }{}
+}
+
+% direkte Wege
+\uncover<3->{
+ \feld{1}{1}{\Infty}
+ \feld{1}{2}{\Infty}
+ \feld{1}{3}{\Infty}
+ \feld{1}{4}{\Infty}
+ \feld{1}{5}{1}
+ \wegweiser{1}{5}{5}
+
+ \feld{2}{1}{\Infty}
+ \feld{2}{2}{\Infty}
+ \feld{2}{3}{2}
+ \wegweiser{2}{3}{3}
+ \feld{2}{4}{13}
+ \wegweiser{2}{4}{4}
+ \feld{2}{5}{\Infty}
+
+ \feld{3}{1}{3}
+ \wegweiser{3}{1}{1}
+ \feld{3}{2}{\Infty}
+ \feld{3}{3}{\Infty}
+ \feld{3}{4}{\Infty}
+ \feld{3}{5}{\Infty}
+
+ \feld{4}{1}{\Infty}
+ \feld{4}{2}{\Infty}
+ \feld{4}{3}{6}
+ \wegweiser{4}{3}{3}
+ \feld{4}{4}{\Infty}
+ \feld{4}{5}{\Infty}
+
+ \feld{5}{1}{\Infty}
+ \feld{5}{2}{5}
+ \wegweiser{5}{2}{2}
+ \feld{5}{3}{\Infty}
+ \feld{5}{4}{6}
+ \wegweiser{5}{4}{4}
+ \feld{5}{5}{\Infty}
+}
+
+\uncover<3-3>{
+ \node at (-0.8,-5.5) [right] {direkte Verbindungen};
+}
+
+\uncover<4-4>{
+ \node[color=darkgreen] at (-0.8,-5.5) [right] {Wege über $1$:\strut};
+}
+
+% Wege über 1
+% 3-1-5
+\uncover<4>{
+ \verbindung{3}{1}{5}
+ \feld{3}{5}{\color{red}4}
+ \wegweiser{3}{5}{1}
+}
+\uncover<5->{
+ \feld{3}{5}{4}
+ \wegweiser{3}{5}{1}
+}
+
+\uncover<6-7>{
+ \node[color=darkgreen] at (-0.8,-5.5) [right] {Wege über $2$:\strut};
+}
+
+% Wege über 2
+% 5-2-3
+\uncover<6>{
+ \verbindung{5}{2}{3}
+ \feld{5}{3}{\color{red}7}
+ \wegweiser{5}{3}{2}
+}
+\uncover<7->{
+ \feld{5}{3}{7}
+ \wegweiser{5}{3}{2}
+}
+% 5-2-4
+\uncover<7>{
+ \verbindung{5}{2}{4}
+ \feld{5}{4}{\color{blue}6}
+}
+
+\uncover<9-14>{
+ \node[color=darkgreen] at (-0.8,-5.5) [right] {Wege über $3$:\strut};
+}
+
+% Wege über 3
+% 2-3-1
+\uncover<9>{
+ \verbindung{2}{3}{1}
+ \feld{2}{1}{\color{red}5}
+ \wegweiser{2}{1}{3}
+}
+\uncover<10->{
+ \feld{2}{1}{5}
+ \wegweiser{2}{1}{3}
+}
+% 2-3-5
+\uncover<10>{
+ \verbindung{2}{3}{5}
+ \feld{2}{5}{\color{red}6}
+ \wegweiser{2}{5}{3}
+}
+\uncover<11->{
+ \feld{2}{5}{6}
+ \wegweiser{2}{5}{3}
+}
+% 4-3-1
+\uncover<11>{
+ \verbindung{4}{3}{1}
+ \feld{4}{1}{\color{red}9}
+ \wegweiser{4}{1}{3}
+}
+\uncover<12->{
+ \feld{4}{1}{9}
+ \wegweiser{4}{1}{3}
+}
+% 4-3-5
+\uncover<12>{
+ \verbindung{4}{3}{5}
+ \feld{4}{5}{\color{red}10}
+ \wegweiser{4}{5}{3}
+}
+\uncover<13->{
+ \feld{4}{5}{10}
+ \wegweiser{4}{5}{3}
+}
+% 5-3-1
+\uncover<13>{
+ \verbindung{5}{3}{1}
+ \feld{5}{1}{\color{red}10}
+ \wegweiser{5}{1}{2}
+}
+\uncover<14->{
+ \feld{5}{1}{10}
+ \wegweiser{5}{1}{2}
+}
+% 5-3-5
+\uncover<14>{
+ \verbindung{5}{3}{5}
+ \feld{5}{5}{\color{red}11}
+ \wegweiser{5}{5}{2}
+}
+\uncover<15->{
+ \feld{5}{5}{11}
+ \wegweiser{5}{5}{2}
+}
+
+\uncover<16-21>{
+ \node[color=darkgreen] at (-0.8,-5.5) [right] {Wege über $4$:\strut};
+}
+
+% Wege über 4
+% 2-4-1
+\uncover<16>{
+ \verbindung{2}{4}{1}
+ \feld{2}{1}{\color{blue}5}
+}
+% 2-4-3
+\uncover<17>{
+ \verbindung{2}{4}{3}
+ \feld{2}{3}{\color{blue}2}
+}
+% 2-4-5
+\uncover<18>{
+ \verbindung{2}{4}{5}
+ \feld{2}{5}{\color{blue}6}
+}
+% 5-4-1
+\uncover<19>{
+ \verbindung{5}{4}{1}
+ \feld{5}{1}{\color{blue}10}
+}
+% 5-4-3
+\uncover<20>{
+ \verbindung{5}{4}{3}
+ \feld{5}{3}{\color{blue}7}
+}
+% 5-4-5
+\uncover<21>{
+ \verbindung{5}{4}{5}
+ \feld{5}{5}{\color{blue}11}
+}
+
+% Wege über 5
+\uncover<23-38>{
+ \node[color=darkgreen] at (-0.8,-5.5) [right] {Wege über $5$:\strut};
+}
+
+% Wege über 5
+% 1-5-1
+\uncover<23>{
+ \verbindung{1}{5}{1}
+ \feld{1}{1}{\color{red}11}
+ \wegweiser{1}{1}{5}
+}
+\uncover<24->{
+ \feld{1}{1}{11}
+ \wegweiser{1}{1}{5}
+}
+% 1-5-2
+\uncover<24>{
+ \verbindung{1}{5}{2}
+ \feld{1}{2}{\color{red}6}
+ \wegweiser{1}{2}{5}
+}
+\uncover<25->{
+ \feld{1}{2}{6}
+ \wegweiser{1}{2}{5}
+}
+% 1-5-3
+\uncover<25>{
+ \verbindung{1}{5}{3}
+ \feld{1}{3}{\color{red}8}
+ \wegweiser{1}{3}{5}
+}
+\uncover<26->{
+ \feld{1}{3}{8}
+ \wegweiser{1}{3}{5}
+}
+% 1-5-4
+\uncover<26>{
+ \verbindung{1}{5}{4}
+ \feld{1}{4}{\color{red}7}
+ \wegweiser{1}{4}{5}
+}
+\uncover<27->{
+ \feld{1}{4}{7}
+ \wegweiser{1}{4}{5}
+}
+% 2-5-1
+\uncover<27>{
+ \verbindung{2}{5}{1}
+ \feld{2}{1}{\color{blue}5}
+}
+% 2-5-2
+\uncover<28>{
+ \verbindung{2}{5}{2}
+ \feld{2}{2}{\color{red}11}
+ \wegweiser{2}{2}{3}
+}
+\uncover<29->{
+ \feld{2}{2}{11}
+ \wegweiser{2}{2}{3}
+}
+% 2-5-3
+\uncover<29>{
+ \verbindung{2}{5}{3}
+ \feld{2}{3}{\color{blue}2}
+}
+% 2-5-4
+\uncover<30>{
+ \verbindung{2}{5}{4}
+ \feld{2}{4}{\color{red}12}
+ \wegweiser{2}{4}{3}
+}
+\uncover<31->{
+ \feld{2}{4}{12}
+ \wegweiser{2}{4}{3}
+}
+% 3-5-1
+\uncover<31>{
+ \verbindung{3}{5}{1}
+ \feld{3}{1}{\color{blue}3}
+}
+% 3-5-2
+\uncover<32>{
+ \verbindung{3}{5}{2}
+ \feld{3}{2}{\color{red}9}
+ \wegweiser{3}{2}{1}
+}
+\uncover<33->{
+ \feld{3}{2}{9}
+ \wegweiser{3}{2}{1}
+}
+% 3-5-3
+\uncover<33>{
+ \verbindung{3}{5}{3}
+ \feld{3}{3}{\color{red}11}
+ \wegweiser{3}{3}{1}
+}
+\uncover<34->{
+ \feld{3}{3}{11}
+ \wegweiser{3}{3}{1}
+}
+% 3-5-4
+\uncover<34>{
+ \verbindung{3}{5}{4}
+ \feld{3}{4}{\color{red}10}
+ \wegweiser{3}{4}{1}
+}
+\uncover<35->{
+ \feld{3}{4}{10}
+ \wegweiser{3}{4}{1}
+}
+% 4-5-1
+\uncover<35>{
+ \verbindung{4}{5}{1}
+ \feld{4}{1}{\color{blue}9}
+}
+% 4-5-2
+\uncover<36>{
+ \verbindung{4}{5}{2}
+ \feld{4}{2}{\color{red}15}
+ \wegweiser{4}{2}{3}
+}
+\uncover<37->{
+ \feld{4}{2}{15}
+ \wegweiser{4}{2}{3}
+}
+% 4-5-3
+\uncover<37>{
+ \verbindung{4}{5}{3}
+ \feld{4}{3}{\color{blue}6}
+}
+% 4-5-4
+\uncover<38>{
+ \verbindung{4}{5}{4}
+ \feld{4}{4}{\color{red}16}
+ \wegweiser{4}{4}{3}
+}
+\uncover<39->{
+ \feld{4}{4}{16}
+ \wegweiser{4}{4}{3}
+}
+
+
+\uncover<3->{
+
+ \foreach \x in {0,...,5}{
+ \draw[line width=0.7pt] (\x,0.8)--(\x,-5);
+ }
+ \foreach \y in {0,...,-5}{
+ \draw[line width=0.7pt] (-0.8,\y)--(5,\y);
+ }
+ \draw[line width=1.4pt] (0,0)--(5,0)--(5,-5)--(0,-5)--cycle;
+
+ \node at (0.5,0.5) {$1$};
+ \node at (1.5,0.5) {$2$};
+ \node at (2.5,0.5) {$3$};
+ \node at (3.5,0.5) {$4$};
+ \node at (4.5,0.5) {$5$};
+
+ \node at (-0.5,-0.5) {$1$};
+ \node at (-0.5,-1.5) {$2$};
+ \node at (-0.5,-2.5) {$3$};
+ \node at (-0.5,-3.5) {$4$};
+ \node at (-0.5,-4.5) {$5$};
+}
+
+\end{tikzpicture}
+\end{center}
+
+\uncover<40>{
+ \vspace{-22pt}
+ \begin{block}{Lösung}
+ Der kürzeste Weg von 2 nach 4 ist 2---3---1---5---4
+ \end{block}
+}
+
+\end{column}
+\end{columns}
+
+\egroup
diff --git a/vorlesungen/slides/8/floyd-warshall/iteration.tex b/vorlesungen/slides/8/floyd-warshall/iteration.tex
new file mode 100644
index 0000000..d7e782d
--- /dev/null
+++ b/vorlesungen/slides/8/floyd-warshall/iteration.tex
@@ -0,0 +1,14 @@
+%
+% iteration.tex
+%
+% (c) 2019 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\bgroup
+\newboolean{wegweiser}
+\begin{frame}[fragile]
+\frametitle{Floyd-Warshall: Iteration}
+\setboolean{wegweiser}{false}
+\input{../slides/8/floyd-warshall/fw.tex}
+
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/floyd-warshall/macdonalds.png b/vorlesungen/slides/8/floyd-warshall/macdonalds.png
new file mode 100644
index 0000000..c442dfb
--- /dev/null
+++ b/vorlesungen/slides/8/floyd-warshall/macdonalds.png
Binary files differ
diff --git a/vorlesungen/slides/8/floyd-warshall/problem.tex b/vorlesungen/slides/8/floyd-warshall/problem.tex
new file mode 100644
index 0000000..93f8229
--- /dev/null
+++ b/vorlesungen/slides/8/floyd-warshall/problem.tex
@@ -0,0 +1,146 @@
+%
+% graph.tex
+%
+% (c) 2019 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\begin{frame}[fragile]
+\frametitle{Problem: Kürzeste Wege}
+\begin{center}
+\begin{tikzpicture}[>=latex]
+
+\def\blob#1#2#3{
+ \fill[color=#3] #1 circle[radius=0.2];
+ \draw[line width=0.7pt] #1 circle[radius=0.2];
+ \node at #1 {{\tiny #2}};
+}
+
+\def\kante#1#2{
+ \draw[line width=0.7pt,shorten >= 0.2,shorten >= 0.2] #1 -- #2 ;
+}
+
+\def\a{72}
+\def\r{1.0}
+\def\R{2.0}
+\def\RR{3.5}
+
+\coordinate (A1) at ({\r*cos(0*\a)},{\r*sin(0*\a)});
+\coordinate (B1) at ({\r*cos(1*\a)},{\r*sin(1*\a)});
+\coordinate (C1) at ({\r*cos(2*\a)},{\r*sin(2*\a)});
+\coordinate (D1) at ({\r*cos(3*\a)},{\r*sin(3*\a)});
+\coordinate (E1) at ({\r*cos(4*\a)},{\r*sin(4*\a)});
+
+\coordinate (F1) at ({\R*cos(0*\a)},{\R*sin(0*\a)});
+\coordinate (G1) at ({\R*cos(1*\a)},{\R*sin(1*\a)});
+\coordinate (H1) at ({\R*cos(2*\a)},{\R*sin(2*\a)});
+\coordinate (I1) at ({\R*cos(3*\a)},{\R*sin(3*\a)});
+\coordinate (J1) at ({\R*cos(4*\a)},{\R*sin(4*\a)});
+
+\coordinate (K1) at ({\RR*cos(0.5*\a)},{\RR*sin(0.5*\a)});
+\coordinate (L1) at ({\RR*cos(1.5*\a)},{\RR*sin(1.5*\a)});
+\coordinate (M1) at ({\RR*cos(2.5*\a)},{\RR*sin(2.5*\a)});
+\coordinate (N1) at ({\RR*cos(3.5*\a)},{\RR*sin(3.5*\a)});
+\coordinate (O1) at ({\RR*cos(4.5*\a)},{\RR*sin(4.5*\a)});
+
+\kante{(A1)}{(C1)}
+\kante{(C1)}{(E1)}
+\kante{(E1)}{(B1)}
+\kante{(B1)}{(D1)}
+\kante{(D1)}{(A1)}
+
+\kante{(F1)}{(G1)}
+\kante{(G1)}{(H1)}
+\kante{(H1)}{(I1)}
+\kante{(I1)}{(J1)}
+\kante{(J1)}{(F1)}
+
+\kante{(A1)}{(F1)}
+\kante{(B1)}{(G1)}
+\kante{(C1)}{(H1)}
+\kante{(D1)}{(I1)}
+\kante{(E1)}{(J1)}
+
+\kante{(K1)}{(L1)}
+\kante{(L1)}{(M1)}
+\kante{(M1)}{(N1)}
+\kante{(N1)}{(O1)}
+\kante{(O1)}{(K1)}
+
+\kante{(F1)}{(K1)}
+\kante{(G1)}{(L1)}
+\kante{(H1)}{(M1)}
+\kante{(I1)}{(N1)}
+\kante{(J1)}{(O1)}
+
+\kante{(F1)}{(O1)}
+\kante{(G1)}{(K1)}
+\kante{(H1)}{(L1)}
+\kante{(I1)}{(M1)}
+\kante{(J1)}{(N1)}
+
+\uncover<2>{
+ \draw[line width=2pt,color=red] (M1)--(H1)--(G1)--(B1);
+}
+
+\uncover<3>{
+ \draw[line width=2pt,color=red] (M1)--(L1)--(G1)--(B1);
+}
+
+\uncover<4>{
+ \draw[line width=2pt,color=red] (M1)--(I1)--(D1)--(B1);
+}
+
+\uncover<5>{
+ \draw[line width=2pt,color=red] (M1)--(I1)--(D1)--(A1)--(F1);
+}
+
+\uncover<6->{
+ \draw[line width=2pt,color=red] (M1)--(I1)--(J1)--(F1);
+}
+
+\uncover<2-4>{
+ \blob{(B1)}{1}{red!20}
+ \blob{(M1)}{12}{red!20}
+}
+\uncover<5-8>{
+ \blob{(M1)}{1}{red!20}
+ \blob{(F1)}{12}{red!20}
+}
+
+\blob{(A1)}{0}{white}
+\uncover<1>{
+ \blob{(B1)}{1}{white}
+}
+\uncover<5-8>{
+ \blob{(B1)}{12}{white}
+}
+\blob{(C1)}{2}{white}
+\blob{(D1)}{3}{white}
+\blob{(E1)}{4}{white}
+\uncover<1-4>{
+ \blob{(F1)}{5}{white}
+}
+\blob{(G1)}{6}{white}
+\blob{(H1)}{7}{white}
+\blob{(I1)}{8}{white}
+\blob{(J1)}{9}{white}
+\blob{(K1)}{10}{white}
+\blob{(L1)}{11}{white}
+\uncover<1>{
+ \blob{(M1)}{12}{white}
+}
+\blob{(N1)}{13}{white}
+\blob{(O1)}{14}{white}
+
+\node at (6,0) {\begin{minipage}{5cm}
+\begin{itemize}
+\item<3-> Nicht eindeutig
+\item<5-> geradeste Wege sind nicht unbedingt die kürzesten
+\item<7-> Gewichtung der Kanten
+($\text{Schnellstrassen}\ne\text{Feldwege}$)
+\item<8-> Orientierung der Kanten?
+\end{itemize}
+\end{minipage}};
+
+\end{tikzpicture}
+\end{center}
+\end{frame}
diff --git a/vorlesungen/slides/8/floyd-warshall/rekursion.tex b/vorlesungen/slides/8/floyd-warshall/rekursion.tex
new file mode 100644
index 0000000..c664e41
--- /dev/null
+++ b/vorlesungen/slides/8/floyd-warshall/rekursion.tex
@@ -0,0 +1,108 @@
+%
+% rekursion.tex
+%
+% (c) 2019 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\begin{frame}[fragile]
+\frametitle{Rekursion}
+\vspace{-20pt}
+\begin{center}
+\begin{tikzpicture}[>=latex]
+
+\def\blob#1#2#3{
+ \fill[color=#3] #1 circle[radius=0.3];
+ \draw[line width=0.7pt] #1 circle[radius=0.3];
+ \node at #1 {{#2}};
+}
+
+\def\kante#1#2{
+ \draw[line width=0.7pt,shorten >= 0.3,shorten >= 0.3] #1 -- #2 ;
+}
+
+\coordinate (A) at (0,0);
+\coordinate (B1) at (2,2);
+\coordinate (B2) at (2,1);
+\coordinate (B3) at (2,0);
+\coordinate (B4) at (2,-1);
+\coordinate (B5) at (2,-2);
+
+\draw[line width=1.9pt,color=gray] (A)--(B1);
+\draw[line width=1.9pt,color=gray] (A)--(B2);
+\draw[line width=1.9pt,color=gray] (A)--(B3);
+\draw[line width=1.9pt,color=gray] (A)--(B4);
+\draw[line width=1.9pt,color=gray] (A)--(B5);
+
+\coordinate (Z) at (10,0);
+
+\begin{scope}
+\clip (2,-2.3) rectangle (10,2.3);
+\foreach \y in{-10,...,10}{
+ \draw[line width=1.9pt,color=gray]
+ (2,\y)--(10,{\y-8});
+ \draw[line width=1.9pt,color=gray]
+ (2,\y)--(10,{\y+8});
+}
+\end{scope}
+
+\uncover<2>{
+\draw[line width=4pt,color=red] (A)--(B1)--(5,-1)--(8,2)--(Z);
+}
+
+\uncover<3>{
+\draw[line width=4pt,color=red] (A)--(B2)--(3,0)--(4,1)--(5,0)--(6,1)--(8.5,-1.5)--(Z);
+}
+
+\uncover<4>{
+\draw[line width=4pt,color=red] (A)--(B3)--(2.5,0.5)--(3.5,-0.5)--(5,1.0)--(7,-1)--(9,1)--(Z);
+}
+
+\uncover<5>{
+\draw[line width=4pt,color=red] (A)--(B4)--(3,0)--(4,1)--(5,0)--(6,1)--(7,0)
+ --(6.0,-1.0)--(7,-2)--(7.5,-1.5)--(7,-1)--(7.5,-0.5)
+ --(8.5,-1.5)--(Z);
+}
+
+\uncover<6->{
+ \draw[line width=4pt,color=red] (A)--(B5)--(6,2);
+}
+\uncover<7->{
+ \draw[line width=4pt,color=red] (6,2)--(7,1)--(5,-1);
+}
+\uncover<8->{
+ \draw[line width=4pt,color=red] (5,-1)--(6,-2)--(8,0)--(9,-1);
+}
+\uncover<9->{
+ \draw[line width=4pt,color=red] (9,-1)--(Z);
+}
+
+\blob{(A)}{$A$}{red!20}
+\blob{(B1)}{$B_1$}{white}
+\blob{(B2)}{$B_2$}{white}
+\blob{(B3)}{$B_3$}{white}
+\blob{(B4)}{$B_4$}{white}
+\blob{(B5)}{$B_5$}{white}
+
+\blob{(Z)}{$Z$}{red!20}
+
+\uncover<6->{
+ \node at (6,2) {\includegraphics[width=1.5cm]{../slides/8/floyd-warshall/macdonalds.png}};
+}
+
+\uncover<7->{
+ \node at (5,-1) {\includegraphics[width=1.5cm]{../slides/8/floyd-warshall/starbucks.png}};
+}
+
+\uncover<8->{
+ \node at (9,-1) {\includegraphics[width=2cm]{../slides/8/floyd-warshall/burgerking.png}};
+}
+
+\end{tikzpicture}
+\end{center}
+
+\begin{block}{Abstieg}
+Für den kürzesten Weg von $A$ nach $Z$ suche denjenigen Nachbarn $B_i$
+von $A$, der den kürzesten Weg von $B_i$ nach $Z$ hat.
+\uncover<7->{$\Rightarrow$ wir brauchen {\color{red}alle} kürzesten Wege!}
+\end{block}
+
+\end{frame}
diff --git a/vorlesungen/slides/8/floyd-warshall/starbucks.png b/vorlesungen/slides/8/floyd-warshall/starbucks.png
new file mode 100644
index 0000000..a28dbf7
--- /dev/null
+++ b/vorlesungen/slides/8/floyd-warshall/starbucks.png
Binary files differ
diff --git a/vorlesungen/slides/8/floyd-warshall/wege.tex b/vorlesungen/slides/8/floyd-warshall/wege.tex
new file mode 100644
index 0000000..7ff62a1
--- /dev/null
+++ b/vorlesungen/slides/8/floyd-warshall/wege.tex
@@ -0,0 +1,26 @@
+%
+% wege.tex
+%
+% (c) 2019 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\begin{frame}
+\frametitle{Wege statt Weglänge?}
+\begin{columns}[t]
+\begin{column}{0.48\hsize}
+\begin{block}{Wege speichern?}
+\uncover<3->{Es reicht, einen Wegweiser zum nächsten Knoten zu speichern}
+\end{block}
+\begin{center}
+\begin{tikzpicture}[>=latex]
+
+\end{tikzpicture}
+\end{center}
+\end{column}
+\begin{column}{0.48\hsize}
+\uncover<2->{%
+\begin{center}
+\includegraphics[width=\hsize]{../slides/8/floyd-warshall/wegweiser.jpg}
+\end{center}}%
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/8/floyd-warshall/wegiteration.tex b/vorlesungen/slides/8/floyd-warshall/wegiteration.tex
new file mode 100644
index 0000000..84ec679
--- /dev/null
+++ b/vorlesungen/slides/8/floyd-warshall/wegiteration.tex
@@ -0,0 +1,13 @@
+%
+% wegiteration.tex
+%
+% (c) 2019 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\bgroup
+\newboolean{wegweiser}
+\begin{frame}[fragile]
+\frametitle{Floyd-Warshall: Wegweiser}
+\setboolean{wegweiser}{true}
+\input{../slides/8/floyd-warshall/fw.tex}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/floyd-warshall/wegweiser.jpg b/vorlesungen/slides/8/floyd-warshall/wegweiser.jpg
new file mode 100644
index 0000000..33aebe3
--- /dev/null
+++ b/vorlesungen/slides/8/floyd-warshall/wegweiser.jpg
Binary files differ
diff --git a/vorlesungen/slides/8/inzidenzd.tex b/vorlesungen/slides/8/inzidenzd.tex
index 19da619..18feeae 100644
--- a/vorlesungen/slides/8/inzidenzd.tex
+++ b/vorlesungen/slides/8/inzidenzd.tex
@@ -61,7 +61,7 @@
\begin{align*}
B(G)_{ij}&=-1&&\Leftrightarrow&&\text{Kante $j$ von $i$}\\
B(G)_{kj}&=+1&&\Leftrightarrow&&\text{Kante $j$ nach $k$}\\
-A(G)_{ij}&=\pm 1&&\Leftrightarrow&&\text{Kante von $i$ nach $j$}
+A(G)_{ij}&=\phantom{-}1&&\Leftrightarrow&&\text{Kante von $i$ nach $j$}
\end{align*}
\end{block}
\end{column}
@@ -91,6 +91,8 @@ rectangle
}
\draw[color=gray] (-0.1,-0.28) -- (-0.1,-2.4);
\node[color=gray] at ({-0.67-(7-4)*\dx},0.04) [above] {\tiny Kanten};
+\node[color=gray] at ({0.00},{-0.38-(3-1)*\dy})
+ [above,rotate=-90] {\tiny Knoten};
\end{scope}
\begin{scope}[xshift=2.32cm,yshift=-0.24cm]
@@ -121,21 +123,21 @@ rectangle
B(G)
&=
\begin{pmatrix*}[r]
--1& 0& 0& 0& 1&-1& 0\\
- 1&-1& 0& 0& 0& 0&-1\\
- 0& 1&-1& 0& 0& 1& 0\\
- 0& 0& 1&-1& 0& 0& 1\\
- 0& 0& 0& 1&-1& 0& 0
+-1& 0& 0& 0&+1&-1& 0\\
++1&-1& 0& 0& 0& 0&-1\\
+ 0&+1&-1& 0& 0&+1& 0\\
+ 0& 0&+1&-1& 0& 0&+1\\
+ 0& 0& 0&+1&-1& 0& 0
\end{pmatrix*}
\\[20pt]
A(G)
&=
\begin{pmatrix*}[r]
- 0&-1&-1& 0&-1\\
--1& 0&-1&-1& 0\\
--1&-1& 0&-1& 0\\
- 0&-1&-1& 0&-1\\
--1& 0& 0&-1& 0
+ 0&\phantom{-}1&\phantom{-}1& 0&\phantom{-}1\\
+\phantom{-}1& 0&\phantom{-}1&\phantom{-}1& 0\\
+\phantom{-}1&\phantom{-}1& 0&\phantom{-}1& 0\\
+ 0&\phantom{-}1&\phantom{-}1& 0&\phantom{-}1\\
+\phantom{-}1& 0& 0&\phantom{-}1& 0
\end{pmatrix*}
\end{aligned}$};
\end{tikzpicture}
diff --git a/vorlesungen/slides/8/laplace.tex b/vorlesungen/slides/8/laplace.tex
new file mode 100644
index 0000000..a1c364d
--- /dev/null
+++ b/vorlesungen/slides/8/laplace.tex
@@ -0,0 +1,213 @@
+%
+% laplace.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Laplace-Matrix}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+
+\def\r{2.2}
+
+\coordinate (A) at ({\r*cos(0*72)},{\r*sin(0*72)});
+\coordinate (B) at ({\r*cos(1*72)},{\r*sin(1*72)});
+\coordinate (C) at ({\r*cos(2*72)},{\r*sin(2*72)});
+\coordinate (D) at ({\r*cos(3*72)},{\r*sin(3*72)});
+\coordinate (E) at ({\r*cos(4*72)},{\r*sin(4*72)});
+
+\draw[shorten >= 0.3cm,shorten <= 0.3cm] (A) -- (C);
+\draw[color=white,line width=5pt] (B) -- (D);
+\draw[shorten >= 0.3cm,shorten <= 0.3cm] (B) -- (D);
+
+\draw[shorten >= 0.3cm,shorten <= 0.3cm] (A) -- (B);
+\draw[shorten >= 0.3cm,shorten <= 0.3cm] (B) -- (C);
+\draw[shorten >= 0.3cm,shorten <= 0.3cm] (C) -- (D);
+\draw[shorten >= 0.3cm,shorten <= 0.3cm] (D) -- (E);
+\draw[shorten >= 0.3cm,shorten <= 0.3cm] (E) -- (A);
+
+\uncover<2-4>{
+\draw[->,color=darkgreen,line width=2pt,shorten <= 0.25cm,shorten >= 0.25cm]
+ (A) -- (B);
+}
+
+\uncover<3-7>{
+\draw[->,color=darkgreen,line width=4pt,shorten <= 0.25cm,shorten >= 0.15cm]
+ (A) -- (C);
+}
+
+\uncover<4-13>{
+\draw[->,color=darkgreen,line width=8pt,shorten <= 0.25cm,shorten >= 0cm]
+ (A) -- (E);
+}
+
+\uncover<5->{
+\draw[<->,color=darkgreen,line width=2pt,shorten <= 0.25cm,shorten >= 0.25cm]
+ (A) -- (B);
+}
+
+\uncover<6-8>{
+\draw[->,color=darkgreen,line width=2pt,shorten <= 0.25cm,shorten >= 0.25cm]
+ (B) -- (C);
+}
+
+\uncover<7-10>{
+\draw[->,color=darkgreen,line width=4pt,shorten <= 0.25cm,shorten >= 0.15cm]
+ (B) -- (D);
+}
+
+\uncover<8->{
+\draw[<->,color=darkgreen,line width=4pt,shorten <= 0.15cm,shorten >= 0.15cm]
+ (A) -- (C);
+}
+
+\uncover<9->{
+\draw[<->,color=darkgreen,line width=2pt,shorten <= 0.25cm,shorten >= 0.25cm]
+ (B) -- (C);
+}
+
+\uncover<10-11>{
+\draw[->,color=darkgreen,line width=2pt,shorten <= 0.25cm,shorten >= 0.25cm]
+ (C) -- (D);
+}
+
+\uncover<11->{
+\draw[<->,color=darkgreen,line width=4pt,shorten <= 0.15cm,shorten >= 0.15cm]
+ (B) -- (D);
+}
+
+\uncover<12->{
+\draw[<->,color=darkgreen,line width=2pt,shorten <= 0.25cm,shorten >= 0.25cm]
+ (C) -- (D);
+}
+
+\uncover<13-14>{
+\draw[->,color=darkgreen,line width=2pt,shorten <= 0.25cm,shorten >= 0.25cm]
+ (D) -- (E);
+}
+
+\uncover<14->{
+\draw[<->,color=darkgreen,line width=8pt,shorten <= 0cm,shorten >= 0cm]
+ (A) -- (E);
+}
+
+\uncover<15->{
+\draw[<->,color=darkgreen,line width=2pt,shorten <= 0.25cm,shorten >= 0.25cm]
+ (D) -- (E);
+}
+
+\fill[color=red] (A) circle[radius=0.3];
+\fill[color=red!50] (B) circle[radius=0.3];
+\fill[color=white] (C) circle[radius=0.3];
+\fill[color=blue!50] (D) circle[radius=0.3];
+\fill[color=blue] (E) circle[radius=0.3];
+
+\draw (A) circle[radius=0.3];
+\draw (B) circle[radius=0.3];
+\draw (C) circle[radius=0.3];
+\draw (D) circle[radius=0.3];
+\draw (E) circle[radius=0.3];
+
+\node at (A) {$1$};
+\node at (B) {$2$};
+\node at (C) {$3$};
+\node at (D) {$4$};
+\node at (E) {$5$};
+
+\end{tikzpicture}
+\end{center}
+\uncover<16->{%
+\begin{block}{Definition}
+Laplace-Matrix
+\[
+L(G) = D(G) - A(G)
+\]
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\begin{align*}
+f
+&=
+\begin{pmatrix}
+f(1)\\
+f(2)\\
+f(3)\\
+f(4)\\
+f(5)
+\end{pmatrix}
+\\
+\frac{df}{dt}
+&=
+-\kappa
+\begin{pmatrix*}[r]
+\only<1>{\phantom{-0}}
+ \only<2>{\phantom{-}1}
+ \only<3>{\phantom{-}2}
+ \only<4->{\phantom{-}3}
+ &\only<1>{\phantom{-0}}\only<2->{{-1}}%
+ &\only<-2>{\phantom{-0}}\only<3->{{-1}}%
+ &\uncover<16->{ 0}
+ &\only<-3>{\phantom{-0}}\only<4->{{-1}}\\
+\only<-4>{\phantom{-0}}\only<5->{{-1}}
+ &\only<-4>{\phantom{-0}}
+ \only<5>{\phantom{-}1}
+ \only<6>{\phantom{-}2}
+ \only<7->{\phantom{-}3}
+ &\only<-5>{\phantom{-0}}\only<6->{{-1}}
+ &\only<-6>{\phantom{-0}}\only<7->{{-1}}
+ &\uncover<16->{ 0}\\
+\only<-7>{\phantom{-0}}\only<8->{{-1}}
+ &\only<-8>{\phantom{-0}}\only<9->{{-1}}
+ &\only<-7>{\phantom{-0}}
+ \only<8>{\phantom{-}1}
+ \only<9>{\phantom{-}2}
+ \only<10->{\phantom{-}3}
+ &\only<-9>{\phantom{-0}}\only<10->{{-1}}
+ &\uncover<16->{ 0}\\
+\uncover<16->{ 0}
+ &\only<-10>{\phantom{-0}}\only<11->{{-1}}
+ &\only<-11>{\phantom{-0}}\only<12->{{-1}}
+ &\only<-10>{\phantom{-0}}
+ \only<11>{\phantom{-}1}
+ \only<12>{\phantom{-}2}
+ \only<13->{\phantom{-}3}
+ &\only<-12>{\phantom{-0}}\only<13->{{-1}}\\
+\only<-13>{\phantom{-0}}\only<14->{{-1}}
+ &\uncover<16->{ 0}
+ &\uncover<16->{ 0}
+ &\only<-14>{\phantom{-0}}\only<15->{{-1}}
+ &\only<-13>{\phantom{-0}}
+ \only<14>{\phantom{-}1}
+ \only<15->{\phantom{-}2}
+\end{pmatrix*}
+\begin{pmatrix}
+f(1)\\
+f(2)\\
+f(3)\\
+f(4)\\
+f(5)
+\end{pmatrix}
+\\
+\uncover<17->{
+&=
+-\kappa L f}
+\end{align*}
+\vspace{-20pt}
+\uncover<18->{%
+\begin{block}{Rekonstruktion}
+Der Graph lässt sich aus $L$ rekonstruieren
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+
+\egroup
+
+
diff --git a/vorlesungen/slides/8/pfade/adjazenz.tex b/vorlesungen/slides/8/pfade/adjazenz.tex
new file mode 100644
index 0000000..f923262
--- /dev/null
+++ b/vorlesungen/slides/8/pfade/adjazenz.tex
@@ -0,0 +1,97 @@
+%
+% adjazenz.tex
+%
+% (c) 2019 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\bgroup
+\definecolor{darkred}{rgb}{0.5,0,0}
+\begin{frame}[fragile]
+\newboolean{pfeilspitzen}
+\setboolean{pfeilspitzen}{true}
+\frametitle{Adjazenz-Matrix}
+
+\begin{columns}[t]
+\begin{column}{0.48\hsize}
+\begin{center}
+\begin{tikzpicture}[>=latex]
+
+\def\r{2.2}
+\coordinate (A) at ({\r*cos(-54+0*72)},{\r*sin(-54+0*72)});
+\coordinate (C) at ({\r*cos(-54+1*72)},{\r*sin(-54+1*72)});
+\coordinate (D) at ({\r*cos(-54+2*72)},{\r*sin(-54+2*72)});
+\coordinate (B) at ({\r*cos(-54+3*72)},{\r*sin(-54+3*72)});
+\coordinate (E) at ({\r*cos(-54+4*72)},{\r*sin(-54+4*72)});
+
+\def\knoten#1#2{
+ \fill[color=white] #1 circle[radius=0.3];
+ \draw[line width=1pt] #1 circle[radius=0.3];
+ \node at #1 {$#2$};
+}
+
+\def\kante#1#2#3{
+ \ifthenelse{\boolean{pfeilspitzen}}{
+ \draw[->,line width=1pt,shorten >= 0.3cm,shorten <= 0.3cm]
+ #1 -- #2;
+ }{
+ \draw[line width=1pt,shorten >= 0.3cm,shorten <= 0.3cm]
+ #1 -- #2;
+ }
+% \fill[color=white,opacity=0.7] ($0.5*#1+0.5*#2$) circle[radius=0.22];
+% \node at ($0.5*#1+0.5*#2$) {$#3$};
+}
+
+\kante{(A)}{(E)}{1}
+\kante{(B)}{(C)}{2}
+\kante{(B)}{(D)}{13}
+\kante{(C)}{(A)}{3}
+\kante{(D)}{(C)}{6}
+\kante{(E)}{(B)}{5}
+\kante{(E)}{(D)}{6}
+
+\knoten{(A)}{1}
+\knoten{(B)}{2}
+\knoten{(C)}{3}
+\knoten{(D)}{4}
+\knoten{(E)}{5}
+
+\end{tikzpicture}
+\end{center}
+\end{column}
+\begin{column}{0.48\hsize}
+\[
+a_{{\color{darkred}i}{\color{blue}j}}
+=
+\begin{cases}
+1&\quad\text{\# Kanten von ${\color{blue}j}$ nach ${\color{darkred}i}$}\\
+0&\quad\text{sonst}
+\end{cases}
+\]
+\begin{center}
+\begin{tikzpicture}[>=latex]
+\node at (0,0) {$\displaystyle
+A=
+\begin{pmatrix}
+0&0&1&0&0\\
+0&0&0&0&1\\
+0&1&0&1&0\\
+0&1&0&0&1\\
+1&0&0&0&0
+\end{pmatrix}
+$};
+\def\s{0.54}
+\foreach \x in {1,...,5}{
+ \node[color=blue] at ({-0.71+(\x-1)*\s},1.4) {\tiny $\x$};
+}
+\node[color=blue] at ({-0.71+2*\s},1.7) {von};
+\def\r{0.48}
+\foreach \y in {1,...,5}{
+ \node[color=darkred] at ({-0.71+5*\s},{0.02+(3-\y)*\r}) {\tiny $\y$};
+}
+\node[color=darkred] at ({-0.4+5*\s},{0.02}) [rotate=90] {nach};
+\end{tikzpicture}
+\end{center}
+\end{column}
+\end{columns}
+
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/pfade/beispiel.tex b/vorlesungen/slides/8/pfade/beispiel.tex
new file mode 100644
index 0000000..43685f3
--- /dev/null
+++ b/vorlesungen/slides/8/pfade/beispiel.tex
@@ -0,0 +1,404 @@
+%
+% beispiel.tex
+%
+% (c) 2019 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\bgroup
+\newboolean{pfeilspitzen}
+
+\def\knoten#1#2{
+ \fill[color=white] #1 circle[radius=0.3];
+ \draw[line width=1pt] #1 circle[radius=0.3];
+ \node at #1 {$#2$};
+}
+
+\def\kante#1#2#3{
+ \ifthenelse{\boolean{pfeilspitzen}}{
+ \draw[->,line width=1pt,shorten >= 0.3cm,shorten <= 0.3cm]
+ #1 -- #2;
+ }{
+ \draw[line width=1pt,shorten >= 0.3cm,shorten <= 0.3cm]
+ #1 -- #2;
+ }
+% \fill[color=white,opacity=0.7] ($0.5*#1+0.5*#2$) circle[radius=0.22];
+% \node at ($0.5*#1+0.5*#2$) {$#3$};
+}
+
+\begin{frame}
+\setboolean{pfeilspitzen}{true}
+\frametitle{Beispiel}
+\begin{columns}[t]
+\begin{column}{0.37\hsize}
+\begin{center}
+\begin{tikzpicture}[>=latex]
+
+\def\r{2.2}
+\coordinate (A) at ({\r*cos(-54+0*72)},{\r*sin(-54+0*72)});
+\coordinate (C) at ({\r*cos(-54+1*72)},{\r*sin(-54+1*72)});
+\coordinate (D) at ({\r*cos(-54+2*72)},{\r*sin(-54+2*72)});
+\coordinate (B) at ({\r*cos(-54+3*72)},{\r*sin(-54+3*72)});
+\coordinate (E) at ({\r*cos(-54+4*72)},{\r*sin(-54+4*72)});
+
+\kante{(A)}{(E)}{1}
+\kante{(B)}{(C)}{2}
+\kante{(B)}{(D)}{13}
+\kante{(C)}{(A)}{3}
+\kante{(D)}{(C)}{6}
+\kante{(E)}{(B)}{5}
+\kante{(E)}{(D)}{6}
+
+\knoten{(A)}{1}
+\knoten{(B)}{2}
+\knoten{(C)}{3}
+\knoten{(D)}{4}
+\knoten{(E)}{5}
+
+\end{tikzpicture}
+\end{center}
+\end{column}
+\begin{column}{0.59\hsize}
+
+\only<1>{
+\begin{block}{Pfade der Länge 1}
+\[
+A=
+\begin{pmatrix}
+0&0&1&0&0\\
+0&0&0&0&1\\
+0&1&0&1&0\\
+0&1&0&0&1\\
+1&0&0&0&0
+\end{pmatrix}
+\]
+\end{block}
+}
+
+\only<2>{
+\begin{block}{Pfade der Länge 2}
+\[
+A^2=\begin{pmatrix}
+ 0 & 1 & 0 & 1 & 0 \\
+ 1 & 0 & 0 & 0 & 0 \\
+ 0 & 1 & 0 & 0 & 2 \\
+ 1 & 0 & 0 & 0 & 1 \\
+ 0 & 0 & 1 & 0 & 0
+\end{pmatrix}
+\]
+\end{block}
+}
+
+\only<3>{
+\begin{block}{Pfade der Länge 3}
+\[
+A^3=\begin{pmatrix}
+ 0 & 1 & 0 & 0 & 2 \\
+ 0 & 0 & 1%
+\begin{picture}(0,0)
+\color{red}\put(-3,4){\circle{12}}
+\end{picture}%
+& 0 & 0 \\
+ 2 & 0 & 0 & 0 & 1 \\
+ 1 & 0 & 1 & 0 & 0 \\
+ 0 & 1 & 0 & 1 & 0
+\end{pmatrix}
+\]
+\end{block}
+}
+
+\only<4>{
+\begin{block}{Pfade der Länge 4}
+\[
+A^4=\begin{pmatrix}
+ 2%
+\begin{picture}(0,0)
+\color{red}\put(-3,4){\circle{12}}
+\end{picture}%
+& 0 & 0 & 0 & 1 \\
+ 0 & 1%
+\begin{picture}(0,0)
+\color{red}\put(-3,4){\circle{12}}
+\end{picture}%
+& 0 & 1 & 0 \\
+ 1 & 0 & 2%
+\begin{picture}(0,0)
+\color{red}\put(-3,4){\circle{12}}
+\end{picture}%
+& 0 & 0 \\
+ 0 & 1 & 1 & 1%
+\begin{picture}(0,0)
+\color{red}\put(-3,4){\circle{12}}
+\end{picture}%
+& 0 \\
+ 0 & 1 & 0 & 0 & 2%
+\begin{picture}(0,0)
+\color{red}\put(-3,4){\circle{12}}
+\end{picture}%
+\end{pmatrix}
+\]
+\end{block}
+}
+
+\only<5>{
+\begin{block}{Pfade der Länge 5}
+\[
+A^5=\begin{pmatrix}
+ 1 & 0 & 2 & 0 & 0 \\
+ 0 & 1 & 0 & 0 & 2 \\
+ 0 & 2 & 1 & 2 & 0 \\
+ 0 & 2 & 0 & 1 & 2 \\
+ 2 & 0 & 0 & 0 & 1
+\end{pmatrix}
+\]
+\end{block}
+}
+
+\only<6>{
+\begin{block}{Pfade der Länge 6}
+\[
+A^6=\begin{pmatrix}
+ 0%
+\begin{picture}(0,0)
+\color{red}\put(-3,4){\circle{12}}
+\end{picture}%
+& 2 & 1 & 2 & 0 \\
+ 2 & 0%
+\begin{picture}(0,0)
+\color{red}\put(-3,4){\circle{12}}
+\end{picture}%
+& 0 & 0 & 1 \\
+ 0 & 3 & 0%
+\begin{picture}(0,0)
+\color{red}\put(-3,4){\circle{12}}
+\end{picture}%
+& 1 & 4 \\
+ 2 & 1 & 0 & 0%
+\begin{picture}(0,0)
+\color{red}\put(-3,4){\circle{12}}
+\end{picture}%
+& 3 \\
+ 1 & 0 & 2 & 0 & 0%
+\begin{picture}(0,0)
+\color{red}\put(-3,4){\circle{12}}
+\end{picture}%
+\end{pmatrix}
+\]
+\end{block}
+}
+
+\only<7>{
+\begin{block}{Pfade der Länge 7}
+\[
+A^7=\begin{pmatrix}
+ 0%
+\begin{picture}(0,0)
+\color{red}\put(-3,4){\circle{12}}
+\end{picture}%
+& 3 & 0 & 1 & 4 \\
+ 1 & 0%
+\begin{picture}(0,0)
+\color{red}\put(-3,4){\circle{12}}
+\end{picture}%
+& 2 & 0 & 0 \\
+ 4 & 1 & 0%
+\begin{picture}(0,0)
+\color{red}\put(-3,4){\circle{12}}
+\end{picture}%
+& 0 & 4 \\
+ 3 & 0 & 2 & 0%
+\begin{picture}(0,0)
+\color{red}\put(-3,4){\circle{12}}
+\end{picture}%
+& 1 \\
+ 0 & 2 & 1 & 2 & 0%
+\begin{picture}(0,0)
+\color{red}\put(-3,4){\circle{12}}
+\end{picture}%
+\end{pmatrix}
+\]
+\end{block}
+}
+
+\only<8>{
+\begin{block}{Pfade der Länge 8}
+\[
+A^8=\begin{pmatrix}
+ 4 & 1 & 0 & 0 & 4 \\
+ 0 & 2 & 1 & 2 & 0 \\
+ 4 & 0 & 4 & 0 & 1 \\
+ 1 & 2 & 3 & 2 & 0 \\
+ 0 & 3 & 0 & 1 & 4
+\end{pmatrix}
+\]
+\end{block}
+}
+
+\only<9>{
+\begin{block}{Pfade der Länge 9}
+\[
+A^9=\begin{pmatrix}
+ 4 & 0 & 4 & 0 & 1 \\
+ 0 & 3 & 0 & 1 & 4 \\
+ 1 & 4 & 4 & 4 & 0 \\
+ 0 & 5 & 1 & 3 & 4 \\
+ 4 & 1 & 0 & 0 & 4
+\end{pmatrix}
+\]
+\end{block}
+}
+
+\only<10>{
+\begin{block}{Pfade der Länge 10}
+\[
+A^{10}=\begin{pmatrix}
+ 1%
+\begin{picture}(0,0)
+\color{red}\put(-3,4){\circle{12}}
+\end{picture}%
+& 4 & 4 & 4 & 0 \\
+ 4 & 1%
+\begin{picture}(0,0)
+\color{red}\put(-3,4){\circle{12}}
+\end{picture}%
+& 0 & 0 & 4 \\
+ 0 & 8 & 1%
+\begin{picture}(0,0)
+\color{red}\put(-3,4){\circle{12}}
+\end{picture}%
+& 4 & 8 \\
+ 4 & 4 & 0 & 1%
+\begin{picture}(0,0)
+\color{red}\put(-3,4){\circle{12}}
+\end{picture}%
+& 8 \\
+ 4 & 0 & 4 & 0 & 1%
+\begin{picture}(0,0)
+\color{red}\put(-3,4){\circle{12}}
+\end{picture}%
+\end{pmatrix}
+\]
+\end{block}
+}
+
+\only<11>{
+\begin{block}{Pfade der Länge 15}
+\[
+A^{15}=\begin{pmatrix}
+ 1 & 20 & 6 & 12 & 16 \\
+ 12 & 1 & 8 & 0%
+\begin{picture}(0,0)
+\color{red}\put(-3,4){\circle{12}}
+\end{picture}%
+& 6 \\
+ 16 & 18 & 1 & 6 & 32 \\
+ 20 & 6 & 8 & 1 & 18 \\
+ 6 & 8 & 12 & 8 & 1
+\end{pmatrix}
+\]
+\end{block}
+}
+
+\only<12>{
+\begin{block}{Pfade der Länge 20}
+\[
+A^{20}=\begin{pmatrix}
+ 33 & 56 & 8 & 24 & 80 \\
+ 24 & 17 & 32 & 16 & 8 \\
+ 80 & 32 & 33 & 8 & 80 \\
+ 56 & 24 & 48 & 17 & 32 \\
+ 8 & 48 & 24 & 32 & 33
+\end{pmatrix}
+\]
+\end{block}
+}
+
+\only<13>{
+\begin{block}{Pfade der Länge 25}
+\[
+A^{25}=\begin{pmatrix}
+ 193 & 120 & 74 & 40 & 240 \\
+ 40 & 113 & 80 & 80 & 74 \\
+ 240 & 114 & 193 & 74 & 160 \\
+ 120 & 154 & 160 & 113 & 114 \\
+ 74 & 160 & 40 & 80 & 193
+\end{pmatrix}
+\]
+\end{block}
+}
+
+\only<14>{
+\begin{block}{Pfade der Länge 30}
+\[
+A^{30}=\begin{pmatrix}
+ 673 & 348 & 460 & 188 & 560 \\
+ 188 & 433 & 160 & 240 & 460 \\
+ 560 & 648 & 673 & 460 & 536 \\
+ 348 & 700 & 400 & 433 & 648 \\
+ 460 & 400 & 188 & 160 & 673
+\end{pmatrix}
+\]
+\end{block}
+}
+
+\only<15>{
+\begin{block}{Pfade der Länge 35}
+\[
+A^{35}=\begin{pmatrix}
+ 1793%
+\color{red}\drawline(-23,-3)(-23,10)(2,10)(2,-3)(-23,-3)
+& 1644 & 1806 & 1108 & 1632 \\
+ 1108 & 1233 & 536 & 560 & 1806 \\
+ 1632 & 2914 & 1793%
+\color{red}\drawline(-23,-3)(-23,10)(2,10)(2,-3)(-23,-3)
+& 1806 & 2752 \\
+ 1644 & 2366 & 1096 & 1233 & 2914 \\
+ 1806 & 1096 & 1108 & 536 & 1793%
+\color{red}\drawline(-23,-3)(-23,10)(2,10)(2,-3)(-23,-3)
+\end{pmatrix}
+\]
+\end{block}
+}
+
+\end{column}
+\end{columns}
+\vbox to2cm{
+\vfill
+\only<3>{
+ \begin{block}{Kürzester Verbindung von 3 nach 2}
+ Der Weg 3---1---6---2 ist die kürzeste Verbindung von 3 nach 2
+ \end{block}
+}
+\only<4>{
+ \begin{block}{Kürzeste Zyklen}
+ Jeder Knoten liegt auf einem Zyklus der Länge 4,
+ dies sind die kürzesten Zyklen.
+ 1, 3 und 5 liegen auf beiden Zyklen, 2 und 4 nur auf einem.
+ \end{block}
+}
+\only<6>{
+ \begin{block}{Zyklen der Länge 6}
+ {\em Keine} Zyklen der Länge 6
+ \end{block}
+}
+\only<7>{
+ \begin{block}{Zyklen der Länge 7}
+ {\em Keine} Zyklen der Länge 7
+ \end{block}
+}
+\only<10>{
+ \begin{block}{Zyklen der Länge 10}
+ Genau ein Zyklus der Länge 10
+ \end{block}
+}
+\only<11>{
+ \begin{block}{Verbindung von 4 nach 2}
+ {\em Keine} Verbindung der Länge 15 von 4 nach 2
+ \end{block}
+}
+\only<15>{
+ \begin{block}{Zyklen der Länge 35}
+ Es gibt 1793 Zyklen, die 1 enthalten, und sie enthalten alle auch 3 und 5
+ \end{block}
+}
+}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/pfade/gf.tex b/vorlesungen/slides/8/pfade/gf.tex
new file mode 100644
index 0000000..e89a1fb
--- /dev/null
+++ b/vorlesungen/slides/8/pfade/gf.tex
@@ -0,0 +1,54 @@
+%
+% gf.tex
+%
+% (c) 2019 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\begin{frame}
+\definecolor{darkred}{rgb}{0.8,0,0}
+\frametitle{Erzeugende Funktion}
+Alle Weglängen zusammen:
+\[
+\uncover<7->{f({\color{darkred}t})=}
+\uncover<4->{E+}
+A
+\uncover<3->{{\color{darkred}t}}
+\uncover<2->{+}
+\uncover<5->{\frac{1}{2!}}
+A^2
+\uncover<3->{{\color{darkred}t^2}}
+\uncover<2->{+}
+\uncover<5->{\frac{1}{3!}}
+A^3
+\uncover<3->{{\color{darkred}t^3}}
+\uncover<2->{+}
+\uncover<5->{\frac{1}{4!}}
+A^4
+\uncover<3->{{\color{darkred}t^4}}
+\uncover<2->{+}
+\uncover<5->{\frac{1}{5!}}
+A^5
+\uncover<3->{{\color{darkred}t^5}}
+\uncover<2->{+}
+\uncover<5->{\frac{1}{6!}}
+A^6
+\uncover<3->{{\color{darkred}t^6}}
+\uncover<2->{+}
+\uncover<5->{\frac{1}{7!}}
+A^7
+\uncover<3->{{\color{darkred}t^7}}
+\dots
+\uncover<6->{= e^{A{\color{darkred}t}}}
+\]
+\uncover<4->{%
+heisst {\em\usebeamercolor[fg]{title} \only<5->{exponentiell} erzeugende Funktion}
+der Wege-Anzahlen}
+
+\begin{itemize}
+\item<8->
+Begriff der Entropie auf einem Graphen
+\item<9->
+Wahrscheinlichkeit, dass ein Zufallsspaziergänger auf einem Graphen an
+einem bestimmten Knoten vorbeikommt
+\end{itemize}
+
+\end{frame}
diff --git a/vorlesungen/slides/8/pfade/langepfade.tex b/vorlesungen/slides/8/pfade/langepfade.tex
new file mode 100644
index 0000000..8c0dd0d
--- /dev/null
+++ b/vorlesungen/slides/8/pfade/langepfade.tex
@@ -0,0 +1,59 @@
+%
+% langepfade.tex
+%
+% (c) 2019 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\bgroup
+\definecolor{darkred}{rgb}{0.5,0,0}
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\begin{frame}
+\frametitle{Wieviele Pfade der Länge $k$?}
+\begin{definition}
+Anzahl Pfade der Länge $k$ zwischen zwei Knoten
+\[
+a_{{\color{darkred}i}{\color{blue}j}}^{(k)}
+=
+\#\{\text{Pfade der Länge $k$ von $\color{blue}j$ nach $\color{darkred}i$}\},
+\qquad
+A^{(k)}
+=
+\left(
+a_{{\color{darkred}i}{\color{blue}j}}^{(k)}
+\right)
+\]
+\end{definition}
+\uncover<2->{
+{\usebeamercolor[fg]{title}Spezialfall:} $A^{(1)}=A$.
+}
+
+\uncover<3->{
+\begin{block}{Rekursionsformel}
+\vspace{-25pt}
+\begin{align*}
+a_{{\color{darkred}i}{\color{blue}{\color{blue}j}}}^{(k)}
+&\uncover<4->{=
+\sum_{{\color{darkgreen}l}=1}^n
+\#\{\text{Pfade der Länge $1$ von $\color{darkgreen}l$ nach $\color{darkred}i$}\}}
+\\[-11pt]
+&\uncover<4->{\qquad\qquad\times
+\#\{\text{Pfade der Länge $k-1$ von $\color{blue}j$ nach $\color{darkgreen}l$}\}}
+\\
+&\uncover<5->{=
+\sum_{{\color{darkgreen}l}=1}^n
+a_{{\color{darkred}i}{\color{darkgreen}l}}^{(1)}
+\cdot
+a_{{\color{darkgreen}l}{\color{blue}j}}^{(k-1)}}
+\\
+\uncover<6->{
+\Rightarrow\qquad
+A^{(k)}}
+&\uncover<6->{=
+A\;A^{(k-1)}}
+\uncover<7->{
+\qquad\Rightarrow\qquad
+A^{(k)} = A^k}
+\end{align*}
+\end{block} }
+
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/test.tex b/vorlesungen/slides/test.tex
index d4ebfd3..ca85ddd 100644
--- a/vorlesungen/slides/test.tex
+++ b/vorlesungen/slides/test.tex
@@ -7,5 +7,23 @@
%\folie{8/graph.tex}
%\folie{8/grad.tex}
\folie{8/inzidenz.tex}
-\folie{8/inzidenzd.tex}
+%\folie{8/inzidenzd.tex}
+% XXX Diffusion
+\folie{8/diffusion.tex}
+\folie{8/laplace.tex}
+
+%\folie{8/pfade/adjazenz.tex}
+%\folie{8/pfade/langepfade.tex}
+%\folie{8/pfade/beispiel.tex}
+%\folie{8/pfade/gf.tex}
+
+%\folie{8/floyd-warshall/problem.tex}
+%\folie{8/floyd-warshall/rekursion.tex}
+%\folie{8/floyd-warshall/iteration.tex}
+%\folie{8/floyd-warshall/wege.tex}
+%\folie{8/floyd-warshall/wegiteration.tex}
+
+% Markov-Ketten
+% - Google-Matrix
+% - Stationär