diff options
Diffstat (limited to 'buch/chapters/70-graphen')
-rw-r--r-- | buch/chapters/70-graphen/beschreibung.tex | 16 |
1 files changed, 13 insertions, 3 deletions
diff --git a/buch/chapters/70-graphen/beschreibung.tex b/buch/chapters/70-graphen/beschreibung.tex index 1245b84..f027932 100644 --- a/buch/chapters/70-graphen/beschreibung.tex +++ b/buch/chapters/70-graphen/beschreibung.tex @@ -350,9 +350,9 @@ $A$ hat also die Matrixelemente a_{ik} = \begin{cases} --1&\qquad $i=a(k)\\ -+1&\qquad $i=e(k)\\ -0&\qquad\text{sonst} +-1&\qquad i=a(k)\\ ++1&\qquad i=e(k)\\ +\phantom{+}0&\qquad\text{sonst} \end{cases} \label{buch:eqn:ajazenz-matrix} \end{equation} @@ -364,5 +364,15 @@ Für $H$ drückt ein nicht verschwindendes Matrixelement das Vorhandensein einer Kante aus, in $A$ ist es die Tatsache, dass in diesem Knoten eine Kante endet. +Es ist natürlich möglich, aus der Adjazenz-Matrix auch die Link-Matrix +zu rekonstruieren. +Dazu muss für jedes Paar $(j,i)$ von Knoten festgestellt werden, +ob die Adjazenzmatrix eine entsprechende Verbindung enthält, also ob der +Vektor +\[ +k_{ji} = e_i - e_j +\] +als Spaltenvektor vorkommt, wobei die $e_i$ die $n$-dimensionalen +Standardbasisvektoren sind. |