aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/110-elliptisch/lemniskate.tex
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@ost.ch>2022-04-20 10:30:56 +0200
committerAndreas Müller <andreas.mueller@ost.ch>2022-04-20 10:30:56 +0200
commit0344a846c083c11e9ed93ddc5898dd55c6dd1022 (patch)
tree284ff262d32e7e1138679b56bbc11060e4bc0db8 /buch/chapters/110-elliptisch/lemniskate.tex
parentSingularitaeten (diff)
downloadSeminarSpezielleFunktionen-0344a846c083c11e9ed93ddc5898dd55c6dd1022.tar.gz
SeminarSpezielleFunktionen-0344a846c083c11e9ed93ddc5898dd55c6dd1022.zip
lemniscate sine stuff
Diffstat (limited to 'buch/chapters/110-elliptisch/lemniskate.tex')
-rw-r--r--buch/chapters/110-elliptisch/lemniskate.tex299
1 files changed, 262 insertions, 37 deletions
diff --git a/buch/chapters/110-elliptisch/lemniskate.tex b/buch/chapters/110-elliptisch/lemniskate.tex
index 7083b63..e766779 100644
--- a/buch/chapters/110-elliptisch/lemniskate.tex
+++ b/buch/chapters/110-elliptisch/lemniskate.tex
@@ -22,23 +22,46 @@ elliptischen Funktionen hergestellt werden.
\end{figure}
Die Lemniskate von Bernoulli ist die Kurve vierten Grades mit der Gleichung
\begin{equation}
-(x^2+y^2)^2 = 2a^2(x^2-y^2).
+(X^2+Y^2)^2 = 2a^2(X^2-Y^2).
\label{buch:elliptisch:eqn:lemniskate}
\end{equation}
Sie ist in Abbildung~\ref{buch:elliptisch:fig:lemniskate}
dargestellt.
-Die beiden Scheitel der Lemniskate befinden sich bei $x=\pm a/\sqrt{2}$.
+Die beiden Scheitel der Lemniskate befinden sich bei $X_s=\pm a\sqrt{2}$.
+Dividiert man die Gleichung der Lemniskate durch $X_s^2=4a^4$ entsteht
+\begin{equation}
+\biggl(
+\biggl(\frac{X}{a\sqrt{2}}\biggr)^2
++
+\biggl(\frac{Y}{a\sqrt{2}}\biggr)^2
+\biggr)^2
+=
+2\frac{a^2}{2a^2}\biggl(
+\biggl(\frac{X}{a\sqrt{2}}\biggr)^2
+-
+\biggl(\frac{Y}{a\sqrt{2}}\biggr)^2
+\biggr).
+\qquad
+\Leftrightarrow
+\qquad
+(x^2+y^2)^2 = x^2-y^2,
+\label{buch:elliptisch:eqn:lemniskatenormiert}
+\end{equation}
+wobei wir $x=X/a\sqrt{2}$ und $y=Y/a\sqrt{2}$ gesetzt haben.
+In dieser Normierung liegen die Scheitel bei $\pm 1$.
+Dies ist die Skalierung, die für die Definition des lemniskatischen
+Sinus und Kosinus verwendet werden soll.
In Polarkoordinaten $x=r\cos\varphi$ und $y=r\sin\varphi$
-gilt nach Einsetzen in \eqref{buch:elliptisch:eqn:lemniskate}
+gilt nach Einsetzen in \eqref{buch:elliptisch:eqn:lemniskatenormiert}
\begin{equation}
r^4
=
-2a^2r^2(\cos^2\varphi-\sin^2\varphi)
+r^2(\cos^2\varphi-\sin^2\varphi)
=
-2a^2r^2\cos2\varphi
+r^2\cos2\varphi
\qquad\Rightarrow\qquad
-r^2 = 2a^2\cos 2\varphi
+r^2 = \cos 2\varphi
\label{buch:elliptisch:eqn:lemniskatepolar}
\end{equation}
als Darstellung der Lemniskate in Polardarstellung.
@@ -46,15 +69,7 @@ Sie gilt für Winkel $\varphi\in[-\frac{\pi}4,\frac{\pi}4]$ für das
rechte Blatt und $\varphi\in[\frac{3\pi}4,\frac{5\pi}4]$ für das linke
Blatt der Lemniskate.
-Für die Definition des lemniskatischen Sinus wird eine Skalierung
-verwendet, die den rechten Scheitel im Punkt $(1,0)$.
-Dies ist der Fall für $a=1/\sqrt{2}$, die Gleichung der Lemniskate
-wird dann zu
-\[
-(x^2+y^2)^2 = 2(x^2-y^2).
-\]
-
-\subsubsection{Bogelänge}
+\subsection{Bogenlänge}
Die Funktionen
\begin{equation}
x(r) = \frac{r}{\sqrt{2}}\sqrt{1+r^2},
@@ -76,7 +91,7 @@ r^4
\end{align*}
sie stellen also eine Parametrisierung der Lemniskate dar.
-Mit Hilfe der Parametrsierung~\eqref{buch:geometrie:eqn:lemniskateparam}
+Mit Hilfe der Parametrisierung~\eqref{buch:geometrie:eqn:lemniskateparam}
kann man die Länge $s$ des in Abbildung~\ref{buch:elliptisch:fig:lemniskate}
dargestellten Bogens der Lemniskate berechnen.
Dazu benötigt man die Ableitungen nach $r$, die man mit der Produkt- und
@@ -123,11 +138,16 @@ s(r)
\label{buch:elliptisch:eqn:lemniskatebogenlaenge}
\end{equation}
-\subsubsection{Darstellung als elliptisches Integral}
+%
+% Als elliptisches Integral
+%
+\subsection{Darstellung als elliptisches Integral}
Das unvollständige elliptische Integral erster Art mit Parameter
-$m=-1$ ist
+$k^2=-1$ oder $k=i$ ist
\[
-K(r,-1)
+K(r,i)
+=
+\int_0^x \frac{dt}{\sqrt{(1-t^2)(1-i^2 t^2)}}
=
\int_0^x \frac{dt}{\sqrt{(1-t^2)(1-(-1)t^2)}}
=
@@ -136,11 +156,209 @@ K(r,-1)
s(r).
\]
Der lemniskatische Sinus ist also eine Umkehrfunktion des
-ellptischen Integrals erster Art für einen speziellen Wert des
-Parameters $m$
+elliptischen Integrals erster Art für den speziellen Wert $i$ des
+Parameters $k$.
+
+Die Länge des rechten Blattes der Lemniskate wird mit $\varpi$ bezeichnet
+und hat den numerischen Wert
+\[
+\varpi
+=
+2\int_0^1\sqrt{\frac{1}{1-t^4}}\,dt
+=
+2.6220575542.
+\]
+$\varpi$ ist auch als die {\em lemniskatische Konstante} bekannt.
+\index{lemniskatische Konstante}%
+Der Lemniskatenbogen zwischen dem Nullpunkt und $(1,0)$ hat die Länge
+$\varpi/2$.
+
+%
+% Bogenlängenparametrisierung
+%
+\subsection{Bogenlängenparametrisierung}
+Die Lemniskate mit der Gleichung
+\[
+(X^2+X^2)^2=2(X^2-X^2)
+\]
+(der Fall $a=1$ in \eqref{buch:elliptisch:eqn:lemniskate})
+kann mit Jacobischen elliptischen Funktionen
+parametrisiert werden.
+Dazu schreibt man
+\[
+\left.
+\begin{aligned}
+X(t)
+&=
+\sqrt{2}\operatorname{cn}(t,k) \operatorname{dn}(t,k)
+\\
+Y(t)
+&=
+\phantom{\sqrt{2}}
+\operatorname{cn}(t,k) \operatorname{sn}(t,k)
+\end{aligned}
+\quad\right\}
+\qquad\text{mit $k=\displaystyle\frac{1}{\sqrt{2}}$}
+\]
+und berechnet die beiden Seiten der definierenden Gleichung der
+Lemniskate.
+Zunächst ist
+\begin{align*}
+X(t)^2
+&=
+2\operatorname{cn}(t,k)^2
+\operatorname{dn}(t,k)^2
+\\
+Y(t)^2
+&=
+\operatorname{cn}(t,k)^2
+\operatorname{sn}(t,k)^2
+\\
+X(t)^2+Y(t)^2
+&=
+2\operatorname{cn}(t,k)^2
+\bigl(
+\underbrace{
+\operatorname{dn}(t,k)^2
++{\textstyle\frac12}
+\operatorname{sn}(t,k)^2
+}_{\displaystyle =1}
+\bigr)
+%\\
+%&
+=
+2\operatorname{cn}(t,k)^2
+\\
+X(t)^2-Y(t)^2
+&=
+\operatorname{cn}(t,k)^2
+\bigl(
+2\operatorname{dn}(t,k)^2 - \operatorname{sn}(t,k)^2
+\bigr)
+\\
+&=
+\operatorname{cn}(t,k)^2
+\bigl(
+2\bigl({\textstyle\frac12}+{\textstyle\frac12}\operatorname{cn}(t,k)^2\bigr)
+-
+\bigl(1-\operatorname{cn}(t,k)^2\bigr)
+\bigr)
+\\
+&=
+2\operatorname{cn}(t,k)^4
+\\
+\Rightarrow\qquad
+(X(t)^2+Y(t)^2)^2
+&=
+4\operatorname{cn}(t,k)^4
+=
+2(X(t)^2-Y(t)^2).
+\end{align*}
+Wir zeigen jetzt, dass dies tatsächlich eine Bogenlängenparametrisierung
+der Lemniskate ist.
+Dazu berechnen wir die Ableitungen
+\begin{align*}
+\dot{X}(t)
+&=
+\sqrt{2}\operatorname{cn}'(t,k)\operatorname{dn}(t,k)
++
+\sqrt{2}\operatorname{cn}(t,k)\operatorname{dn}'(t,k)
+\\
+&=
+-\sqrt{2}\operatorname{sn}(t,k)\operatorname{dn}(t,k)^2
+-\frac12\sqrt{2}\operatorname{sn}(t,k)\operatorname{cn}(t,k)^2
+\\
+&=
+-\sqrt{2}\operatorname{sn}(t,k)\bigl(
+1-{\textstyle\frac12}\operatorname{sn}(t,k)^2
++{\textstyle\frac12}-{\textstyle\frac12}\operatorname{sn}(u,t)^2
+\bigr)
+\\
+&=
+\sqrt{2}\operatorname{sn}(t,k)
+\bigl(
+{\textstyle \frac32}-\operatorname{sn}(t,k)^2
+\bigr)
+\\
+\dot{X}(t)^2
+&=
+2\operatorname{sn}(t,k)^2
+\bigl(
+{\textstyle \frac32}-\operatorname{sn}(t,k)^2
+\bigr)^2
+\\
+&=
+{\textstyle\frac{9}{2}}\operatorname{sn}(t,k)^2
+-
+6\operatorname{sn}(t,k)^4
++2\operatorname{sn}(t,k)^6
+\\
+\dot{Y}(t)
+&=
+\operatorname{cn}'(t,k)\operatorname{sn}(t,k)
++
+\operatorname{cn}(t,k)\operatorname{sn}'(t,k)
+\\
+&=
+-\operatorname{sn}(t,k)^2
+\operatorname{dn}(t,k)
++\operatorname{cn}(t,k)^2
+\operatorname{dn}(t,k)
+\\
+&=
+\operatorname{dn}(t,k)\bigl(1-2\operatorname{sn}(t,k)^2\bigr)
+\\
+\dot{Y}(t)^2
+&=
+\bigl(1-{\textstyle\frac12}\operatorname{sn}(t,k)^2\bigr)
+\bigl(1-2\operatorname|{sn}(t,k)^2\bigr)^2
+\\
+&=
+1-{\textstyle\frac{9}{2}}\operatorname{sn}(t,k)^2
++6\operatorname{sn}(t,k)^4
+-2\operatorname{sn}(t,k)^6
+\\
+\dot{X}(t)^2 + \dot{Y}(t)^2
+&=
+1.
+\end{align*}
+Dies bedeutet, dass die Bogenlänge zwischen den Parameterwerten $0$ und $s$
+\[
+\int_0^s
+\sqrt{\dot{X}(t)^2 + \dot{Y}(t)^2}
+\,dt
+=
+\int_0^s\,dt
+=
+s,
+\]
+der Parameter $t$ ist also ein Bogenlängenparameter.
+
+Die mit dem Faktor $1/\sqrt{2}$ skalierte Standard-Lemniskate mit der
+Gleichung
+\[
+(x^2+y^2)^2 = x^2-y^2
+\]
+hat daher eine Bogenlängenparametrisierung mit
+\begin{equation}
+\begin{aligned}
+x(t)
+&=
+\phantom{\frac{1}{\sqrt{2}}}
+\operatorname{cn}(\sqrt{2}t,k)\operatorname{dn}(\sqrt{2}t,k)
+\\
+y(t)
+&=
+\frac{1}{\sqrt{2}}\operatorname{cn}(\sqrt{2}t,k)\operatorname{sn}(\sqrt{2}t,k)
+\end{aligned}
+\label{buch:elliptisch:lemniskate:bogenlaenge}
+\end{equation}
+
+\subsection{Der lemniskatische Sinus und Kosinus}
+Der Sinus Berechnet die Gegenkathete zu einer gegebenen Bogenlänge des
+Kreises, er ist die Umkehrfunktion der Funktion, die der Gegenkathete
+die Bogenlänge zuordnet.
-\subsubsection{Der lemniskatische Sinus und Kosinus}
-Berechnet die Gegenkathete zu einer gegebenen Bogenlänge des Kreises.
Daher ist es naheliegend, die Umkehrfunktion von $s(r)$ in
\eqref{buch:elliptisch:eqn:lemniskatebogenlaenge}
den {\em lemniskatischen Sinus} zu nennen mit der Bezeichnung
@@ -150,22 +368,29 @@ Der Kosinus ist der Sinus des komplementären Winkels.
Auch für die lemniskatische Bogenlänge $s(r)$ lässt sich eine
komplementäre Bogenlänge definieren, nämlich die Bogenlänge zwischen
dem Punkt $(x(r), y(r))$ und $(1,0)$.
-Die Länge des rechten Blattes der Lemniskate wird mit $\varpi$ bezeichnet
-und hat den numerischen Wert
+
+Da die Parametrisierung~\eqref{buch:elliptisch:lemniskate:bogenlaenge}
+eine Bogenlängenparametrisierung ist, darf man $t=s$ schreiben.
+Dann kann man aber auch $r(s)$ daraus berechnen,
+es ist
\[
-\varphi
+r(s)^2
=
-2\int_0^1\sqrt{\frac{1}{1-t^4}}\,dt
+x(s)^2 + y(s)^2
=
-2.6220575542.
+\operatorname{cn}(s\sqrt{2},k)^2
+\qquad\Rightarrow\qquad
+r(s)
+=
+\operatorname{cn}(s\sqrt{2},k)
\]
-Lemniskatenbogens zwischen dem Nullpunkt und $(1,0)$ hat die Länge
-$\varpi/2$.
-
-Der {\em lemniskatische Kosinus} von $s$ ist derjenige Radiuswert $r$,
-für den der Lemniskatenbogen zwischen $(x(r), y(r))$ und $(1,0)$
-die Länge $s$ hat.
-
-XXX Algebraische Beziehungen \\
-XXX Ableitungen \\
+\begin{figure}
+\centering
+\includegraphics{chapters/110-elliptisch/images/slcl.pdf}
+\caption{
+Lemniskatischer Sinus und Kosinus sowie Sinus und Kosinus
+mit derart skaliertem Argument, dass die Funktionen die gleichen Nullstellen
+haben.
+\label{buch:elliptisch:figure:slcl}}
+\end{figure}