aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/110-elliptisch/uebungsaufgaben
diff options
context:
space:
mode:
authorLordMcFungus <mceagle117@gmail.com>2022-08-18 20:36:44 +0200
committerGitHub <noreply@github.com>2022-08-18 20:36:44 +0200
commit2ce7daa9275e6e43c7ec965b502a34a1b283541e (patch)
treec57fffd47e840de898e332a8c85b69a025bf058b /buch/chapters/110-elliptisch/uebungsaufgaben
parentAdded graphic (diff)
parentnew images (diff)
downloadSeminarSpezielleFunktionen-2ce7daa9275e6e43c7ec965b502a34a1b283541e.tar.gz
SeminarSpezielleFunktionen-2ce7daa9275e6e43c7ec965b502a34a1b283541e.zip
Merge pull request #4 from AndreasFMueller/master
update
Diffstat (limited to 'buch/chapters/110-elliptisch/uebungsaufgaben')
-rw-r--r--buch/chapters/110-elliptisch/uebungsaufgaben/1.tex2
1 files changed, 1 insertions, 1 deletions
diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex b/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex
index af094c6..2d08e56 100644
--- a/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex
+++ b/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex
@@ -25,7 +25,7 @@ Auslenkung.
Formulieren Sie den Energieerhaltungssatz für die Gesamtenergie $E$
dieses Oszillators.
Leiten Sie daraus eine nichtlineare Differentialgleichung erster Ordnung
-for den anharmonischen Oszillator ab, die sie in der Form
+für den anharmonischen Oszillator ab, die sie in der Form
$\frac12m\dot{x}^2 = f(x)$ schreiben.
\item
Die Amplitude der Schwingung ist derjenige $x$-Wert, für den die