aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/ellfilter/main.tex
diff options
context:
space:
mode:
authorNicolas Tobler <nicolas.tobler@ost.ch>2022-05-15 23:15:36 +0200
committerNicolas Tobler <nicolas.tobler@ost.ch>2022-05-15 23:15:36 +0200
commit4fd4422b52f6377a82696ea67da9beb13d93e581 (patch)
tree143dfd30b9cd9e92f58a2fa4c294aee4014d270a /buch/papers/ellfilter/main.tex
parentAdded title and author (diff)
downloadSeminarSpezielleFunktionen-4fd4422b52f6377a82696ea67da9beb13d93e581.tar.gz
SeminarSpezielleFunktionen-4fd4422b52f6377a82696ea67da9beb13d93e581.zip
draft
Diffstat (limited to 'buch/papers/ellfilter/main.tex')
-rw-r--r--buch/papers/ellfilter/main.tex370
1 files changed, 351 insertions, 19 deletions
diff --git a/buch/papers/ellfilter/main.tex b/buch/papers/ellfilter/main.tex
index 26aaec1..29ebf7a 100644
--- a/buch/papers/ellfilter/main.tex
+++ b/buch/papers/ellfilter/main.tex
@@ -8,29 +8,361 @@
\begin{refsection}
\chapterauthor{Nicolas Tobler}
-Ein paar Hinweise für die korrekte Formatierung des Textes
-\begin{itemize}
-\item
-Absätze werden gebildet, indem man eine Leerzeile einfügt.
-Die Verwendung von \verb+\\+ ist nur in Tabellen und Arrays gestattet.
-\item
-Die explizite Platzierung von Bildern ist nicht erlaubt, entsprechende
-Optionen werden gelöscht.
-Verwenden Sie Labels und Verweise, um auf Bilder hinzuweisen.
-\item
-Beginnen Sie jeden Satz auf einer neuen Zeile.
-Damit ermöglichen Sie dem Versionsverwaltungssysteme, Änderungen
-in verschiedenen Sätzen von verschiedenen Autoren ohne Konflikt
-anzuwenden.
-\item
-Bilden Sie auch für Formeln kurze Zeilen, einerseits der besseren
-Übersicht wegen, aber auch um GIT die Arbeit zu erleichtern.
-\end{itemize}
+
+\section{Einleitung}
+
+Lineare filter
+
+Filter, Signalverarbeitung
+
+
+Der womöglich wichtigste Filtertyp ist das Tiefpassfilter.
+Dieses soll im Durchlassbereich unter der Grenzfrequenz $\Omega_p$ unverstärkt durchlassen und alle anderen Frequenzen vollständig auslöschen.
+
+Bei der Implementierung von Filtern
+
+
+In der Elektrotechnik führen Schaltungen mit linearen Bauelementen wie Kondensatoren, Spulen und Widerständen immer zu linearen zeitinvarianten Systemen (LTI-System von englich \textit{time-invariant system}).
+Die Übertragungsfunktion im Frequenzbereich $|H(\Omega)|$ eines solchen Systems ist dabei immer eine rationale Funktion, also eine Division von zwei Polynomen.
+Die Polynome habe dabei immer reelle oder komplex-konjugierte Nullstellen.
+
+
+\begin{equation} \label{ellfilter:eq:h_omega}
+ | H(\Omega)|^2 = \frac{1}{1 + \varepsilon_p^2 F_N^2(w)}, \quad w=\frac{\Omega}{\Omega_p}
+\end{equation}
+
+$\Omega = 2 \pi f$ ist die analoge Frequenz
+
+
+% Linear filter
+Damit das Filter implementierbar und stabil ist, muss $H(\Omega)^2$ eine rationale Funktion sein, deren Nullstellen und Pole auf der linken Halbebene liegen.
+
+$N \in \mathbb{N} $ gibt dabei die Ordnung des Filters vor, also die maximale Anzahl Pole oder Nullstellen.
+
+% In \eqref{ellfilter:eq:h_omega} wird $F_N(w)$ so verzogen, dass $F_N(w) \forall |w| < 1$
+
+
+Damit ein Filter die Passband Kondition erfüllt muss $|F_N(w)| \leq 1 \forall |w| \leq 1$ und für $|w| \geq 1$ sollte die Funktion möglichst schnell divergieren.
+Eine einfaches Polynom, dass das erfüllt, erhalten wir wenn $F_N(w) = w^N$.
+Tatsächlich erhalten wir damit das Butterworth Filter, wie in Abbildung \ref{ellfilter:fig:butterworth} ersichtlich.
+\begin{figure}
+ \centering
+ \includegraphics[scale=1]{papers/ellfilter/python/F_N_butterworth.pdf}
+ \caption{$F_N$ für Butterworth filter. Der grüne Bereich definiert die erlaubten Werte für alle $F_N$-Funktionen.}
+ \label{ellfilter:fig:butterworth}
+\end{figure}
+
+wenn $F_N(w)$ eine rationale Funktion ist, ist auch $H(\Omega)$ eine rationale Funktion und daher ein lineares Filter. %proof?
+
+\begin{align}
+ F_N(w) & =
+ \begin{cases}
+ w^N & \text{Butterworth} \\
+ T_N(w) & \text{Tschebyscheff, Typ 1} \\
+ [k_1 T_N (k^{-1} w^{-1})]^{-1} & \text{Tschebyscheff, Typ 2} \\
+ R_N(w) & \text{Elliptisch (Cauer)} \\
+ \end{cases}
+\end{align}
+
+Mit der Ausnahme vom Butterworth filter sind alle Filter nach speziellen Funktionen benannt.
+Alle diese Filter sind optimal für unterschiedliche Anwendungsgebiete.
+Das Butterworth-Filter, zum Beispiel, ist maximal flach im Durchlassbereich.
+Das Tschebyscheff-1 Filter sind maximal steil für eine definierte Welligkeit im Durchlassbereich, währendem es im Sperrbereich monoton abfallend ist.
+Es scheint so als sind gewisse Eigenschaften dieser speziellen Funktionen verantwortlich für die Optimalität dieser Filter.
+
+\section{Tschebyscheff-Filter}
+
+Als Einstieg betrachent Wir das Tschebyscheff-Filter, welches sehr verwand ist mit dem elliptischen Filter.
+Genauer ausgedrückt sind die Tschebyscheff-1 und -2 Fitler ein Spezialfall davon.
+
+Der Name des Filters deutet schon an, dass die Tschebyschff-Polynome $T_N$ relevant sind für das Filter:
+\begin{align}
+ T_{0}(x)&=1\\
+ T_{1}(x)&=x\\
+ T_{2}(x)&=2x^{2}-1\\
+ T_{3}(x)&=4x^{3}-3x\\
+ T_{n+1}(x)&=2x~T_{n}(x)-T_{n-1}(x).
+\end{align}
+Bemerkenswert ist, dass die Polynome im Intervall $[-1, 1]$ mit der Trigonometrischen Funktion
+\begin{equation} \label{ellfilter:eq:chebychef_polynomials}
+ T_N(w) = \cos \left( N \cos^{-1}(w) \right)
+\end{equation}
+übereinstimmt.
+Abbildung \ref{ellfilter:fig:chebychef_polynomials} zeigt einige Tschebyscheff-Polynome.
+\begin{figure}
+ \centering
+ \includegraphics[scale=1]{papers/ellfilter/python/F_N_chebychev2.pdf}
+ \caption{Die Tschebyscheff-Polynome $C_N$.}
+ \label{ellfilter:fig:chebychef_polynomials}
+\end{figure}
+Da der Kosinus begrenzt zwischen $-1$ und $1$ ist, sind auch die Tschebyscheff-Polynome begrenzt.
+Geht man aber über das Intervall $[-1, 1]$ hinaus, divergieren die Funktionen mit zunehmender Ordnung immer steiler gegen $\pm \infty$.
+Diese Eigenschaft ist sehr nützlich für ein Filter.
+Wenn wir die Tschebyscheff-Polynome quadrieren, passen sie perfekt in die Voraussetzungen für Filterfunktionen, wie es Abbildung \ref{ellfiter:fig:chebychef} demonstriert.
+\begin{figure}
+ \centering
+ \includegraphics[scale=1]{papers/ellfilter/python/F_N_chebychev.pdf}
+ \caption{Die Tschebyscheff-Polynome füllen den erlaubten Bereich besser, und erhalten dadurch eine steilere Flanke im Sperrbereich.}
+ \label{ellfiter:fig:chebychef}
+\end{figure}
+
+
+Die analytische Fortsetzung von \eqref{ellfilter:eq:chebychef_polynomials} über das Intervall $[-1,1]$ hinaus stimmt mit den Polynomen überein, wie es zu erwarten ist.
+Die genauere Betrachtung wird uns dann helfen die elliptischen Filter zu verstehen.
+
+\begin{equation}
+ \cos^{-1}(x)
+ =
+ \int_{0}^{x}
+ \frac{
+ dz
+ }{
+ \sqrt{
+ 1-z^2
+ }
+ }
+\end{equation} %TOdO is it minus dz?
+
+\begin{equation}
+ \frac{
+ 1
+ }{
+ \sqrt{
+ 1-z^2
+ }
+ }
+ \in \mathbb{R}
+ \quad
+ \forall
+ \quad
+ -1 \leq z \leq 1
+\end{equation}
+Wenn $|z|$ über 1 hinausgeht, wird der Term unter der Wurzel negativ.
+Durch die Quadratwurzel entstehen zwei Reinkomplexe Lösungen
+\begin{equation}
+ \frac{
+ 1
+ }{
+ \sqrt{
+ 1-z^2
+ }
+ }
+ = i \xi \quad | \quad \xi \in \mathbb{R}
+ \quad
+ \forall
+ \quad
+ z \leq -1 \cup z \geq 1
+\end{equation}
+
+\begin{figure}
+ \centering
+ \input{papers/ellfilter/tikz/arccos.tikz.tex}
+ \caption{Die Funktion $z = \cos^{-1}(w)$ dargestellt in der komplexen ebene.}
+ \label{ellfilter:fig:arccos}
+\end{figure}
+
+
+
+\begin{figure}
+ \centering
+ \input{papers/ellfilter/tikz/arccos2.tikz.tex}
+ \caption{
+ $z$-Ebene der Tschebyscheff-Funktion.
+ Je grösser die Ordnung $N$ gewählt wird, desto mehr Nullstellen werden hat das Tschebyscheff-Polynom.
+ }
+ % \label{ellfilter:fig:arccos}
+\end{figure}
+
+
+
+
+
+% Analytische Fortsetzung
+
+
+
+\section{Jacobische elliptische Funktionen}
+
+
+Für das elliptische Filter, wird statt der für das Tschebyscheff-Filter benutzen Kreis-Trigonometrie die elliptischen Funktionen gebraucht.
+Der begriff elliptische Funktion wird für sehr viele Funktionen gebraucht, daher ist es hier wichtig zu erwähnen, dass es ausschliesslich um die Jacobischen elliptischen Funktionen geht.
+
+Im Wesentlichen erweitern die Jacobi elliptischen Funktionen die trigonometrische Funktionen für Ellipsen.
+
+%TODO $z$ or $u$ for parameter?
+
+neu zwei parameter
+$sn(z, k)$
+$z$ ist das winkelargument
+Im Kreis ist der Radius für alle Winkel konstant, bei Ellipsen ändert sich das.
+Dies hat zur Folge, dass bei einer Ellipse die Kreisbodenstrecke nicht linear zum Winkel verläuft.
+Darum kann hier nicht der gewohnte Winkel verwendet werden.
+An deren stelle kommt der parameter $k$ zum Einsatz, welcher durch das elliptische Integral erster Art
+\begin{equation}
+ z
+ =
+ F(\phi, k)
+ =
+ \int_{0}^{\phi}
+ \frac{
+ d\theta
+ }{
+ \sqrt{
+ 1-k^2 \sin^2 \theta
+ }
+ }
+\end{equation}
+mit dem Winkel $\phi$ in Verbindung liegt.
+
+
+
+
+Dabei wird das vollständige und unvollständige Elliptische integral unterschieden.
+Beim vollständigen Integral
+\begin{equation}
+ K(k)
+ =
+ \int_{0}^{\pi / 2}
+ \frac{
+ d\theta
+ }{
+ \sqrt{
+ 1-k^2 \sin^2 \theta
+ }
+ }
+\end{equation}
+wird über ein viertel Ellipsenbogen integriert also bis $\phi=\pi/2$.
+
+Die Jacobischen elliptischen Funktionen können mit der inversen Funktion
+\begin{equation}
+ \phi = F^{-1}(z, k)
+\end{equation}
+definiert werden. Dabei ist zu beachten dass nur das $z$ Argument der Funktion invertiert wird also
+\begin{equation}
+ z = F(\phi, k)
+ \Leftrightarrow
+ \phi = F^{-1}(z, k).
+\end{equation}
+Mithilfe von $F^{-1}$ kann $sn^{-1}$ mit dem Elliptischen integral dargestellt werden:
+\begin{equation}
+ \sin(\phi)
+ =
+ \sin \left( F^{-1}(z, k) \right)
+ =
+ \sn(u, k)
+\end{equation}
+
+\begin{align}
+ \sn^{-1}(w, k)
+ & =
+ \int_{0}^{\phi}
+ \frac{
+ d\theta
+ }{
+ \sqrt{
+ 1-k^2 \sin^2 \theta
+ }
+ },
+ \quad
+ \phi = \sin^{-1}(w)
+ \\
+ & =
+ \int_{0}^{w}
+ \frac{
+ dt
+ }{
+ \sqrt{
+ (1-t^2)(1-k^2 t^2)
+ }
+ }
+\end{align}
+
+Beim $\cos^{-1}(x)$ haben wir gesehen, dass die analytische Fortsetzung bei $x < -1$ und $x > 1$ rechtwinklig in die Komplexen zahlen wandert.
+Wenn man das gleiche mit $\sn^{-1}(w, k)$ macht, erkennt man zwei interessante Stellen.
+Die erste ist die gleiche wie beim $\cos^{-1}(x)$ nämlich bei $t = \pm 1$.
+Der erste Term unter der Wurzel wird dann negativ, während der zweite noch positiv ist, da $k \leq 1$.
+\begin{equation}
+ \frac{
+ 1
+ }{
+ \sqrt{
+ (1-t^2)(1-k^2 t^2)
+ }
+ }
+ \in \mathbb{R}
+ \quad \forall \quad
+ -1 \leq t \leq 1
+\end{equation}
+Die zweite stelle passiert wenn beide Faktoren unter der Wurzel negativ werden, was bei $t = 1/k$ der Fall ist.
+
+
+
+
+Funktion in relle und komplexe Richtung periodisch
+
+In der reellen Richtung ist sie $4K(k)$-periodisch und in der imaginären Richtung $4K^\prime(k)$-periodisch.
+
+
+
+%TODO sn^{-1} grafik
+
+
+\section{Elliptische rationale Funktionen}
+
+
+\begin{equation}
+ R_N(\xi, w) = \cd \left(N~f_1(\xi)~\cd^{-1}(w, 1/\xi), f_2(\xi)\right)
+\end{equation}
+\begin{equation}
+ R_N(\xi, w) = \cd (N~u K_1, k_1), \quad w= \cd(uK, k)
+\end{equation}
+
+
+sieht ähnlich aus wie die trigonometrische darstellung der Tschebyschef-Polynome
+
+der Ordnungszahl $N$ kommt auch als Faktor for
+
+%TODO cd^{-1} grafik mit
+
+
+\subsection{Degree Equation}
+
+Der $cd^{-1}$ Term muss so verzogen werden, dass die umgebene $cd$ funktion die nullstellen und pole trifft.
+Dies trifft ein wenn die Degree Equation erfüllt ist.
+
+\begin{equation}
+ N \frac{K^\prime}{K} = \frac{K^\prime_1}{K_1}
+\end{equation}
+
+
+Leider ist das lösen dieser Gleichung nicht trivial.
+Die Rechnung wird in \ref{ellfilter:bib:orfanidis} im Detail angeschaut.
+
+
+\subsection{Polynome?}
+
+Bei den Tschebyscheff-Polynomen haben wir gesehen, dass die Trigonometrische Formel zu einfachen Polynomen umgewandelt werden kann.
+Im gegensatz zum $\cos^{-1}$ hat der $\cd^{-1}$ nicht nur Nullstellen sondern auch Pole.
+Somit entstehen bei den elliptischen rationalen Funktionen, wie es der name auch deutet, rationale Funktionen, also ein Bruch von zwei Polynomen.
+
+
+
+
+\begin{figure}
+ \centering
+ \includegraphics[scale=1]{papers/ellfilter/python/F_N_elliptic.pdf}
+ \caption{$F_N$ für ein elliptischs filter.}
+ \label{ellfilter:fig:elliptic}
+\end{figure}
+
+
+
+
\input{papers/ellfilter/teil0.tex}
\input{papers/ellfilter/teil1.tex}
\input{papers/ellfilter/teil2.tex}
\input{papers/ellfilter/teil3.tex}
-\printbibliography[heading=subbibliography]
+% \printbibliography[heading=subbibliography]
\end{refsection}