aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/070-orthogonalitaet/rekursion.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/chapters/070-orthogonalitaet/rekursion.tex')
-rw-r--r--buch/chapters/070-orthogonalitaet/rekursion.tex218
1 files changed, 218 insertions, 0 deletions
diff --git a/buch/chapters/070-orthogonalitaet/rekursion.tex b/buch/chapters/070-orthogonalitaet/rekursion.tex
new file mode 100644
index 0000000..5ec7fed
--- /dev/null
+++ b/buch/chapters/070-orthogonalitaet/rekursion.tex
@@ -0,0 +1,218 @@
+%
+% rekursion.tex -- drei term rekursion für orthogonale Polynome
+%
+% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\section{Drei-Term-Rekursion für orthogonale Polynome
+\label{buch:orthogonal:section:drei-term-rekursion}}
+Die Berechnung der Legendre-Polynome mit Hilfe des Gram-Schmidt-Verfahrens
+ist wenig hilfreich, wenn es darum geht, Werte der Polynome zu berechnen.
+Glücklicherweise erfüllen orthogonale Polynome automatisch eine
+Rekursionsbeziehung mit nur drei Termen.
+Zum Beispiel kann man zeigen, dass für die Legendre-Polynome die
+Relation
+\begin{align*}
+nP_n(x) &= (2n-1)xP_{n-1}(x) - (n-1)P_{n-2}(x),\;\forall n\ge 2,
+\\
+P_1(x) &= x,
+\\
+P_0(x) &= 1.
+\end{align*}
+Mit so einer Rekursionsbeziehung ist es sehr einfach, die Funktionswerte
+für alle $P_n(x)$ zu berechnen.
+
+\begin{definition}
+Eine Folge von Polynomen $p_n(x)$ heisst orthogonal bezüglich des
+Skalarproduktes $\langle\,\;,\;\rangle_w$, wenn
+\[
+\langle p_n,p_m\rangle_w = h_n \delta_{nm}
+\]
+für alle $n$, $m$.
+\end{definition}
+
+\subsection{Allgemeine Drei-Term-Rekursion für orthogonale Polynome}
+Der folgende Satz besagt, dass $p_n$ eine Rekursionsbeziehung erfüllt.
+
+\begin{satz}
+\label{buch:orthogonal:satz:drei-term-rekursion}
+Eine Folge bezüglich $\langle\,\;,\;\rangle_w$ orthogonaler Polynome $p_n$
+mit dem Grade $\deg p_n = n$ erfüllt eine Rekursionsbeziehung der Form
+\begin{equation}
+p_{n+1}(x)
+=
+(A_nx+B_n)p_n(x) - C_np_{n-1}(x)
+\label{buch:orthogonal:eqn:rekursion}
+\end{equation}
+für $n\ge 0$, wobei $p_{-1}(x)=0$ gesetzt wird.
+Die Zahlen $A_n$, $B_n$ und $C_n$ sind reell und es ist
+$A_{n-1}A_nC_n\ge 0$ für $n>0$.
+Wenn $k_n>0$ der Leitkoeffizient von $p_n(x)$ ist, dann gilt
+\begin{equation}
+A_n=\frac{k_{n+1}}{k_n},
+\qquad
+C_{n+1} = \frac{A_{n+1}}{A_n}\frac{h_{n+1}}{h_n}.
+\label{buch:orthogonal:eqn:koeffizientenrelation}
+\end{equation}
+\end{satz}
+
+\subsection{Multiplikationsoperator mit $x$}
+Man kann die Relation auch nach dem Produkt $xp_n(x)$ auflösen, dann
+wird sie
+\begin{equation}
+xp_n(x)
+=
+\frac{1}{A_n}p_{n+1}(x)
+-
+\frac{B_n}{A_n}p_n(x)
++
+\frac{C_n}{A_n}p_{n-1}(x).
+\label{buch:orthogonal:eqn:multixrelation}
+\end{equation}
+Die Multiplikation mit $x$ ist eine lineare Abbildung im Raum der Funktionen.
+Die Relation~\eqref{buch:orthogonal:eqn:multixrelation} besagt, dass diese
+Abbildung in der Basis der Polynome $p_k$ tridiagonale Form hat.
+
+\subsection{Drei-Term-Rekursion für die Tschebyscheff-Polynome}
+Eine Relation der Form~\eqref{buch:orthogonal:eqn:multixrelation}
+wurde bereits in
+Abschnitt~\ref{buch:potenzen:tschebyscheff:rekursionsbeziehungen}
+hergeleitet.
+In der Form~\eqref{buch:orthogonal:eqn:rekursion} geschrieben lautet
+sie
+\[
+T_{n+1}(x) = 2x\,T_n(x)-T_{n-1}(x).
+\]
+also
+$A_n=2$, $B_n=0$ und $C_n=1$.
+
+\subsection{Beweis von Satz~\ref{buch:orthogonal:satz:drei-term-rekursion}}
+Die Relation~\eqref{buch:orthogonal:eqn:multixrelation} zeigt auch,
+dass der Beweis die Koeffizienten $\langle xp_k,p_j\rangle_w$
+berechnen muss.
+Dabei wird wiederholt der folgende Trick verwendet.
+Für jede beliebige Funktion $f$ mit $\|f\|_w^2<\infty$ ist
+\[
+\langle fp_k,p_j\rangle_w
+=
+\langle p_k,fp_j\rangle_w.
+\]
+Für $f(x)=x$ kann man weiter verwenden, dass $xp_k(x)$ ein Polynom
+vom Grad $k+1$ ist.
+Die Gleichheit $\langle xp_k,p_j\rangle_w=\langle p_k,xp_j\rangle_w$
+ermöglicht also, den Faktor $x$ dorthin zu schieben, wo es nützlicher ist.
+
+\begin{proof}[Beweis des Satzes]
+Multipliziert man die rechte Seite von
+\eqref{buch:orthogonal:eqn:rekursion} aus, dann ist der einzige Term
+vom Grad $n+1$ der Term $A_nxp_n(x)$.
+Der Koeffizient $A_n$ ist also dadurch festgelegt, dass
+\begin{equation}
+b(x)
+=
+p_{n+1}(x) - A_nxp_n(x)
+\label{buch:orthogonal:rekbeweis}
+\end{equation}
+Grad $\le n$ hat.
+Dazu müssen sich die Terme vom Grad $n+1$ in den Polynomen wegheben,
+d.~h.~$k_{n+1}-A_nk_n=0$, woraus die erste Beziehung in
+\eqref{buch:orthogonal:eqn:koeffizientenrelation} folgt.
+
+Die Polynome $p_k$ sind durch Orthogonalisierung der Monome
+$1$, $x$,\dots $x^{k}$ entstanden.
+Dies bedeutet, dass $\langle p_n,x^k\rangle_w=0$ für alle $k<n$
+gilt und daher auch $\langle p_n,Q\rangle_w=0$ für jedes Polynome
+$Q(x)$ vom Grad $<n$.
+
+Das Polynom $b(x)$ ist vom Grad $\le n$, es lässt sich also als
+Linearkombination
+\[
+b(x) = \sum_{k=0}^n b_k p_k(x)
+\]
+der $p_k$ mit $k\le n$ schreiben.
+Die Koeffizienten $b_j$ kann man erhalten, indem man
+\eqref{buch:orthogonal:rekbeweis} Skalar mit $p_j$ multipliziert.
+Dabei erhält man
+\[
+h_jb_j
+=
+\langle b,p_j\rangle_w
+=
+\langle p_{n+1},p_j\rangle_w
+-
+A_n\langle xp_n,p_j\rangle_w.
+\]
+Für $j\le n$ verschwindet der erste Term nach der Definition einer
+Folge von orthogonalen Polynomen.
+Den zweiten Term kann man umformen in
+\[
+\langle xp_n,p_j\rangle_w
+=
+\langle p_n,xp_j\rangle_w.
+\]
+Darin ist $xp_j$ ein Polynom vom Grad $j+1$.
+Für $n>j+1$ folgt, dass der zweite Term verschwindet.
+Somit sind alle $b_j=0$ mit $j<n-1$, nur der Term $j=n-1$
+bleibt bestehen.
+Mit $B_n=b_n$ und $C_n=b_{n-1}$ bekommt man die somit die
+Rekursionsbeziehung~\eqref{buch:orthogonal:eqn:rekursion}.
+
+Indem man das Skalarprodukt von~\eqref{buch:orthogonal:eqn:rekursion}
+mit $p_{n-1}$ bildet, findet man
+\begin{align}
+\underbrace{\langle
+p_{n+1},p_{n-1}
+\rangle_w}_{\displaystyle=0}
+&=
+\langle (A_nx+B_n)p_n+C_np_{n-1},p_{n-1} \rangle_w
+\notag
+\\
+0
+&=
+A_n\langle xp_n,p_{n-1} \rangle_w
++B_n\underbrace{\langle p_n,b_{n-1}\rangle_w}_{\displaystyle=0}
+-C_n\|p_{n-1}\|_w^2
+\notag
+\\
+0
+&=
+A_n\langle p_n,xp_{n-1} \rangle_w
+-C_n\|p_{n-1}\|_w^2
+\label{buch:orthogonal:eqn:rekbeweis2}
+\end{align}
+Indem man $xp_n$ als
+\[
+xp_{n-1}(x)
+=
+\frac{k_{n-1}}{k_n} p_n(x)
++
+\sum_{k=0}^{n-1} d_kp_k(x)
+\]
+schreibt, bekommt man
+\begin{align*}
+\langle
+p_n,
+xp_{n-1}
+\rangle_w
+&=
+\biggl\langle
+p_n,
+\frac{k_{n-1}}{k_n} p_n
++
+\sum_{k=0}^{n-1} d_kp_k
+\biggr\rangle_w
+=
+\frac{k_{n-1}}{k_n}h_n
++
+\sum_{k=0}^{n-1} d_k\underbrace{\langle p_n,p_k\rangle_w}_{\displaystyle=0}
+\end{align*}
+Eingesetzt in~\eqref{buch:orthogonal:eqn:rekbeweis2} erhält man
+\[
+A_n\frac{k_{n-1}}{k_n}h_n = C_n h_{n-1}
+\qquad\Rightarrow\qquad
+C_n
+=
+A_n\frac{k_{n-1}}{k_n}\frac{h_n}{h_{n-1}},
+\]
+damit ist auch die zweite Beziehung von
+\eqref{buch:orthogonal:eqn:koeffizientenrelation}.
+\end{proof}