1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
|
% Controller design for a ducted fan VTOL micro-UAV.
%
% Copyright (c) 2024, Naoki Sean Pross, ETH Zürich
% This work is distributed under a permissive license, see LICENSE.txt
% ------------------------------------------------------------------------
% Clear environment and generate parameters
clear; clc; close all; s = tf('s');
do_plots = true; % runs faster without
do_hinf = false; % midterm
do_musyn = true; % endterm
fprintf('Controller synthesis for ducted fan VTOL micro-UAV\n')
fprintf('Will do:\n')
if do_plots
fprintf(' - Produce plots\n')
end
if do_hinf
fprintf(' - H-infinity synthesis\n')
end
if do_musyn
fprintf(' - Mu synthesis\n')
end
% Synthesized controllers will be stored here
ctrl = struct();
%% ------------------------------------------------------------------------
% Define system parameters
fprintf('Generating system parameters...\n')
params = uav_params();
%% ------------------------------------------------------------------------
% Define performance requirements
fprintf('Generating performance requirements...\n')
perf_hinf = uav_performance_hinf(params, do_plots);
perf_musyn = uav_performance_musyn(params, do_plots);
%% ------------------------------------------------------------------------
% Define stability requirements
fprintf('Generating stability requirements...\n')
uncert = uav_uncertainty(params, do_plots);
%% ------------------------------------------------------------------------
% Create UAV model
fprintf('Generating system model...\n');
model = uav_model(params, perf_musyn, uncert);
%% ------------------------------------------------------------------------
% Perform H-infinity design
if do_hinf
fprintf('Performing H-infinty controller design...\n')
idx = model.uncertain.index;
P = model.uncertain.StateSpace;
% Get nominal system without uncertainty (for lower LFT)
P_nom = minreal(P([idx.OutputError; idx.OutputNominal], ...
[idx.InputExogenous; idx.InputNominal]), [], false);
nmeas = model.uncertain.Ny;
nctrl = model.uncertain.Nu;
hinfopt = hinfsynOptions('Display', 'off', 'Method', 'RIC', ...
'AutoScale', 'off', 'RelTol', 1e-3);
[K_inf, ~, gamma, info] = hinfsyn(P_nom, nmeas, nctrl, hinfopt);
fprintf(' - H-infinity synthesis gamma: %g\n', gamma);
index = struct( ...
'Ix', 1, 'Iy', 2, 'Iz', 3, ...
'IPdot', (4:6)', ...
'Iroll', 7, 'Ipitch', 8, 'Iyaw', 9, ...
'ITheta', (10:12)', ...
'Ialpha', (1:4)', ...
'Iomega', 5 ...
);
ctrl.hinf = struct( ...
'Name', '$\mathcal{H}_{\infty}$', ...
'K', K_inf, ...
'index', index ...
);
if gamma >= 1
error('Failed to syntesize controller (closed loop is unstable).')
end
%% ------------------------------------------------------------------------
% Measure Performance of H-infinity design
if do_plots
fprintf(' - Plotting resulting controller...\n');
% Plot transfer functions
figure; hold on;
bode(ctrl.hinf.K(index.Ialpha(1), index.Ix));
bode(ctrl.hinf.K(index.Ialpha(2), index.Ix));
bode(ctrl.hinf.K(index.Ialpha(1), index.Iy));
bode(ctrl.hinf.K(index.Ialpha(2), index.Iy));
bode(ctrl.hinf.K(index.Iomega, index.Ix));
bode(ctrl.hinf.K(index.Iomega, index.Iy));
bode(ctrl.hinf.K(index.Iomega, index.Iz));
title(sprintf('\\bfseries %s Controller', ctrl.hinf.Name), ...
'interpreter', 'latex');
legend('$x \rightarrow \alpha_1$', ...
'$x \rightarrow \alpha_2$', ...
'$y \rightarrow \alpha_1$', ...
'$y \rightarrow \alpha_2$', ...
'$x \rightarrow \omega$', ...
'$y \rightarrow \omega$', ...
'$z \rightarrow \omega$', ...
'interpreter', 'latex');
grid on;
end
fprintf('Simulating closed loop...\n');
T = 40;
nsamples = 800;
do_noise = false;
simout = uav_sim_step(params, model, ctrl.hinf, nsamples, T, do_plots, do_noise);
fprintf(' - Writing simulation results...\n');
cols = [
simout.StepX(:, simout.index.Position), ...
simout.StepX(:, simout.index.Velocity), ...
simout.StepX(:, simout.index.FlapAngles) * 180 / pi, ...
simout.StepX(:, simout.index.Angles) * 180 / pi];
writematrix([simout.Time', cols], 'fig/stepsim.dat', 'Delimiter', 'tab')
end
%% ------------------------------------------------------------------------
% Perform mu-Analysis & DK iteration
if do_musyn
drawnow;
fprintf('Performing mu-synthesis controller design...\n')
% Get complete system (without debugging outputs for plots)
idx = model.uncertain.index;
P = minreal(model.uncertain.StateSpace(...
[idx.OutputUncertain; idx.OutputError; idx.OutputNominal], ...
[idx.InputUncertain; idx.InputExogenous; idx.InputNominal]), ...
[], false);
% Options for H-infinity
nmeas = model.uncertain.Ny;
nctrl = model.uncertain.Nu;
hinfopt = hinfsynOptions('Display', 'off', 'Method', 'RIC', ...
'AutoScale', 'on', 'RelTol', 1e-2);
% Frequency raster resolution to fit D scales
nsamples = 300;
omega_max = 3;
omega_min = -3;
omega = logspace(omega_min, omega_max, nsamples);
omega_range = {10^omega_min, 10^omega_max};
% Initial values for D-K iteration are identity matrices
D_left = tf(eye(model.uncertain.Nz + model.uncertain.Ne + model.uncertain.Ny));
D_right = tf(eye(model.uncertain.Nv + model.uncertain.Nw + model.uncertain.Nu));
% Maximum number of D-K iterations
niters = 5;
fprintf(' - Will do (max) %d iterations.\n', niters);
% Maximum degree of D-scales and error
d_scales_max_degree = 10;
d_scales_max_err_p = .2; % in percentage
d_scales_improvement_p = .1; % in percentage, avoid diminishing returns
% hand tuned degrees, inf means will pick automatically best fit
% according to parameters given above
d_scales_degrees = {
0, 0, inf, inf, inf; % alpha
1, inf, inf, inf, inf; % omega
2, inf, inf, inf, inf; % state
0, 0, inf, inf, inf;
};
if size(d_scales_degrees, 2) < niters
error('');
end
scaled_plant_reduce_ord = 100;
scaled_plant_reduce_maxerr = 1e-3;
% for plotting later
mu_plot_legend = {};
% Start DK-iteration
dkstart = tic;
for it = 1:niters
fprintf(' * Running D-K iteration %d / %d...\n', it, niters);
itstart = tic();
% Scale plant and reduce order, fitting the D-scales adds a lot of near
% zero modes that cause the plant to become very numerically ill
% conditioned. Since the D-scales are an approximation anyways (i.e.
% there is not mathematical proof for the fitting step), we limit the
% order of the scaled system to prevent poor scaling issues.
P_scaled = minreal(D_left * P * inv(D_right), [], false);
[P_scaled, ~] = prescale(P_scaled, omega_range);
n = size(P_scaled.A, 1);
if n > scaled_plant_reduce_ord
R = reducespec(P_scaled, 'balanced'); % or ncf
R.Options.FreqIntervals = [omega_range{1}, omega_range{2}];
R.Options.Goal = 'absolute'; % better hinf norm
if do_plots
figure(102);
view(R);
drawnow;
end
P_scaled = getrom(R, MaxError=scaled_plant_reduce_maxerr);
fprintf(' Scaled plant was reduced from order %d to %d\n', ...
n, size(P_scaled.A, 1))
end
% Find controller using H-infinity
[K, ~, gamma, ~] = hinfsyn(P_scaled, nmeas, nctrl, hinfopt);
fprintf(' H-infinity synthesis gamma: %g\n', gamma);
if gamma == inf
error('Failed to synethesize H-infinity controller');
end
% Calculate frequency response of closed loop
N = minreal(lft(P, K), [], false);
M = minreal(N(idx.OutputUncertain, idx.InputUncertain), [], false);
[N, ~] = prescale(N, omega_range);
[M, ~] = prescale(M, omega_range);
N_frd = frd(N, omega);
M_frd = frd(M, omega);
% Calculate upper bound D scaling
fprintf(' Computing Performance SSV... ')
[mu_bounds_rp, mu_info_rp] = mussv(N_frd, model.uncertain.BlockStructurePerf, 'U');
fprintf(' Computing Stability SSV... ')
[mu_bounds_rs, mu_info_rs] = mussv(M_frd, model.uncertain.BlockStructure, 'U');
mu_rp = norm(mu_bounds_rp(1,1), inf, 1e-6);
mu_rs = norm(mu_bounds_rs(1,1), inf, 1e-6);
fprintf(' SSV for Performance: %g, for Stability: %g\n', mu_rp, mu_rs);
if do_plots
fprintf(' Plotting SSV mu\n');
figure(100); hold on;
bodemag(mu_bounds_rp(1,1));
mu_plot_legend = {mu_plot_legend{:}, sprintf('$\\mu_{P,%d}$', it)};
bodemag(mu_bounds_rs(1,1), 'k:');
mu_plot_legend = {mu_plot_legend{:}, sprintf('$\\mu_{S,%d}$', it)};
title('\bfseries $\mu_\Delta(\omega)$ for both Stability and Performance', ...
'interpreter', 'latex');
legend(mu_plot_legend, 'interpreter', 'latex');
grid on;
drawnow;
end
% Are we done yet?
if mu_rp < 1
fprintf(' - Found robust controller that meets performance.\n');
break;
end
if mu_rs < 1
fprintf(' Found robust controller that is stable.\n')
ctrl.musyn = struct('Name', '$\mu$-Synthesis', 'K', K, ...
'mu_rp', mu_rp, 'mu_rs', mu_rs);
end
% Fit D-scales
[D_left_frd, D_right_frd] = mussvunwrap(mu_info_rp);
fprintf(' Fitting D-scales\n');
% There are three complex, square, full block uncertainties and
% a non-square full complex block for performance
i_alpha = [1, 1];
i_omega = model.uncertain.BlockStructure(1, :) + 1; % after first block
i_state = sum(model.uncertain.BlockStructure(1:2, :)) + 1; % after second block
i_perf = sum(model.uncertain.BlockStructurePerf(1:3, :)) + 1; % after third block
D_frd = {
D_left_frd(i_alpha(1), i_alpha(1));
D_left_frd(i_omega(1), i_omega(1));
D_left_frd(i_state(1), i_state(1));
D_left_frd(i_perf(1), i_perf(1));
};
D_max_sv = {
max(max(sigma(D_frd{1, 1})));
max(max(sigma(D_frd{2, 1})));
max(max(sigma(D_frd{3, 1})));
max(max(sigma(D_frd{4, 1})));
};
D_names = {'alpha', 'omega', 'state', 'perf'};
D_fitted = {};
% for each block
for j = 1:4
% for each in left and right
fprintf(' %s', D_names{j});
% tuned by hand?
if d_scales_degrees{j, it} < inf
% D_fit = fitmagfrd(D_frd{j}, d_scales_degrees{j, it});
D_fit = fitfrd(genphase(D_frd{j}), d_scales_degrees{j, it});
max_sv = max(max(sigma(D_fit, omega)));
fit_err = abs(D_max_sv{j} - max_sv);
D_fitted{j} = D_fit;
fprintf(' tuned degree %d, error %g (%g %%)\n', ...
d_scales_degrees{j, it}, fit_err, ...
100 * fit_err / D_max_sv{j});
else
% find best degree
best_fit_deg = inf;
best_fit_err = inf;
for deg = 0:d_scales_max_degree
% Fit D-scale
% D_fit = fitmagfrd(D_frd{j}, deg);
D_fit = fitfrd(genphase(D_frd{j}), deg);
% Check if it is a good fit
max_sv = max(max(sigma(D_fit, omega)));
fit_err = abs(D_max_sv{j} - max_sv);
if fit_err < best_fit_err
% Choose higher degree only if we improve by at least a
% specified percentage over the previous best fit (or we are
% at the first iteration). This is a heuristic to prevent
% adding too many states to the controller as it depends on
% the order of the D-scales.
if abs(best_fit_err - fit_err) / best_fit_err > d_scales_improvement_p || best_fit_err == inf
best_fit_deg = deg;
best_fit_err = fit_err;
D_fitted{j} = D_fit;
end
end
if (fit_err / D_max_sv{j} < d_scales_max_err_p)
break;
end
fprintf('.');
end
fprintf(' degree %d, error %g (%g %%)\n', ...
best_fit_deg, best_fit_err, 100 * best_fit_err / D_max_sv{j});
end
end
% Construct full matrices
D_left = blkdiag(D_fitted{1} * eye(4), ...
D_fitted{2} * eye(1), ...
D_fitted{3} * eye(12), ...
D_fitted{4} * eye(14), ...
eye(12));
D_right = blkdiag(D_fitted{1} * eye(4), ...
D_fitted{2} * eye(1), ...
D_fitted{3} * eye(12), ...
D_fitted{4} * eye(10), ...
eye(5));
% Compute peak of singular values for to estimate how good is the
% approximation of the D-scales
sv_left_frd = sigma(D_left_frd);
max_sv_left_frd = max(max(sv_left_frd));
sv_left = sigma(D_left, omega);
max_sv_left = max(max(sv_left));
fprintf(' Max SVD of D: %g, Dhat: %g\n', max_sv_left_frd, max_sv_left);
fprintf(' D scales fit rel. error: %g %%\n', ...
100 * abs(max_sv_left_frd - max_sv_left) / max_sv_left_frd);
% Plot fitted D-scales
if do_plots
fprintf(' Plotting D-scales');
f = figure(101); clf(f); hold on;
bodemag(D_frd{1}, omega, 'r-');
bodemag(D_fitted{1}, omega, 'b');
fprintf('.');
bodemag(D_frd{2}, omega, 'r--');
bodemag(D_fitted{2}, omega, 'b--');
fprintf('.');
bodemag(D_frd{3}, omega, 'c-');
bodemag(D_fitted{3}, omega, 'm-');
fprintf('.');
bodemag(D_frd{4}, omega, 'c--');
bodemag(D_fitted{4}, omega, 'm--');
fprintf('.');
fprintf('\n');
title(sprintf('\\bfseries $D(\\omega)$ Scales Approximations at Iteration %d', it), ...
'interpreter', 'latex')
legend(...
'$D_{\alpha}$', '$\hat{D}_{\alpha}$', ...
'$D_{\omega}$', '$\hat{D}_{\omega}$', ...
'$D_{\mathbf{x}}$', '$\hat{D}_{\mathbf{x}}$', ...
'$D_{\Delta}$', '$\hat{D}_{\Delta}$', ...
'interpreter', 'latex' ...
);
grid on;
drawnow;
end
itend = toc(itstart);
fprintf(' Iteration took %.1f seconds\n', itend);
end
dkend = toc(dkstart);
fprintf(' - D-K iteration took %.1f seconds\n', dkend);
if mu_rp > 1 && mu_rs > 1
error(' - Failed to synthesize robust controller that meets the desired performance.');
end
%% Fit worst-case perturbation
fprintf(' - Computing worst case perturbation.\n')
% Find peak of mu
[mu_upper_bound_rp, ~] = frdata(mu_bounds_rp(1,1));
max_mu_rp_idx = find(mu_rp == mu_upper_bound_rp, 1);
Delta = mussvunwrap(mu_info_rp);
% TODO: finish here
% Save controller
ctrl.musyn = struct('Name', '$\mu$-Synthesis', ...
'K', K, 'Delta', Delta, ...
'mu_rp', mu_rp, 'mu_rs', mu_rs);
if mu_rp >= 1
fprintf(' - Synthetized robust stable controller does not meet the desired performance.\n');
end
%% ------------------------------------------------------------------------
% Measure Performance of mu synthesis design
if do_plots
fprintf(' - Plotting resulting controller...\n');
% Plot transfer functions
figure; hold on;
bode(ctrl.musyn.K(index.Ialpha(1), index.Ix));
bode(ctrl.musyn.K(index.Ialpha(2), index.Ix));
bode(ctrl.musyn.K(index.Ialpha(1), index.Iy));
bode(ctrl.musyn.K(index.Ialpha(2), index.Iy));
bode(ctrl.musyn.K(index.Iomega, index.Ix));
bode(ctrl.musyn.K(index.Iomega, index.Iy));
bode(ctrl.musyn.K(index.Iomega, index.Iz));
title(sprintf('\\bfseries %s Controller', ctrl.musyn.Name), ...
'interpreter', 'latex');
legend('$x \rightarrow \alpha_1$', ...
'$x \rightarrow \alpha_2$', ...
'$y \rightarrow \alpha_1$', ...
'$y \rightarrow \alpha_2$', ...
'$x \rightarrow \omega$', ...
'$y \rightarrow \omega$', ...
'$z \rightarrow \omega$', ...
'interpreter', 'latex');
grid on;
end
fprintf('Simulating nominal closed loop...\n');
T = 40;
nsamples = 5000;
do_noise = false;
simout = uav_sim_step(params, model, ctrl.musyn, nsamples, T, do_plots, do_noise);
fprintf('Simulating worst-case closed loop...\n');
end
|