aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/010-potenzen
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@ost.ch>2022-07-01 20:55:53 +0200
committerAndreas Müller <andreas.mueller@ost.ch>2022-07-01 20:55:53 +0200
commit931871e8c8e9b266b9b626d816a803bbd2c56653 (patch)
tree7bc0bd1e0b10ad0aecfc19bbfff9ade69f110d9c /buch/chapters/010-potenzen
parentchapter PDE completed (diff)
downloadSeminarSpezielleFunktionen-931871e8c8e9b266b9b626d816a803bbd2c56653.tar.gz
SeminarSpezielleFunktionen-931871e8c8e9b266b9b626d816a803bbd2c56653.zip
more index stuff
Diffstat (limited to 'buch/chapters/010-potenzen')
-rw-r--r--buch/chapters/010-potenzen/chapter.tex4
-rw-r--r--buch/chapters/010-potenzen/loesbarkeit.tex2
-rw-r--r--buch/chapters/010-potenzen/polynome.tex13
-rw-r--r--buch/chapters/010-potenzen/potenzreihen.tex14
-rw-r--r--buch/chapters/010-potenzen/tschebyscheff.tex8
5 files changed, 37 insertions, 4 deletions
diff --git a/buch/chapters/010-potenzen/chapter.tex b/buch/chapters/010-potenzen/chapter.tex
index 2628e33..a1cce60 100644
--- a/buch/chapters/010-potenzen/chapter.tex
+++ b/buch/chapters/010-potenzen/chapter.tex
@@ -18,10 +18,13 @@ Diskussion rechtfertigen.
\begin{enumerate}
\item
Die Umkehrfunktion der Potenzfunktion sind viel schwieriger zu
+\index{Potenzfunktion}%
berechnen und können als eine besonders einfache Art von speziellen
Funktionen betrachtet werden.
Die in Abschnitt~\ref{buch:potenzen:section:loesungen} definierten
Wurzelfunktionen sind der erste Schritt zur Lösung von Polynomgleichungen.
+\index{Wurzelfunktion}%
+\index{Polynomgleichung}%
\item
Es lassen sich interessante Familien von Funktionen
definieren, die zum Teil aus Polynomen bestehen.
@@ -32,6 +35,7 @@ Abschnitt~\ref{buch:polynome:section:tschebyscheff} vorgestellt.
\item
Alles speziellen Funktionen sind analytisch, sie haben eine konvergente
Potenzreihenentwicklung.
+\index{Potenzreihe}%
Die Partialsummen einer Potenzreihenentwicklung sind Approximationen
An die wichtigsten Eigenschaften von Potenzreihen wird in
Abschnitt~\ref{buch:potenzen:section:potenzreihen} erinnert.
diff --git a/buch/chapters/010-potenzen/loesbarkeit.tex b/buch/chapters/010-potenzen/loesbarkeit.tex
index f93a84b..a9f273a 100644
--- a/buch/chapters/010-potenzen/loesbarkeit.tex
+++ b/buch/chapters/010-potenzen/loesbarkeit.tex
@@ -34,6 +34,7 @@ Der Fundamentalsatz der Algebra zeigt, dass $\mathbb{C}$ alle
Nullstellen von Polynomen enthält.
\begin{satz}[Gauss]
+\index{Satz!Fundamentalsatz der Algebra}%
\index{Fundamentalsatz der Algebra}%
\label{buch:potenzen:satz:fundamentalsatz}
Jedes Polynom $p(x)=a_nx^n+\dots + a_2x^2 + a_1x + a_0\in\mathbb{C}[x]$
@@ -157,6 +158,7 @@ höheren Grades nicht mit einer Lösung durch Wurzelausdrücke
rechnen kann.
\begin{satz}[Abel]
+\index{Satz!von Abel}
\label{buch:potenzen:satz:abel}
Für Polynomegleichungen vom Grad $n\ge 5$ gibt es keine allgemeine
Lösung durch Wurzelausdrücke.
diff --git a/buch/chapters/010-potenzen/polynome.tex b/buch/chapters/010-potenzen/polynome.tex
index 9edb012..ce5e521 100644
--- a/buch/chapters/010-potenzen/polynome.tex
+++ b/buch/chapters/010-potenzen/polynome.tex
@@ -19,6 +19,7 @@ wobei $a_n\ne 0$ sein muss.
Das Polynom heisst {\em normiert}, wenn $a_n=1$ ist.
\index{normiert}%
\index{Grad eines Polynoms}%
+\index{Polynom!Grad}%
Die Menge aller Polynome mit Koeffizienten in der Menge $K$ wird mit
$K[x]$ bezeichnet.
\end{definition}
@@ -65,6 +66,8 @@ Berechnungsverfahren für die speziellen Funktionen zu konstruieren.
Dank des folgenden Satzes kann dies immer mit Polynomen geschehen.
\begin{satz}[Weierstrass]
+\index{Satz!Weierstrass}%
+\index{Weierstrasse, Karl}%
\label{buch:potenzen:satz:weierstrass}
\index{Weierstrass, Satz von}%
Eine auf einem kompakten Intervall $[a,b]$ stetige Funktion $f(x)$
@@ -74,7 +77,9 @@ approximieren.
Der Satz sagt in dieser Form nichts darüber aus, wie die
Approximationspolynome konstruiert werden sollen.
+\index{Approximationspolynom}%
Von Bernstein gibt es konstruktive Beweise dieses Satzes,
+\index{Bernstein-Polynom}%
welche auch explizit eine Folge von Approximationspolynomen
konstruieren.
In der späteren Entwicklung werden wir für die meisten
@@ -127,6 +132,7 @@ Ein gemeinsamer Teiler zweier Polynome $a(x)$ und $b(x)$
ist ein Polynom $g(x)$, welches beide Polynome teilt, also
$g(x)\mid a(x)$ und $g(x)\mid b(x)$.
\index{grösster gemeinsamer Teiler}%
+\index{Polynome!grösster gemeinsamer Teiler}%
Ein Polynom $g(x)$ heisst {\em grösster gemeinsamer Teiler} von $a(x)$
und $b(x)$, wenn jeder andere gemeinsame Teiler $f(x)$ von $a(x)$
und $b(x)$ auch ein Teiler von $g(x)$ ist.
@@ -180,6 +186,9 @@ Dann ist $g(x)=r_{m-1}(x)$ ein grösster gemeinsamer Teiler.
% Der erweiterte euklidische Algorithmus
%
\subsubsection{Der erweiterte euklidische Algorithmus}
+\index{Polynome!erweiterter euklidischer Algorithmus}%
+\index{erweiterter euklidischer Algorithmus}%
+\index{euklidischer Algorithmus!erweitert}%
Die Konstruktion der Folgen $a_n(x)$ und $b_n(x)$ kann in Matrixform
kompakter geschrieben werden als
\[
@@ -401,8 +410,11 @@ p_n
so dass $p_n=0$ sein muss, was schliesslich dazu führt, dass alle
Koeffizienten von $a(x)-b(x)$ verschwinden.
Daraus folgt das Prinzip des Koeffizientenvergleichs:
+\index{Koeffizientenvergleich}%
+\index{Polynome!Koeffizientenvergleich}%
\begin{satz}[Koeffizientenvergleich]
+\index{Satz!Koeffizientenvergleich}%
\label{buch:polynome:satz:koeffizientenvergleich}
Zwei Polynome $a(x)$ und $b(x)$ stimmen genau dann überein, wenn
sie die gleichen Koeffizienten haben.
@@ -436,6 +448,7 @@ und $n$ Additionen.
Die Anzahl nötiger Multiplikationen kann mit dem folgenden Vorgehen
reduziert werden, welches auch als das {\em Horner-Schema} bekannt ist.
\index{Horner-Schema}%
+\index{Polynome!Horner-Schema}%
Statt erst am Schluss alle Terme zu addieren, addiert man so früh
wie möglich.
Zum Beispiel multipliziert man $(a_nx+a_{n-1})$ mit $x$, was auf
diff --git a/buch/chapters/010-potenzen/potenzreihen.tex b/buch/chapters/010-potenzen/potenzreihen.tex
index a003fcb..994f99f 100644
--- a/buch/chapters/010-potenzen/potenzreihen.tex
+++ b/buch/chapters/010-potenzen/potenzreihen.tex
@@ -105,6 +105,7 @@ Für $|z|<1$ geht $z^n\to 0$ für $n\to\infty$, die Partialsummen
konvergieren und wir erhalten das Resultat des folgenden Satzes.
\begin{satz}
+\index{Satz!geometrische Reihe}%
\label{buch:polynome:satz:geometrischereihe}
Die geometrische Reihe $a+az+az^2+\dots$ konvergiert für $|z|<1$ und hat
die Summe
@@ -124,6 +125,7 @@ als konvergent erkannten Reihen nachweisbar.
Dies ist der Inhalt des folgenden, wohlbekannten Majorantenkriteriums.
\begin{satz}[Majorantenkriterium]
+\index{Satz!Majorantenkriterium}%
\label{buch:polynome:satz:majorantenkriterium}
\index{Majorantenkriterium}
Seien $a_k$ und $b_k$ die Glieder zweier unendlicher Reihen.
@@ -142,6 +144,7 @@ Potenzreihen mit der geometrischen Reihe zu vergleichen und
liefert damit einfach anzuwende Kriterien für die Konvergenz.
\begin{satz}[Quotientenkriterium]
+\index{Satz!Quotientenkriterium}%
\label{buch:polynome:satz:quotientenkriterium}
\index{Quotientenkriterium}%
Eine Reihe
@@ -175,6 +178,7 @@ die unter der gegebenen Voraussetzung konvergiert.
\end{proof}
\begin{satz}[Wurzelkriterium]
+\index{Satz!Wurzelkriterium}%
\label{buch:polynome:satz:wurzelkriterium}
\index{Wurzelkriterium}
Falls
@@ -203,6 +207,9 @@ das Reststück der Reihe ab Index $N$ ist daher wieder majorisiert
durch eine konvergente geometrische Reihe.
\end{proof}
+%
+% Konvergenzradius
+%
\subsubsection{Konvergenzradius}
Das Quotienten- und das Wurzel-Kriterium ist auf beliebige Reihen
anwendbar, es berücksichtigt nicht, dass in einer Potenzreihe
@@ -224,6 +231,7 @@ um den Punkt $z_0$ ist
\end{definition}
\begin{satz}
+\index{Satz!Konvergenzradius}%
\label{buch:polynome:satz:konvergenzradius}
Der Konvergenzradius $\varrho$ einer Potenzreihe
$\sum_{k=0}^\infty a_k(z-z_0)^k$ ist
@@ -420,7 +428,7 @@ $z_0$ ist die Summe
\frac{f^{(k)}(z_0)}{k!} (z-z_0)^k
\label{buch:polynome:eqn:taylor-polynom}
\end{equation}
-\index{Taylor-Reihe}
+\index{Taylor-Reihe}%
Die {\em Taylor-Reihe} der Funktion $f(z)$ ist die Reihe
\begin{equation}
\mathscr{T}_{z_0}f (z)
@@ -431,7 +439,9 @@ Die {\em Taylor-Reihe} der Funktion $f(z)$ ist die Reihe
\end{equation}
\end{definition}
-
+%
+% Analytische Funktionen
+%
\subsubsection{Analytische Funktionen}
Das Taylor-Polynom $\mathscr{T}_{z_0}^nf(z)$ hat an der Stelle $z_0$
die gleichen Funktionswerte und Ableitungen wie die Funktion $f(z)$,
diff --git a/buch/chapters/010-potenzen/tschebyscheff.tex b/buch/chapters/010-potenzen/tschebyscheff.tex
index 780be1b..ccc2e97 100644
--- a/buch/chapters/010-potenzen/tschebyscheff.tex
+++ b/buch/chapters/010-potenzen/tschebyscheff.tex
@@ -250,6 +250,7 @@ lässt sich auch eine Multiplikationsformel ableiten.
\index{Multiplikationsformel}%
\begin{satz}
+\index{Satz!Multiplikationsformel für Tschebyscheff-Polynome}%
Es gilt
\begin{align}
T_m(x)T_n(x)&=\frac12\bigl(T_{m+n}(x) + T_{m-n}(x)\bigr)
@@ -306,7 +307,7 @@ Damit ist auch \eqref{buch:potenzen:tschebyscheff:mult2} bewiesen.
%
% Differentialgleichung
%
-\subsubsection{Differentialgleichung}
+\subsubsection{Tschebyscheff-Differentialgleichung}
Die Ableitungen der Tschebyscheff-Polynome sind
\begin{align*}
T_n(x)
@@ -374,7 +375,10 @@ Die Tschebyscheff-Polynome sind Lösungen der Differentialgleichung
(1-x^2) T_n''(x) -x T_n'(x) +n^2 T_n(x) = 0.
\label{buch:potenzen:tschebyscheff:dgl}
\end{equation}
-
+Die Differentialgleichung~\eqref{buch:potenzen:tschebyscheff:dgl}
+heisst {\em Tschebyscheff-Differentialgleichung}.
+\index{Tschebyscheff-Differentialgleichung}%
+\index{Differentialgleichung!Tschebyscheff-}%